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New Representations of the AES Key Schedule

Gaëtan Leurent and Clara Pernot

Inria, Paris, France
{gaetan.leurent,clara.pernot}@inria.fr

Abstract. In this paper we present a new representation of the AES key
schedule, with some implications to the security of AES-based schemes.
In particular, we show that the AES-128 key schedule can be split into
four independent parallel computations operating on 32 bits chunks, up
to linear transformation. Surprisingly, this property has not been de-
scribed in the literature after more than 20 years of analysis of AES. We
show two consequences of our new representation, improving previous
cryptanalysis results of AES-based schemes.
First, we observe that iterating an odd number of key schedule rounds
results in a function with short cycles. This explains an observation of
Khairallah on mixFeed, a second-round candidate in the NIST lightweight
competition. Our analysis actually shows that his forgery attack on
mixFeed succeeds with probability 0.44 (with data complexity 220GB),
breaking the scheme in practice. The same observation also leads to a
novel attack on ALE, another AES-based AEAD scheme.
Our new representation also gives efficient ways to combine information
from the first sub-keys and information from the last sub-keys, in order
to reconstruct the corresponding master keys. In particular we improve
previous impossible differential attacks against AES-128.

Keywords: AES · Key schedule · mixFeed · ALE · Impossible Differential At-
tack

1 Introduction

The AES [16,1] is the most widely used block cipher today, designed by Daemen
and Rijmen in 1999 and selected for standardization by NIST. Like all symmetric
cryptography primitives, the security of the AES can only be evaluated with
cryptanalysis, and there is a constant effort to study its resistance again old
and new attacks, and to evaluate its security margin. There are three versions
of AES, with different key sizes, and different number of rounds: AES-128 with
10 rounds, AES-192 with 12 rounds, and AES-256 with 14 rounds. After twenty
years of cryptanalysis, many different attacks have been applied to AES, and
we have a strong confidence in its security: the best attacks against AES-128
in the single-key setting reach only 7 rounds out of 10. The best attacks known
so far are either impossible differential attacks (following a line of work starting
with [2]) or meet-in-the-middle attacks (with a line of work starting from [18]),
as listed in Table 2.
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Table 1. Comparison of attacks against ALE.

Attack Enc. Verif. Time Ref.

Existential Forgery Known Plaintext 2110.4 2102 2110.4 [33]
Existential Forgery Known Plaintext 2103 2103 2104 [29]
Existential Forgery Known Plaintext 1 2120 2120 [29]
State Recovery, Almost Univ. Forgery Known Plaintext 1 2121 2121 [29]
State Recovery, Almost Univ. Forgery Chosen Plaintext 257.3 0 2104.4 New

Table 2. Best single-key attacks against 7-round AES-128.

Attack Data Time Mem. Ref. Note

Meet-in-the-middle 297 299 298 [19]
2105 2105 290 [19]
2105 2105 281 [9]
2113 2113 274 [9]

Impossible differential 2113 2113 274 [13] Using 4 out. diff. and state-test
2105.1 2113 274.1 [13]a Using 4 out. diff
2106.1 2112.1 273.1 Variant of [13] using 1 out. diff.
2104.9 2110.9 271.9 New Using 1 out. diff.

a The time complexity is incorrectly given as 2106.88 in [13].

1.1 Our results

The key schedule is arguably the weakest part of the AES, and it is well known
to cause issues in the related-key setting [7,6,5]. In this paper, we focus on the
key schedule of AES, and we show a surprising alternative representation, where
the key schedule is split into several independent chunks, and the actual subkeys
are just linear combinations of the chunks.

Application to mixFeed and ALE. This representation is motivated by an ob-
servation made by Khairallah [28] on the AEAD scheme mixFeed: when the
11-round AES-128 key schedule is iterated there are apparently many short cy-
cles of length roughly 234. Our representation explains this observation, and
proves that the forgery attack of Khairallah against mixFeed actually succeed
with a very high probability. It only requires the encryption of one known mes-
sage of length at least 233.7 blocks, and generates a forgery with probability 0.44,
making it a practical break of the scheme.

We also apply the same observation to ALE, another AES-based scheme that
iterates the AES key schedule. We obtain a novel attack against ALE, with a
much lower data complexity than previous attacks, but we need chosen plaintexts
rather than known plaintexts (see Table 1).

Key recovery attack against AES-128. We also improve key recovery attacks
against AES-128 based on impossible differential cryptanalysis. This type of at-
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tacks targets bytes of the first sub-key and of the last sub-key, and excludes
some values that are shown impossible. Then, the attacker must iterate over
the remaining candidates, and reconstruct the corresponding master keys. Using
our new representation of the key schedule, we make the reconstruction of the
master key more efficient. Therefore we can start from a smaller data set: we
identify fewer impossible keys, but we process the larger number of key candi-
dates without making this step the bottleneck.

While the improvement is quite modest (see Table 2), it is notable that
we improve this attack in a non-negligible way, because cryptanalysis of AES
has achieved a high level of technicality, and attacks are already thoroughly
optimized. In particular, we obtain the best attack so far when the amount of
memory is limited (eg. below 275).

1.2 Organisation of the paper

We start with a description of the AES-128 key schedule and describe our al-
ternative representation in Section 2, before presenting applications to mixFeed
(Section 3), ALE (Section 4) and impossible differential attacks against AES-
128 (Section 5). We then describe an alternative representation of the AES-192
and AES-256 key schedules in Section 6, and some properties of the AES key
schedules that might be useful in future works in Section 7.

2 A New Representation of the AES-128 Key Schedule

In AES-128, the key schedule is an iterative process to derive 11 subkeys from
one master key. To start with, the 128 bits of the master key are divided into 4
words of 32 bits each: wi for 0 ≤ i ≤ 3. The following notations are used within
the algorithm:

RotWord performs a cyclic permutation of one byte to the left.
SubWord applies the AES Sbox to each of the 4 bytes of a word.
RCon(i) is a round constant defined as [xi−1, 0, 0, 0] in the field F28 described

in [1]. For simplicity, we denote xi−1 as ci.

In order to construct wi for i ≥ 4, one applies the following steps:

– if i ≡ 0 mod 4, wi = SubWord(RotWord(wi−1))⊕ RCon(i/4)⊕ wi−4.
– else, wi = wi−1 ⊕ wi−4.

The subkey at round r is the concatenation of the words w4r to w4r+3. We can
also express the key schedule at the byte level, using kri with 0 ≤ i < 16 to denote
byte i of the round-r subkey (we use kr〈i,j,...〉 as a shorthand for kri , k

r
j , . . .). The

subkey is typically represented as a 4 × 4 matrix with the AES byte ordering,

with wi = k
i/4
4(i mod 4)‖k

i/4
4(i mod 4)+1‖k

i/4
4(i mod 4)+2‖k

i/4
4(i mod 4)+3:

kr0 k
r
4 kr8 kr12

kr1 k
r
5 kr9 kr13

kr2 k
r
6 k

r
10 k

r
14

kr3 k
r
7 k

r
11 k

r
15

 =

w4r w4r+1 w4r+2 w4r+3
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The key schedule can be written as follows, with k the key schedule state, k′i the
state after one round of key schedule, and S the AES Sbox (see Figure 1 and 3):

k′0 = k0 ⊕ S(k13)⊕ ci k′8 = k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci
k′1 = k1 ⊕ S(k14) k′9 = k9 ⊕ k5 ⊕ k1 ⊕ S(k14)

k′2 = k2 ⊕ S(k15) k′10 = k10 ⊕ k6 ⊕ k2 ⊕ S(k15)

k′3 = k3 ⊕ S(k12) k′11 = k11 ⊕ k7 ⊕ k3 ⊕ S(k12)

k′4 = k4 ⊕ k0 ⊕ S(k13)⊕ ci k′12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci
k′5 = k5 ⊕ k1 ⊕ S(k14) k′13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14)

k′6 = k6 ⊕ k2 ⊕ S(k15) k′14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15)

k′7 = k7 ⊕ k3 ⊕ S(k12) k′15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12)

Invariant subspaces. Recently, several lightweight block ciphers has been an-
alyzed using invariant subspace attacks. This type of attack was first proposed
on PRINTcipher by Leander et al. [30]; the basic idea is to identify a linear
subspace V and an offset u such that the round function F of a cipher satisfies
F (u + V ) = F (u) + V . At Eurocrypt 2015, Leander, Minaud and Rønjom [31]
introduced an algorithm in order to detect such invariant subspaces. By apply-
ing this algorithm to four rounds of the AES-128 key schedule, we find invariant
subspaces of dimension four over F28 , and this implies a decomposition of the
key schedule.

First, let’s recall the generic algorithm for a permutation F : Fn2 → Fn2 :

1. Guess an offset u ∈ Fn2 and a one-dimensional subspace V0.
2. Compute Vi+1 = span{(F (u+ Vi)− F (u)) ∪ Vi}.
3. If the dimension of Vi+1 equals the dimension of Vi, we found an invariant

subspace: F (u+ V ) = F (u) + V .
4. Else, we go on step 2.

In the case of the AES-128 key schedule, we use subspaces of F16
28 over the

field F28 rather than over F2. If we apply this algorithm with the permutation
F corresponding to 4 rounds of key schedule, with any key state u, and with V0
the vector space generated by one of the first four bytes, we obtain 4 invariant
affine subspaces whose linear parts are:

E0 = {(a, b, c, d, 0, b, 0, d, a, 0, 0, d, 0, 0, 0, d) for a, b, c, d ∈ F28}
E1 = {(a, b, c, d, a, 0, c, 0, 0, 0, c, d, 0, 0, c, 0) for a, b, c, d ∈ F28}
E2 = {(a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0) for a, b, c, d ∈ F28}
E3 = {(a, b, c, d, a, 0, c, 0, a, b, 0, 0, a, 0, 0, 0) for a, b, c, d ∈ F28}

When we consider a single round R of the key schedule, the subspaces are not
invariant, but are images of each other. We have the following relations, with u0
an element in (F28)16 and ui = Ri(u0), for (1 ≤ i < 5):

R(E0 + u0) = E1 + u1, R(E1 + u1) = E2 + u2,

R(E2 + u2) = E3 + u3, R(E3 + u3) = E0 + u4
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Fig. 1. AES key schedule.
(figure adapted from [27])
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Fig. 2. Diffusion of a difference on the first byte after
several rounds of key schedule.

In other words, if the difference pattern between two states is in Ei, then after
r rounds of key schedule, the difference pattern will be in E(i+r)%4.

This can be verified by tracking the differences in the key schedule, starting
from a difference (a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), as shown in Figure 2.
After four rounds we reach a difference (a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0),
with differential transitions a → d, d → c, and c → b through the Sbox. Next,
we obtain a difference (a′, b, c, d, a′, 0, c, 0, a′, b, 0, 0, a′, 0, 0, 0), after an Sbox
transition b → a ⊕ a′. Surprisingly, the dimension of the difference state does
not increase, because there is a single active Sbox in each round, and it affects a
difference that is already independent of the rest of the state. Therefore we have
the four transitions given above, and the spaces are indeed invariant.

New representation from invariant subspaces. We actually have a much
stronger property than just invariant spaces: the full space is the direct sum of
those four vector spaces, with parallel invariant subspaces for any offset u:

(F28)16 = E0 ⊕ E1 ⊕ E2 ⊕ E3

∀u, ∀i, F (u⊕ Ei) = F (u)⊕ Ei.

This implies that we can split the internal state according to those vector spaces.
Indeed, there exists unique linear projections πi : (F28)16 → Ei for 0 ≤ i < 4
such that ∀x ∈ Ei, πi(x) = x, and πi(Ej) = 0 for i 6= j. In particular, we have
∀x, x = π0(x)⊕ π1(x)⊕ π2(x)⊕ π3(x). This implies:

F (x) = F
(
π0(x)⊕ π1(x)⊕ π2(x)⊕ π3(x)

)
∈ F

(
π0(x)⊕ π1(x)⊕ π2(x)

)
⊕ E3

∈ F
(
π0(x)⊕ π1(x)

)
⊕ E3 ⊕ E2

∈ F
(
π0(x)

)
⊕ E3 ⊕ E2 ⊕ E1
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Therefore π0(F (x)) = π0
(
F (π0(x))

)
. Similarly, πi(F (x)) = πi

(
F (πi(x))

)
, and

finally we can split the permutation in four independent 32-bit computations:

F (x) = π0
(
F (π0(x))

)
⊕ π1

(
F (π1(x))

)
⊕ π2

(
F (π2(x))

)
⊕ π3

(
F (π3(x))

)
.

To obtain a representation that makes the 4 subspaces appear clearly, we perform
a change of basis. Let {e0, e1, . . . , e15} be our new basis of (F28)16 defined as
follows:

Base of E0


e0 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)
e1 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e3 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Base of E1


e4 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0)
e5 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e6 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e7 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Base of E2


e8 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
e9 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e10 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
e11 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

Base of E3


e12 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
e13 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e14 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e15 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Let s0, s1, . . . , s15 be the coordinates in the new basis. They can be obtained
by multiplying the original coordinates (k0, . . . , k15) with the matrix A = C−10 ,
where the columns of the transition matrix C0 are the coordinates of the vectors
e0, e1, . . . , e15 expressed in the old basis (canonical basis):

C0 =



0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0


Therefore, we use:

s0 = k15 s1 = k14 ⊕ k10 ⊕ k6 ⊕ k2 s2 = k13 ⊕ k5 s3 = k12 ⊕ k8
s4 = k14 s5 = k13 ⊕ k9 ⊕ k5 ⊕ k1 s6 = k12 ⊕ k4 s7 = k15 ⊕ k11
s8 = k13 s9 = k12 ⊕ k8 ⊕ k4 ⊕ k0 s10 = k15 ⊕ k7 s11 = k14 ⊕ k10
s12 = k12 s13 = k15 ⊕ k11 ⊕ k7 ⊕ k3 s14 = k14 ⊕ k6 s15 = k13 ⊕ k9

(1)
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After defining s′ with the same transformation from k′, we can verify that:

s′0 = k′15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12) = s13 ⊕ S(s12)

s′1 = k′14 ⊕ k′10 ⊕ k′6 ⊕ k′2 = k14 ⊕ k6 = s14

s′2 = k′13 ⊕ k′5 = k13 ⊕ k9 = s15

s′3 = k′12 ⊕ k′8 = k12 = s12

s′4 = k′14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15) = s1 ⊕ S(s0)

s′5 = k′13 ⊕ k′9 ⊕ k′5 ⊕ k′1 = k13 ⊕ k5 = s2

s′6 = k′12 ⊕ k′4 = k12 ⊕ k8 = s3

s′7 = k′15 ⊕ k′11 = k15 = s0 (2)

s′8 = k′13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14) = s5 ⊕ S(s4)

s′9 = k′12 ⊕ k′8 ⊕ k′4 ⊕ k′0 = k12 ⊕ k4 = s6

s′10 = k′15 ⊕ k′7 = k15 ⊕ k11 = s7

s′11 = k′14 ⊕ k′10 = k14 = s4

s′12 = k′12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci = s9 ⊕ S(s8)⊕ ci
s′13 = k′15 ⊕ k′11 ⊕ k′7 ⊕ k′3 = k15 ⊕ k7 = s10

s′14 = k′14 ⊕ k′6 = k14 ⊕ k10 = s11

s′15 = k′13 ⊕ k′9 = k13 = s8

This is represented by Figure 4 (see also Figure 14 in Appendix for a more visual
representation). In the rest of this paper we use the notation kri to denote byte
i of the round-r subkey, and sri to denote bytes of the alternative representation
at round r, where the relations between kri and sri follow (1).

To further simplify the description, we write the output as

(s′4, s
′
5, s
′
6, s
′
7, s′8, s

′
9, s
′
10, s

′
11, s′12, s

′
13, s

′
14, s

′
15, s′0, s

′
1, s
′
2, s
′
3).

This corresponds to “untwisting” the rotation of the 4-byte blocks, so that each
block of 4 output bytes depends on the same 4 input bytes. This results in our
alternate representation of the AES-128 key schedule:

1. We first apply the linear transformation A to the state, corresponding to the
change of variable above.

2. Then the rounds of the key schedule are seen as the concatenation of 4
functions each acting on 32-bit words (4 bytes), as seen in Figure 5.

3. In order to extract the subkey of round r, another linear transformation
Cr mod 4 is applied to the state, depending of the round number modulo 4.
Ci is defined as Ci = A−1 × SRi, with SR the matrix corresponding to
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Fig. 3. One round of the AES-128 key schedule.
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rotation of 4 bytes to the right (see below). In particular C0 = A−1.

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0


SR =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


In this new representation, there are clearly 4 independent chunks each acting
on 4 bytes, and the subkeys are reconstructed with linear combinations of the
alternative key schedule state. This representation also preserves the symmetry
of the key schedule: the original key schedule is invariant by rotation of the
columns (up to constants), and this corresponds to a rotation of four bytes in
the new representation.

Master key

Subkey

...
...

...
...

A

B B B1 B

B B2 B B

B3 B B B

B B B B4

Cr mod 4

⊕

Detail of B:

S

Fig. 5. r rounds of the key schedule in the new representation. Bi is similar to B but
the round constant ci is XORed to the output of the Sbox.
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Z

Feed
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P (Z)

. . . Feed

Mm

Cm

F

Pm−1(Z)

T

Fig. 6. Simplified scheme of mixFeed encryption.

3 Application to mixFeed

The AEAD scheme mixFeed [14] is a second-round candidate in the NIST
Lightweight Standardization Process, submitted by Chakraborty and Nandi, and
based on the AES block cipher. It is a rate-1 feedback-based mode inspired by
COFB. For each message block, a Feed function is used to compute the cipher
text and the block cipher input from the previous internal state, and the internal
state is replaced by the block cipher output. In COFB, there is a need for an
extra state variable, to make each Feed function different. In order to reduce
the state size, mixFeed instead makes each block cipher call different, applying a
permutation P to the key between each block. For optimal efficiency, the permu-
tation P just corresponds to eleven round of the AES key schedule, so that the
subkeys for all the AES calls just correspond to running the AES key schedule
indefinitely.

In [28], Khairallah observed that some keys generate short cycles when iter-
ating the P permutation, and he built a forgery attack for keys in short cycles. In
this work, we show that the new representation of the key schedule explains the
existence of these short cycles, and we characterize the keys belonging to such
cycles. This shows that the permutation P cannot be considered as a random
permutation.

3.1 Description of mixFeed

For simplicity, we only describe a simplified mixFeed without associated data;
the full description of mixFeed can be found in [14].

Notations: We use M and C to denote the plaintext and ciphertext. For the
sake of simplicity, we assume that M is made of m 128-bit blocks.

The following functions are used in mixFeed:

– E: a modified version of AES-128 including MixColumns in the last round;
– P : the permutation corresponding to eleven rounds of AES-128 key schedule;
– Feed: the feedback function defined as (see Figure 7):

Feed(Y,M) = (X,C)

= (dMe‖bM ⊕ Y c,M ⊕ Y ),

10



where dDe represent the 64 most significant bits of D, and bDc the 64 least
significant bits.

Y

M

M ⊕ Y

Feed dMe ‖ bM ⊕ Y c

Fig. 7. Function Feed with a full message block.

The computations are as follow (see Figure 6):

Initialization of the state. An initial value IV = Y0 and a internal key Z are
computed from the nonce N and the key K.

Encryption and authentication. For i from 1 to m, the Feed function is applied
to the current state Yi−1 and message block Mi. Feed returns the ciphertext
block Ci, and a new state Xi which is then encrypted under the key P i−1(Z)
using E to obtain Yi. At the end of this step, a finalization function computes
the tag from the final state and the internal key Pm−1(Z), we denote as F the
composition of the cipher call of last round and the finalization function.

3.2 Short Cycles of P

In [28], Khairallah found 20 keys belonging to small cycles of P , and observed
that all of them have the same cycle length1: 14018661024. He deduced a forgery
attack, assuming that the subkey falls in one of those cycles, but did not further
analyse the probability of having such a subkey. Later the designers of mixFeed
published a security proof for the scheme [15], under the assumption that the
number of keys in a short cycle is sufficiently small. More precisely, they wrote:

Assumption 1 ([15]) For any K ∈ {0, 1}n chosen uniformly at random, prob-
ability that K has a period at most ` is at most `/2n/2.

The 20 keys identified by Khairallah do not contradict this assumption, but
if there are many such keys the assumption does not hold, and mixFeed can
be broken by a forgery attack. We now provide a theoretical explanation of the
observation of Khairallah, and a full characterization of the cycles of P . We
find that a random key is in a cycle of length smaller than 234 with probability
0.44; this contradicts the assumption made in [15], and allows a practical forgery
attack.
1 Khairallah actually reported the length as 1133759136, probably because of a 32-bit

overflow.
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Analysis of the structure of P . Using our new representation, the 11-round key
schedule P consist of:

– The linear transformation A
– 4 parallel 32-bit functions that we denote f1‖f2‖f3‖f4, with

f1 = B11 ◦B ◦B ◦B ◦B7 ◦B ◦B ◦B ◦B3 ◦B ◦B
f2 = B ◦B10 ◦B ◦B ◦B ◦B6 ◦B ◦B ◦B ◦B2 ◦B
f3 = B ◦B ◦B9 ◦B ◦B ◦B ◦B5 ◦B ◦B ◦B ◦B1

f4 = B ◦B ◦B ◦B8 ◦B ◦B ◦B ◦B4 ◦B ◦B ◦B

(the functions differ only by the round constants)
– The linear transformation C3 = A−1 × SR−1

To simplify the analysis, we consider the cycle structure of P̃ = A ◦ P ◦ A−1,
which is the same as the cycle structure of P :

P̃ : (a, b, c, d) 7→ (f2(b), f3(c), f4(d), f1(a))

To further simplify the analysis, we consider the cycle structure of P̃ 4, which is
closely related to the cycle structure of P̃ . A cycle of P̃ 4 of length ` corresponds
to a cycle of P̃ , of length `, 2` or 4`. Conversely a cycle of P̃ of length ` cor-
responds to one or several cycles of P̃ 4, of length `, `/2 or `/4 (depending on

the divisibility of `). Analyzing P̃ 4 is easier because it can be decomposed into
4 parallel functions, cancelling the left rotation induced by SR−1:

P̃ 4 : (a, b, c, d) 7→ (φ1(a), φ2(b), φ3(c), φ4(d))

φ1(a) = f2 ◦ f3 ◦ f4 ◦ f1(a)

φ2(b) = f3 ◦ f4 ◦ f1 ◦ f2(b)

φ3(c) = f4 ◦ f1 ◦ f2 ◦ f3(c)

φ4(d) = f1 ◦ f2 ◦ f3 ◦ f4(d)

If (a, b, c, d) is in a cycle of length ` of P̃ 4, we have P̃ 4`(a, b, c, d) = (a, b, c, d),
that is to say:

φ`1(a) = a φ`2(b) = b φ`3(c) = c φ`4(d) = d

In particular, a, b, c and d must be in cycles of φ1, φ2, φ3, φ4 (respectively) of
length dividing `. Conversely, if a, b, c, d are in small cycles of the corresponding
φi, then (a, b, c, d) is in a cycle of P̃ 4 of length the lowest common multiple of
the small cycle lengths.

Moreover, due to the structure of the φi functions, all of them have the same
cycle structure. This implies that P̃ has a large number of small cycles. Indeed, if
we consider a cycle of φi of length `, and elements a, b, c, d in the corresponding
cycles, (a, b, c, d) is in a cycle of P 4 of length `. There are `4 choices of a, b, c, d,
which correspond to `3 different cycles of P . If we assume that φi behaves like
a random 32-bit permutation, we expect that the largest cycle has length about
231, which gives around 293 cycles of P̃ 4 of length ≈ 231, and around 293 cycles
of P̃ of length ≈ 233.

12



Cycle analysis of 11-round AES-128 key schedule. In order to identify the small
cycles of the permutation P , we start by analyzing the cycle structure of the
32-bit function φ1 = f2 ◦ f3 ◦ f4 ◦ f1: it can be decomposed into cycles of lengths
3504665256, 255703222, 219107352, 174977807, 99678312, 13792740, 8820469,
7619847, 5442633, 4214934, 459548, 444656, 14977, 14559, 5165, 4347, 1091,
317, 27, 6, 5 (3 cycles), 4 (2 cycles), 2 (3 cycles), and 1 (2 fixed points). In
particular, the largest cycle has length ` = 3504665256. Consequently, with
probability (3504665256 × 2−32)4 ≈ 0.44, we have a, b, c and d in a cycle of

length `, resulting in a cycle of length ` for P̃ 4, and a cycle of length at most
4` = 14018661024 for P̃ and P . This explains the observation of Khairallah [28],
and clearly contradicts the assumption of [15].

More generally, when a, b, c, d belong to a cycle of length `i, the corresponding
cycle for P̃ 4 is of length ` = lcm(`1, `2, `3, `4), and we can compute the associated

probability. In most cases, a cycle of length ` of P̃ 4 corresponds to a cycle of P̃ of
length 4`. However, the cycle of P̃ is of length ` when P̃ `(a, b, c, d) = (a, b, c, d),

and of length 2` when P̃ 2`(a, b, c, d) = (a, b, c, d) (this can only be the case with
odd `, by definition of `). This is unlikely for short cycles, but as an example we

can construct a fixed-point for P̃ and P from a fixed-point of φ1:

– a = 7e be d1 92

– b = de d4 b7 cc = f3 ◦ f4 ◦ f1(a)

– c = 9f 95 88 26 = f4 ◦ f1(a)

– d = d4 b9 79 91 = f1(a)

Since f2 ◦ f3 ◦ f4 ◦ f1(a) = a, we have P̃ (a, b, c, d) = (f2(b), f3(c), f4(d), f1(a)) =

(a, b, c, d). Since P̃ = A ◦ P ◦ A−1, the corresponding key in the original repre-
sentation is:

A−1 ×


a
b
c
d

 =
(
64 0b 3f 83 63 4e a7 f6 46 0e f8 b2 d4 9f de 7e

)>

This results in a fixed point of P .

We can generalize this construction for all odd cycle lengths `. We choose
w an element of a cycle of length `, and then we can build an element which
belongs to a cycle of length ` for the permutation P :

– if ` = 1 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with 3` terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2` terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with ` terms fi

13
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Fig. 8. Forgery attack when Z belongs to a cycle of length 2.

– if ` = 3 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with ` terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2` terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with 3` terms fi

3.3 Forgery attack against mixFeed

Khairallah [28] proposed a forgery attack assuming that Z belongs to a cycle of
length `, considering a message M made of m blocks, with m > `:

1. Encrypt the message M to obtain the ciphertext C and tag T .

2. Compute Y0 using M1 and C1 and X`+1 using M`+1 and C`+1.

3. Compute M̄ and C̄ such that (X`+1, C̄) = Feed(Y0, M̄).

4. The T tag will also authenticate the new ciphertext C ′ = C̄‖C`+2‖ · · · ‖Cm.

The computations required for the forge are negligible with only a few XORs
to invert the Feed function. Therefore the complexity of the attack is just the
encryption of a message with at least (`+1) blocks, with ` the length of the cycle.
As explained above, the probability of success is approximately 0.44, using ` =
14018661024. When the forgery fails, we can repeat the attack with a different
nonce, because the internal key Z depends on the nonce; for each master key K,
the attack works on 44% of the nonces.

We have verified this attack using the reference implementation provided by
the designers. We take a message of ` + 1 = 14018661025 blocks of 16 bytes
(220 Gbytes2), choose a random key and nonce, and encrypt the message with
mixFeed. We modify the ciphertext according to the previous explanation, and
we check if the new ciphertext is accepted. We obtained 41% of success over 100
attempts. This result is close to the expected 44% success rate, and confirms our
analysis.

2 Note that there is no need to store the plaintext or ciphertext in memory if we have
access to an online implementation of mixFeed.
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4 Application to ALE

ALE [8] is an earlier authenticated encryption scheme based on the AES round
function, strongly inspired by LEX [4] (for the encryption part) and Pelican-
MAC [17] (for the authentication part). Attacks have already been presented
against ALE [29,33] but the new representation of the key schedule gives new
types of attacks, based on previous attacks against LEX [20,11].

N

K

Z̃AES

0128

K

AES AES AES4

LEX
leak⊕

M1

Z = P10(Z̃)

⊕

C1

. . . AES4

LEX
leak⊕

Mt

P t−1(Z)

⊕

Ct

AES

K

T

Fig. 9. Simplified authenticated encryption with ALE.

4.1 Description of ALE

For the sake of simplicity, we will consider ALE without associated data, and we
only consider blocks of 16 bytes for the plaintext (to ignore the padding). ALE
maintains a state composed of an internal state and an internal key, and operates
with 3 steps (cf Figure 9). As for mixFeed, the internal key is updated with
iterative applications of a permutation P corresponding to AES key schedule
rounds. In the case of ALE, P corresponds to 5 rounds of key schedule rather
than 11, but we have again many short cycles because 5 is also an odd number.

Initialization. The state is initialized from the key K and a nonce N , using a
session key Z̃ = EK(N). The internal state is initialized to IV = EZ̃(EK(0)),
and the internal key is initialized to P10(Z), where P10 correspond to 11 rounds
of AES key schedule.

Message processing phase. For each block of message, the internal state is en-
crypted with 4-round AES, and the internal key is updated by five rounds of
AES key schedule. During the encryption, four bytes are leaked in each AES
round according to the LEX specification (bytes 0, 2, 8, 10 for odd rounds, and
bytes 4, 6, 12 and 14 for even rounds), and used as keystream to encrypt the
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message. Then the message block is xored to the current internal state, following
the Pelican-MAC construction.

Finalization. Finally, the internal state is encrypted with the full AES using the
master key K to generate the tag T .

Rekeying. The designers of ALE require that the master key is changed after
processing 248 bits (i.e. 241 blocks).

Previous results. ALE was designed to thwart attacks against LEX [20,11] that
use a pair of partially-colliding internal states to recover the key. Indeed, each
AES call uses a different key, which prevents those attacks. Other attacks have
been proposed against LEX, based on differential trails between two message
injections [29,33]. We compare the previous attacks in Table 1. To make the
results comparable, we assume that attacks with a low success rate are repeated
until they succeeds. For attacks using more than 241 blocks of data, the master
key will be rotated.

4.2 Internal Key Recovery

We describe a new attack against ALE, based on previous analysis of LEX.
The key update of ALE was supposed to avoid these attacks, but since the
update function has small cycles, there is a large probability that the key state
is repeated, which makes the attack possible.

We analyze cycles of P in the same way as for mixFeed: four iterations of the
5-round key schedule are equivalent to the application in parallel of four 32-bit
functions. The study of one of these functions gives us information about the
cycle structure of the permutation P . The 32-bit function has a cycle of length
` = 4010800805 ≈ 231.9; therefore the permutation P admits many cycles of
length 4× ` ≈ 233.9 which are reached with probability (`× 2−32)4 ≈ 0.76.

Previous attacks against LEX [20,11,12] are based on the search for a pair of
internal states that partially collides, with two identical columns. This pattern
can occur in odd or even round: we use columns 0 and 2 for odd rounds, and
columns 1 and 3 for even rounds. The partial collision occurs with probability
2−64, and 32 bits of the colliding state can be directly observed, due to the leak
extractions. A candidate pair can be tested with complexity 264 [12, Section 7.1],
using the leak extraction of rounds before and after the collision; if it actually
corresponds to a partial collision this reveals the internal state and key.

In the case of ALE, we perform a chosen plaintext attack: we choose a message
M of 241 blocks (the maximum length allowed by the ALE specification) which
admits cycles of length 4× `. With probability 0.76, the key cycles after 4× ` ≈
233.9 iterations of the permutation P . When this happens, we can split the
message into 233.9 sets of 27.1 blocks encrypted under the same key. In each set
we can construct 213.2 pairs. In total, from one message M of 241 blocks, we get
on average 0.76× 213.2 × 233.9 ≈ 246.7 pairs encrypted with the same key.
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Unfortunately, the attack against LEX uses five consecutive AES rounds, but
in ALE, the subkeys used in five consecutive rounds do not follow the exact AES
key schedule. It is not possible to apply exactly the same attack on ALE, but
we can use the tool developed by Bouillaguet, Derbez, and Fouque [12,10] in
order to find an attack in this setting. This tool found an attack that can test a
candidate pair with time complexity 272, and a memory requirement of 272, for
two different positions of the partial collision:

– when the collision occurs in round 4, the attack uses the leak of rounds 1, 2,
3, 4 and of round 1 of the next 4-round AES.

– when the collision occurs in round 1, the attack uses the leak of rounds 1
and 2, and of rounds 2, 3, 4 of the previous 4-round AES.

The input files for the tool as available as supplementary material.
Starting with 216.3 messages of length 248 (encrypted under different master

keys) we obtain 216.3 × 213.2 × 233.9 ≈ 263.4 pairs, such that each pair uses
the same key with probability 0.76. Each pair can be used twice, assuming a
collision at round 1 or at round 4, so we have in total 264.4 pairs to consider, and
we expect one of them to actually collide (0.76× 264.4 ≈ 264). After filtering on
32 bits, we have 232.4 candidate pairs to analyse, so that the time complexity is
232.4 × 272 = 2104.4, and the data complexity is 216.3 × 241 = 257.3.

This attack recovers the internal state, and we can compute backwards the
initial state EK(0) and the session key Z̃ = EK(N). We can also generate almost

universal forgeries: when EK(0) and Z̃ are known we can we can compute the
internal state and ciphertext corresponding to an arbitrary message, and we can
match the value of the final internal state (and hence the tag) by choosing one
block of message or associated data appropriately.

5 Application to Impossible Differential Attacks

In 1999, Biham, Biryukov and Shamir introduced Impossible Differential attacks:
a new cryptanalysis technique that they applied to Skipjack ([3]). This attack
is based on the existence of impossible differential paths, i.e. paths occurring
with probability 0. If a key guess leads to this path, then it can be deduced that
this guess was wrong. This allows us to eliminate key candidates and thus to
obtain an attack faster than exhaustive search. Impossible differentials have been
applied to various cryptosystems, including reduced versions of AES. Thanks
to our new representation of the AES key schedule, we improve the previous
differential attack against the AES-128 [32,13].

5.1 The AES round function

The AES state is represented as a 4 × 4-byte array, and the round function
iterates the following operations:

– SubBytes applies an Sbox on each byte of the state;
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– ShiftRows shifts by the left the second row of the state by 1 cell, the third
row by 2 cells, and the last row by 3 cells;

– MixColumns multiplies each column of the state by an MDS matrix;
– AddRoundKey xors the state with the round key.

AES Sbox property. During this attack, we will use a well-known property: given
an input and an output difference of one Sbox, there is on average one possible
value. We pre-compute those values, and refer to that table as the DDT.

5.2 Previous results

The best impossible differential attacks against AES-128 are variants of an attack
from Mala, Dakhilalian, Rijmen and Modarres-Hashemi [32]. Several trade-off
are proposed in [13] with four output differentials and using a technique to
reduce the memory by iterating over the possible key bytes values, rather that
iterating over the data pairs. In this work, we start from a variant with a single
output differential explained in detail below; it is easier to describe than variants
considered in [13] and provides an interesting trade-off.

Impossible differential trail. This attack uses a collection of impossible differen-
tial trails over 4 rounds, and extends them with two rounds at the beginning and
one round at the end (omitting the final MixColumns), as shown in Figure 10. We
use a set a impossible differentials over 4-rounds (without the last MixColumns):

DX 6→ DY

DX =


(0, ?, ?, ?, 0, 0, 0, 0, ?, ?, 0, ?, 0, 0, 0, 0)

(?, 0, ?, ?, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0, 0)

(?, ?, 0, ?, 0, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0)

(?, ?, ?, 0, 0, 0, 0, 0, ?, 0, ?, ?, 0, 0, 0, 0)


DY =


(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x)

: x 6= 0


We assume to be given a pair of plaintexts and the corresponding ciphertexts
such that the plaintext difference is in a set Din corresponding to two active
diagonals, and the ciphertext difference is in a set Dout corresponding to one
active anti-diagonal:

Din = {(?, 0, ?, 0, 0, ?, 0, ?, ?, 0, ?, 0, 0, ?, 0, ?)}
Dout = {(0, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, 0)}

After guessing the values of the key bytes k0〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉, k

7
〈3,6,9,12〉, we

can deduce that some values result in differences in DX and DY . Since this
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Fig. 10. 7-round impossible differential attack of [32] (figure adapted from [27]).
Key bytes marked G and D are respectively guessed, and deduced from guessed bytes.

transition holds with probability 0, we can discard those key candidates. Even-
tually with a large number N of pairs of plaintexts, we eliminate most of the key
candidates, and we can verify the remaining candidates exhaustively. We now
detail how to perform this attack efficiently, following the pseudo-code given by
Algorithm 1.

Pre-computation. After the MixColumns of the first round, in column 1 and
3, we want non-zero differences only in the first and the third bytes. There
are 216 possible differences; by inverting the linear operations MixColumns and
ShiftRows, we obtain 216 possible differences for the diagonal (bytes 〈0, 5, 10, 15〉
and 〈2, 7, 8, 13〉 respectively) after the SubBytes of the first round. We store
these 216 differences in the table T1. Similarly, we build a table T2 with the 210

possible differences before the SubBytes of the last round by propagating the 210

differences in DY .

Construction of pairs. We start with 237+ε structures of 264 plaintexts such that
all the plaintexts in a structure are identical in bytes 1, 3, 5, 7, 9, 11, 13, and

15. For each set, we construct
(
264

2

)
≈ 2127 pairs. We identify the pairs with

a ciphertext difference in Dout and store them in a list L1; we expect to have
N = 2127 × 2−96 × 237+ε = 268+ε pairs.
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Step 1. First, we identify plaintext/ciphertext pairs and values of k0〈0,5,10,15〉
that result in a zero difference in bytes 1 and 3 after the first MixColumns. To
this end, we sort the list L1 according to the plaintext difference and value in
bytes 0, 5, 10 and 15. We obtain 264 sublists of approximatively 24+ε pairs. From
now on, we will repeat all of the following steps for all guesses of the key bytes
k0〈0,5,10,15〉. For each possible difference δ in bytes 0, 5, 10 and 15 before SubBytes,
we confront the difference with each of the possible differences after SubBytes in
T1. Then, using the DDT of the AES Sbox, we extract the input values of the
SubBytes operation of the first round, corresponding to this input and output
difference. Since the key k0〈0,5,10,15〉 has been guessed, we can deduce the value of

the plaintext in bytes 0, 5, 10 and 15, and locate the right sublist of L1 with 24+ε

pairs that follow this part of the trail for this key guess. We store those pairs in
a list L2; after iterating over δ and T1 we have on average 232+16+4+ε = 252+ε

pairs in L2.

Step 2. During this step, we filter data pairs and values of k0〈2,7,8,13〉 leading to
a zero difference in bytes 13 and 15 after the first MixColumns. To do this, we
consider each pair of L2, and iterate over the possible differences after SubBytes
in bytes 2, 7, 8, 13, stored in T1. Since we have the input and output differences
of those Sboxes, we retrieve the corresponding values from the DDT. By xoring
these values with the plaintext, we obtain the associated key bytes k0〈2,7,8,13〉 and

we add this pair to a list indexed by the key bytes, L3[k0〈2,7,8,13〉].

The following steps are repeated for each value of k0〈2,7,8,13〉; we have a list

L3[k0〈2,7,8,13〉] of 252+ε+16−32 = 236+ε plaintext pairs that satisfy the required
difference after the first round.

Step 3. During this step, we associate each pair of L3[k0〈2,7,8,13〉] to the key bytes

k18 and k110 such that difference after the MixColumns of round 2 is in DX . We
recall that at this point, the bytes k0〈0,2,5,7,8,10,13,15〉 have already been guessed.

Following the AES-128 key schedule, we can easily deduce bytes k10 and k12. For
each pair of L3[k0〈2,7,8,13〉], we compute the values of the first and the third column

of both plaintexts after the MixColumns of the first round. Using k1〈0,2〉 We can
also compute the values of both states on bytes 0 and 2 after AddRoundKey and
SubBytes in the second round, corresponding to bytes 0 and 10 after ShiftRows.
Looking at the MixColumns operations in columns 1 and 3 in the second round,
we know the difference in 3 input bytes (2 zeros given by the differential trail,
and value just recovered) and one output byte (a zero given by the differences
in DX). Therefore we can recover the full input and output difference in those
columns by solving a linear system (the solution is unique because of the MDS
property). By inverting the ShiftRows operation, we recover the difference after
the SubBytes operation of the second round in bytes 8 and 10. The difference
before this operation is also known, therefore we recover the values of bytes 8 and
10 before SubBytes, and deduce the value of k1〈8,10〉 by xoring the value at the end
of the first round. We have to repeat this deduction four time, because we have
four different positions of the zero differences in DX . Each pair of L3[k0〈2,7,8,13〉]
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suggest on average four candidates for k1〈8,10〉, and we store the pairs in a list

indexed by the key bytes, L4[k1〈8,10〉].

The next steps are repeated for each value of k1〈8,10〉, using the list L4[k1〈8,10〉]

with on average 236+ε+2−16 = 222+ε pairs leading to a difference in DX .

Step 4. This step determine the key candidates k7〈3,6,9,12〉 that are ruled out with

the available data, for each k0〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉. For this purpose, we use a

list L5 of 232 bits to mark impossible key candidates k7〈3,6,9,12〉. For each pair

of L4[k1〈8,10〉], we consider all the differences at the end of the sixth round that
correspond to a difference in DY , stored in T2. From the differences before and
after the last SubBytes, we compute the value of the output of SBox in bytes 3,
6, 9 and 12 using the DDT. Then, using the ciphertext values, we recover the
bytes k7〈3,6,9,12〉 and mark this value in the list L5.

On average we mark 222+ε+10 = 232+ε keys as impossible, so that each key
remains possible with probability P = (1− 2−32)2

32+ε ≈ e−2ε .

Step 5. Finally, we reconstruct the master keys corresponding to the candidates
k0〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉, k

7
〈3,6,9,12〉 not marked as impossible. Following [32,13],

knowing k0〈0,2,5,7,8,10,13,15〉 and k1〈8,10〉 is equivalent to knowing k0〈0,2,4,5,6,7,8,10,13,15〉,
but it is hard to combine this with information about the last round. Therefore,
for each of the 2112 × P candidates, we just consider the 10 known bytes of k0,
do an exhaustive search for the 6 missing bytes and recompute k7 to see if it
matches the candidate. This requires 2112 × P × 248 = 2160 × P evaluations of
the key schedule. We verify the 2160×P ×2−32 = 2128×P remaining candidates
with a know plaintext/ciphertext pair, for a cost of 2128 × P encryptions.

Complexity. There are three dominant terms in the complexity of the attack.
First we need to make 2101+ε calls to the encryption oracle. Then, the generation
of key candidates (steps 1 to 4) is dominated by step 4. This step is done 280

times (for each guess of k0〈0,2,5,7,8,10,13,15〉 and k1〈8,10〉) and during this step we go

through the whole list L4[k1〈8,10〉], containing 222+ε pairs. For each pair and for

each of the 210 differences in T2, we use 4 times the DDT. In order to express
this complexity using one encryption as the unit, we follow the common practice
of counting the number of table look-up. A 7 round AES encryption, requires
20 × 7 table lookups (including the Sboxes in the key schedule), therefore the
cost of 4 DDT lookups is similar to 4/140 = 1/35 encryptions. In total, the
complexity of Step 4 is 280×222+ε×210/35. Finally step 5 requires the equivalent
of e−2

ε · 2160/5 + e−2
ε · 2128 encryptions, because the cost of the key schedule

compared to an encryption3 is 4/20 = 1/5. In total, the time complexity is:

T = 2101+ε + 2112+ε/35 + e−2
ε

· (2160/5 + 2128)

3 This ratio is given as 2−3.6 ≈ 1/12 in [13], but we don’t see how to achieve this
result. In any case the impact on the total complexity is negligible because it is
compensated by a very small change of ε.
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Algorithm 1. Construction of possible key candidates (Steps 1 to 4)

Require: Tables T1, T2 and a list L1 of 268+ε pairs satisfying Din and Dout.
Sort L1 according to the plaintext difference and value in bytes 0, 5, 10 and 15.
Let L1[δ][x] be the sub-list with difference δ and value x in those bytes.
for all k0〈0,5,10,15〉 do

L2 ← ∅
for all 32-bits difference δ do

for all difference θ in T1 do . bytes 〈0, 5, 10, 15〉
Compute value(s) x〈0,5,10,15〉 before first SubBytes from DDT.
Add all pairs of L1[δ][x〈0,5,10,15〉 ⊕ k0〈0,5,10,15〉] to L2.

L3 ←
[
∅, for all k0〈2,7,8,13〉

]
for all pairs ((p, p′), (c, c′)) in L2 do

for all difference θ in T1 do . bytes 〈2, 7, 8, 13〉
Compute value(s) x〈2,7,8,13〉 before first SubBytes from DDT.
Add pair to L3[x〈2,7,8,13〉 ⊕ p〈2,7,8,13〉].

for all k0〈2,7,8,13〉 do

L4 ←
[
∅, for all k1〈8,10〉

]
Compute k1〈0,2〉 using the AES key schedule.
for i in {0, 1, 2, 3} do

for all pairs in L3[k0〈2,7,8,13〉] do

Deduce k1〈8,10〉, assuming that diagonal i is inactive at end of round 2.

Add pair to L4[k1〈8,10〉].

for all k1〈8,10〉 do

L5 ←
[
True, for all k7〈3,6,9,12〉

]
for all pairs ((p, p′), (c, c′)) in L4[k1〈8,10〉] do

for all difference θ in T2 do . bytes 〈12, 13, 14, 15〉
Compute value(s) x〈15,14,13,12〉 after last SubBytes from DDT.
L5[x〈15,14,13,12〉 ⊕ c〈3,6,9,12〉]← False.

for all k7〈3,6,9,12〉 do

if L5[k7〈3,6,9,12〉] then

Check key candidate k0〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉, k

7
〈3,6,9,12〉.

The best time complexity is obtained by taking ε = 5.1, leading to a time
complexity of 2112.1, a data complexity of 2106.1 chosen plaintexts, and a memory
complexity of N = 273.1 words.

Variant with multiple differentials. Boura, Lallemand, Naya-Plasencia and
Suder describe [13] in a variant of this attack using multiple output differentials.
More precisely, instead of using a fixed column for DY and a fixed anti-diagonal
for Dout, they consider the four possible columns for DY and the four corre-
sponding anti-diagonal for Dout. The attacks is essentially the same, but there
are two important differences.

To construct the pairs, they start from only 235+ε structures of 264 plain-
texts, but they obtain 268+ε pairs matching Din and Dout when considering the
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four anti-diagonal in Dout. Steps 1 to 3 of the attack are the same a given above,
but in step 4 each pair can give information about different bytes of k7, de-
pending on which anti-diagonal is active in the ciphertext. For each choice of
k0〈0,2,5,7,8,10,13,15〉, k

1
〈8,10〉, they build a list of possible values for each anti-diagonal

of k7, and each key value remains possible with probability e−2
ε−2

because one
fourth of the data correspond to each diagonal. Finally, in step 5, they merge
the 4 lists, for a cost of 280 × (e−2

ε−2 · 232)4 = e−2
ε · 2208.

The total time complexity of this variant is:

T = 299+ε + 2112+ε/35 + e−2
ε

· (2208/5 + 2128)

The best time complexity is obtained by taking ε = 6.1, leading to a time
complexity of 2113, a data complexity of 2105.1 chosen plaintexts, and a memory
complexity of N = 274.1 words.

This attack is listed with a time complexity of 2106.88 with ε = 6 in [13], but
this seems to be a mistake. There are not enough details of this attack in [13] to
verify where their attack would differ from our understanding, but we don’t see
how to avoid having 2112+ε iterations at step 4, when we are eliminating 112-bit
keys. Applying the generic formula (7) from the same paper also gives a term
2112+ε/35 in the complexity (written as 2kA+kB N

2cin+cout
· C ′E in [13]).

Variant with state-test technique. In [13], the authors describe in details a
variant using four output differentials and the state-test technique. This allows
them to reduce by one byte the number of key bytes to be guessed, but they
must use smaller structures, and this increases the data complexity.

The attack requires N = 268+ε chosen plaintexts, with a time complexity of:

T = 2107+ε + 2104+ε/35 + e−2
ε

· (2200/5 + 2128)

The optimal time complexity4 is 2113 with ε = 6.

5.3 Our improvement

We now explain how to improve the first attack using properties of the key
schedule. We keep steps 1 to 4 as given in Algorithm 1, but we improve the
reconstruction of the master key, given bytes of the first and last round keys (Step
5). With this improvement, generating the key candidates is actually cheaper
than verifying them with a known plaintext/ciphertext pair. We use the following
property of the key schedule of AES-128, in order to guess the missing key bytes
of k0 iteratively, and to efficiently verify whether they match the known bytes
of k7.

Proposition 1. Let kri a byte of an AES-128 subkey. If the byte is in the last
column (12 ≤ i < 16), then it depends on only 32 bits of information of the
master key. If the byte is in the second or third column (4 ≤ i < 12), then it
depends on only 64 bits of information of the master key.
4 In [13] they report the complexity as 2113.1 with ε = 6.1.
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Proof. Bytes in the last column correspond to basis vectors in the new represen-
tation, following Equation (1) (for instance kr12 = sr12). Therefore they depend
only on one 32-bit chunk at any given round (k712 can be computed from s0〈0,1,2,3〉).

Bytes in the second column correspond to the sum of two basis vector in the
new representation (for instance kr6 = sr14 ⊕ sr4). Since the two elements do not
belong to the same chunk, the byte depends on two 32-bit chunks at any given
round (k76 can be computed from s0〈0,1,2,3,8,9,10,11〉).

Similarly, bytes in the third column correspond to the sum of two basis
vector in the new representation (for instance kr9 = sr15 ⊕ sr8). Therefore they
depend only on two 32-bit chunks at any given round (k79 can be computed from
s0〈0,1,2,3,12,13,14,15〉).

Bytes in the first column correspond to the sum of four basis vector from four
different chunks, therefore they depend on the full state in general (for instance
kr3 = sr13 ⊕ sr10 ⊕ sr7 ⊕ sr0). ut

Initially we are given the values of k0〈0,2,4,5,6,7,8,10,13,15〉 and k7〈3,6,9,12〉. Accord-

ing to the property above, k712 can be computed from k015, k014 ⊕ k010 ⊕ k06 ⊕ k02,
k013 ⊕ k05, k012 ⊕ k08, k014, and k76 can be computed from k015, k014 ⊕ k010 ⊕ k06 ⊕ k02 ,
k013 ⊕ k05, k012 ⊕ k08, k013, k012 ⊕ k08 ⊕ k04 ⊕ k00, k015 ⊕ k07, k014 ⊕ k010. Therefore we can
verify their value after guessing k0〈12,14〉.

At this point two chunks are completely known: s0〈0,1,2,3〉 and s0〈8,9,10,11〉 or

equivalently s7〈12,13,14,15〉 and s7〈4,5,6,7〉. In particular, we can deduce the value of

k713 = s78 = s715 ⊕ k79, which can also be computed from s0〈12,13,14,15〉, i.e. from

k012, k015 ⊕ k011 ⊕ k07 ⊕ k03, k014 ⊕ k06, k013 ⊕ k09. Therefore, we only need to guess
k011 ⊕ k03 and k09 to verify k713.

Finally, we focus of the remaining 32-bit chunk, corresponding to s0〈4,5,6,7〉
and s7〈0,1,2,3〉. We already have the value of s04 = k014 and s06 = k012 ⊕ k04, and we

can compute s70 = s710 ⊕ s713 ⊕ s77 ⊕ k73. Using a pre-computed table, we recover
the 28 values of the chunk corresponding to those constraints.

Algorithm 5.3 describes the full process. The cost of this step is e−2
ε ×

2128/5, where 1/5 is the cost of computing the key schedule compared to a full
encryption.

Finally the total time complexity of our attack is:

T = 2101+ε + 2112+ε/35 + e−2
ε

· (2128/5 + 2128)

The best time complexity is obtained by taking ε = 3.9 leading to a time com-
plexity of 2110.9, a data complexity of 2104.9 chosen plaintext, and a memory
complexity of 271.9 words.

We remark that the improvement is only applicable when the last MixColumns
is omitted. In general, it does not affect the complexity of attacks, because
removing the last MixColumns defines an equivalent cipher up to a modification
of the key schedule. However, when attacks exploit relations between the subkeys,
the relations are simpler if the last MixColumns is omitted [22].
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Algorithm 2. Improved version of the key candidate checking (Step 5)

Require: A key candidate k0〈0,2,5,7,8,10,13,15〉, k
1
〈8,10〉, k

7
〈3,6,9,12〉.

for all k0〈12,14〉 do

Compute s7〈12,13,14,15〉 from s0〈0,1,2,3〉
if k712 = s712 then

Compute s7〈4,5,6,7〉 from s0〈8,9,10,11〉
if k76 = s74 ⊕ s714 then

T ←
[
∅, for all k715

]
for all k011, k

0
1 ⊕ k09 do

Compute s7〈0,1,2,3〉 from s0〈4,5,6,7〉
Add (k011, k

0
1 ⊕ k09) to T [s70]

for all k09, k
0
3 ⊕ k011 do

Compute s7〈8,9,10,11〉 from s0〈12,13,14,15〉
if k79 = s78 ⊕ s715 then

for all (k011, k
0
1 ⊕ k09) in T [s713 ⊕ s710 ⊕ s77 ⊕ k73] do

Check the master key k0 with a pair (p, c).

6 New Representations of the AES-192 and AES-256
Key Schedules

The same techniques can also be applied to other variants of AES: we apply the
algorithm of Leander, Minaud and Rønjom [31] to extract invariant subspaces of
the key schedule, and we use a change of variables corresponding to the subspaces
to obtain a simplified representation.

AES-192. We find two invariant subpaces of dimension 12, and obtain a simpli-
fied representation with 2 independant chunks each acting on 12 bytes, as shown
in Figure 11.

AES-256. We find four invariant subpaces of dimension 8, and obtain a simpli-
fied representation with 4 independant chunks each acting on 8 bytes, as shown
in Figure 12.

7 Properties on the AES Key Schedule

In addition to explaining the presence of short length cycles, our new represen-
tations of the key schedule also permits us to demonstrate some properties. For
conciseness, we use the notation kri,j1⊕j2,... to denote kri , k

r
j1
⊕ krj2 , . . .

Proposition 2. Let Pr and P ′r defined in one of the following ways:

• AES-128 (1): Pr = kr〈5,7,13,15〉, and P ′r = kr〈4,6,12,14〉
• AES-128 (2): Pr = kr〈0⊕4,2⊕6,8⊕12,10⊕14〉, and P ′r = kr〈1⊕5,3⊕7,9⊕13,11⊕15〉
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Fig. 11. One round of the AES-192 key schedule (alternative representation).
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• AES-192 (1): Pr = kr〈5,7,13,15,21,23〉, and P ′r = kr〈4,6,12,14,20,22〉
• AES-192 (2): Pr = kr〈0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22〉,

and P ′r = kr〈1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23〉
• AES-256 (1): Pr = kr〈5,7,13,15,21,23,29,31〉, and P ′r = kr〈4,6,12,14,20,22,28,30〉
• AES-256 (2): Pr = kr〈0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22,24⊕28,26⊕30〉,

and P ′r = kr〈1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23,25⊕29,27⊕31〉

If there exists an r0 such as Pr0 and P ′r0±1 are known, then for all i ∈ Z, the
bytes Pr0+2i and P ′r0+2i+1 are known (and they are easily computable).

Proof. The AES-128 (1) case is considered here, the other cases are demon-
strated in the same way. Knowing kr〈5,7,13,15〉 and kr+1

〈4,6,12,14〉 is equivalent to

knowing two chunks of the state: sr〈0,1,2,3〉 and sr〈8,9,10,11〉. This can be verified

using Equation (2). The knowledge of these 2 chunks allows us to extract the
value of the bytes in position k〈5,7,13,15〉 or k〈4,6,12,14〉 at any round. ut

This byte position of this proposition is represented in figure 13. This propo-
sition is a generalization of the observations made for AES-128 by Dunkelman
and Keller:

Observation 3 ([21]) For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the
relations:

kr+2(i, 0)⊕ kr+2(i, 2) = kr(i, 2).

kr+2(i, 1)⊕ kr+2(i, 3) = kr(i, 3).

Observation 4 ([21]) For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the
relation:

kr+2(i, 1)⊕ SB(kr+1((i+ 1) mod 4, 3))⊕RCONr+2(i) = kr(i, 1).

round r

round r + 1

AES-128 (1) AES-128 (2) AES-192 (1) AES-192 (2) AES-256 (1) AES-256 (2)

Fig. 13. Representation of the position of the bytes of the proposition. In AES-128
(2), AES-192 (2) and AES-256 (2), only the XOR of the two bytes of the same color
must be known.

Another property can also be demonstrated on the AES-128 key schedule,
using the value of one byte of the last column per round over 4 consecutive
rounds:
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Proposition 3. If there exists r ∈ N and i ∈ {0, 1, 2, 3} such that the bytes
kr15−i, k

r+1
15−(i+1)%4, k

r+2
15−(i+2)%4, k

r+3
15−(i+3)%4 are known, then for all j ∈ Z, the

value of the byte kr+j15−(i+j%4) is known.

Proof. Knowing the bytes kr15−i, k
r+1
15−(i+1)%4, k

r+2
15−(i+2)%4, k

r+3
15−(i+3)%4 is equiva-

lent to knowing one chunk of the state in the new representation: sr〈4i,4i+1,4i+2,4i+3〉.
Given that ∀r ∈ N, sr4i = kr15−i, we can calculate a byte of the last column at any
round because we have the knowledge of a chunk in our new representation. ut

The property can also be generalized when bytes at the correct position are
known in non-consecutive rounds.

8 Conclusion

Alternative representations of the AES data operations have been used in several
previous works; in particular, the super-box property [26] of Gilbert and Peyrin
is an alternative representation of two AES rounds that led to several improved
cryptanalysis results on AES-based schemes. Gilbert has later shown a more
general untwisted representation of the AES data path, resulting in the first
known-key attack against the full AES-128 [25].

In this work we use techniques from invariant subspace attacks to discover an
equivalent representation of the AES key schedule, and we derive new cryptanal-
ysis results, based on two main observations. First, iterating an odd number of
key schedule rounds defines a permutation with short cycles. This undermine the
security of AES-based schemes using iterations of the key schedule as a type of
tweak to make each encryption call different. More generally, the AES key sched-
ule cannot and should not be considered as a random permutation, even after a
large number of rounds. Second, the alternative representation makes it easier to
combine information from the first subkeys and from the last subkeys, improv-
ing previous key recovery attacks. This topic has been studied before and many
attacks use key schedule relations to reduce the complexity (in particular, we
can mention the key bridging notion of Dunkelman, Keller and Shamir [23,24]).
However our alternative representation shows non-linear relations that have not
been exploited before. In particular, we show that bytes in the last column of an
AES-128 subkey depend on only 32 bits of information from the master key.

We expect that this alternative representation can open the way to further
results exploiting properties of the AES key schedule.
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9 Appendix

9.1 AES-128

⊕S ⊕S ⊕S ⊕S
ci

⊕

Fig. 14. One round of the AES key schedule with graphic representations of bytes
positions (alternative representation).
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