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Abstract

We address the “freeform optics” inverse problem of designing a reflector
surface mapping a prescribed source distribution of light to a prescribed far-
field distribution, for a finite light source. When the finite source reduces to
a point source, the light source distribution has support only on the optics
ray directions. In this setting, the inverse problem is well-posed for arbitrary
source and target probability distributions. It can be recast as an Optimal
Transportation problem and has been studied both mathematically and nu-
merically. We are not aware of any similar mathematical formulation in the
finite source case: i.e. the source has an “étendue” with support both in space
and directions. We propose to leverage the well-posed variational formulation
of the point source problem to build a smooth parameterization of the reflec-
tor and the reflection map. Under this parameterization, we can construct
a smooth loss/misfit function to optimize for the best solution in this class
of reflectors. Both steps, the parameterization and the loss, are related to
Optimal Transportation distances. We also take advantage of recent progress
in the numerical approximation and resolution of these mathematical objects
to perform a numerical study.
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1. Introduction

1.1. The optical setup

The finite source/near field to far-field “freeForm reflector problem” is
the inverse problem of determining the shape of a reflector surface mapping
a given near field illuminance (a light source) to a desired far-field illumi-
nation. The light propagates in the simplest geometrical optics regime, the
reflector is a perfect mirror. We describe here the mathematical modelization
of two experimental setups: the point source to far-field target (figure 1) and
the finite source to far-field target (figure 2).

Modelization of the reflector
The reflector is a surface R in Rd (d = 2, 3), it is parameterized using

x0 ∈ X0 := Sd−1
+ the upper hemisphere and a given “radius” function ρ ∈

C1(X0,R). By convention, x will denote an angular parameterization of Sd−1
+

while x̂ (with the .̂) will be the corresponding vector in Rd positioned at the
origin. With these notations the reflector is modeled as:

R = {x̂0 ρ(x0), x0 ∈ X0 s.t. ρ(
π

2
) = R}. (1)

We constrain the reflector curve R to pass trough the point (0, R) (in R2).
This is easily generalized to d = 3, x is then a couple of (azimuth, elevation)
angles.

We will keep to d = 2 in the paper to simplify the presentation.

Modelization of the illuminance
The illuminance/light is a given probability distribution µS : (s, xs) ∈

S×Xs 7→ µs(xs) ∈ [0, 1] ,
∫
S
µs
(
Xs

)
ds = 1, where again Xs = S1

+ and S is a
“patch”, subset of Rd. It will be a subset of the horizontal axis containing the
origin 0R2 . In general we will always assume S to be bounded and symmetric
with respect to 0Rd . This paper will simply consider d = 2 and the segment

S = [−η, η]× {0} (2)

or its discretization.
In summary light rays leave the points (s, 0) ∈ R2 in the the direction

xs ∈ Xs ⊂ S1
+ with intensity/energy µs(xs).

When η → 0 or equivalently R → ∞ we reach the point source illu-
minance regime, i.e S → {0Rd} and µS := µ0 ∈ P(X0) is a probability
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distribution in angles only. Note that the reflector shares its parameteriza-
tion on X0 with the illuminance µ0 at s = 0.

Modelization of the illumination
The desired illumination is a given probability distribution ν : y ∈ Y 7→

ν(y) ∈ [0, 1], ν(Y ) = 1, where Y := Sd−1
− the lower hemisphere angles.

1.2. The Point Source Reflector Problem

Figure 1: Point Source (PS) reflector.

Before moving to the resolution of the Finite source problem, let us sum-
marize a few results on the easier Point Source Reflector problem formulated
below:

Find R or ρ (see (1)) given (µ0, ν) in the R =∞ (or η = 0) regime. (PS)
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Example 1. The simplest example of a point source solution is the parabola
with focal at 0R2 and focal direction ŷ0: ρ(x0) = C/(1− x̂0 · ŷ0). The constant
C fixes the focal distance and for any illuminance µ0 all the light illuminates
the single direction ŷ0.

A second example is the “identity” reflector ρ(x0) = C a constant, which
maps any µ0 to its flipped mirror image ν(y) = µ0(y − π).

Mathematically, (PS) is equivalent to finding a ray mapping T0 : x0 ∈
X0 7→ yx0 ∈ Y from the source point OR2 and between incoming/outgoing
angles, satisfying the following two conditions:

• Descartes-Snell’s reflection law on the reflector :

ŷx0 = x̂0 − 2 (x̂0 · n̂0(x0)) n̂0(x0) or yx0 = 2n0(x0)− (x0 + π), (3)

where n̂0(x0) is the outer normal to the reflectorR at point x̂0 ρ(x0) and
(. · .) the Euclidean scalar product in Rd). Following our angle notation
convention, n0(x0) will be the angle of the normal at the reflector point
R(x0).

• Local Energy conservation by the map, ensuring that the reflection
indeed creates the desired illumination from the illuminance:

(ν ◦ T0) |∂T0

∂x0

| = µ0 if T0 is smooth or∫
φ dν =

∫
φ ◦ T0 dµ0, ∀φ ∈ C(S1

+) in its weak form.

(4)

The operation in (4) is often denoted ν = T0#µ0 (T “pushes forward”
µ0 to ν).

An elegant variational formulation linked to Optimal Transportation has
been proposed and studied in [1]: Assuming that the support of respectively
µ0 and ν0, are connected domains subset of respectively of Sd−1

+ and Sd−1
−

(as in section 1.1), then there exists an unique (up to dilations) reflector
achieving the desired light transfer given by the radius function

ρ = ef0 , (5)

where f0 is the, so called Kantorovich potential, unique (up to a constant)
solution of
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(f0, g0) := Arg sup{(f,g)∈D}〈f, µ0〉X0 + 〈g, ν0〉Y (6)

with

D = {(f, g) ∈ C(X0,R)× C(Y,R) | f(x0) + g(y) ≤ c(x0, y)} (7)

and 〈f, µ〉X being the notation for the duality product between continuous
functions and probability measures over X.

This is the well know dual formulation of the Monge-Kantorovich problem
(see [2], Chap. 2). When c is the “reflector cost”:

c(x0, y) = − log(1− x̂0 · ŷ))

= − log(1− cos(x0 − y)) (for d = 2),
(8)

the optimal transport map:

T0 : x0 → yx0 := {y 7→ ∇xc(x0, y)}}−1(∇xf0(x0)), (9)

arising from the optimality conditions of (6), satisfies (3) and (4).
The crucial point in [1] and [3], obtained independently, was to establish

that, for the reflector cost (8), the optimal map x0 7→ yx0 = T0(x0) satisfies
the specular reflection law (3) and therefore models the incoming/outgoing
angles of a ray hitting the convex reflector constructed with the optimal
potential f0:

Rf0 := {x̂0 e
f0(x0), x0 ∈ X0 s. t. ef(π

2
) = R}. (10)

This result is not straightforward and comes from algebraic computations
and the interpretation of Rf0 as an envelope of parabolae (see (37) in the
annex). As the optimal map T0 also satisfies the conservation of energy (4),
we directly are in the geometrical optics approximation of light propagation.
This Optimal Transportation problem is a well posed variational formulation
for finding a ray mapping satisfying the illuminance/illumination constraints
discussed in the introduction for a single point source. It will be used as a
parameterization tool for the more complicated finite source inverse problem
(next subsection).

Remark 1. As already mentionned the solutions to (6) are unique up to a
constant: (f0+C, g0−C) are optimal for any C. For the point source reflector
problem, this simply means that the distribution in the angular far-field can
be reached by any dilation of the optimal reflector. Hence the need to fix the
constant R in (10).
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We gather in the following proposition a few useful properties of these
point source solutions (the proofs are postponed to the annex).

Proposition 1 (On the Point source Optimal Transportation reflector).

(i) Rf0, f0 solution of (6) is a strictly convex curve (surface for d = 3).

(ii) If µ0 and ν0 are Hoelder continuous and bounded below by a positive
constant, Y c-convex then the Ma-Trudinger-Wang regularity theory
applies [4] [5], f0 is bounded in C2,α, (0 < α < 1).

(iii) The angle of the normal toRf0 at point x0, n0(x0) satisfies: tan(n0(x0)) =
∂x0f0(x0), in particular the strict monotony of x0 → n0(x0) induced by
(i) carries over to x0 → ∂x0f0(x0).

1.3. The Finite Source Problem

The illuminance patch S is now for a finite R (see illuminance in section
1.1). The finite source problem is:

Find R or ρ (see (1)) given (µS, ν), (ES)

(see the illuminance/illumination section 1.1 for the notations).

In section 2, we will model this problem as a collection of point source
problems:

For each µs, s ∈ S, Ts : xs ∈ Xs 7→ yxs ∈ Y is the ray reflection mapping
on R from the source point Os = (0, s), s ∈ S. The illumination from the
extended source is given by the sum over the point source illuminations:

ν :=

∫
S

νs ds where νs = Ts#µs, ∀s ∈ S, (11)

(see (4) for the definition of the pushforward).

Even in the simplest case where S is composed of two point sources,
problem (ES) is likely to be overdetermined. One reflector surface should
map two distinct sources to the far-field. We can expect at each point on
the reflector to receive two incoming rays while there is only one ”control”,
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Figure 2: Finite source (ES) reflector.

8



the normal of the reflector at that point. We also formally show (remark
2) that for a smooth and convex reflector the target illumination is related
to a non-linear convolution of a point source target. As illustrated in the
parabola example 1, see also figure 6, this implies smoothness and support
constraints on the prescribed illumination distribution. We are not aware
of any theoretical results providing information on the ill or well-posedness
under some additional constraints on the data.

This naturally suggests a regularization approach as is customary for ill-
posed non-linear inverse problems (see for instance [6] for a recent review).
In this framework we need:

1. A parametric set MΘ of admissible reflectors: θ ∈ Θ → Rθ ∈ MΘ.
This is the regularization part.

2. A forward map: F : θ ∈ Θ→ νR ∈ P(Y ), i.e. µS (the extended source)
and θ given, compute the illumination produced by the reflector Rθ.
This maps encodes the reflector optics and can be implemented using
ray tracing.

3. A loss/merit function: L : (ν, ν ′) ∈ P(Y ) × P(Y ) 7→ L(ν, ν ′) ∈ R+

giving sufficient information on the “closedness” between ν and ν ′.
Ideally L should be a distance or at least satisfy L : (ν, ν) = 0 and
ν ′ 7→ L : (ν ′, ν) is positive and convex.

Then, assuming F and L are computable objects, the regularized solution
to the finite source problem is the reflector corresponding to the following
parameter (we drop the dependance in µS, it remains fixed):

θ∗ := Arg infθ∈ΘJ(θ), where J(θ) := L(F(θ), ν) . (RES)

The cost function θ 7→ J(θ) is bounded below by construction. If it is
also continuous (or lower semi-continuous) and MΘ is compact for the cho-
sen topology, then J has a minimizer. The global minimizer θ∗, if we can
compute it, gives the “best” reflector Rθ∗ withinMΘ and J(θ∗) is a measure
of its quality.

State of the art
A parameterization of R in the ambient space, i.e. MΘ could be any

discrete parameterization of curves (Splines, Bezier ....) where θ would be
control points and tangents for example. Then the modifications happen
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by local deformations of the reflector(see e.g. [7]). In [8] spline parameter-
ization is used to apply optimization methods for minimizing the L2 norm
between the desired target and the outcome of the forward map. Although
such parameterizations are associated with extra complications when trying
to guarantee some desired properties of the reflector, e.g convexity/concavity.
The point source problem is sometimes used to approach the extended source
problem. For example, this is the approach followed in [9] (see also [10], [11]
and the references therein). The reflectors is then updated by pointwise mod-
ifications of the point source problem densities.

Contribution
We also use the point source problem (PS) to build a parameterization of

the reflector. This is explained in section 2. We leverage the well-posedness
and regularity of its optimal transport formulation to build a continuous loss
(section 3). In the same section we also give a variational interpretation
of the Gold deconvolution method used in this context by [9]. From the
computational point of view, several optimal transport solvers are available.
We follow the entropic regularization approach proposed in our previous work
[12] which provides additional smoothness. Numerical results are given in
section 4. We discuss the numerical and theoretical open questions in the
conclusion.

2. Construction of the forward map

2.1. Point source parameterization of the Reflector

The Parametric set is chosen as MΘ = P(Sd−1
+ ) and the parameters

θ, relabelled ν0 spans the set of illuminations for the point source problem
(PS). We also need to specify an illuminance for this point-source optimal
transport problem. It is chosen to remain fixed but it could also be part of
the parameterization (this is not investigated in this paper). We have been
using the sum of the µs (also denoted µ0 by abuse of notation):

µ0(.) =

∫
S

µs(.) ds. (12)

The reflector ν0 → Rf0 is uniquely constructed from f0 the solution of
(6) where ν = ν0. The constant is fixed as in (1). This choice constrains the
reflector to be a strictly convex curve. It desirable with respect to engineering
constraints but it is also crucial to prove the following re-parameterization
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using the angle parameters xs ∈ Xs from the other point sources Os :=
(s, 0), s ∈ [−η, η] on S :

Proposition 2 (Re-parameterization of Rf0). Let us assume that X0 =
Xs = S1

+ for all s and η < R
2

. Then, for all s ∈ S there exists a function
fs : Xs → R+ (see figure 3a) such that:

(i) The following re-parameterization of the reflector holds :

Rf0 = Rfs := {x̂s efs(xs), xs ∈ Xs}. (13)

where x̂s is the unit vector in the direction xs from Os.

(ii) The inner normal angle in the (13) parameterization, denoted ns(xs)
is given by

tan(ns(xs)) =
∂xsfs(xs) cos(xs) + sin(xs)

cos(xs)− ∂xsfs(xs) sin(xs)
. (14)

(iii) The map f0 7→ fs is continuous for the C1(S1
−) topology.

Proof 1. See annex.

Proposition 2 is used in the next section to establish the continuity of
the forward map. Remark 2 also shows formally that assuming the exis-
tence of a smooth forward map, ν the prescribed illumination is a non-linear
convolution of ν0.

2.2. The forward map

As sketched in section 1.3 and (11), the extended source forward/ray
tracing map can be decomposed as follows:

Ts : xs → yxs := 2ns(xs)− (xs + π), (15)

is the reflection ray map from Os onto Rfs the re-parameterization given in
proposition 2.

The resulting illumination is given by:

νF := F(ν0) =

∫
S

νs ds where νs = Ts#µs, ∀s ∈ S. (16)
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We summarize the forward map ν0 → νF = F(ν0):

A : ν0 7→ f0 (solution of (6), µ0 fixed and ν = ν0) .

B : f0 7→ {fs}s∈S (proposition 2 (i)) .

C : {fs}s∈S 7→ νF := F(ν0) (formulae (15) and (16)).

(FM)

And we have:

Theorem 1. Under the assumptions of proposition 1-2, F is continuous for
the weak topology in H ∈ P(S1

+), the set of probability distributions with
Hoelder continuous and bounded below densities.

Proof 2. The restriction ν0 ∈ H is needed to define the reparameterization
and define F itself. See the annex for the rest of the proof.

Remark 2 ( F is formally a non-linear convolution). We start back from
(16) and assume (to simplify the exposition) that µs = 1

2η
µ0 for all s. Mean-

ing that the radiation pattern is identical for all points on the finite source.
We ignore the normalization constant (again to simplify the notation) and
we get, ∀y ∈ Y :

νF(y) =
∫
S
Ts#µ0(y) ds

=
∫
S
µ0(T−1

s (y)) (∂xsTs|T−1
s (y))

−1 ds

=
∫
S
ν0(T0 ◦ T−1

s (y)) ∂x0T0|T−1
s (y) (∂xsTs|T−1

s (y))
−1 ds.

(17)

We now assume that for a fixed y the mapping s 7→ Yy(s) = T0 ◦ T−1
s (y))

(see figure 3b) is bijective from S onto its domain and make the change of
variable

νF(y) =
∫
Yy(S)

ν0(y′) ∂x0T0|T−1

Y−1
y′

(y)
(y) (∂xsTY−1

y′ (y)|T−1

Y−1
y′

(y)
(y))
−1 dy′ . (18)

The formula is complex but shows that ν0 is convolved with a Kernel involving
the Jacobians of the maps Ts and T0:

K(y, y′) := ∂x0T0|T−1

Y−1
y′

(y)
(y) (∂xsTY−1

y (y′)|T−1

Y−1
y (y′)

(y))
−1,

depending on the reflector, hence also on ν0. The map s 7→ Yy(s) can be
interpreted as follows (see also figure 3b) : given a reflection direction y and
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a point s on the finite source, find the shooting angle xs from that point. Then
shoot a ray from the center source point O0 with the same angle x0 = xs and
record the outgoing angle. Given two outgoing angles y and y′, its inverse
returns the coordinate on the finite source for which the shooting angle with y′

reflection is the same as the shooting angle from O0 yielding y. For instance
y = y′ gives Y−1

y (y) = 0 and K(y, y) = 1.

(a) (b)

Figure 3:
(A): Reparametrization from x0 ∈ X0 to xs ∈ Xs.
(B): The map s→ Yy(s) defined as T0 ◦ T−1

s (y) .

Remark 3. In [10] a loose form of this convolution is used to solve some
simple cases of the extended source problem, by iteratively approximating the
convolution kernel K

2.3. Numerical resolution of (FM)-A

The first task is to compute the point source reflector Rf0 or equivalently
f0. Several approaches are possible. Classical linear programming methods
are too costly (see [13] Chap. 2). The Monge-Ampère/spline-collocation
method proposed in [14] is rather technical and will not be discussed here.
The semi-discrete approach is computationally efficient and could certainly
be used here [15]. Other methods based on finite difference discretizations of
the Monge-Ampère equation [16] [17] are also relevant.
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Finally, it is also possible to use the entropic regularization of (6) (actu-
ally, a variant called Sinkhorn divergence). This is the path chosen in this
paper. It is summarized below. For a comprehensive presentation of en-
tropic Optimal Transportation see [13], Chap. 4. The application to the
point source reflector problem is detailed in [12].

The entropic Optimal Transportation problem depends on a regulariza-
tion parameter denoted ε and consists in solving

(f0,ε, g0,ε) := Arg sup(f,g) Dε(µ0,ν0)(f, g)

Dε(µ0,ν0)(f, g) := 〈f, µ0〉X0 + 〈g, ν0〉Y − ε 〈e
1
ε

(f⊕g−c), µ0 ⊗ ν0〉X0×Y .
(19)

The additional regularization on the right acts as a barrier function for the
Kantorovich constraint f⊕g−c ≤ 0 (see (6)). Problem (19) is unconstrained,
strictly concave and (f0,ε, g0,ε) are the (unique) solutions of the optimality
conditions system:

f0,ε = LSEε
ν0,Y

(g0,ε) g0,ε = LSEε
µ0,X0

(f0,ε), (20)

where we introduced the Log/Sum/Exp (LSE) operator taking a function on
Y returning a function on X0 (remember c is a function defined on X0×Y ):

LSEε
ρ,Y : g → −ε log(〈e

1
ε

(g−c), ρ〉Y ). (21)

The C∞ regularity of c carries over through formula (20) to the potentials.

The popular iterative (in k) Sinkhorn algorithm is the following relaxation
of (20) (corresponding to a coordinate ascent maximization):

f
(k)
0,ε = LSEε

ν0,Y
(g

(k−1)
0,ε ) g

(k)
0,ε = LSEε

µ0,X0
(f

(k)
0,ε ). (22)

In practice, the illuminance/illumination are discrete probability mea-
sures:

µ0 =

NX0∑
i=1

µ0,iδx0,i ν0 =

NY∑
j=1

ν0,jδyj

and X0 = {x0,i, i = 1..Nx0}, Y = {yj, j = 1..NY }. The vector coefficients
(µ0,i)s and(ν0,j)s are positive and sum to 1. For a fixed discretization N0,Y ,
the convergence both in k and ε hold [18] . The canonical interpolation
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method for the potentials is to define the continuous (∀x0 ∈ S1
+) extension

of f
(k)
0,ε :

f̃
(k)
0,ε (x0) = −ε log(〈e

1
ε

(g−c(x0,·)), ν0〉Y ) = −ε log(
∑
j

e
1
ε

(g−c(x0,yj))ν0,j) (23)

Instead of (FM)-A, we will be using:

Aε : ν0 7→ f̃
(K)
0,ε (24)

were K is a fixed final iteration for (22). This defines a smooth (C∞)
reflector R

f̃
(K)
0,ε

.

The strict convexity of the entropic reflector thus constructed is not guar-
anteed anymore and therefore also proposition 2. The use of Sinkhorn di-
vergence is a simple method to correct the bias induced by the entropic
regularization method [19]. It amounts to :

fSD = f0,ε − fµ0,ε, (25)

where fµ0,ε solves the symmetric entropic Optimal Transportation problem

fµ0,ε := Arg supf Dε(µ0,µ0)(f, f), (26)

(Dε is defined in (19)) and (25) can be formally understood as a first-order
smooth correction for small ε. It can be solved using a symmetric version
of Sinkhorn (22). There is no rigorous result assessing the accuracy of this
correction but experiments suggest that the correction is close to the non
entropic ε = 0 solution while retaining the smoothness of the entropic po-
tentials. See [12] for more details on this method. In practice, we use RfSD

and assume proposition 2 is satisfied.

2.4. Illumination through Ray Tracing

(FM)-B and (FM)-C are performed simultaneously through the compu-
tation of reflections onto R. This process is known as Ray Tracing in the
optics community. Here we discuss two numerical approximations.

15



2.4.1. Forward Ray Tracing

The first, to which we will refer as ”forward ray tracing”, is commonly
used in the optics community. We assume that the {µs}s∈S are given as
discrete measures µs :=

∑Ns
i=1 µs,iδxs,i , each family {xs,i}i=1..Ns being a dis-

cretization of S1
+. We also assume S is a discrete set and the positive coeffi-

cients µs,i are satisfying the energy conservation

∑
s∈S

Ns∑
i=1

µs,i = 1.

Based on (15) and (16) the finite source forward ray tracing produces the
illumination:

νF =
∑
s∈S

∑
i=1

µs,i δys,i , where ys,i = Ts(xs,i) . (27)

The computation of x 7→ Ts(x) requires the normal ns to R (see proposi-
tion 2 (ii)) at the intersection between the ray shot from Os in the direction
x̂ and the reflector curve. In the continuous case, this intersection is always
well defined according to proposition 2. This approach is not limited by the
number of rays that can be shot, except for the computational time. As-
suming enough resources, it allows to accurately approximate the continuous
illumination. In practice, the intersection between each ray and some in-
terpolation of the reflector needs to be computed, together with the normal
of the reflector at the intersection point, computation for a large number of
rays becomes time-consuming even for the simplest, linear (bi-linear for d=3)
interpolations.

2.4.2. Backward Ray Tracing

In order to speed up the computations, we also use another method, which
we will refer to as ”backward ray tracing”. In this approach, we do not fix
the sampling of the source, but instead we assume that we have access to a
continuous analytic density for µs and hence we construct a sampling corre-
sponding to a prescribed discrete support in angle. The angle discretization
{x0,i}i of X0 for the 0R2 center source point is also the support of the discrete
reflector. Normals at those points can be computed by taking the gradient
of the canonical continuous extension (23). This can be implemented using
automatic differentiation tools.
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Then, for all (s, 0) ∈ S and using the transform As (see the proof of
Proposition 2 for the definition), we can get a (not necessarily uniform )
discretization {xs,i}i := {As(x0,i)}i of Xs. In order to account for the non-
uniformity of this discretization, we perform a piecewise constant approxima-
tion of the the density on this grid. For d=2, define ∆s,i := (xs,i+1−xs,i−1)/2,
and use as an empirical approximation:

µS '
∑
s

∑
i

∆s,i µs(xs,i) δxs,i .

Backward ray tracing produces the illumination:

νF =
∑
s∈S

∑
i=1

∆s,i µs(xs,i) δys,i , where ys,i = Ts(xs,i) . (28)

There are, of course, various ways to improve this simple strategy by
optimizing the weights using different estimators. The discrete illumination
follows from the same equation (27) but the number of rays is fixed and the
same as the discretization of the problem and there is no intersection with
the reflector point to compute. The drawbacks of this approach lays in the
quality of the sampling which cannot be controlled directly. In practice (and
for d = 2) it does not seem to be a problem.

2.4.3. The ”Binning” technique

The ray tracing methods generate discrete point cloud {ys,i = Ts(xs,i)}s,i
distributions in the angle space Sd−1

− with weights ws,i. It could be desirable
to have this distribution on a grid or another set of points denoted here {zk}
(e.g. to have the reflected distribution in the form of a pixelized picture, or
because the desired target density is given on such grid: ν =

∑
k νkδzk and

one wishes to do a point-wise comparison).
To achieve this, we define “bins” {Bk}, that is a disjoint cells covering of

Y with centers zk. For d = 2 and assuming the zk are ordered, we use Bk =
[ zk+zk−1

2
, zk+zk+1

2
). For d = 3 the shape of the bins can be more complicated,

but if zk are induced by some structured grid, this structure will dictate what
the shape should be.

The “ binned” approximation is constructed by summing the weights of
all rays falling into an each bin Bk to obtain ν̄F(yj) :=

∑
{i:T (xi)∈Bj}wi. The

final discrete distribution ν̄ is usually noisy and is smoothed by a Gaussian
convolution kernel, with standard deviation σ = 5/N (where N is a number
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of ”bins” used), which averages the values of neighbor bins, and results into
a smoother distribution. The choice σ = 5/N , governing the width of the
smoothing window, was made empirically.

3. The Loss function

3.1. The Optimal Transport Loss

The theory and practice of machine learning heavily relies on measur-
ing discrepancies between discrete measures (weighted point clouds or his-
tograms). A first option is to use again the Sinkhorn Divergence Loss but this
time for its good statistical and regularity properties [13] [20] when applied
to empirical estimators of probability density function. It is defined as:

LSD(νF , ν) := Dε(νF ,ν)(f0,ε, g0,ε)−

1

2
(Dε(νF ,νF )(fνF,εfνF ,ε) +Dε(ν,ν)(fν,ε, fν,ε)),

(29)

where (f0,ε, g0,ε), fνF ,ε and fν,ε are the optimal potentials solutions of (19)
and its symmetric variants (26).

In (8) the ground cost c is chosen to build the optical reflection map
from probability distributions (illumination and illuminance) supported on
respectively the northern and southern hemisphere. In this section, our goal
is to compare probability distributions (two illuminances associated with two
reflectors) with the same support. The cost c needs to be a distance on the
support metric space, here Sd−1

− . We used the squared Euclidean distance.

This loss has been studied in [19] where it is shown that νF 7→ LSD(νF , ν)
is convex, positive , differentiable and vanishes for νF = ν. It is also contin-
uous for the weak topology on measure.

We finally have :

Theorem 2. The global cost we minimize is ν0 7→ LSD(F(ν0), ν): the com-
position of the the forward map (recall νF = F(ν0)) and the loss (29). The
loss parti s continuous for the weak topology on measures (like (29)) and the
forward map is continuous on H (see Theorem 1), the compactness of H
follows from Ascoli-Arzela and guarantees the existence of a minimizer.
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In order to get a dimensionless loss, we use the normalization :

J(ν0) := L(F(ν0), ν) := LSD(F(ν0), ν)/LSD(F(ν), ν). (30)

We recall that the desired prescribed target ν is the point source solution
and the denominator cannot vanish as F(ν) = K ? ν (see remark 2).

Figure 4 is a plot of the Loss value using a parametric family of point
source target mixing two Gaussians with varying expectations:

(t, t′) ∈ [0, 1]2 7→ L(F(ν
(t,t′)
0 ),F(ν

( 1
3
, 1
3

)

0 ), (31)

where

ν
(t,t′)
0 = Nu(t), π

21
+Nv(t′), π

24
, u(t) =

20π

16
+ t

2π

16
, v(t′) =

26π

16
+ t′

2π

16
.

The graph is smooth and convex.

Figure 4: Graph plot of (31).

The optimal transport computations were implemented using the Geomloss
package [21]. The desired illumination data ν is either discrete or sam-
pled into a discrete empirical measure and the potentials are approximated
through a finite number of Sinkhorn iterations (22). The differentiability with
respect to νF , the desired property, is discussed in detail in [22]. The sim-
plicity of the computational approach allows using the auto-differentiation
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algorithms embedded in modern software (we use Pytorch, for the full code
see [23]).

Remark 4 (On the differentiability of J). While the Sinkhorn-Divergence
potential fSD is differentiable with respect to ν0, the definition of the forward
map itself depends on proposition 2 and the convexity of the reflector. This
is only established for the non-entropic ε = 0 reflector. In practice fSD (see
(25)) is a good approximation of f0 and we used the autodifferentiation and
gradient based optimization methods of Pytorch without any difficulties.

3.2. Gold deconvolution

The analogy between the forward map and a non linear convolution ν =
Kν0 ?ν0 is explained in remark 2. Interestingly, one of the heuristics proposed
in the literature [9] to optimise ν0 is Gold de-convolution algorithm [24]:
Iterate on k

ν
(k+1)
0 := ν

(k)
0

 ν

K
ν
(k)
0
? ν

(k)
0

α

, α > 0. (32)

This is easy to implement and, if convergent, we get ν = K
ν
(∞)
0

?ν
(∞)
0 , the

desired illumination. In the case of the reflector problem, Kν0 is not known

explicitly but we can replace K
ν
(k)
0
?ν

(k)
0 by the forward map F(ν

(k)
0 ). Finally

remark that ν
(k+1)
0 has to remain a probability measure, this can simply be

achieved by a re-normalization .

In the numerical result section we will compare its performance with the
minimization of LSD(F(ν0), ν) proposed in theorem 2. In this section, we
point out (and it did not seemed to be mentioned in the literature) that (32)
is also linked to the minimization of a loss. Let us consider the following
sequence of minimization problems:

ν
(k+1)
0 := Arg infν0 KL(ν0|ν(k)) + αKL(F(ν0)|ν), (33)

where α is a small positive “time” step and

KL(νF |ν) := 〈log(νF
ν

)− 1, νF 〉 + 〈1, ν〉 if νF � ν,

+∞ else,
(34)
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is the Kullback-Leibler divergence. It is also known as the relative entropy
between ν and νF , it is strictly convex, takes its minimum at ν, and has an
infinite slope at 0. It forces νF to have the same support as ν and therefore
relies on binning the rays (see section 2.4.3). Its Fréchet derivative in νF is
formally given by 〈δKL(νF |ν), δν〉 = 〈log(νF

ν
), δν〉 .

For a small α, (33) maybe interpreted as a convex penalization of the
direct minimization of the Kullback-Leibler loss:

LKL(νF , ν) := KL(F(ν0)|ν). (35)

If the resulting sequence (ν
(k)
0 ) converges it reaches a minimiser. The

variational formulation (33) has strong analogies with the theory of Wasser-
stein Gradient Flows [2], Chap. 8 and some of the techniques developed in

this context are likely to be applicable (for instance
∑

kKL(ν
(k+1)
0 |ν(k)

0 ) is a
convergent series).

Getting back to Gold method, the optimality condition for (33) leads to:

log

(
ν

(k+1
0 )

ν
(k)
0

)
= −α∂F

∂ν0

(ν
(k+1
0 ) · log

(
F(ν

(k+1)
0 )

ν

)
. (36)

This is a non-linear implicit system in ν
(k+1)
0 , ∂F

∂ν0
(.) is a Jacobian operator

or matrix. If we replace it by the identity matrix, (32) follows directly by
taking the exponential of this expression and can be seen as a cheap explicit
proxy of (33).

4. Numerical Results

4.1. Experimental setting

Reflector Height. The parameter R first introduced in (1) “measures”
how close the extended source problem approaches the point source problem.
In our study It will vary between 1 and 9.

Source Distribution and discretization. The source patch interval
S = [−0.5, 0.5] will be fixed and the measure µs will always be uniform in
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s, that is, for all s ∈ S, µs = µ0. Our approach is not limited to such
measures but this assumption is the simplest and common for applications.
For the source distribution µ0, plotted in figure 7, we chose a distribution
close to uniform within some angle opening and decays rapidly outside. To
achieve these requirements, we take the sum of 16 Normal distributions,
with means distributed uniformly within the interval [9π/32, 23π/32] and
deviation σ = π/32.

The number of points discretizing the angle spaces X0,s and the source
interval S denoted respectively NA and NS are chosen such that π·R

NA
' 2 η

NS
(the grid steps on the reflector or the source patch are of the same order). The
number of rays N shot is given foir backward ray tracing as N = NA ×NS.
Setting N and R therefore also fixes the discretization size.

On our computer1 taking N = 5 · 106 and R = 5, the 6GB GPU memory
was working at full capacity (5.8 out of 6GB) and the computation of the
loss function with backward raytracing needs approximately 30 seconds. In
comparison, it takes approximately 6 seconds for each iteration with N = 105

and the used memory is approximately 1GB. This is the setting for all pre-
sented computations below.

Parameterization of ν0. The optimization variable is ν0 ∈ P(S1
+). In

practice it is parameterized using a classic machine learning method that
guarantees that the optimization variable is a probability measure. The
actual optimization variable is a vector λ ∈ RNA defined as

λi := log(ν0,i) + log(
∑
i

eν0,i)

where the {ν0,i}s discretize ν0 and sum to 1. The point source target entering
the loss function is recovered by the inverse transform

ν0,i :=
eλi∑
j e

λj

.
Optimal Transportation computations. The implementation of the

reflector computation and Sinkhorn divergence is based on Pytorch and the

1We ran the code on the laptop with a 64bit processor: Intel Core i7-8850H CPU @
2.60GHz x 12 and GPU: Nvidia Quadro P3200 6GB with 1792 CUDA cores.
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Optimal Transportation platform Geomloss (available at [23]). The per-
formance of the Sinkhorn algorithm and the bias induced by the entropic
Optimal Transportation regularization is kown to depend on a blurring pa-
rameter ε. This is discussed in detail in [12] which suggests using ε of order
1/NA.

Optimization methods. We will compare three approaches: Explicit
Gradient Descent adjusting the gradient step/learning rate experimentally
(the gradient is obtained using Pytorch autodifferentiation), Adam algorithm
[25] as implemented in Pytorch and we also implemented Gold method (32).
We use a learning rate lr = 50 for gradient descent, and lr = 0.1 for Adam
algorithm. Also, for Gold’s method, we use the power parameter α = 0.5,
which plays a similar role as the learning rate. Unless otherwise stated, we
will always intitialize with ν0 = ν the prescribed target distribution (this is
also the solution for R = +∞).

4.2. Dirac Targets and the convolution effect

We start with a test case that illustrates the convolution effect (remark
2) and helps interpret more general solutions. As recalled in example 1, the
simplest point source reflector is the parabola mapping any point (the focal
point) source distribution to the direction of the focal axis. We use a Dirac
target distribution ν = δ3π/2, R = 5. We use backward ray tracing and Adam
optimization. Figure 5 compares the optimization with two initialization :
ν0 = ν the dirac mass itself and the normal distribution N 3π

2
, π
41

. We do
not represent the reflector as it visuallly does not give much information.
Instead, we plot (left) the “optimal ” point source target parameterization
of the reflector ν0 generated by the optimization and in dashed lines the
initialization itself. The dirac initialization is stationary and the Gaussian
converges to the Dirac solution (right). The convolution effect of the finite
source onto the parabolic reflector is observed (center). Rays are binned as
explained in section 2.4.3.

We can also illustrate the convolution effect by playing with the parameter
R. Figure 6 we show the target distribution generated from the reflection
of the finite source for parabolic reflectors with focal direction angles 5π

4
, 3π

2

and 7π
4

, and increasing heights R 1, 3, 5, 7 and 9. When larger, we approach
the point source regime with a Dirac target distribution.
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Figure 5: Dirac target distribution, two different initializations. (A): Initialized by the
Dirac distribution. (B) Initialized by the Gaussian distribution. Left: final ’“optimal
” point source target parameterization of the reflector. Right: normalized loss function
value along the optimization. Center: Target distribution simulated by ray tracing on the
reflector generated by the optimization.

(a) y = 5π
4

(b) y = 3π
2

(c) y = 7π
4

Figure 6: Finite source reflection on parabolae with different focal axis and heights R.
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4.3. Comparison of optimization methods

Here we will present a comparison of the optimization methods (Adam,
Gradient descent, Gold) for the following test cases (see figure 7) with a
reflector height R = 5 and backward ray tracing.

Test Case 1: ”Uniform”: ν = 2
π
χ] 5π

4
, 7π

4
[ the characteristic function of

the intervall ]5π
4
, 7π

4
[.

Test Case 2: Mixture of ”Two Gaussians”: ν = N 3π
2

+ π
13
, π
21

+

N 3π
2
−π

7
, π
24

(plus normalization).
Test Case 3: ”Binary” This testcase was inspired by applications

where the target distribution requires the values of the density to be ”pix-
elized”,. We alternate density values of 2 and 1 within the interval [19π/16, 29π/16]
with the step π/16, and a background noise (1.e− 10), then normalize.

(a) Source
Distribution µ0

(b) Test Case 1:
Uniform

(c) Test Case 2:
Two Gaussians

(d) Test Case 3:
Binary

Figure 7: µ0 and Different desired Target densities.

Figure 8 compares the results obtained using the different optimization
methods and backward ray tracing. The left column (approximated point
source target) is the “optimal” ν0 and the center column is the resulting
target obtained by ray tracing (binned) on the corresponding reflector. The
discontinuous targets ν (test cases (A) and (C)) are clearly not in the range
of the forward operator F . The point source parameterization of the re-
flector performs a regularization through the already mentioned nonlinear
convolution. The optimal solution still makes use of Diracs/parabola near
the discontinuities as it provides the strongest slopes. Gold’s method fails
except for the smooth case (B), it is very sensitive to small density values.

In figure 9, we explore the choice of the raytracing method (section 2.4)
with Adam optimization. Parameters have been tuned to use the same num-
ber of rays in both cases. It seems not to impact the optimization and justifies
a preference for the more computationally efficient backward ray tracing.
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(a) Test Case 1: Uniform

(b) Test Case 2: Two Gaussians

(c) Test Case 3: Binary

Figure 8: Comparison of different optimization methods.
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(a) Test Case 1: Uniform

(b) Test Case 2: Two Gaussians

(c) Test Case 3: Binary

Figure 9: Comparison of forward/backward ray tracing.
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5. Conclusion

The proposed Optimal Transportation parameterization of the reflector
offers theoretical guarantees for the optimization of a suitable Loss function
at least for smooth data and provides a regularized solution. Our 1-D pre-
liminary numerical study shows the approach is robust and converges at least
to a local minimum. This research can be pursued in many directions:

- On the numerical side : the extension to d = 3 (2D areflectors) of the
code, testing Semi-Discrete Optimal Transportation solvers instead of
the entropic solvers would also be relevant.

- A machine learning approach to parameterize the map F−1 : ν 7→ ν0

with a convolutional neural network.

- Change of the optical setup, in the sense of changing the geometrical
reflection law into a different, possibly more realistic reflection mod-
els as long as they are computationally efficient and differentiable (at
least in the computational ”automatic differentiation” sense). We are
thinking for example about analytical BRDF models used in computer
graphics and industrial design to approximate the scattering effects of
various materials.

- It is possible to apply a multi-scale optimization strategy based on
restarting with initializations obtained from a decreasing sequence of
heightsR. We did not report on this here as it did not make a significant
difference in 1D but it may be useful in 2D.
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Annex

Proposition 1 (On the Point source Optimal Transportation reflector)

(i) Rf0, f0 solution of (6) is a strictly convex curve (surface for d = 3).

(ii) If µ0 and ν0 are Hoelder continuous and positive, Y c-convex then the
Ma-Trudinger-Wang [4] [5] regularity theory applies, f0 is bounded in
C2,α, (0 < α < 1).

(iii) tan(n0(x0)) = ∂x0f0(x0), in particular the strict monotony of x0 →
n0(x0) carries over to x0 → ∂x0f0(x0).

Proof 3.

(i) This is from [1] Lemma 3.2: we know that

Rf0 = {x̂0

(
inf
y∈Y

Py(x0)

)
, x0 ∈ X0}, (37)

where

Py(x0) :=
e−g0(y)

1− cos(y − x0)
. (38)

The family {x0 7→ x̂0 Py(x0)}y∈Y is composed of parabolae with focal at
O0 and axis in the direction y. The Optimal Transportation reflector
Rf0 is the envelope of these parabolae. It is continuous and strictly
convex.

(iii)

∂x0f0(x0) = ∂x0c(x0, yx0), (from (9))

= − sin(yx0 − x0)

1− cos(yx0 − x0)

= − cot(1
2
(yx0 − x0))

= tan(n0(x0)),

(n0(x0) =
1

2
(yx0 − x0)− π

2
with our angle notations).
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Proposition 2. (Re-parameterization of Rf0)

Let us assume that X0 = Xs = S1
+ for all s and η < R

2
. Then, for all

s ∈ S there exists and a function fs : Xs → R+ such that:

(i) The following re-parameterization of the reflector holds :

Rf0 = Rfs := {x̂s efs(xs), xs ∈ Xs}. (39)

where x̂s is the unit vector in the direction xs from Os.

(ii) The inner normal angle in the (39) parameterization, denoted ns(xs)
is given by

tan(ns(xs)) =
∂xsfs(xs) cos(xs) + sin(xs)

cos(xs)− ∂xsfs(xs) sin(xs)
. (40)

(iii) The map f0 7→ fs is continuous for the C1(S1
−) topology.

Proof 4.
A preliminary is to verify that the source patch S remains strictly inside
the reflector convex envelope. Based on the envelope of parabolae property
(proposition 1 (i)) the abcissa of the intersection of the reflector with the
axis supporting the patch (orthogonal to π̂

2
) is bounded below by the abcissa

of the intersection of the axis with the parabola: x0 ∈ S1
− 7→ C

1−cos(π−x0)
and

symmetrically x0 ∈ S1
− 7→ C

1−cos(x0)
which is reached respectively for x0 = 0

and x0 = π. The constant is fixed by C
1−cos( 3π

2
)

= R as in (1) and therefore

the intersection is bounded below by R
2

, hence the condition η < R
2

.

(i) All points Os = (0, s) on S are therefore in the convex envelope of
Rf0. The smoothness and strict convexity of the reflector therefore
guarantee that any point (s, 0) can be connected to any point on the
reflector without intersecting the reflector anywhere else. This provides
the re-parameterization (39) and also the uniqueness of xs 7→ fs(xs).

(ii) is a direct consequence of the parameterization (39).
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(iii) Define As(x0) as the angle of the vector connecting the shifted source
Os to the point Rf0(x0) := x̂0 e

f0(x0). Using parameterization (39) one
has

As(x0) := arccos

(
cos(x0)ef0(x0) − s√

e2f0(x0) − 2sef0(x0) cos(x0) + s2

)
, (41)

and

fs(As(x0)) := log

(√
e2 f0(x0) − 2sef0(x0) cos(x0) + s2

)
. (42)

The map x0 7→ As(x0) is bijective, smooth and differentiable like f0 ( a
consequence of proposition 1 (i)-(ii)). By construction at all points on
the reflector n0(x0) = ns(As(x0)) where n0 and ns are defined respec-
tively in proposition 1 (iii) and proposition 2 (ii). Taking the derivative
in x0 we get

∂x0As∂x0ns(As) = ∂x0n0, (43)

and using the strict convexity of the reflector (proposition 1 (iii)), we
find that ∂x0As cannot vanish. Applying the inverse function theorem
As is therefore a diffeormorphism from S1

+ onto itself. We can now
re-write fs using the new parameterization xs = As(x0):

fs(xs) = log

(√
e2f0(A−1

s (xs)) − 2s cos(A−1
s (xs))ef0(A−1

s (xs)) + s2

)
, (44)

which is continuously differentiable with derivative:

∂xsfs(xs) =
ef0(A−1

s (xs))(∂xsA−1
s )(xs)

e2f0(A−1
s (xs)) − 2s cos(A−1

s (xs))ef0(A−1
s (xs)) + s2

Q

Q := ef0(A−1
s (xs))∂x0f0(A−1

s (xs)) + s sin(A−1
s (xs))− s cos(A−1

s (xs))∂x0f0(A−1
s (xs)).

(45)

Note that fs and ∂xsfs(xs) are expressed analytically using f0, ∂x0f ,
A−1
s and ∂xsA−1

s (As fractions with non-vanishing denominators and
bounded numerators). Thereof, in order to demonstrate C1 conver-
gence, all we need to do is to establish the continuous dependency of
A−1
s and ∂xsA−1

s on f0. This is just a consequence of the inverse func-
tion theorem: As ∂x0As depends continuously on f0 and ∂xsA−1

s can be
expressed by 1/∂x0As.
The continuity of f0 7→ fs for the C1 topology follows.
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Theorem 1. (Continuity of F) Under the assumptions of proposition
(1)-(2), F is continuous for the weak convergence in P(S1

+).

Proof 5. Let {ν0,k}k∈N be a weakly convergent sequence converging to ν0.
We need to verify that F(ν0,k) also converges weakly to F(ν0). Note that
(see remark 2) F(ν) can be expressed as

∫
S
T νs #µ0. By the linearity of the

integration, all we need is to verify that T
ν0,k
s #µ0 converge weakly to T ν0s #µ0

for all s.
The stability of ν0 7→ T ν00 is a classical result (see [26] corollary 5.23),

where the convergence of sequence (T
ν0,k
0 ) (built from (9) using the sequence

of (f0,k)) holds in probability:

∀ε > 0 µ0

[{
x ∈ S+ | d(T ν00 (x), T

ν0,k
0 (x)) > ε

}] k−→∞−−−→ 0. (46)

Note that under the assumptions, T ν0 is induced by the reflection from the
reflector with the continuous normal n = nν. Hence the convergence of T

ν0,k
0

translates into the convergence of nν0,k . Since we have the C1 continuity
of f0 to fs, and since for all s, T

ν0,k
s is just another reflection using the

reparametrized normal n
ν0,k
s , the above convergence in probability holds also

for all T ν0.ks .
Now all we need is to verify that for the sequence of maps T k : S+ → S−,

converging in probability to the map T with respect to the measure µ, the
pushforward measures T k#µ0 converge weakly to T#µ0. For this we use
the Portmanteau theorem to check the following convergence for all bounded
Lipschitz functions φ:∫

S−
φ(y)T k#µ0(y)

k−→∞−−−→
∫
S−

φ(y)T#µ0(y). (47)

Fix the function φ with a Lipschitz constant Lφ and an ε > 0. Using the
change of variable formula, Lipschitz property of φ and boundedness of S we
get:
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∣∣∣∣∫
S−
φ(y)T k#µ0(y)−

∫
S−

φ(y)T#µ0(y)

∣∣∣∣ ≤∫
S+

∣∣φ(T k(x))− φ(T (x))
∣∣µ0(x) ≤∫

S+
Lφ
∣∣dS(T k(x), T (x))

∣∣µ0(x) ≤∫
S+\Bε

εLφµ0(x) +

∫
Bε

diam(S+)Lφµ0(x) ≤

εLφ + diam(S+)Lφµ0[Bε].

Where Bε is the set:

Bε :=
{
x ∈ S+ | d(T ν00 (x), T

ν0,k
0 (x)) > ε

}
.

Due to the convergence in probability of T k, the quantity µ0[Bε]
k−→∞−−−→ 0,

which concludes the proof.
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