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Automates Hybrides Nondéterministes-Probabilistes:
mélanger modèles probabilistes graphiques avec le

nondéterminisme
Résumé : Les modèles graphiques sont apparus comme utiles depuis les années 1990, dans
le domaine des statistiques et de la programmation probabiliste—on regroupe sous ce terme les
graphes factoriels et le réseaux Bayésiens. Dans ce rapport on présente le nouveau modèle des
systèmes et automates mixtes (probabilistes/nondéterministes). Ces modèles étendent à la fois
les modèles graphiques et les automates probabilistes à la Segala-Lynch.

Mots-clés : graphes factoriels, réseaux Bayésiens, nondéterminisme, automates probabilistes,
programmation probabiliste
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4 A. Benveniste, J-B. Raclet

1 Introduction

1.1 Context
Bayesian graphical modeling and inference [27] expanded since the 1980’s, with applications in
numerous areas. Graphical models were introduced in probability and statistics to allow for a
modular description of models [65]. Graphical models divide into two subfamilies: (directed)
Bayesian Networks originally proposed by Judea Pearl [52] and (nondirected) Factor Graphs
[43, 46, 65]. Probabilistic graphical modeling gave birth to an important sub-community of
probabilistic programming [47, 54, 65].

Factor Graphs allow for the modular specification of unnormalized probabilities, based on
a nondirected bipartite graph (V, F,E), where V ∪F is the set of vertices and E⊆V×F is the
set of edges; let Vf be the subset of v∈V such that (v, f)∈E. V is a set of random variables,
and, to each factor f∈F is associated an unnormalized probability pf (Vf ) for the tuple Vf of
random variables. This model defines the unnormalized probability distribution of V as the
product P (V ) =

∏
f∈F pf (Vf )—logarithms of probabilities are often considered instead and

added, under the name of potential [43].
A Bayesian Network is a tuple (V,E, p), where: V is a set of random variables; (V,E) is

an acyclic directed graph (for each v∈V , we let pa(v) denote its parents); p(v|pa(v)) speci-
fies, for each valuation of the parents pa(v), a conditional distribution for the variable v. The
semantics of a Bayesian Network is that the joint distribution of V factorizes as the product
P (V ) =

∏
v∈V p(v|pa(v)). Bayesian Networks are thus causal graphical probabilistic models

and the specification of causality comes extra to the specification of the underlying probability
distribution, in the form of directed branches of the graph. As pointed out by Judea Pearl [53],
causality is an extra information relating random variables, not inferrable from their joint prob-
ability distribution. Message passing algorithms are a key tool for Factor Graphs, allowing to
map a subclass of them to Bayesian networks, see [46] and Section 3.6 of [65]. Through the
union of underlying graphs and the compositional nature of probabilities specified by graphical
probabilistic models, both frameworks of Bayesian Networks and Factor Graphs are naturally
equipped with some kind of parallel composition. All these features explain why graphical mod-
els are considered as an intermediate format targeted by some probabilistic programming tools,
see, e.g., [47, 54], and [65], chapter 3.

One important issue is the combination of probabilistic and nondeterministic behaviors. In
statistical decision procedures, deciding whether the distribution of an observed sample belongs
to subset P1 or P2 of probability distributions (where these subsets have empty intersection),
exhibits nondeterminism in that the actual distribution is freely chosen within one of the two
alternatives; this blending of probabilistic and nondeterministic behaviors is addressed in this
case by using generalized likelihood ratio (GLR) tests [45]. Also, the mixing of probabilistic
behaviors and nondeterminism is central in probabilistic programming [49, 21, 50]. How to
blend probabilistic and nondeterministic behaviors in general is, therefore, an important issue.

Probabilistic Programming [47, 54, 20, 51, 42, 65, 9] provides support for specifying statistical
models with modularity and libraries for performing inference. Some probabilistic languages
generate likelihood functions [54, 47, 20] for use by inference algorithms, whereas other generate
sampling procedures [33, 34]. Recently, G. Baudart et al. [9] proposed reactive probabilistic
programming of dynamical systems as a conservative extension of synchronous languages [12],
by enhancing the Hybrid Systems modeling language Zelus [11] with probabilities. Objectives of
Probabilistic Programming can be categorized as follows:

1. Modeling paradigm. Blending probability and nondeterminism, composing, comparing
(equivalence), are the main issues.

Inria
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Mixed Nondeterministic-Probabilistic Automata 5

2. Model for proof systems. Calculi and their decidability and complexity are central issues
in this objective.

3. Support for statistical inference, decision, and learning. Key pillars are all limit theorems
of probability and statistics (law of large numbers, central limit theorem, large deviations).
These theorems rely on stationarity (or time invariance) of the underlying probabilistic
model. For models with no dynamics, independent identically distributed (i.i.d.) sets of
data can be sampled from the model. For models with dynamics (e.g., Markov chains),
runs can be observed and used to infer model characteristics. One central difficulty in
this objective is the blending of nondeterminism with probabilities, as it generally breaks
the stationarity of the underlying statistical model. For example, if two different statistical
models are combined with a nondeterministic choice (or an if-then-else statement with non-
deterministic guard), then stationarity of the overall model no longer holds. The solution
is to recover stationary models by separating the two alternatives and not mixing them.
This quickly becomes cumbersome if several such constructions are used in a model. This
difficult and central issue is extensively discussed in [39], where it is shown that some major
probabilistic programming tools may not correctly implement Monte-Carlo based learning
algorithms such as Metropolis-Hastings.

1.2 Contribution

To illustrate our purpose, we begin with a toy example. Throughout this paper, all variables
possess finite or denumerable type—this restriction is motivated by technical reasons explained
later. Hence, types will not be declared when presenting examples. In “if-then-else” statements, it
is understood that the control variable is Boolean. Consider the following discrete time dynamical
system (universal quantifier ∀n is implicit):

S1 :


observe u
x0 = cx
xn = ϕ(un, xn−1)
yn = if fn then ψ(xn, vn) else xn

(1)

Model (1) involves signals, i.e., sequences, indexed by the natural integer n, of variables having the
same type: for instance, signal xn denotes the sequence {xk | k∈N}. In (1), fn is a boolean signal
indicating the occurrence of a failure and vn is a noise, i.e., some kind of disturbance. When
a failure occurs, signal xn gets corrupted by noise vn, which is captured by the (unspecified)
function ψ; otherwise, yn = xn. Since model (1) involves the delayed signal xn−1, an initial
condition for this signal is specified by x0 = cx, where cx is some constant of same type as signal
xn. Model (1) looks like a dynamical system as usual, with inputs u, f , and v, state x, and
output y.

We are interested in a different interpretation, however, by which model (1) specifies what is
observed/unobserved: un is observed at every instant (as stated in the first line), whereas other
signals are unobserved (this is the default case). From this perspective, signals f, v, x, and y are
unknown and otherwise subject to (1). Thus, model (1) involves nondeterminism.

Next, consider the following stochastic model for noise vn:

S2 : vn ∼ µ (2)

where vn∼µ means that variable vn has distribution µ at each instant n. As an important
convention of our modeling framework, statement vn∼µ, taken in isolation, also means that the

RR n° 9447



6 A. Benveniste, J-B. Raclet

random sequence vn is independent, identically distributed (i.i.d.). No signal is observed in this
model (capturing that we are considering an unobserved disturbance).

Having the two models S1 and S2, we like to compose them, thus considering S1‖S2, defined as
the conjunction of the two systems of equations (1,2). S1‖S2 combines stochastic behavior with
nondeterminism (since failure signal fn is still unknown and unobverved). As a consequence
of this composition, the nature of signal yn may or may not involve randomness, due to the
if-then-else statement occurring in S1.

Consider next the following S3 model specifying the behavior of the failure signal f :

S3 :

 f0 = F
fn = (rf n or fn−1) and not bkn
rf n ∼ Bernoulli(10−6)

(3)

In this model, “root failure” signal rf is modeled as a Bernoulli sequence, i.e., P (rf = T) =
10−6; boolean signal bk indicates that a “backup sensor” is provided. Thus, a failure is raised
(f = T) if a root failure occurs, and it remains subsequently raised, until a backup sensor
is provided. In S3, no signal is observed, thus bk is nondeterministic. Model (3) is mixed
probabilistic/nondeterministic. If bk was specified as being observed, this model would become
probabilistic in that, once the value of random signal rf n is known, the actual value of fn is
determined.

The next step is to further compose S1‖S2 with S3. By convention of the parallel composition,
as a consequence of composing the two statements “vn ∼ µ” and “rf n ∼ Bernoulli(10−6)”, the
two random sequences vn and rf n are mutually independent.

As a safety issue, we could be interested in evaluating the risk of missing an alarm raised
by having signal y exceeding some threshold: an alarm is raised when yn > ymax. This alarm
triggers some reconfiguration, not shown here. This reconfiguration action was designed to act
under the hypothesis that the system is fault-free, i.e., yn = xn always holds. Consider the
following question: what is the “risk” that an alarm is missed when it should have occured, due
to a fault? More precisely,

what is the risk that “xn > ymax and yn ≤ ymax” occurs? (4)

So far we did not define what we mean by “risk”. It cannot be measured by a probability, since
S1‖S2‖S3 mixes probability with nondeterminism. By “risk” we mean a pessemistic evaluation
of this probability, with nondeterminism acting as an adversary.

Suppose, next, that we want to specify that signal y is observed in system S1‖S2‖S3. To this
end, we consider the system

S4 : observe y (5)

where no dynamics is otherwise specified. Parallel composition S1‖S2‖S3‖S4 expands as the
following model: 

observe u, y
x0 = cx , v0 = cv , f0 = F
xn = ϕ(un, xn−1)
yn = if fn then ψ(xn, vn) else xn
fn = (rf n or fn−1) and not bkn

(6)

 rf n ∼ Bernoulli(10−6)
vn ∼ µ
(rf n and vn are mutually independent i.i.d. signals)

(7)

Inria



Mixed Nondeterministic-Probabilistic Automata 7

The intended semantics of model (6,7) is as follows: (7) specifies the prior distribution of the
pair (v, rf ) of random signals, where, by convention, the two signals are considered independent.
(6) defines a constraint on the tuple of variables involved in the system. The observe constraint
on the pair u, y states that its joint trajectory is given (through the sensors). As a consequence,
the pair (v, rf ) of random signals is now equipped with the posterior distribution resulting from
constraint (6) being enforced.

If we regard systems S1, . . . , S4 as boxes with wires (the involved signals), this modeling
approach naturally leads to graphical models alike Factor Graphs. Indeed, this way of speci-
fying mixed probabilistic/nondeterministic systems is fully modular: component models can be
freely assembled to yield system models. Primitive statements are: 1) declarations of prior dis-
tributions; 2) declarations of constraints on signals through equations relating them, implicitly
resulting in the definition of a posterior distribution; and 3) a parallel composition in which com-
posing prior distributions considers them independent and systems of equations are composed as
usual. Closest to this approach are [9] (born from synchronous programming [12]) or [36] (born
from concurrent constraint programming).

As a semantic domain for the above modeling approach, we propose a framework subsuming
graphical probabilistic modeling and supporting both probabilistic and nondeterministic behav-
iors. We focus our effort on semantics issues, such as: What is actually the probabilistic model
specified? Given seemingly different system specifications, are they equivalent or do they differ?
Can one define a parallel composition of models? With reference to the context of probabilistic
programming recalled in Section 1.1, our work focuses on objective 1 only, with no consideration
of other objectives.

One of our contributions is the model of Mixed Automata. Its design relies on a very simple
idea. An automaton is specified through its set of transitions q α−→ q′, where q and q′ are the
current and next state, and α is the action triggering the transition. Upgrading this model to
Probabilistic Automata [48] consists in upgrading transitions to q α−→ π′, where π′ is the next
probabilistic state (a probability distribution over the set Q of states), from which the next
state is derived by probabilistic sampling π′; q′. The final upgrade to Mixed Automata is by
upgrading such transitions to q α−→ S′, where S′ is now a Mixed System (or Mixed Probabilis-
tic/Nondeterministic System in its extended name), from which the next state is derived by
sampling S′; q′.

Initially proposed in [13], Mixed Systems are pairs consisting of a private probability space
and a visible state space, related through a relation. This pair specifies a posterior distribution,
namely the conditional distribution given that the relation between states and random outcomes
is satisfied. Visible states are exposed for possible interaction with other Mixed Systems. This
allows to equip Mixed Systems with a parallel composition, on top of which a parallel composition
for Mixed Automata can be defined. We show that Mixed Systems naturally inherit a notion of
graphical structure, which subsumes both Bayesian Networks and Factor Graphs. Mixed Systems
offer the counterpart of angelic/demonic nondeterminism [21] and hard/soft conditioning [61, 64],
which are important notions in probabilistic programming.

Mixed Automata, defined on top of Mixed Systems, naturally inherit their associated graph-
ical structure and parallel composition. Mixed Automata are equipped with all the fundamental
modular notions for Automata, namely the notions of (bi)simulation relation and parallel com-
position. In this paper, we show in addition that Mixed Automata subsume, in part, Segala’s
Probabilistic Automata (PA) [60] and their variants. More precisely, we exhibit mappings from
different PA models to Mixed Automata, preserving simulation equivalence. The parallel com-
positions, however, are most of the time different—we claim ours to be more useful than PA
parallel composition when the two differ. In addition, in contrast to PA, our model of Mixed Au-

RR n° 9447



8 A. Benveniste, J-B. Raclet

tomata naturally captures the notion of posterior (conditional) distribution and offers a notion
of graphical model.

The paper is organized as follows. Mixed Systems are introduced and further studied in
Section 2. Mixed Automata are introduced and studied in Section 3, and then compared to
Probabilistic Automata in Section 4. Related work is discussed more broadly in Section 5. Miss-
ing proofs are deferred to appendices. Focused bibliographical discussions are presented following
each important notion. The reason is that the same mathematical notion occurs in different com-
munities, under different names; so we felt it useful to relate them. Finally, Appendix D presents
hints for extending our approach to continuous probability distributions.

2 Mixed Probabilistic/Nondeterministic Systems
X shall denote an underlying set of variables, of finite domain. Elements of X are denoted by
lower case letters x, y, z . . . , and finite subsets of X are denoted by upper case letters X,Y, Z.
We use set theoretic operations on sets of variables. Whenever convenient, we regard X,Y, Z as
tuples. The domain of x is denoted by Qx and the domain of X is QX =def

∏
x∈X Qx, we call

it the state space; the generic element of QX is called a state and is denoted by qX or simply q.
The pair (Ω, π) shall denote a discrete probability space, i.e., π is a countably additive func-

tion, from 2Ω to [0, 1], such that π(∅) = 0 and π(Ω) = 1. We simply write π(ω) instead of
π({ω}). The support of π is the set supp(π) =def {ω | π(ω) > 0}. For a subset W⊆Ω such that
π(W )>0, the conditional probability π(V |W ) =def

π(V ∩W )
π(W ) is well defined.

Finally, we will consider relations (or constraints) C ⊆ Ω × Q. Relations are composed by
intersection.

Disclaimer: in this paper, we consider only discrete probability spaces: This restriction is techni-
cally important, since it allows for a straightforward definition of conditional probabilities, and
the notion of support of a probability is easily defined. For the general case, the notion of con-
ditional expectation is always defined [25], whereas conditional distributions require additional
topological assumptions for their existence, and so does the notion of support. To keep our work
simpler, we decided not to cover those extensions. Appendix D presents hints for extending our
approach to continuous probability distributions.

2.1 Mixed Systems, parallel composition, and Factor Graphs
In this section we introduce Mixed Systems and show that they extend and subsume in a unified
framework: nondeterminism, probability spaces, and factor graphs. This section is inspired in
part by [13].

x

y

Q
C

(Ω, π)

Figure 1: Intuitive picturing of a Mixed System having two variables x and y.

The intuition is illustrated on Figure 1, which will guide us for the different notions attached
to Mixed Systems. A Mixed System will be a pair, consisting of a probability space (Ω, π) and a

Inria



Mixed Nondeterministic-Probabilistic Automata 9

state space Q collecting the configurations of a tuple of state variables (here: x and y), related
by a relation C. The probability space is “private”, in that it is not directly exposed to any
interaction with the environment. Interactions with the environment only occur through the
state variables, thus seen as “visible”. This distinction private/visible is shown on Figure 1 by
the outgoing pins x, y, which contrast with the absence of outgoing pin for the probabilistic box.

We are interested in understanding how Mixed Systems are “executed” (we call this the
sampling), and how state properties—which are not by themselves random—can still get some
kind of probabilistic evaluation.

Definition 1 (Mixed System, definition and semantics)

1. A Mixed System (or system for short) is a tuple S = (Ω, π,X,C), where: (Ω, π) is a
probability space; X is a finite set of variables with domain Q =

∏
x∈X Qx ; and C ⊆ Ω×Q

is a relation. In the sequel, we write
ωCq

to mean (ω, q)∈C.

2. S is called consistent if π(Ωc) > 0, where Ωc =def {ω∈Ω | ∃q : ωCq}. If S is consistent,
its sampling is well defined and consists in:

(a) sampling ω∈Ω according to conditional probability πc, where:

∀A ⊆ Ω : πc(A) =def π(A | Ωc) = π(A∩Ωc)
π(Ωc) , (8)

(b) and, then, nondeterministically selecting q∈Q such that ωCq.

This two-step procedure is denoted by S; q.

3. If S is consistent, its probabilistic semantics is defined as the pair π, π : 2Q → [0, 1], where,
for any state property A ⊆ Q:

π(A) =def π
c(Ω∃A) where Ω∃A =def {ω ∈ Ω | ∃q ∈ A : ωCq} , (9)

π(A) =def π
c(Ω∀A) where Ω∀A =def {ω ∈ Ω | ∀q ∈ A : ωCq} , (10)

The following generalized likelihood ` : 2Q → [0, 1] is also of interest:

`(A) =def maxω∈Ω∃A πc(ω) . (11)

In the sequel, we shall denote by S(X) the class of all (possibly inconsistent) Mixed Systems
having X as their set of variables. 2

π defined by formula (9) is not a probability on Q, but only an outer probability1, i.e., a function
π : 2Q → [0, 1] such that π(∅) = 0, π(Q) = 1, and π is sub-additive, meaning that it satisfies

∀A, (An)n∈N subsets of Q : A ⊆
⋃
n∈NAn =⇒ π(A) ≤

∑
n∈N π(An) .

Note that (11) resembles (9) if we rewrite the latter as π(A) =
∑
ω∈Ω∃A

πc(ω). The same
comments hold, mutatis mutandis, regarding the inner probability π, which is super-additive.
Note that,

if A = {q} is a singleton, then π(A) = π(A). (12)
1sometimes called also exterior or upper probability.

RR n° 9447



10 A. Benveniste, J-B. Raclet

Example 1 [Specializing to pure nondeterministic systems] A pure nondeterministic system is
specified as a subset Ĉ ⊆ Q of the state space. To reformulate it as a Mixed System, simply
take (Ω, π) trivial, i.e., Ω = {ω}, a singleton, equipped with the trivial probability such that
π(ω) = 1, and define ωCq iff q ∈ Ĉ. 2

Example 2 [Specializing to pure probabilistic systems] A pure probabilistic system is specified
as a pair (Ω, π). To reformulate as a Mixed System, take Q = Ω, and let C be the diagonal of
Ω×Q; finally, let x be the variable with domain Q. 2

Discussion 1 (blending nondeterminism and probability) To capture the blending of non-
determinism and probability, outer probabilities are directly used in the Dempster-Shafer theory
of evidence [26, 27, 59].2 Outer probabilities do not support key limit theorems for use in statis-
tics, such as the law of large numbers, the central limit theorem, and more. Hence, whereas the
theory of evidence comes with reasoning capabilities, it does not directly support learning or
estimation.

In formal methods for probabilistic systems (in the context of imperative programming),
the blending of probability and nondeterminism was addressed by a number of authors, see,
e.g., [28, 49, 8, 50, 42, 51, 21, 66]. Nondeterministic choice between alternatives is considered
in [50] and written P uP ′, whereas probabilistic choice is specified as P a⊕P ′ (P is selected with
probability a and P ′ with probability 1−a) or P a⊕b P ′ (P is selected with probability at least a
and P ′ with probability at least b). The evaluation of formulas must specify how nondeterminism
interplays with probabilities. A comprehensive approach was proposed in [21], where demonic
and angelic nondeterminisms are seen as adversarial and beneficial, respectively. These notions
mirror the outer and inner probabilities used in Dempster theory. Unfortunately, outer and inner
probabilities do not bring limit theorems of probability theory (law of large numbers, etc.), which
are the core of machine learning.

Through formulas (9,10) in Definition 1, the probabilistic semantics of Mixed Systems is
defined as the associated outer and inner probabilities. Hence, Mixed Systems offer the calculus
of the theory of evidence, and mirror the demonic and angelic types of nondeterminism. On
the other hand, since classical probability spaces are first class citizens of the model of Mixed
Systems, this model also preserves the apparatus needed for machine learning. In Appendix A.1,
we develop a more detailed comparison of the semantics of Mixed Systems versus imperative
probabilistic programming with demonic and angelic nondeterminism, following [21].

Finally, the generalized likelihood of formula (11) is the basis for inference, estimation, or
machine learning, when multiple hypotheses or nuisance parameters are considered [45]—we are
not aware of any use of a mirror notion where “min” would be substituted for “max”. 2

Example 3 [outer probabilities] Consider model S1‖S2‖S3 of Section 1.2. Pick an instant n
and let S =def S(n, xn−1, fn−1) be the Mixed System defined by (1,2,3) for instant n and
given values for xn−1, fn−1. With reference to (4), we wish to evaluate the probability that
xn > ymax and yn ≤ ymax occurs under adversarial nondeterminism. Denoting by Qv the
domain of v and by B the Boolean domain, the underlying probability space of S is (Ω, π), where
Ω = Qv×B and π = µ×β, where β is Bernoulli(10−6). Domain Q for the variables of S is
Q = Qx×Qy×Qu×Qv×B×B, and relation C is defined by the nonprobabilistic equations of S,
i.e., (1,3) in which we discard the statement rf n ∼ β. Finally, let C(un) denote the relation C

2Outer and inner probabilities were called upper and lower in [26].
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Mixed Nondeterministic-Probabilistic Automata 11

in which the value of un is given (u is observed). Then

π(xn>ymax and yn≤ymax) = πc(W ) , where

W =

{
(v, rf )

∣∣∣∣∃xn, yn, fn, bkn :
xn>ymax and yn≤ymax , and
(xn, yn, fn, bkn, v, rf ) ∈ C(un)

}
(13)

Inspecting (1,3) shows that the condition defining set W rewrites as

xn>ymax and ψ(xn, v)≤ymax and fn=T and (xn, yn, fn, bkn, v, rf ) ∈ C(un) .

First, if ϕ(un, xn−1) ≤ ymax holds, then W = ∅. We thus assume in the sequel ϕ(un, xn−1) >
ymax. Thus we need to evaluate with respect to π the predicate

Z =def ψ(xn, v)≤ymax and fn=T and (xn, yn, fn, bkn, v, rf ) ∈ C(un) .

Condition fn=T is equivalent to the conjunction of the following two conditions: 1) bkn=F
(backup sensor is not available), 2) fn−1=T or rf n=T. Recall that the value of fn−1 is given. We
thus distinguish the following two cases:

1. fn−1=T: then, fn=T whatever the value of bkn is, and, using (13):

π(xn>ymax and yn≤ymax) = µ
{
v | ψ(ϕ(un, xn−1), v) ≤ ymax

}
.

2. fn−1=F: then, fn=T if and only if rf n=t and bkn=F. Thus, chosing bkn=F ensures
that: rf n=t and ψ(ϕ(un, xn−1), v) ≤ ymax together yield yn≤ymax. Alternatively, bkn=T
prevents the condition yn≤ymax from occurring. By definition of the outer probability (9),
we finally get, using (13):

π(xn>ymax and yn≤ymax) = β(rf =T)× µ
{
v | ψ(ϕ(un, xn−1), v) ≤ ymax

}
,

which corresponds to the probabilistic evaluation of the predicate “xn>ymax and yn≤ymax”
if the nondeterministic alternative bkn=F/T is interpreted as demonic [21]. 2

Discussion 2 (Conditioning and its variations) Conditioning is generally not considered
in the field of probabilistic automata. It is, however, central in probabilistic programming, see,
e.g., [51, 22, 64] for studies in which conditioning is the main subject. The observe primitive,
pervasive in all tools, is used to specify posterior distributions given constraints (as we do in Def-
inition 1). The litterature on probabilistic programming distinguishes between hard (also called
deterministic) and soft (also called stochastic) conditioning [61, 64]. In the basics of probability
theory, however, the only notion is that of conditional expectation [25], from which other notions
are derived, e.g., conditional probability, transition probability or stochastic kernel, and disinte-
gration (or regular version of conditional expectation). Deriving such notions is straightforward
in our case, since we restrict ourselves to discrete probability spaces. We will discuss this further
when extending Bayesian networks to Mixed Systems, in Section 2.2.

Discussion 3 (consistency) Inconsistency formalizes self-contradiction, for Mixed Systems.
The condition “π(Ωc) > 0” in statement 2 of Definition 1 means that Ωc has non-empty in-
tersection with the support of π, defined as the set of ω’s of positive probability: π(ω) > 0.
This simple definition for the support, which is only valid for discrete probabilities, allows us to
propose a simple definition for the notion of consistency. When continuous probability spaces
are considered (like the Gaussian), the above definition for the support no longer holds. The
right definition relies on topological properties. As a consequence, our elementary definition of
consistency would no longer apply. This is next illustrated on our running example.
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12 A. Benveniste, J-B. Raclet

Example 4 [consistency] Consider model (6,7). Statement 2 of Definition 1 defines consistency
as the existence of a state q in relation through C with an ω belonging to the support of π, which is
fairly simple. Suppose, for a while, that un, xn, yn, vn possess real domain, µ(dv) = χ(v)dv, where
dv denotes the Lebesgue measure, density χ is continuous and everywhere positive, and function
v 7→ ψ(x, v) is bijective and bicontinuous for every fixed x. Then, fixing the value of yn, for a
given pair (un, xn−1), will fix the value of vn if fn=T in the equation defining yn. With reference
to Example 3, the only difference is that a parallel composition with the statement observe y
was added. So, it still makes sense to consider the two cases 1 and 2 of Example 3. In case 1, we
get W = {(rf , v) | ψ(ϕ(un, xn−1), v)=yn}, whence (β×µ)(W )=0. Deducing inconsistency would
be nonsense, however, since the support of µ is R. This illustrates that our pedestrian definition
of consistency no longer works if real variables and distributions having densities with respect to
Lebesgue measure are considered.

2.1.1 Equivalence

In this section, we study equivalence. To this end, we introduce the following operation of
compression, on top of which equivalence is defined:

Definition 2 (compression) For S = (Ω, π,X,C) a Mixed System, we define the following
equivalence relation on Ω, i.e., ∼ ⊆ Ω×Ω is such that:

(ω, ω′) ∈ ∼ if and only if: ∀q ∈ Q : ωCq ⇔ ω′ Cq . (14)

As usual, we write ω ∼ ω′ to mean (ω, ω′) ∈ ∼. The compression of S, denoted by S̃ =

(Ω̃, π̃, X, C̃), is then defined as follows:

• Ω̃ is the quotient Ω/∼, which elements are written ω̃;

• ω̃C̃q iff ωCq for ω ∈ ω̃; and

• π̃(ω̃) =
∑
ω∈ω̃ π(ω).

Say that S is compressed if it coincides with its compression. 2

Distinguishing ω and ω′ is impossible if ω∼ω′. Equivalence is defined on top of compression (see
item 1 of Definition 1 for notation Cπ):

Definition 3 (equivalence) Two compressed mixed systems S and S′ are equivalent if they
possess identical sets of variables X=X ′, and there exists a bijective map ϕ : Cπ 7→ C ′π′ satisfying
the following conditions for every pair (ω, q) ∈ Ω×Q, where (ω′, q′) =def ϕ(ω, q):

ω Cπ q ⇔ ω′ C ′π′ q
′ ; π′(ω′) = π(ω) ; q′ = q . (15)

S and S′ are equivalent, written S≡S′, if their compressions are equivalent. 2

The following result expresses that mixed system equivalence preserves probabilistic semantics:

Lemma 4 Any two equivalent mixed systems, S1 ≡ S2, possess identical probabilistic semantics:
π1 = π2 and π1 = π2.

Inria



Mixed Nondeterministic-Probabilistic Automata 13

Proof: It is enough to prove the lemma in the following two cases: 1) S1 and S2 are both
compressed, and 2): S2 = S̃1. The result is immediate for case 1), so we focus on case 2). Let Q
be the common domain of X1 = X2 and A ⊆ Q be a state property. Then,

π1(A) = πc
1

(
{ω1 | ∃q ∈ A : ω1C1q}

)
= πc

1

(
{ω1 | ω1 ∈ ω̃1 and ∃q ∈ A : ω̃1C̃1q}

)
= π̃c

1

(
{ω̃1 | ∃q ∈ A : ω̃1C̃1q}

)
= π̃1(A) = π2(A) .

A similar proof holds for inner probabilities. 2

Discussion 4 (equivalence) Floyd/Hoare/Dijkstra logic of pre- and postconditions for imper-
ative languages was extended to encompass probability and nondeterminism with pGCL (prob-
abilistic Guarded Command Language) [44, 22, 49, 42, 51, 50]. The semantics is defined as the
probability of weakest preconditions under demonic nondeterminism. McIver-Morgan notions
of refinement and equivalence follow from this semantics. This approach is also used to define
equivalence of probabilistic programs, see, e.g., Section 3.1 of [65].

As pointed in Discussion 1, the above semantics parallels our consideration of outer/inner
probabilities in point 3 of Definition 1. Compared to McIver-Morgan notion of equivalence, the
notion of equivalence we propose in Definition 3 is more basic and direct. It implies equivalence
of the evaluation of state properties using outer/inner probabilities. 2

2.1.2 Marginal

For (X,Y ) a pair of random variables with joint distribution P (x, y), the distribution of X is
given by the marginal of P , namely: P (x) =def

∑
y P (x, y).

We extend this notion to Mixed Systems, by viewing it as a hiding operation, see Figure 2.
For C ⊆ Ω×Q a relation where Q is the domain of tuple X, Y ⊆ X a subset of variables, and

Q
C

(Ω, π)

y

x

Figure 2: The marginal on y for the Mixed System of Figure 1 is by hiding x (in red).

Z = X − Y , we denote by

PrY : 2Ω×Q → 2Ω×QY : PrY(C) =def {(ω, qY ) | ∃qZ : ωC(qY , qZ)}

the projection of C over Y .

Definition 5 (marginal) Let S = (Ω, π,X,C) be a Mixed System, and let Y ⊆ X be a sub-
set of variables. The marginal of S on Y , denoted by MarginY (S), is the Mixed System
MarginY (S) =def (Ω, π, Y,PrY(C)). 2

Even if S was itself compressed, due to the projection of relation C, the Mixed System defining
the marginal in Definition 5 may require a compression.
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14 A. Benveniste, J-B. Raclet

Example 5 [Link with the classical notion of marginal for probabilities] Let us apply Definition 5
to the purely probabilistic system of Example 2, namely Sproba = (Q, π, {X,Y }, diag) , having
two variables X,Y , corresponding state space Q, and Ω = Q with C = diag , the diagonal. This
is the model of a pair (X,Y ) of visible variables with joint probability distribution π(x, y), where
x and y denote values for X and Y , respectively. The projection of diag on Y is

PrY(diag) = {(x, y, y′) | y = y′} .

Thus, (x, y) ∼ (x′, y′) if and only if y = y′. Thus, when using the formula of Definition 5 to define
MarginY (Sproba), the private probability space (Q, π) must be compressed as π̃(y) =

∑
x π(x, y),

showing that our notion of marginal boils down to the classical notion for probabilities in this
case. 2

2.1.3 Parallel composition

Mixed Systems are equipped with a parallel composition: common state variables are unified
(thus causing synchronization constraints); on the other hand, probabilistic parts remain lo-
cal and independent, conditionally to the satisfaction of synchronization constraints. This is
illustrated on Figure 3.

y1 y2

(Ω1, π1)× (Ω2, π2)

xy1 y2

C1 ∧ C2

Q = dom(x, y1, y2)

↑ factor graph

← formulas (18)

C1
(Ω1, π1) Q1

x x

Q2
C2

(Ω2, π2)

Figure 3: Illustrating the parallel composition, for y1, y2 local variables and x shared. The factor
graph, capturing the connection via identical wires, is depicted on the top in black; the definition
using formulas (18) is shown in blue.

Formally, let I be a finite set, and, for each i∈I, let Xi be a finite set of variables with domain
Qi, and set X =

⋃
i∈I Xi with domain Q. Say that tuple (qi)i∈I is compatible, written

./ i∈I qi , (16)

if qi(x) = qj(x) for any pair (i, j) of indices and every shared variable x ∈ Xi ∩Xj . If ./ i∈I qi,
their join

t i∈I qi ∈ Q (17)

is defined by t i∈I qi(x) = qi(x) whenever x ∈ Xi.
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Mixed Nondeterministic-Probabilistic Automata 15

Definition 6 (parallel composition and Factor Graph) The parallel composition S1 ‖S2

of two mixed systems S1 and S2 is the Mixed System S such that:

X = X1∪X2 , Ω = Ω1×Ω2 , π = π1×π2 (cartesian product), and
C =

{(
(ω1, ω2), q1 t q2

)
| q1 ./ q2 and ω1C1q1 and ω2C2q2

}
,

(18)

We attach to parallel composition S = ‖i∈ISi its Factor Graph GS , which is a nondirected
bipartite graph whose set of vertices collects systems and variables:{

Si | i ∈ I
}
∪
{
x | x ∈

⋃
i∈I Xi

}
,

and GS has edges (Si, x), for i ∈ I and x ∈ Xi, also denoted by Si—x. 2

The composition of two consistent systems may be inconsistent. Let

nil = ({1}, δ1, ∅, {(1, ε)}) (19)

be the nil system, with trivial probability space (Ω, π) = ({1}, δ1) and no visible variable; its
state space is the singleton Qnil = {ε} where ε is some distinguished element, and its relation is
the singleton C = {(1, ε)}. The nil system is neutral for parallel composition: nil ‖S ≡ S holds,
for every S.

Factor Graphs obey the following rule, where ∪ denotes the union of graphs:

GS1‖S2
= GS1

∪ GS2
. (20)

The associativity and commutativity of this parallel composition is immediate, as it is directly
inherited from the same properties satisfied by the Cartesian product of probability spaces and
the conjunction of relations. Factor Graphs and the parallel composition of Mixed Systems are
useful in decomposing large but sparse systems, into a parallel composition of smaller, locally
interacting, subsystems.

Lemma 7 S1 ≡ S′1 implies S1 ‖S2 ≡ S′1 ‖S2, expressing that parallel composition preserves
equivalence.

See Appendix A.2 for the proof.

2.2 Bayesian Calculus and Bayesian Networks

So far Factor Graphs and related algorithms are able to capture joint distributions relating
different statistical data, but they cannot capture causality, as argued by Judea Pearl [53].
Actually, Judea Pearl states that causality requires extra, structural, information that must be
added to the specification of probability distributions: directed graphs are used to this end.

Another issue is that of incremental sampling of a compound system: whereas the sampling
of a parallel composition is generally global (or using the sophisticated iterative methods used,
e.g., in [20]), one could ask whether it could be performed incrementally.

In statistics based on graphical models, these questions are answered by considering, in ad-
dition to Factor Graphs, so-called Bayesian Networks [52]. Bayesian networks specify causality
information by means of directed graphs, which bring the extra information advocated by J.
Pearl to talk about caussality. Bayesian networks also naturally support incremental execution.
In this section, we show how these concepts supporting causality and incremental sampling, can
be extended to Mixed Systems.
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16 A. Benveniste, J-B. Raclet

As a preamble, we recall some facts from basic probability theory. For a pair (X,Y ) of random
variables with joint distribution P (x, y), usual Bayes formula writes P (x, y)=P (y)P (x|y), where
P (y) =def

∑
x P (x, y) is the marginal distribution of Y and P (x|y) is the conditional distribution

of X given that Y=y, assigning, to each value y of Y , a probability for X. Sampling P (x|y)
consists in 1) nondeterministically selecting a value for y, and then 2) with this value of y,
sampling X according to P (x|y). P (x|y) is called a transition probability, or a probability kernel
or stochastic kernel, depending on the contexts and communities: y 7→ P (x|y) maps any value
for Y to a probability distribution for X. We now extend these notions to Mixed Systems.

2.2.1 Mixed Kernel

We begin by extending the notion of probability kernel to that of Mixed Kernel. The starting
idea consists in defining a Mixed Kernel as a function, mapping every Y -state of a set Y of
variables, to a system having X as its set of variables. For the notations used in the sequel, the
reader is referred to the beginning of Section 2.

Definition 8 (Mixed Kernel) A Mixed Kernel (or simply kernel) is a map

K : QX → S(X ′) ,

where X and X ′ are two finite sets of variables such that X ∩X ′ = ∅, called the sets of inputs
and outputs of kernel K. In the sequel, we shall denote these two sets X and X ′ by X in

K and
Xout
K , respectively.
The probabilistic semantics of K is the pair of maps

qin 7→
(
π(qin), π(qin)

)
(21)

where qin is a value for the input variables X in
K , and π(qin) and π(qin) are the outer and inner

probabilities associated to Mixed System K(qin). 2

For q∈Q and C ⊆ Ω×Q, we write

Cq =def {ω∈Ω | ωCq}, and Cω =def {q∈Q | ωCq} . (22)

Convention 1 A kernel K whose input set X is empty identifies with the Mixed System S =
K(ε) it defines, where QX is the singleton {ε}. Vice-versa, any system S identifies with the
kernel K whose input set X is empty and K(ε) = S. 2

2.2.2 Bayesian Network

Definition 9 (Bayesian Network) Let N=(X ∪ K, ↪→) be a directed acyclic bipartite graph,
where X and K are finite sets of variables and Mixed Kernels, and ↪→⊆ (X×K)∪ (K×X) is the
set of edges. For K ∈ K, we denote by •K and K• the sets of variables x ∈ X such that x ↪→ K
and K ↪→ x, respectively. N is called a Bayesian Network if satisfies the following conditions:

∀K ∈ K =⇒ X in
K ⊆ •K and Xout

K = K• . (23)
∀K1,K2 ∈ K,K1 6= K2 =⇒ K1

• ∩K2
• = ∅ (24)

For convenience, we will denote by

K1;K2 (25)
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Mixed Nondeterministic-Probabilistic Automata 17

a Bayesian network N=(X∪K, ↪→) whose set K contains only two Mixed Kernels K1 and K2,
such that K1 ↪→ K2 and X = X in

K1
∪Xout

K1
∪X in

K2
∪Xout

K2
. 2

This notion is illustrated on Figure 4 for two Mixed Kernels communicating via variable x
(compare with Figure 3).

y1 y2

C1
(Ω1, π1) Q1

x x

Q2 (Ω2, π2)
Cqx2

Figure 4: Bayesian Network S1;K2. Mixed Kernel K2 has input x.

To Bayesian Network N=(X∪K, ↪→), we associate the partial order (X∪K,�), where � is the
transitive closure of ↪→. In the following definition, for q a valuation of the set X of variables and
K a kernel belonging to K, q↓•K and q↓K• denote the restriction of q to the variables belonging
to •K and K•, respectively.

Definition 10 (incremental sampling and probabilistic semantics) The incremental sam-
pling of Bayesian Network N is defined by structural induction over � as follows:

1. Initial condition: we assume a value for every variable x ∈ min(X ∪K), where min refers
to �; we set X− = min(X ∪K) ∩X and K− = ∅;

2. Induction hypothesis: X− ∪K− ⊆ X ∪K is a downward closed subset of vertices of N such
that

(a) K•− ⊆ X−;
(b) every variable x ∈ X− holds a value, whereas every x 6∈ X− does not;

3. Induction step: while X− 6=X, do:

(a) let K∗ ⊆ K−K− collect the kernels K such that •K⊆X− and K• 6=∅;
(b) for every K∈K∗, every variable belonging to •K holds a value, hence we can sample

Mixed System K(q•K), which returns a value for qK• ;
(c) doing this for all K∈K∗ yields a value for every variable belonging to X−∪K∗• ⊃ X−

(the inclusion is strict);
(d) set K− := K− ∪K∗ and X− := X− ∪K∗• and return to 3.

4. Done.

Sampling N thus returns a value q ∈ QX for every variable belonging to X, we denote this by
N ; q. The probabilistic semantics of N is the map q 7→ π(q), associating to every q∈QX such
that N ; q, its probabilistic score

π(q) =
∏
K∈K

π
(
K, q↓•K

)(
q↓K•

)
. (26)

In (26), π(K, q↓•K )(q↓K• ) is the score assigned to state q↓K• by the outer probability associated
to mixed system K(q↓•K ). 2
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18 A. Benveniste, J-B. Raclet

Since inclusion X−∪K∗• ⊃ X− in step 3c is strict, the inductive procedure terminates in finitely
many steps. Note that, by (12), there is no need to consider π(q). The inductive procedure of
Definition 10 is formalized in Algorithm 1.

Algorithm 1 Incremental sampling of Bayesian Network N
Require: ∀x ∈ min(X ∪K), x is defined
Ensure: ∀x ∈ X, x is defined
X− ← X ∩min(X ∪K) and K− ← ∅
while X− 6=X do

K∗ ← { K | •K⊆X− and K• 6=∅ }
for all K∈K∗ do

sample(K(q↓•K ))
end for

end while
K− ← K− ∪K∗
X− ← X− ∪K∗•

Definition 11 (Bayesian network equivalence) Let N1 and N2 be two Bayesian networks
such that X1 = X2. Say that N1 and N2 are probabilistically equivalent, written N1 ≡P N2, if
they possess equal probabilistic semantics: π1 = π2. 2

By Lemma 4, S ≡ S′ implies S ≡P S′, when regarding mixed systems S and S′ as Bayesian
networks.

Example 6 [Finite Markov chain as a Bayesian Network] Recall that a finite sequence of random
variables X1, X2, . . . , Xn is called a Markov chain if the joint distribution of (X0, X1, . . . , Xn)
factorizes as π(X0=x0, . . . , Xn=xn) = µ(x0)

∏n
i=1 P (xi|xi−1), where probability µ over X, the

state space of the Markov chain, is the initial condition and P (x′|x) is the transition kernel, i.e.,
for x fixed, x′ 7→ P (x′|x) is a probability over x′. Markov chains are thus a particular case of
the Bayesian Networks proposed in Definition 9. 2

We next extend, to mixed systems, the notion of conditional distribution. To this end, we will
use the following notation: for Y a set of variables and qY ∈ QY ,

(Y=qY ) (27)

denotes the Mixed System defined as follows: Ω is the singleton {1} with trivial probability on
it, Y is the set of variables, and C = {(1, qY )} is a singleton, expressing that Y is constrained to
take the value qY .

Definition 12 (conditional) Let S = (Ω, π,X,C) be a Mixed System, and let Y ⊆ X be a
subset of variables. The conditional of S on Y , denoted by CondY (S), is the kernel defined by
CondY (S) (qY ) =def (Y=qY ) ‖S. 2

Link with the classical notion: Consider the following particular case for S: Ω=Q, and C is the
diagonal of Ω×Q. Then, S specifies the joint distribution π for tuple X of random variables. De-
compose X = Y ∪Z where Y ∩Z = ∅. Compressing MarginY (S) yields the marginal distribution
of Y . Compressing (Y=qY ) ‖S yields the conditional distribution π(qZ |qY ). Therefore, Defini-
tions 5 and 12 extend the notions of marginal and conditional existing on purely probabilistic
systems.
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Discussion 5 (more on conditioning) When probability and nondeterminism are blended,
the notion of Mixed Kernel serves the same purpose as soft or stochastic conditioning [64], since
it implements the stochastic conditioning p(x | y ∼ D) discussed in the introduction of [64]. 2

Generally, sampling the parallel composition S1 ‖S2 yields a result which differs from the incre-
mental sampling of S1; CondX1(S2) (by Convention 1 we can regard S1 as a kernel and consider
this incremental sampling). Nevertheless, the following result holds (see Definition 3 regarding
isomorphic samplings):

Theorem 13 (Bayes formula) Let S = (Ω, π,X,C) be a Mixed System and Y ⊆ X a subset
of variables. Then, the following Bayes formula holds:3

S ≡P MarginY (S) ; CondY (S) .

Proof: See Appendix A.3 for the proof. 2

The right hand side of Bayes’ formula is illustrated on Figure 5.

marginal: hiding X conditional: kernel with input Y

hideQ
C

(Ω, π)

Y

X

; Q
C

(Ω, π)

X

Y

Figure 5: Illustrating the right hand side of Bayes’ formula: the output Y of the system on the
left is connected to the input Y of the kernel on the right.

By Definition 6, parallel composition S =
∏
S∈S S defines a Factor Graph GS , having nondi-

rected bipartite edges S—x, for every S ∈ S and every visible variable x of S. Message passing
algorithms transform certain Factor Graphs associated to a parallel composition of several Mixed
Systems, to Bayesian Networks while preserving the sampling. This provides such Factor Graphs
with an incremental sampling:

Theorem 14 (message passing algorithm) If Factor Graph GS of system S is a tree, we can
transform it to a Bayesian Network NS while preserving its probabilistic semantics.

See Appendix A.4 for a proof.

Message passing algorithms for computing generalized likelihoods. The purpose of
probabilistic languages [47, 20, 35] is not only (actually, not so much) sampling, but rather
estimation/inference. Of course, in addition to performing incremental sampling, Bayes’ formula
also allows evaluating probabilities of properties incrementally. Then, a counterpart of Bayes’
formula exists for performing maximum likelihood estimation incrementally—it is known in the
pattern recognition literature as the Viterbi algorithm [41, 56]. Theorem 14 shows that message
passing algorithms also allow for an incremental evaluation of generalized likelihoods.

3This theorem and formula (12) correct the erroneous construction of the conditional CondY (S) in Appendix
A of [13].
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2.3 The ReactiveBayes minilanguage
In this section, we use the model of Mixed Systems to specify the semantics of the informal
language we used in the introduction when discussing our running example. To make this precise,
we formalize this informal language through the “ReactiveBayes” syntax presented hereafter.

To prevent from decidability issues in constraint solving, domains of variables and random
variables are all assumed finite. Finally, to simplify our presentation of the syntax, domains are
omitted.

2.3.1 Syntax

Here is the syntax, where keywords are highlighted in blue:

e ::= c | x | (e, e) | op(e) | f(e) | pre x | init x = c
S ::= x∼P (e) | e = e | observe x | S ‖S (28)

• An expression e is a constant c, a variable x, an external operator application op(e), a
function application f(e), or a delayed version pre x for the variable x. Initial condition
init x = c is required whenever pre x occurs in the program; it fixes the initial value for
x.

• A Mixed System S is the declaration of a prior distribution P (e) for variable x, thus making
it random; distribution P (e) has, optionally, parameters set by expression e, an equation
e = e, the declaration that variable x is actually observed, or the parallel composition
thereof. For each term P we assume a semantics denoted by πP , which is a probability.

No provision is given by syntax (28) for writing equations relating systems. In particular, fixpoint
equations S = S′ ‖S cannot be expressed: ReactiveBayes does not offer full recursion. However,
statements pre and init provide a limited form of recursion, supporting dynamical systems.
This will be made clear in Section 3.2, where the semantics of full ReactiveBayes will be given.

Example 1 Mixed System S1, specified by model (1) writes

‖ observe u
‖ init x = x0
‖ y = phi(u,pre x)
‖ x = if fail then psi(y,noise) else y

Mixed System S2, specified by model (2) writes

‖ init noise = n0
‖ noise = chi(pre noise,w)
‖ w ∼ mu

And so on. The global model is S1 ‖S2 ‖S3 ‖S4. 2

2.3.2 Semantics

We now give the semantics of the static fragment of ReactiveBayes, namely ignoring in (28) the
statements pre and init. [[S]] denotes the semantics of ReactiveBayes program S:

(i) [[observe x]] = (·, ·, {x}, x = c)
(ii) [[x∼P ]] = (Ωx, πP , {x}, x = ωx)
(iii) [[x∼P (e)]] = c 7→ [[x∼P (c)]], where c = e
(iv) [[e = e′]] = (·, ·, vars(e) ∪ vars(e′), e = e′)
(v) [[S1 ‖ S2]] = [[S1]] ‖ [[S2]]

(29)
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In (i), the semantics has no probabilistic part, and a single visible variable x whose value c is
given, but left unspecified. In (ii), probability distribution P is fixed; the semantics consists of
the probability space (Ωx, πP ), where Ωx is a private copy of the domain of x equipped with
probability πP and having generic element ωx ∈ Ωx; equation x = ωx exposes ωx for further
interactions through x. In (iii), the probability depends on an expression e, whose generic
value is denoted by c; the semantics is the kernel mapping c to [[x∼P (c)]]. Line (iv) defines
the semantics of equations; “vars(e)” denotes the set of variables involved in expression e; the
semantics has no probabilistic part. Finally, (v) makes this semantics structural. Thanks to
formula (20) of Definition 6, it also defines the Factor Graph representing S.

The following fragment of (29) is mapped to a Bayesian Network. In the following formulas,
N [[S]] denotes the Bayesian Network defined by S, when it exists:

(i) N [[observe]] = {is_source(x)}
(ii) N [[x∼P ]] = {x}
(iii) N [[x∼P (e)]] = vars(e)→ [[x∼P (e)]]→ x
(iv) N [[x = e]] = vars(e)→ [[x = e]]→ x
(v) N [[S1 ‖ S2]] = N [[S1]] ∪N [[S2]]

(30)

In (i), is_source(x) denotes x flagged with the condition that it must remain a source node in
any of its environments. Application of Rule (v) is subject to the following success conditions:

Condition 1 (success conditions)

1. The union N [[S1]]∪N [[S2]] possesses no circuit and satisfies the conditions of Definition 9,
and

2. The result keeps satisfying all inherited conditions (i).

These conditions ensure that parallel compositions are incremental. The message Passing al-
gorithm presented in Theorem 14 allows source-to-source rewriting for mapping tree shaped
non-directed Factor Graphs to directed Bayesian Networks.

Example 2 The following picture displays, on the top, the Factor Graph associated to S1 ‖ S2 ‖ S3 ‖ S4,
and, on the bottom, the Bayesian Network resulting from applying the message passing algorithm—
for better readability we show only shared variables:

yn

S2 fn S1 vn S3

S4

Condy(S4)
↑
yn
↑

Condf (S3)← fn ← S1 → vn → Condv(S2)

where S1 =def S1 ‖Marginv(S2) ‖Marginf (S3) ‖Marginy(S4). 2

Discussion 6 (if-then-else) In Example 1, system S1 involves an “if-then-else” statement. Syn-
tax (28), however, does not involve such statements. This means that “if-then-else” statements
are seen by syntax (28) as one instance of “f ”, to which no particular attention is paid. The
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semantics of this “f ” obviously depends on the value of the Boolean control signal. However,
neither the factor graph, nor the Bayesian network associated to S1, depend on which branch is
active in this “if-then-else” statement. This is harmless if the focus is on modeling. Considering
“if-then-else” and paying attention to it is definitely needed in probabilistic reasoning [21], see
Appendix A.1. The same holds when performing inference or learning [39]; see also the discussion
of objective 3 of probabilistic programming on page 5. 2

So far we have presented models involving no dynamics. In the next section we move to our
proposed formal model for dynamical systems: Mixed Automata.

3 Mixed Automata
The idea is simple: we upgrade notions, from automata, to Probabilistic Automata, and to Mixed
Automata:

1. Transitions q α−→ q′, where q and q′ are states and α is an action, correspond to automata.

2. Upgrading them to q
α−→ π′; q′, where π′ is the next probabilistic state and ; de-

notes probabilistic sampling, yields Simple Probabilistic Automata following Segala and
Lynch [58, 48].

3. Upgrading them further to q α−→ S′; q′, where S′ is a Mixed System and ; denotes
sampling, yields Mixed Automata.

3.1 Definition and properties
The formal definition is introduced next. It uses the notation S(X), introduced at the end of
Definition 1. We assume an underlying alphabet Σ of actions.

Definition 15 (Mixed Automaton) A Mixed Automaton is a tuple

M = (Σ, X, q0,→),

where: Σ ⊆ Σ is a finite set of actions, X is a finite set of variables having domain Q =∏
x∈X Qx, q0 ∈ Q is the initial state, and → ⊆ Q×Σ×S(X) is the transition relation. We write

q
α−→ S (or q α−→M S when we wish to make M explicit)

to mean (q, α, S) ∈ →. We require that M shall be deterministic:

for any pair (q, α) ∈ Q×Σ, q α−→ S and q α−→ S′ implies S=S′. (31)

The sampling of M is its set of runs r, which are finite sequences of chained transitions:

r = q0
α1−→ S1 ; q1

α2−→ S2 ; q2 . . . qk−1
αk−→ Sk ; qk , (32)

where Mixed Systems S1, . . . , Sk are consistent, and S; q is the sampling introduced in Defini-
tion 1. 2

The transitions of Mixed Automata target Mixed Systems, which combine nondeterminism with
probabilities. Therefore, Mixed Automata capture nondeterminism despite Condition (31).
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Example 7 [comparing with classical notions] Let (Xn)n≥0 be a Markov chain with state space
Q, initial state q0, and transition probability P (q′ | q). We can reformulate it as the Mixed
Automaton M = (Σ, X, q0,→), where: Σ is the singleton {α}; variable X has domain Q; →
maps (q, α) to the purely probabilistic Mixed System of Example 2, representing probability
q′ 7→ P (q′ | q) for given state q. 2

Like automata and Probabilistic Automata, Mixed Automata come equipped with a notion
of parallel composition, built on top of the parallel composition of Mixed Systems. The sim-
plest idea is that the transitions of parallel composition M1 ‖M2 will take the form q1 t q2

α−→
S′1 ‖S′2 ; q′1 t q′2, where q′1 t q′2 and S′1 ‖S′2 are defined in (17) and Definition 6, respectively. In
this simple construction, synchronizing the two transitions is by having them perform the same
action α.

To be able to define the semantics of our ReactiveBayes minilanguage, we will, however, need
the more flexible synchronization mechanism of “compatible actions”—this is known to be only
a technical extension. We thus assume that the underlying alphabet Σ of actions is equipped
with a commutative and associative join partial operation tΣ : Σ×Σ→ Σ, where α1 tΣ α2

is defined whenever the two actions are compatible, written α1 ./Σ α2. In the composition of
Mixed Automata, the components synchronize on compatible actions and move to the parallel
composition of target systems by performing the join of the two actions:

Definition 16 (parallel composition) Let M1 and M2 be two Mixed Automata having com-
patible initial states q0,1 ./ q0,2. Their parallel composition M1 ‖M2 has alphabet Σ1∪Σ2, set of
variables X1∪X2, and initial state q0,1 t q0,2. Its transition relation −→M is the minimal relation
satisfying the following condition, where S1 ‖S2 was defined in Definition 6:

qi
αi−→Mi

Si for i = 1, 2
q1 ./ q2 and α1 ./Σ α2

}
=⇒ q1 t q2

α−→M S1 ‖S2, where α = α1 tΣ α2 . 2

The next important notion is that of (bi)simulation, which is central in automata theory. We
upgrade it, from the basic notion for automata up to the extended notion for Mixed Automata:

1. In the context of automata, relation ≤ on pairs of states is a simulation if it satisfies [57]:

q1
α−→ q′1

q1 ≤ q2

}
=⇒ ∃q′2 :

{
q2

α−→ q′2
q′1 ≤ q′2

2. This definition is upgraded to Probabilistic Automata as follows [57]:

q1
α−→ π′1

q1 ≤ q2

}
=⇒ ∃π′2 :

{
q2

α−→ π′2
π′1 ≤P π′2

where ≤P is the lifting of ≤ to pairs of probabilistic states. We have:

π′1 ≤P π′2 ensures, for each q′1 such that π′1 ; q′1,
the existence of q′2 satisfying π′2 ; q′2 and q′1 ≤ q′2.

(33)

3. This definition will be further upgraded to Mixed Automata as follows:

q1
α−→ S′1

q1 ≤ q2

}
=⇒ ∃S′2 :

{
q2

α−→ S′2
S′1 ≤S S′2

(34)

where ≤S is the lifting of ≤ to pairs of Mixed Systems. We request:

S′1 ≤S S′2 shall ensure, for each q′1 such that S′1 ; q′1,
the existence of q′2 satisfying S′2 ; q′2 and q′1 ≤ q′2.

(35)

RR n° 9447



24 A. Benveniste, J-B. Raclet

Such a lifting is introduced next. Let S1 and S2 be two Mixed Systems.

Definition 17 (lifting relations on Mixed Systems states) Let ρ ⊆ Q1×Q2 be any state
relation. Mixed System relation ρS ⊆ S(X1)×S(X2) is the lifting of ρ if there exists a weighting
function w : Ω1×Ω2 → [0, 1] such that:

1. For every triple (ω1, ω2, q1) ∈ Ω1×Ω2×Q1 such that w(ω1, ω2) > 0 and ω1 C1 q1, there
exists q2 ∈ Q2 such that q1 ρ q2, and ω2 C2 q2;

2. Weighting w projects to π1 and π2:∑
ω2

w(ω1, ω2)=π1(ω1) and
∑
ω1

w(ω1, ω2)=π2(ω2). 2

By construction, this definition for the lifting of state relations to relations on Mixed Systems
satisfies (35). Note the existential quantifier in Condition 1. By Condition 2, w induces a
probability on Ω1×Ω2. We write S1 ρ

S S2 to mean (S1, S2) ∈ ρS .

Discussion 7 (lifting and coupling) Our lifting is a direct extension of the technique used
in [57] for Probabilistic Automata. In the context of probabilistic reasoning, the same technique
was also extensively studied under the name of probabilistic coupling [8, 38]. Weighting function
w(ω1, ω2) of Definition 17 transposes probabilistic coupling to our model of Mixed Automata in
which nondeterminism and probability are combined. In a different community, “stochastic non-
determinism” was extensively studied through the notion of Non-deterministic labelled Markov
process in [23, 29], in a categorical framework; the second reference encompasses continuous
distributions (beyond discrete).

Lemma 18 S1 ρ
S S2 and S′1≡S1 together imply S′1 ρS S2.

See Appendix B.1 for a proof. 2

Definition 19 (simulation) Given two Mixed Automata M1,M2, we say that M2 simulates
M1, writtenM1≤M2, if they possess a simulation, i.e., a relation ≤ ⊆ Q1×Q2 such that q0,1≤q0,2

and, for every pair q1≤q2 and every transition q1
α−→1 S1, there exists a transition q2

α−→2 S2

such that S1 ≤S S2, where ≤S denotes the lifting of ≤. M1 and M2 are called simulation
equivalent if they simulate each other. M1 and M2 are called bisimilar if there exists a relation
∼⊆ Q1×Q2 such that both ∼ and its transpose are simulations. 2

Discussion 8 (simulation equivalence vs. bisimilarity) Despite the condition (31) that the
transition relation shall be deterministic, the two notions of “ ‘simulation equivalence” and “bisim-
ilarity” differ. The reason is that nondeterminism is hidden behind the Mixed Systems targeted
by transitions. Actually, we will prove in our forthcoming Theorem 22 that Segala’s Probabilistic
Automata [57, 58, 48], which possess nondeterministic transition relations, can be embedded into
Mixed Automata while preserving simulations. 2

The notion of simulation and its derived constructs are the core topic of the literature on
automata and their probabilistic extensions. The reader is referred to the next section for a
bibliographical discussion.

Lemma 20 Parallel composition preserves simulation: M ′1≤M1 and M ′2≤M2 together imply
M ′1 ‖M ′2 ≤M1 ‖M2.
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See Appendix B.2 for a proof. 2

Discussion 9 (Mixed Automata are causal in time) Mixed Automata
remain a causal model in time, since the current transition depends on the past, not on the
future. Consequently, Mixed Automata cannot be used to specify acausal estimation problems,
e.g., estimating unmeasured variable zk based on observations of X0, . . . , Xk, . . . , XN . To per-
form this, we must “unfold time as space”, i.e., regard X0, . . . , XN as a (N+1)-tuple of variables,
not as successive occurrences in time of variable X. Note that the transition relations of Mixed
Automata inherit, from Mixed Systems, the Bayesian Calculus and the notions of Factor Graph
and Bayesian Network.

3.2 Mixed Automata for the semantics of ReactiveBayes

In this section we first give the semantics of the full ReactiveBayes minilanguage (28) in terms
of Mixed Automata. Recall that the semantics of the static part of the language was given in
(29,(i)–(v)).

Notations: To every variable x, we associate its successive previous versions •x, •2x, •3x, . . . ,
where

•(n+1)x =def
•(•nx) and Q•x = Qx . (36)

Then, we define

•e(x) =def e(•x) (37)

as being the expression e in which every variable x is replaced by its previous version •x. We will
use the Mixed System (x=qx), defined in (27): this system has trivial probabilistic part, variable
x, and enforces the value qx for it. 2

We begin with delay pre and initialization init:

(vi) [[pre x]] =
(
{t} , {x, •x} , − , {q t−→ (•x=qx) | ∀q ∈ Q}

)
(vii) [[init x = c]] =

(
{t} , {x} , c , c t−→ nil and ε t−→ nil

) (38)

The semantics of pre is stated in (vi). It is the Mixed Automaton with trivial action alphabet
(singleton {t}), two variables x (receiving the current value) and •x (delivering the previous
value), an undefined initial state, and the set of transitions

q
t−→ (•x = qx) ,

where q ranges over the set of all states and qx is the x-coordinate of q—this transition relation
formalizes the constraint that (pre x)n holds the value of xn−1.

Since the initial state is undefined in the delay statement, a specification of the initial value is
required, by using initialization statement init. Its semantics is stated in (vii), where nil is the
trivial Mixed System defined in (19). This Mixed Automaton possesses x as its only variable,
c ∈ Qx as its initial state, and otherwise does nothing, i.e., sets no constraint on its environment.

So far we have completed the semantics of ReactiveBayes as defined in (28), for which actions
were not used—only the trivial “true” action was used in the semantics. Since Mixed Automata

RR n° 9447



26 A. Benveniste, J-B. Raclet

is a richer framework, it can support the following richer language involving state machines, by
adding the following syntax, with reference to (28):

α ::= •e, where e has Boolean type
A ::= on α then S else S | A ‖A (39)

Actions α are previous versions of expressions of Boolean type. In the additional statement
“on α then S else S”, actions α and ¬α trigger the transition leading to the first and second
system, respectively. If α is the constant “true”, we simply write S instead of “on true then S”.

We now give the corresponding semantics (t denotes the Boolean value “true”, and we refer
the reader to Definition 1 regarding nil and the distinguished state ε):

(viii) [[on α then S else S′]] =
S and S′ have previous state p {α,¬α} , X ∪X ′ , ·{

p
α−→ S, p

¬α−→ S′
} 

(ix) [[A1 ‖ A2]] = [[A1]] ‖ [[A2]]

(40)

The right hand side of (viii) is an inference rule meaning “numerator entails denominator ”. By
(37) and the syntax for actions in (39), action α in (viii) is evaluated by using the previous state
p. At a given instant, the previous state is known, and can thus be used as the source state of
the two transitions. The initial state is left unspecified. Focus on the parallel composition (ix).
With reference to Definition 16, we now formalize the compatibility relation ./Σ and the join
operator tΣ :

α1 ./Σ α2 always holds, and α1 tΣ α2 =def α1 ∧ α2. (41)

4 Comparison with Segala’s Probabilistic Automata
Probabilistic Automata (pa) [57, 58, 48] were originally proposed by Segala and Lynch. To sim-
plify our comparison, we discuss here the version of pa with no consideration of internal actions.
According to the classification made by Sokolova and de Vink [60], we study the link with both
the Simple (Segala) Probabilistic Automata and the (Segala) Probabilistic Automata. For the
former, actions are selected and then a transition to a probabilistic state is selected nondeter-
ministically. For the latter, both the action and a state are jointly selected, probabilistically.
This distinction is referred to as reactive vs. generative models in [60].

Simple Probabilistic Automata existed way before the work of Segala and Lynch [57, 58, 48],
in the community of applied mathematics and probability theory, where they are known under the
name ofMarkov Decision Processes (MDP) [10, 55]. In this context, the main considered problem
is the synthesis of an optimal policy to minimize some expected cost function on trajectories of
the system. The minimization is over scheduling policies, which are causal rules for selecting the
next action given the past trajectory. Once this policy has been fixed, the resulting dynamics is
a Markov Chain. Studies on (bi)simulation were more recently developed for MDP’s [32], and
further developed to support robustness by defining metrics between finite MDP’s [30].

In the following, P(Q) denotes the set of all probability distributions over the set Q. Formally,
we consider a tuple P = (Σ, Q, q0,→), where Σ is the finite alphabet of actions, Q is a finite
state space, q0∈Q is the initial state, and the probabilistic transition relation→ is defined in two
different ways:

Simple Probabilistic Automaton (spa) : →⊆ Q×Σ×P(Q) (42)
Probabilistic Automaton (pa) : →⊆ Q×P(Σ×Q) (43)

Inria



Mixed Nondeterministic-Probabilistic Automata 27

In the following definitions, relation ≤P is the lifting, to probability distributions over Q×Q′, of
the relation ≤ over Q×Q′—for the definition of the lifting ≤P , the reader can use Definition 17
adapted by ignoring relations C1 and C2.

Details for spa, model (42)

We write q α−→P µ to mean (q, α, µ) ∈ → and µ; q′ to mean that sampling µ returns next state
q′. The sampling is: if P is in state q∈Q, performing α∈Σ leads to some target set of probability
distributions over Q, of which one is selected, nondeterministically, and used to draw at random
the next state q′. A simulation relation is a relation ≤ ⊆ Q×Q′ such that, for any q ≤ q′, the
following holds: if q α−→P µ, there exists µ′ such that q′ α−→P ′ µ

′ and µ ≤P µ′. The parallel
composition of spa [48] is defined by: P1 ‖P2 = (Σ, Q, q0,→), where Σ = Σ1∪Σ2, Q = Q1×Q2,
q0 = (q0,1, q0,2), and (q1, q2)

α−→ µ1×µ2 holds iff qi
α−→i µi for i = 1, 2.

Details for pa, model (43)

We write q −→P µ to mean (q, µ) ∈ → and µ; (α, q′) to mean that sampling µ jointly returns
action α and next state q′. The sampling is: P being in state q∈Q leads to some target set of
probability distributions over Σ×Q, of which one is selected, nondeterministically, and used to
draw at random the next pair (α, q′) of action and state. A simulation relation is a relation
≤ ⊆ Q×Q′ such that, for any q ≤ q′, the following holds: if q −→P µ, there exists µ′ such that
q′ −→P ′ µ

′ and µ ≤P µ′.
The parallel composition P = P1 ‖P2 faces the following difficulty: there is a conflict between

(1) the probabilistic choice of actions α1 and α2 in each component, and (2) the synchronization
constraint on the pair (α1, α2) possibly required by the parallel composition.

This difficulty does not exist if no synchronization constraint exists, e.g., if the composition
of actions α = α1.α2 is always defined. In this case, the parallel composition is straightforward:
(q1, q2) −→P µ1×µ2 iff qi −→Pi

µi holds for i = 1, 2. This kind of parallel composition does not
capture synchronization, however.

In contrast, if strong synchronization is imposed, e.g., by requiring that α1=α2 whenever
one of the two actions is shared by the two components—this is the policy followed in our
model of Mixed Automata—, then the above conflict exists. This conflict is usually resolved by
adding a probabilistic scheduling policy specified through an auxiliary probability distribution,
see the detailed discussion in [60] and references therein. A typical approach to compose the two
transitions qi −→Pi

µi; (αi, q
′
i), i = 1, 2 is the following:

• If synchronization constraint α1 = α2 = α happens to be satisfied, then the two transitions
synchronize and (q1, q2) leads to (α, (q′1, q

′
2)) with probability µ1(α, q′1)× µ2(α, q′2).

• If both actions α1 and α2 are local αi 6∈ Σ1∩Σ2, i = 1, 2, then the synchronization constraint
is not violated. However, since only one action is permitted at a time in pa, one among the
two transitions must be elected while the other one is freezed. This is achieved by tossing a
(possibly biased) coin with parameter σ ∈ (0, 1), so that (q1, q2) leads to (α1, (q

′
1, q2)) with

probability µ1(α, q′1) × σ and (q1, q2) leads to (α2, (q1, q
′
2)) with probability µ2(α2, q

′
2) ×

(1− σ).

• Other cases are forbidden.

Collecting the outcomes that are not forbidden results in a transition of the form q −→P

µ̄; (α, q′), where µ̄ is unnormalized. A subsequent normalization is performed to get the fi-
nal definition q −→P µ; (α, q′) for the transitions of the parallel composition. The definition
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of this parallel composition thus requires specifying an additional probability distribution (the
parameter σ of the biased coin). Other variants for solving the same conflict all need such
additional probability distributions—typically referred to as schedulers.

Discussion 10 (who comes first: nondeterminism or probability?)
The following question arises [66]: should nondeterminism be resolved prior or after probabilis-
tic sampling? Since the selection of the performed action followed by that of one probability
from a subset of P(Q) (for spas), or the selection of one probability from a subset of P(Σ×Q)
(for pas) is performed prior to probabilistic sampling, both spa and pa models follow the first
alternative. Our model of Mixed Automata follows a schyzophrenic approach: actions are se-
lected first, leading to a Mixed System in which nondeterminism is resolved at last (See point 2
in Definition 1)—one can thus say that nondeterminism is resolved “first-and-last”. As we shall
see in our forthcoming comparison, the main difference between our model and models from the
pa family is not in this “prior vs. after” issue, but rather in our handling of conditioning and
parallel composition. 2

Comparison results

The following theorems relate spa and pa to Mixed Automata (proofs are constructive).

Theorem 21 (SPA vs. Mixed Automata)

1. There exists a mapping P 7→MP , from spa to Mixed Automata, preserving both simula-
tion and parallel composition: P1≤P2 iff MP1≤MP2 , whereas MP1 ‖P2

and MP1 ‖MP2 are
simulation equivalent.

2. There exists a reverse mapping M 7→PM , from Mixed Automata to spa, preserving simula-
tion. No reverse mapping exists, however, that preserves parallel composition.

See Appendices C.1.1 and C.1.2 for proofs of Statements 1 and 2 of this theorem. The two
mappings P 7→MP and M 7→PM are not opposite, which makes it possible for the two statements
not to contradict each other. The non-existence of a reverse mappingM 7→PM preserving parallel
composition highlights that the difference in the parallel compositions, for SPAs vs. for Mixed
Automata, is deep.

Theorem 22 (PA vs. Mixed Automata) There exists a mapping P 7→MP , from pa to Mixed
Automata, preserving simulation. Parallel composition, however, is not preserved.

See Appendix C.2 for a proof.
Due to Statement 2 of Theorem 21 and the existence of an embedding spa→pa [60] preserving

simulation, a reverse mapping exists, from Mixed Automata to pa.
In [60], it is proved that spa can be embedded into pa, by simply “pushing” actions, from

occurring prior to probabilistic choice to being part of probabilistic choice (in which case alter-
natives to emitting action α sum up to probability 1). So, it seems unnecessary to study the
embeddings spa→Mixed Automata and pa→Mixed Automata separately, since mapping the
second one seems sufficient. This is, however, not a good idea, since the two embeddings differ,
in that parallel composition is preserved for spa but not for pa.

Discussion 11 (More on comparing spa/pa and Mixed Automata) So far Theorems 21
and 22 compare spa/pa and Mixed Automata regarding the core notions of pa, namely simulation
and parallel composition. Conditioning is not at all considered in pa theories—this indeed is the
reason for them to have problems when handling synchronization in the parallel composition.
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We do not see how factor graphs can be reflected in pa theories. In contrast, these concepts are
naturally supported by our model of Mixed Automata. In addition, our model offers the classical
concepts of pa theories, namely simulation and equivalence. 2

5 Other related work

So far we discussed work closely related to the different topics we covered. In this section we
broaden our discussion by considering side topics relevant to our study.

Regarding semantic studies, we did not address denotational semantics—our sampling (Def-
inition 1) is an operational semantics. By denotational semantics, we mean a mathematical
characterization of the set of all traces that can be produced by the considered system. The
subject was indeed addressed in core mathematical probability theory—it was not called this
way—with the Kolmogorov extension theorem: this theorem gives the denotational semantics
of a sequence of independent identically µ-distributed random variables as a probability space
(Ω,F , π), where Ω is the set of trajectories, F the associated product σ-algebra, and π = µN,
whose existence and uniqueness follows from this extension theorem. Since the 1970’s, math-
ematicians in probability theory gave a denotational semantics (this term was not used) to
stochastic differential equations in a very general setting, see e.g, the seminal paper [62]. In our
context of nondeterministic/probabilistic dynamical systems, the task was not really investigated
by mathematicians, and one should rather look at the literature closer to computer science. The
seminal paper by Kozen [44] defines two kinds of semantics of simple imperative probabilistic
programs. The first semantics has finite horizon [0, S] where S is a stopping time (causally
defined random time) and closely follows probability theory with its construction of probability
spaces of program traces; the second semantics, advocated by the author, is more denotational,
uses Scott-like techniques of continuous linear operators on a Banach space of measures, and
supports infinite traces, see also [63, 35]. This approach was extended in [40, 42, 22] in order to
provide semantics to the observe statement present in most modern probabilistic programming
languages. In [16], the semantics of a functional language supporting mixtures of continuous and
discrete distributions and dedicated to certainly terminating programs, is specified as measure
transformers, describing how the program itself propagates the distribution of the probabilistic
inputs.

Major probabilistic programming languages do offer recursion [20, 65], all of them offer while
loops. These features raise the issue of possible non termination. Non terminating while loops
are the essence of [9]. We did not consider recursion in its full generality, but only under the
limited form of non-terminating time-recursion, with Mixed Automata. Actually, time-recursion
is the most widely used form of recursion considered in statistics and learning.

Inference and learning are the main concerns of probabilistic programming. Due to the
generality of the considered models, Monte-Carlo based inference algorithms are preferred [17,
39, 20, 33, 34]. Nondeterminism, which is supported by probabilistic languages, breaks the
stationarity (or time-invariance) of the specified statistical models. This is a source of difficulties
when invoking limit theorems of probability theory to support learning algorithms [39]. We did
not consider learning in this work. Clearly, our model of Mixed Automata would face the same
challenge if inference were considered. Extension of model based IOCO testing with probabilities
was considered in [31]—this is a different subject than statistical testing in the sense of [45].

In Section 4, we have shown that Mixed Automata subsume pa. Tutorial [60] investigates
more variants of pa. We conjecture that similar results hold for these as well: mappings exist that
preserve simulation but not parallel composition. Abstract Probabilistic Automata [24] are an
interface model, aiming to support specification, not programming. In addition to parallel com-
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position, Abstract Probabilistic Automata offer refinement and possess Probabilistic Automata
as their models, two concepts irrelevant to our study.

In our work we have considered only automata, whose dynamics is indexed by discrete time
n. Equipping true concurrency models with probability was classical for some net models. Free
choice (or confusion free) nets are models for which this is rather simple; since choices remain
local and statically defined, it is easy to turn them into probabilistic choices. For event structures
with confusion, however, this is no longer the case: concurrency interferes with choice, making
the latter dynamically defined. This makes it intricate, to equip choices with probabilities while
maximally preserving concurrency. First constructions were proposed in [4, 5, 6, 7], based on the
notion of branching cell, capturing the above difficulty. Infinite event structures are supported
(with restrictions) for which the law of large numbers is proved. Drawbacks are: 1) different
sequences of events corresponding to the same configuration may be given different probabilities,
and 2) the overall probability is globally defined, hence no parallel composition can be proposed.
A different construction was proposed for occurrence nets in [18, 19], addressing the above
drawback. The net is augmented with “negative places”, thus enforcing supplementary causalities
with the result of deferring choices until they become local. Through the notion of statically
defined s-cell, the so augmented net can be given probabilistic choices meeting full concurrency,
and parallel compositions of such nets is supported. In turn, the construction of the negative
places works for finite nets only. In [19], a link of such augmented nets is established with
Bayesian networks, thus providing a result similar to ours in Section 2.2. Finally, [1, 2, 3]
study trace monoids by equipping them with probabilities derived from local specifications, using
analytic combinatoric techniques. As far as we know, this is the only approach supporting true
concurrency with probabilistic choice and parallel composition, for infinite traces. Concurrency
makes everything definitely harder.

6 Conclusion

We developed the model of Mixed (Probabilistic-Nondeterministic) Automata that subsumes
nondeterministic automata, probabilistic automata, and graphical probabilistic models. In a
Mixed Automaton, transitions are triggered by actions and map states to Mixed Systems, from
which the next state is sampled.

Mixed Systems are stateless and involve no dynamics. They combine nondeterminism and
probability in a simple setting, providing an elegant theory of equivalence and a parallel com-
position. We proposed the notion of Mixed Kernel equipped with an incremental composition.
We generalized Bayes formula by extending, to Mixed Systems and Mixed Kernels, the notions
of marginal and conditional probabilities. The parallel composition of Mixed Systems naturally
brings a notion of graphical structure, which subsumes Factor Graphs; similarly, the incremental
composition of Mixed Kernels supports an extension of Bayesian Networks. Message passing
algorithms allow for transforming tree-shaped Factor Graphs to Bayesian Networks, as already
known for the classical notions. To summarize, our model extends graphical probabilistic mod-
els to a framework in which nondeterminism and probabilities can be freely combined. This
framework also subsumes Dempster’s belief theory.

On top of Mixed Systems, we defined Mixed Automata and equipped them with a simulation
and a parallel composition where probabilistic parts of systems can interact. This is in contrast
to existing models of probabilistic automata, which do not support conditioning. It would make
sense to develop an interface theory having Mixed Automata as models, along the lines of Ab-
stract Probabilistic Automata [24]. We believe that the simplicity of Mixed Systems makes them
an interesting candidate for the semantics of probabilistic programs—there is still a long way to
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go before justifying this claim.
To avoid technicalities, we decided to restrict ourselves to the consideration of finite or denu-

merable probability spaces. This makes the definition of support of a probability and conditional
probability straightforward. Since conditioning is the heart of our approach, relaxing this restric-
tion is far from obvious, with a deep revisiting of the notion of consistency for Mixed Systems.
In the last appendix of [14], we give hints for such an extension.

We did not investigate decidability and complexity issues, however, neither we paid attention
to effectiveness. Handling constraints C is the first difficulty. To reason on control, we could keep
solving simple (e.g., Boolean) constraints, e.g., by distinguishing, in our model syntax, if-then-
else statements. Other constraints may be abstracted by their associated directed or nondirected
bipartite graph. Then, techniques such as the conditional dependency graphs of synchronous
languages [12] could be adapted.

We did not investigate either the design of learning and inference algorithms, a central mo-
tivation of probabilistic programming. When considering this subject, we would encounter the
problem of correct Monte-Carlo sampling in learning algorithms, extensively studied in [39]. In
our context, this amounts to 1) identifying time-invariant model fragments, 2) applying limit
theorems to them, and finally, 3) combining the results to derive learning algorithms for Mixed
Systems or Automata models.

Acknowledgements: The reviewers are gratefully thanked for pointing weaknesses and suggesting
important bibliographical items while commenting the original version.
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In this supplementary material, we first collect all the missing proofs. Then, with reference to
Footnote 2, we include a short discussion of how to extend our model by relaxing the restriction
that probability spaces should all be at most denumerable.

A Addendum and Proofs Regarding Mixed Systems

A.1 Comparison with imperative probabilistic programming, see Dis-
cussion 1

In this appendix, we compare our model of Mixed Systems with imperative probabilistic pro-
gramming following the approach promoted by Mc Iver and Morgan [49, 50]. This line of work
addresses probabilistic extensions of Hoare logic for imperative programs, focusing on evaluating
the probability of weakest preconditions of properties. We like to compare our approach with one
aspect of this work, namely the modeling of the blending of probability and nondeterminism—
this is only a minor aspect of the work of Mc Iver and Morgan, which focuses on decidability
issues and computational cost of their proposed logic.

A.1.1 Demonic/angelic nondeterminism

We chosed to base our comparison on a different work in the same direction: [21], which provides
the most extensive developement on demonic/angelic blending of probability and nondetermin-
ism in the language Apps. We do not claim to cover all aspects of Apps, since the focus of this
reference is on the checking of almost sure termination using supermartingale techniques. Since
our scope is more modest in this appendix, we will only develop an informal comparison based
on the following example corresponding to Fig. 2 of [21], reproduced here as Figs. 6 and 7.

The program and its semantics are self-speaking. A key point here is the role of demonic
and angelic nondeterminisms, and their combination in this program. Let us consider the post-
condition

P : x gets increased by one by performing Q3 . (44)

The question is: how do we assess P? Under demonic choice, P is violated if there exists
some branch in the nondeterministic choice under which P is violated. Under angelic choice,
P is violated if for all branches in the nondeterministic choice, P is violated. Inspecting Fig. 7
shows that P is violated if and only if Q1 is selected. Thus the probabilistic score that P is
violated is 0.6—we do not use the term “probability” since P combines both probabilistic and
nondeterministic features, and cannot be given a true probability.

Can we cast this example into Mixed Systems?

A.1.2 Casting this example to Mixed Systems?

Consider the following attempt by defining the Mixed System SQ3
= {(Ω, π), C, {x, x′}}, where:

• Ω = {Q1, Q2} and π(ω=Q1) = 0.6, π(ω=Q2) = 0.4;

• Variable x, x′ correspond to the statuses of variable x of Q3 from Fig. 7, before and after
executing Q3; the value of x is assumed and the value of x′ will be established by sampling
SQ3

;
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x := 0;
while x ≥ 0 do
if prob(0.6) then
if angel then
x := x+ 1

else
x := x− 1

fi
else
if demon then
x := x+ 1

else
x := x− 1

fi
fi

od

Q1

Q2

Verbatim from [21]: There is only one program vari-
able x and no random variables. There is a while
loop, where given a probabilistic choice, one of two
statement blocks Q1 or Q2 is executed. The block
Q1 (resp., Q2) is chosen to execute stochastically
w.r.t. the probabilistic choice (Q1 is selected with
probability 0.6). The statement blockQ1 (resp., Q2)
is an angelic (resp., demonic) conditional statement
to either increment or decrement x.
Following [21], call Q3 the body of the while loop
of this example: while x ≥ 0 do Q3.

Figure 6: Example of Fig. 2 of [21]

Figure 7: Semantics: SGS (Stochastic Game Structure) of Q3, Fig. 6 of [21]. The execution
begins with the probabilistic choice. The left branch (corresponding to Q1) is selected according
to demonic nondeterminism figured by a triangle, and the right branch (corresponding to Q2) is
selected according to angelic nondeterminism, figured by a diamond.

• It remains to define relation C involving ω, x, x′. To mimic Fig. 7, we would like to write
something like

x′ = if ω = Q1 then angel x′ ∈ {x− 1, x+ 1}
else demon x′ ∈ {x− 1, x+ 1}

Unfortunately, angelic/demonic choice are not concepts of our Mixed Systems model following
Definition 1. With regard to probabilistic evaluation of state properties (item 3 of Definition 1),
we could specify whether we use π (mirroring demonic) or π (mirroring angelic). Still, this does
not allow to combine both alternatives for different parts of the system.

We propose to refine Definition 1 so that both types of nondeterminism can be freely com-
bined. Let us investigate this on the above example. Consider the Mixed System

S = (Ω, π,X,C) , (45)
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where:

• Ω = {Q1, Q2} and π(ω = Q1) = 0.6, π(ω = Q2) = 0.4;

• Variable x, x′ correspond to the statuses of variable x of Q3 from Fig. 7, before and after
executing Q3; the value of x is assumed and the value of x′ will be established by sampling
SQ3 ;

• Relation C is (yet informally) defined by

ωCx′ iff

 ω = Q1 ∧ angel x′ ∈ {x−1, x+1}
or
ω = Q2 ∧ demon x′ ∈ {x−1, x+1}

(46)

This definition for C is informal, since keywords demon and angel have no mathematical
meaning by themselves. We will give a semantics to (46) by assigning, to each state predicate, a
probabilistic score π∗. More precisely, we define π∗(¬P ), the probabilistic score of predicate ¬P ,
by the following formula:

π∗(¬P ) =def πc ({ω | ω=Q1 ∧ ∃x′∈{x−1, x+1} : ¬P})
+πc ({ω | ω=Q2 ∧ ∀x′∈{x−1, x+1} : ¬P}) (47)

In this formula, we give a semantics to angel in (46) by using the existential quantifier, i.e., we
use the outer probability to evaluate the corresponding state predicate; we give a semantics to
demon in (46) by using the universal quantifier, i.e., we use the inner probability to evaluate
the corresponding state predicate. Now, for this example, πc = π since, with relation (46), for
both choices ω = Q1 and ω = Q2, related values for state x′ exist. Formula (47) finally yields
π∗(¬P ) = 0.6.

The above coding applies only to a restricted class of relations C. In formula (47), we exploited
the fact that, in relation C defined by (46), a partition of Ω is performed first (probabilistic
choice), and then, each branch of this choice involves a pure state predicate, independent from
ω.

Here follow some hints to extend this link beyond the particular example. Our starting point
is the semantics of Apps, which is expressed in terms of Stochastic Game Structures (SGS),
see Definition 2.3 of [21]. Since Mixed Systems do not support recursion, we consider only the
subclass of SGS that are DAGs. Picking a probabilistic location ` of this SGS, we consider the
maximal subgraph of this SGS that has ` as its only minimal location, and contains no other
probabilistic location. For our example (45,46,47), this yields the whole SGS. For each such
subgraph, a coding similar to (45,46,47) can be given. The partially ordered execution of the
whole SGS is then mapped to a Bayesian network following Definition 9, and the incremental
sampling of this Bayesian Network would correspond to the execution of the SGS as a game.

We preferred not to refine our Mixed System model with this additional feature, since, first,
it applies only to a restricted class of relations C, and, second, we believe it to be incompatible
with having a parallel composition.

A.2 Proof of Lemma 7
Proof: It is enough to prove the result for compressed systems. For i = 1, 2, let Si ≡ S′i and let
ϕi be the bijections defining the two equivalences. We define

ϕ(ω, q1 t q2) = ((ω′1, ω
′
2), q′1 t q′2) where (ω′i, q

′
i) = ϕi(ωi, qi), i = 1, 2
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and we have to verify that ϕ defines the desired equivalence between S =def S1 ‖S2 and S′ =def

S′1 ‖S′2. Using the fact that π = π1 × π2, we get

Cπ = {(p1 t p2, ω, q1 t q2) | q1 ./ q2 ∧ ω1C1q1 ∧ π1(ω1)>0 ∧ ω2C2q2 ∧ π2(ω2)>0}
= {(p, ω, q1 t q2) | q1 ./ q2 ∧ ω1C1πq1 ∧ ω2C2πq2}

Thus, for every (p, ω, q1 t q2) ∈ Cπ, we have q′1 = q1 ./ q2 = q′2 and ω′iCiπq′i, i = 1, 2, whence
ω′C ′πq

′ and ϕ is a bijection. Since π′ = π′1 × π′2 we get π′(ω′) = π(ω), which finishes the proof.

A.3 Proof of Theorem 13

Proof: We will repeatedly use notation (27). Without loss of generality we can assume that S is
compressed. We first compress MarginY (S) by considering the following equivalence relation,
where Z = X \ Y and qY , qZ are valuations for Y and Z:

ω′ ∼Y ω iff ∀qY :

 ∃qZ : ωC(qY , qZ)
m

∃q′Z : ω′C(qY , q
′
Z)

; let ωY be the equivalence class of ω.

Let
CY =def {(ωY , qY ) ∈ ΩY ×QY | ∃ω ∈ ωY : ωPrY(C) qY }

be the associated relation, and let πY be the compressed probability defined by πY (ωY ) =∑
ω∈ωY

π(ω). Let us denote by
SY = (ΩY , πY , Y, CY )

the resulting compressed system, and we recall that Ωc
Y = {ωY | ∃qY : ωY CY qY }. In the sequel,

we feel free to identify ωY ∈ ΩY , an element of the set of equivalence classes, with ωY seen as a
subset of Ω saturated for ∼Y . This way, a subset of ΩY can also be interpreted as a subset of Ω.

To prove the theorem, we compare the two probabilistic semantics, namely: which state can
be output and what is the outer probability of producing it. By definition of the sequential
composition of kernels, MarginY (S) ; CondY (S)

1. samples MarginY (S) ; qY ; and, then

2. given qY , samples (Y=qY ) ‖S.

Regarding the relations governing the nondeterministic choice, the combination of these two
steps is identical to C. Let q∗ be such that S ; q∗, implying that MarginY (S) ; q∗Y , where
q∗Y =def PrY(q∗). Let us evaluate the outer probabilistic score of q∗ for the Bayesian net-
work MarginY (S) ; CondY (S), i.e., the probability that q∗ is a possible outcome of sampling
MarginY (S) ; CondY (S). We need to prove that it is equal to the probability that q∗ is a possi-
ble outcome of S, namely πc(Cq∗)—we used notation (22). To show this, we note the following:

1. To output q∗ we first must output q∗Y , which amounts to selecting ωY such that ωY CY q∗Y .
Using (9), (21) and notation (22), the probabilistic score of q∗Y , i.e., the probability that
q∗Y is a possible outcome of MarginY (S), is equal to

πc
Y

(
(CY )q∗Y

)
(48)

which is > 0 since MarginY (S) ; q∗Y .
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2. Then, we must select ω using S, under the additional constraint that PrY(q) =q∗Y , which
requires that we sample ω ∈ Ω under the constraint that ω ∈ ωY for some ωY ∈ (CY )q∗Y .
The corresponding probabilistic score is thus equal to the conditional probability

πc
(
Cq∗ | (CY )q∗Y

)
, (49)

which is well defined since πc
Y ((CY )q∗Y ) > 0.

3. By (26), the probabilistic score of q∗ is equal to the product of the two scores (48) and
(49):

πc
(
Cq∗ | (CY )q∗Y

)
πc
Y

(
(CY )q∗Y

)
= πc

(
Cq∗ ∩ (CY )q∗Y

)
= πc

(
Cq∗
)
,

where the last equality follows from Cq∗ ⊆ (CY )q∗Y .

This shows that q∗ possesses identical probabilistic semantics, for the left and right hand side of
Bayes formula.

A.4 Proof of Theorem 14

As a prerequisite, we need the following result:

Lemma 23 Let S1 and S2 be any two Mixed Systems, and let Y be a set of variables containing
X1∩X2. Then, we have: MarginX1∪Y (S1 ‖S2) ≡ S1 ‖MarginY (S2).

Proof: This is immediate by observing that, first, MarginX1∪Y (S1 ‖S2) on the one hand, and
S1 ‖MarginY (S2) on the other hand, possess identical probability spaces, namely (Ω1, π1)×(Ω2, π2),
and, second, they possess identical relations PrX1∪Y(C1∧C2) = C1∧PrX1∪Y(C2) = C1∧PrY(C2).
2

The proof of Theorem 14 relies on the following lemma, which is a corollary of Bayes formula.
This lemma provides the basic reasoning step of message passing algorithms:

Lemma 24 Let S1, S2, and Y be as in Lemma 23. Then:

S1 ‖S2 ≡P
(
S1 ‖MarginY (S2)

)
; CondY (S2) . (50)

Proof: For proving formula (50), we first apply Theorem 13 with S replaced by S1 ‖S2, which
yields: S1 ‖S2 ≡P MarginX1∪Y (S1 ‖S2) ; CondY (S1 ‖S2). Then, by Lemma 23,
MarginX1∪Y (S1 ‖S2) ≡ S1 ‖MarginY (S2) and then we conclude by observing that(

S1 ‖MarginY (S2)
)
; CondY (S1 ‖S2) ≡P

(
S1 ‖MarginY (S2)

)
; CondY (S2) ,

since the outcome of S1 is determined by the left hand factor of “;”. 2
Having proved this lemma, the proof of Theorem 14 reproduces exactly the reasoning steps
establishing the message passing algorithm mapping factor graphs to Bayesian Networks in the
classical setting [46]; thus we only sketch here the argument of the proof. Proof: Since GS is a
tree, a natural distance can be defined on the set of vertices of GS by taking the length of the
unique path linking two vertices. Select an arbitrary system So as an origin and partially order
other systems according to their distance to the origin, let � be this partial order. We have thus
made GS a rooted tree, which we can see as a DAG. Then, the following two rules, known as
message passing, are considered:
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R1: Pick S ∈ GS , let S↑ be its (unique) ancestor in the tree and let X↑ be the set of common
variables of S↑ and S. Then, let S< denote the parallel composition of all strict ancestors
of S in GS and let X< be the set of variables of S<. Using Bayes formula, factor S as

S ≡P MarginX↑(S) ; CondX↑(S) ≡P MarginX<(S) ; CondX<(S) ,

where the second equivalence follows from the fact that additional variables belonging to
X< \X↑ are not shared with S.

R2: Using formula (50) of Lemma 24, reorganize S by rewriting

S< ‖S ≡P
(
S< ‖MarginX<(S)

)
; CondX<(S) .

Rules R1 followed by R2 are successively applied starting from the leaves of the tree, down to
its root. The result is a Bayesian Network.

B Proofs Regarding Mixed Automata

B.1 Proof of Lemma 18

Proof: The result is immediate if both S1 and S′1 are compressed, see Definition 2. It is thus
sufficient to prove the lemma for the following two particular cases: S1 compresses to S′1, and
the converse.

Consider first the case: S1 compresses to S′1. Let w(ω1, ω2) be the weighting function asso-
ciated to the lifting S1 ρ

S S2, and let π′1(ω′1) =
∑
ω1∈ω′1

π1(ω1) be the relation between π′1 and
π1 in the compression of S1 to S′1. Then w′(ω′1, ω2) =

∑
ω1∈ω′1

w(ω1, ω2) defines the weighting
function associated to the lifting S′1 ρS S2. The other properties required to deduce S′1 ρS S2 are
immediate to prove.

Now, consider the alternative case: S′1 compresses to S1, with relation

π1(ω1) =
∑
ω′1∈ω1

π′1(ω′1) (51)

between π′1 and π1, where ω′1 ∈ ω1 means that ω1 is the equivalence class of ω′1 with respect
to relation ∼ defined in (14) when compressing S′1. This case is slightly more involved since
the weighting function w′(ω′1, ω2) needs to be constructed. We need w′(ω′1, ω2) to satisfy the
following relations:

∀ω′1 : π′1(ω′1) =
∑
ω2
w′(ω′1, ω2)

∀ω2 : π2(ω2) =
∑
ω′1
w′(ω′1, ω2)

∀(ω′1, ω2; q1) :

[
w′(ω′1, ω2) > 0

ω′1 C
′
1 q1

]
⇒ ∃q2 :

[
ω2 C2 q2

q1 ρ q2

]
.

(52)

Focus first on the first two lines of (52). The following calculation shows that

w′(ω′1, ω2) =def w(ω1, ω2)× π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0) ,
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where ω1 is such that ω′1 ∈ ω1 and 1(B) equals 1 if predicate B is true and 0 otherwise, yields a
weighting function w′ satisfying the first two lines of (52):∑

ω2

w′(ω′1, ω2) =
∑
ω2

(
w(ω1, ω2)× π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)

)
=

π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)×

∑
ω2

w(ω1, ω2) = π′1(ω′1)

∑
ω′1

w′(ω′1, ω2) =
∑
ω′1

(
w(ω1, ω2)× π′1(ω′1)

π1(ω1)
× 1(π1(ω1)>0)

)

=
∑
ω1

(
w(ω1, ω2)× 1

π1(ω1)
× 1(π1(ω1)>0)

) ∑
ω′1∈ω1

π′1(ω′1)

︸ ︷︷ ︸
=π1(ω1)

=
∑
ω1

w(ω1, ω2) = π2(ω2) .

We move to the third line of (52). The conditions w′(ω′1, ω2) > 0 and ω′1 C
′
1 q1 together imply

w(ω1, ω2) > 0 and ω1 C1 q1 where ω1 is the equivalence class of ω′1, i.e., ω′1 ∈ ω1. The right hand
side then follows since we have S1 ρ

S S2. This finishes the proof.

B.2 Proof of Lemma 20
Proof: Set M ′ =def M ′1 ‖M ′2 and M =def M1 ‖M2. Define the relation ≤ between Q′ and Q
by: q′ ≤ q iff q′1 ≤1 q1 and q′2 ≤2 q2. Let us prove that ≤ is a simulation. Let q′ be such
that q′ α−→M ′ S

′ for some consistent S′. Then, q′ = q′1 t q′2 and S′ = S′1 ‖S′2. By definition of
the parallel composition, we have q′i

αi−→M ′i
S′i for i = 1, 2, with α1 ./Σ α2 and α = α1 tΣ α2.

Since q′i ≤ qi, we derive the existence (and uniqueness) of consistent systems Si, i = 1, 2 such
that qi

αi−→Mi Si. Since q = q1 t q2 we have q1 ./ q2 and, thus, by definition of the parallel
composition, we deduce r α−→M S1 ‖S2. It remains to show that S1 ‖S2 is consistent. To prove
this, remember that S′ = S′1 ‖S′2 is consistent. Thus, there exist compatible q′1 and q′2 such that
S′i; q′i, i = 1, 2. By definition of the simulations ≤i, we deduce that Si; qi, i = 1, 2, which
shows that S1 ‖S2 is consistent.

C Proofs Regarding the comparison with Probabilistic Au-
tomata

C.1 Proof of Theorem 21 regarding Simple Probabilistic Automata
C.1.1 Statement 1 of Theorem 21: from SPA to Mixed Automata

Proof: The sampling of spa P is: if P is in state q∈Q, performing α∈Σ leads to some target set
of probability distributions over Q, of which one is selected, nondeterministically, and used to
draw at random the next state q′.

We can reinterpret this sampling as follows: performing α∈Σ while being in state q∈Q leads
to the same target set of probability distributions over Q, that we use differently. We form the
direct product of all distributions belonging to the target set and we perform one trial according
to this distribution, i.e., we perform independent random trials for all probabilities belonging to
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the target set. This yields a tuple of candidate values for the next state, of which we select one,
nondeterministically.

Clearly, these two samplings produce identical outcomes. The latter is the sampling of Mixed
Automaton

MP = (Σ, {ξ}, q0,→P ) , (53)

defined as follows:

1. Alphabet Σ of MP is identical to that of P ;

2. The unique variable ξ of MP enumerates the values of Q, and initial state q0 is identical to
that of P ; hence, P and MP possess identical sets of states, related via the identity map;

3. →P maps a pair (q, α) ∈ Q×Σ to the mixed system S(q) = (Ω,Π, ξ, q, C), where:

(a) Ω is the product of n copies of Q, where n is the cardinality of the set {π | (q, α, π)∈ →
}; thus, ω is an n-tuple of states: ω=(q1, . . . , qn).

(b) Π is the product of all probabilities belonging to {π | (q, α, π)∈ →};
(c) Relation C is defined by (ω, q′) ∈ C if and only if q′ ∈ {q1, . . . , qn}.

So, we map spa P to Mixed Automaton MP , defined in (53).

Mapping simulation relations: Defining simulation relations for pa requires lifting relations, from
states to distributions over states. The formal definition for this lifting, as given in Section 4.1
of [57], corresponds to our Definition 17, when restricted to purely probabilistic mixed systems.
The same holds for the strong simulation relation defined in Section 4.2 of the same reference: it
is verbatim our Definition 19, when restricted to purely probabilistic mixed systems. This proves
the part of Theorem 21 regarding simulation.

Mapping parallel composition: We move to parallel composition, for which the reader is referred
to [48], Section 3. For P1 = (Σ, Q1, q0,1,→1) and P2 = (Σ, Q2, q0,2,→2) two PA, their parallel
composition is P = P1 ‖P2 = (Σ, Q1 ×Q2, (q0,1, q0,2),→), where

(q1, q2)
α−→ π1×π2 iff qi

α−→i πi for i = 1, 2 (54)

So, on one hand we consider the Mixed AutomatonMP . On the other hand, we consider the par-
allel composition of their imagesMP1

andMP2
, namelyM = MP1

‖MP2
= (Σ, {ξ1, ξ2}, (q0,1, q0,2),→12

). In M , the state space is the domain of the pair (ξ1, ξ2), namely Q1 ×Q2, and, since there is
no shared variable between the two Mixed Automata, the transition relation →12 is given by:

(q1, q2)
α−→12 S1 ‖S2 iff qi

α−→i Si for i = 1, 2 (55)

We thus need to show that

MP and M are simulation equivalent. (56)

We will actually show that the identity relation between the two state spaces (both are equal to
Q1 ×Q2) is a simulation relation in both directions.

Observe first that (54) and (55) differ in that the former involves a nondeterministic transition
relation, whereas the latter involves a deterministic transition function, mapping states to mixed
systems. Pick (q1, q2) ∈ Q1 ×Q2 and consider a transition for MP :

(q1, q2)
α−→MP

S = ((Ω,Π), ξ, (q1, q2), C)

where we have, for S:
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• Ω is the product of n1 copies of Q1 and n2 copies of Q2, where, for i = 1, 2, ni is the
cardinality of the set {πi | (qi, α, πi) ∈→i}, so that ω identifies n1 × n2-tuple of states:
ω = (q11, . . . , q1n1

; q21, . . . , q2n2
);

• Π is the product of all probabilities belonging to set {π1 × π2 | (qi, α, πi) ∈→i};

• ξ has domain Q1 ×Q2;

• (ω, (q′′1 , q
′′
2 )) ∈ C if and only if

(q′′1 , q
′′
2 ) ∈ {(q1i1 , q2i2) | i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}} .

Next, pick (q1, q2) ∈ Q1 ×Q2 and consider a transition for M , see (55). We need to detail what
S1 ‖S2 = ((Ω′,Π′), ξ′, (q1, q2), C ′) is. We have, for S1 ‖S2:

• Ω′ is still the product of n1 copies of Q1 and n2 copies of Q2;

• Π′ is the product Π1 × Π2, where Πi is the product of all probabilities belonging to set
{πi | (qi, α, πi) ∈→i};

• ξ′ has domain Q1 ×Q2;

• (ω, (q′1, q
′
2)) ∈ C ′ if and only if

(q′1, q
′
2) ∈ {(q1i1 , q2i2) | i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}} .

By associativity of ×, Π′ = Π, whereas other items for S on the one hand and other items for
S1 ‖S2 on the other hand, are synctatically identical. Thus (56) follows.

C.1.2 Statement 2 of Theorem 21: from Mixed Automata to SPA

Proof: Consider the following reverse mapping M 7→PM , from Mixed Automata to spa:

1. The alphabet Σ of PM is identical to that of M ;

2. The set of states Q of PM is equal to the set of states of M , namely the domain of its set
X of variables;

3. For S = (Ω, π,X, p, C), decompose relation {(ω, q)|ωCq} as
⋃
ψ∈ΨC

graph(ψ), where ΨC

denotes the set of all partial functions Ω→ Q, mapping each ω ∈ ∃q.C to some q such that
ωCq. Then, we consider, for each ψ ∈ ΨC , the measure defined by ψ[π](q) =def π(ψ−1(q)),
where ψ−1(q) = {ω|ψ(ω)=q} (ψ[π] is the image of π by ψ), and we renormalize it by
considering

ψ[π]

ψ[π](Q)
,

thus obtaining a probability distribution over Q. This defines a subset PS ⊆ P(Q) of
probability distributions.

4. The transition relation of PM is defined as follows:

→PM
= {(p, α, µ) | ∃S : (p, α, S) ∈ →M and µ ∈ PS} (57)
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Consider two Mixed Automata M,M ′ and let ≤ be a simulation relation between their state
spaces Q and Q′: q ≤ q′ and q α−→M S imply the existence of S′ ∈ S(Q′) such that S ≤S S′ and
q′

α−→M ′ S
′. We need to show that the same relation ≤ ⊆ Q×Q′ is also a simulation relation

for spa. Let q α−→PM
µ be a transition of spa PM . By (57), there exists a Mixed System S such

that q α−→M S and µ ∈ PS . Since ≤ is a simulation relation for Mixed Automata, there exists
S′ ∈ S(Q′) such that S ≤S S′ and q′ α−→M ′ S

′. Now, S ≤S S′ expands as follows: There exists
a weighting function w : Ω× Ω′ → [0, 1] such that the following two conditions hold:

1. For every triple (ω, ω′; q) such that w(ω, ω′) > 0 and ωCq, there exists q′ such that ω′C ′q′
and q ≤ q′;

2. w projects to π and π′, respectively.

Let ψ ∈ ΨC be the selection function giving rise to µ following step 3, meaning that µ is
obtained by renormalizing ψ[π]. Select any ω ∈ ∃q.C and let q = ψ(ω). Select any ω′ such that
w(ω, ω′) > 0 and assign to it one q′ such that ω′C ′q′ and q ≤ q′ (such an q′ exists by the above
Condition 1). This selection procedure defines a selection function ψ′ : ∃q′C ′ → Q′, mapping the
ω′ of the above Condition 1 to q′, which in turn defines a probability distribution µ′, obtained
by renormalizing ψ′[π′]. Consider the following weighting function over Q×Q′:

v = (ψ,ψ′).w , which expands as
v(q, q′) = w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}

In particular v(q, q′) ≥ w(ω, ω′) > 0 by construction of ψ,ψ′, and v. Then, v projects to µ, and
to µ′:

∀q :
∑
q′

v(q, q′) =
∑
q′

w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}

=
∑
ω′

w{(ω̂, ω̂′) | ψ(ω̂) = q} = µ(q)

and

∀q′ :
∑
q

v(q, q′) =
∑
q

w{(ω̂, ω̂′) | ψ(ω̂) = q, ψ′(ω̂′) = q′}

=
∑
ω

w{(ω̂, ω̂′) | ψ′(ω̂′) = q′} = µ′(q′)

To summarize, we have constructed a probability distribution µ′ such that µ ≤P µ′ and q′ α−→PM′

µ′, showing that ≤ was also a simulation relation for spa. To complete our proof, it remains to
show the following lemma:

Lemma 25 There is no mapping M 7→ PM that preserves the parallel composition.

To support the above claim, we consider the following counter-example, where S(p) indicates
that S has previous state p:

Example 8 Let X = {x1, x, x2} be a set of three variables with finite domains Qx1 , Qx, Qx2 .
Consider the two systems Si(pi) = (Ωi, πi, Xi, pi, Ci), i = 1, 2, where: X1 = {x1, x}, X2 =
{x, x2}; p1 ./ p2; Ωi = Qi with Q1 = Qx1

×Qx and Q2 = Qx×Qx2
; πi is a probability over Ωi;

and ωiCiqi iff ωi = qi. Define

x : Ω1 ] Ω2 → Qx, such that
{

x(ω1) = q if ω1 = (q1, q)
x(ω2) = q′ if ω2 = (q′, q2)

(58)
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System S1 amounts to defining the pair (x1, x) as random variables with joint distribution π1;
similarly, S2 amounts to defining the pair (x, x2) as random variables with joint distribution π2.
We assume that the set of all q∈Qx such that π1(Q1×{q})>0 and π2({q}×Q2)>0 is non empty.
Forming the composition S1 ‖S2 yields the system S(p)=(Ω, π,X, p, C), where X = X1∪X2 =
{x1, x, x2}, Q = Qx1

×Qx×Qx2
, p = p1 t p2, Ω = Ω1 × Ω2, π = π1 × π2, and ωC(q1, q, q2) iff

ω1C1(q1, q) and ω2C2(q, q2). According to Definition 1, the sampling of S is the following: draw
(ω1, ω2) at random with the conditional distribution π1 × π2

(
(ω1, ω2)|x(ω1)=x(ω2)

)
, where the

map x was defined in (58); the resulting (ω1, ω2) uniquely defines (q1, q, q2) ∈ Q (no nondeter-
minism). In words, the parallel composition S1 ‖S2 amounts to making the triple of variables
(x1, x, x2) to be random with the joint distribution π1 × π2

(
(ω1, ω2) | x(ω1) = x(ω2)

)
.

Next, consider the Mixed Automaton M=({α}, X, q0,→), where X={x1, x, x2}, set Q of
states is defined accordingly Q=Qx1

×Qx×Qx2
, and → maps, through action α, any state p∈Q

to the above system S(p). Similarly, we consider the two Mixed AutomataMi = ({α}, Xi, qi,0,→i

), i=1, 2, where Xi is as above, qi,0 is the projection of q0 on Qi, and →i maps, through action
α, any state pi∈Qi to the above system Si(pi). We have M = M1 ‖M2.

The only candidate way of mapping Mi to a spa is by considering the two spa Pi with sets
of states Qi and transition relation pi

α−→i πi, where πi was defined above. Now, P1 ‖P2 has
transition relation p α−→ π1 × π2, which reflects no interaction between the two spa, so it cannot
represent M1 ‖M2.

C.2 Proof of Theorem 22 regarding Probabilistic Automata

Proof: We consider the mapping P 7→ MP = ({1}, X, q0,→MP
), from pa to Mixed Automata,

defined as follows:

1. Alphabet {1} is the trivial singleton (the particular element does not matter);

2. X = {ξΣ, ξQ}, where the variables ξΣ and ξQ enumerate Σ and Q;

3. Transition →MP
maps state p to system S(p) = ((Ω, π), X, p, C), where

• Ω = (Σ×Q)n, where n is the cardinal of the image of p by transition →;

• π is the product of all the distributions selected by transition → starting from p;

• C is the nondeterministic selection of one component of ω.

We only need to prove the positive statement related to simulation. Consider a simulation relation
for pa q ≤ q′. We need to prove that ≤ is also a simulation relation for Mixed Automata. Let
µ be such that (q, µ) ∈ →. Since ≤ is a simulation relation for pa, there exists µ′ such that
(q′, µ′) ∈ →′ and µ ≤P µ′. Let S and S′ be the mixed systems to which q and q′ are mapped
by step 3 of the mapping P 7→ MP . We have to prove that S ≤S S′. For each µ such that
(q, µ) ∈ →, let the function χ : P(Q)→ P(Q′) select one µ′ such that (q′, µ′) ∈ →′ and µ ≤P µ′
and let vµ be a weighting function associated to relation µ ≤P µ′. The following weighting
function

w(ω, ω′) =def

∏
µ:(q,µ)∈ →

vµ(qµ, q
′
µ)

where (qµ, q
′
µ) ∈ Q×Q′, solves the problem.
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D Extending Mixed Systems to continuous probabilities
In this appendix, we indicate how to relax the restriction that the considered probability spaces
should all be discrete and we discuss technical difficulties. A recommended reference on probabil-
ity theory is [25]. The reader is invited to compare the following writing with the corresponding
material of Section 2. We begin with some notations and prerequisites.

D.1 Notations and prerequisites on probability theory
For P and Q two sets, P ×Q their product, and A ⊆ P ×Q, we denote by PrP(A) the projection
of A over P .

Probability spaces: (Ω,F , π) shall generically denote a probability space, i.e., Ω is a set, F is a
σ-algebra over Ω (i.e., a subset of 2Ω, containing ∅ and stable under complement, and countable
unions and intersections), and π is a probability (i.e., a countably additive function, from σ-
algebra F to [0, 1], such that π(∅) = 0 and π(Ω) = 1). Let p : (Ω,F) 7→ {0, 1} be a measurable
predicate, say that p holds almost everywhere if π{ω | p(ω) = 1} = 1. For a measurable function
f : (Ω,F) 7→ (R+,L), where L is the Borel σ-algebra over R+, we write

E(f) =def

∫
f(ω)π(dω) .

For (Ωi,Fi, πi)i=1,2 two probability spaces, F1 × F2 is defined as the smallest σ-algebra over
Ω1 ×Ω2 making the two projections measurable, and π1 × π2 shall denote the cartesian product
of the two probabilities, characterized by (π1 × π2)(A1 × A2) = π1(A1)π2(A2), where Ai ∈ Fi.
Infinite products of probabilities π =

∏
i∈I πi with arbitrary index set I can even be defined;

they are characterized by the equalities π
(∏

i∈I Ai
)

=
∏
i∈I πi(Ai), where all but a finite number

of Ai are equal to Ωi.

Conditional expectations and conditional probabilities: For G ⊆ F a sub-σ-algebra of F , and
X : (Ω,F) 7→ R+, measurable, there exists Y : (Ω,G) 7→ R+, measurable, such that E(X×Z) =
E(Y×Z) for any measurable Z : (Ω,G) 7→ R+. Y satisfying the above properties is almost surely
unique: π(Y ′ 6= Y ) = 0 for any two such random variables. Y is called the

conditional expectation of X given G, written E(X | G). (59)

For A ∈ F , let 1A denote the characteristic function of set A, which equals 1 on A and 0
elsewhere; then, we write

π(A | G) =def E(1A | G). (60)

If B ∈ F satisfies π(B) > 0 and FB = {∅,Ω, B,Ω\B} is the smallest σ-algebra containing set B,
then, the conditional expectation f =def π(A | FB) is such that f(ω) = π(A | B) = π(A∩B)

π(B) for
almost every ω ∈ B. To show this, we form

E(π(A | G)× 1B) = E
(
π(A∩B)
π(B) × 1B

)
= π(A∩B)

π(B) × E (1B)︸ ︷︷ ︸
=π(B)

= π(A∩B)

with a similar result for 1Ω−B , showing that the characterization of the conditional expectation
is satisfied. This establishes the link between conditional expectation and conditional probability
in its elementary setting.
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For G2,G1 ⊆ F two sub-σ-algebras, and X : (Ω,F) 7→ R+, measurable, we write E(X | G1 |
G2) =def E(E(X | G1) | G2). Let B ∈ F and G ⊆ F , and let FB be the smallest σ-algebra
containing the set B; we write

π(A | FB | G) =def E(π(A | FB) | G) = E(E(1A | FB) | G) . (61)

Disintegration: Consider (Ω,F , π) and G ⊆ F as before. So far we have defined π(A | G) as
a G-measurable random variable, for a given A ∈ F . Can we take it as a transition probability
P (ω,A), i.e., a map such that A 7→ P (ω,A) is a probability for ω fixed, and ω 7→ P (ω,A) is
G-measurable for A fixed? Here is the formalization:

Definition 26 ([25, 37]) Call disintegration4 π(A | G), where A ranges over F , a map (ω,A) 7→
P (A | ω) from Ω×F to [0, 1] such that:

1. For A fixed, ω 7→ P (A | ω) is G-measurable, and P (A | ·) is a version of the conditional
expectation π(A | G);

2. For ω fixed, A 7→ P (A | ω) is a probability.

If P (A | ω) and P ′(A | ω) are two such regular versions, then, probabilities P (· | ω) and P ′(· | ω)
must be equal outside a set of ω of π-probability zero.

Existence of a disintegration: The existence of a disintegration is not always guaranteed. It is
obvious for discrete probability spaces. It is not true in general, however, see, e.g., [15]. Failure
to exist typically occurs when working with measurable spaces completed with subsets of zero
probability sets. The existence of a a disintegration is only guaranteed under specific topological
properties for the underlying set. Jirina Theorem is an example of broad sufficient topological
conditions for the existence of regular versions for conditional expectations, see [25, 37]. The
Blackwell spaces, however, are adequate tools for this, so we introduce them next. For the
following material, the reader is referred to [15].

If Ω is a metric space, the smallest σ-algebra containing all open sets of Ω is its Borel σ-
algebra, denoted by B. Borel σ-algebra B is called separable if there is a sequence Bn∈B such
that B is the smallest Borel σ-algebra containing all Bn. In particular, if Ω is a separable metric
space, its Borel σ-algebra is separable. The atoms of B are the sets B ∈ B such that no proper
nonempty subset of it belongs to B. Any two nonidentical atoms are disjoint and every Borel set
is a union of atoms.

A metric space A will be called analytic if A is the continuous image of the set of irrational
numbers. The following properties hold, showing which cases are covered by this notion:

1. If An is a sequence of analytic sets in a metric space Ω, then
⋃
nAn,

⋂
nAn if nonempty,

the product space A1×A2 and the infinite product space A1×A2× · · · , are analytic sets.

2. If A is analytic, so is every Borel subset of A.

3. Every Borel set of the Euclidean n-space is analytic.

4. If A,B are disjoint analytic subsets of a metric space Ω, there is a Borel set D of Ω such
that D ⊃ A and D ∩B = ∅.

4Depending on the authors, disintegration is also called regular version of the conditional expectation.
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5. If f is a Borel-measurable mapping of an analytic set A into a separable metric space Q,
then f(A), the range of f , is an analytic set.

Pairs (Ω,B), where Ω is analytic and B is its Borel σ-algebra, are called Blackwell spaces.5 The
following two results are proved in [15]:

Theorem 27 For (Ω,B, π) a Blackwell space:

1. Two separable sub-σ-algebras of B with the same atoms are identical.

2. For π any probability on (Ω,B, π) and B′ any separable sub-σ-algebra of B, there exists a
disintegration for π(A | B′).

In the following we will assume (unless otherwise stated) that all considered measurable spaces
are Blackwell, so that Theorem 27 can be applied.

D.2 Definition and basic properties

Relations: Upper case letters X,Y, Z shall denote finite sets of variables, and variables are
denoted by corresponding lower case letters x, y, z . . . Let the domain of x be denoted by Qx
and be equipped with a σ-algebra Gx; the domain of X is QX =def

∏
x∈X Qx, equipped with

the product σ-algebra GX =
∏
x∈X Gx. We will consider equations (also called relations or

constraints): an equation on X identifies with its set of solutions, i.e., a measurable subset of
QX ; if Y ⊆ X, an equation on Y can be seen as an equation on X. We consider systems of
equations, which are sets of equations implicitly composed via intersection.

Definition 28 (Mixed System) A Mixed System is a tuple

S =
(
(Ω,F , π), (Qx,Gx)x∈X , C

)
, (62)

where (Ω,F , π) is a private probability space; (Qx,Gx)x∈X is a finite set of measurable state
spaces with product (Q,G) =def

∏
x∈X(Qx,Gx), and C ∈ F×G is a measurable relation over

Ω×Q. In the sequel, we also write ωCq to mean (ω, q) ∈ C, and we identify the set of variables
X with the measurable state space (Qx,Gx)x∈X it defines, thus we write

S =
(
(Ω,F , π), X,C

)
, (63)

for short instead of (62).

Defining the semantics of Mixed Systems in the general case requires some care, as the
following example shows.

Example 9 [discussing consistency] Let X and Y be two real random variables with continuous
joint distribution π. Formally, Ω = R2, F is the Lebesgue σ-algebra over Ω, π is a continuous
probability over (Ω,F) and X and Y are the first and second coordinates of R2. For y a
given value for Y , consider C = {(ω, y) | ω ∈ Ω} completing the definition of Mixed System
S =

(
(Ω,F , π), X,C

)
. The intuition is that S models the conditional distribution of (X,Y )

given that Y = y. We would like this to be a consistent system, despite π(Y=y) = 0. Thus,
elementary Definition 1 for the operational semantics cannot be used since it would lead to
considering system S as inconsistent.

5They are actually called “Lusin spaces” in [15], but the term “Backwell spaces” has been used since then in
the literature to avoid the confusion with the hierarchy of Polish topological spaces.
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For this case, the correction is easily guessed. The aim is that prior probability π should
be replaced by the posterior conditional distribution π(· | y), rather a disintegration for it.
This amounts to making y “variable” by considering a disintegration π(A | FY ) according to
Definition 26, where FY ⊂ F is the σ-algebra generated by random variable Y . Recall that the
existence of such a disintegration is subject to topological conditions, see the comment following
Definition 26—such conditions are satisfied by this example. Then, we take πc = π(· | y) by
taking the corresponding disintegration. 2

How can we extend this to general Mixed Systems? Informally, how can we make relation C
“variable”?

Definition 29 (consistency and sampling) Mixed System S is called consistent if the fol-
lowing conditions hold:

1. There exists a sub-σ-algebra H ⊆ F such that a disintegration π(· | H) exists; we denote
by a a generic atom of H, thus conditional probability π(· | H) becomes a function of atom
a, so we write it π(· | a);

2. There exists a measurable relation C ∈ F × G such that

(a) Relation C takes the form C = C ∩ (a×Q) for some atom a of H;
(b) π(Ωc | a) > 0 where Ωc =def {ω | ∃q : ωCq}.

If S is consistent, define πc by

πc(A) =def
π(A ∩ Ωc | a)

π(Ωc | a)
(64)

The sampling of S consists in: (1) drawing ω at random using πc, and (2) nondeterministically
selecting q such that ωCq. This two-step procedure is denoted by S; q.

The “variable embedding” of C is the relation C, from which C is retrieved by selecting the
atom w at step 2a.

Example 10 Consider the ReactiveBayes program “S1 ‖ S2 ‖ S3 ‖ S4” of the introduction. Now,
the white noise model for w in Noise is truly Gaussian (or any other distribution on R, possibly
continuous). The prior probability of this system is

prior proba :

 rf n ∼ Bernoulli(10−6)
vn ∼ µ
by semantic convention, rf and w are independent

(65)

and relation C is the following system of equations:

C :


observe u, y
x0 = cx , v0 = cv , f0 = F
xn = ϕ(un, xn−1)
yn = if fn then ψ(xn, vn) else xn
fn = (rf n or fn−1) and not bkn

(66)

The following observation is the key to handle the model (65,66): if we forget for a while the first
constraint observe y in (66), then the resulting dynamical system can be seen as an input/output
system with inputs u, v, rf , of which u is a measured input, whereas v, rf are random inputs:
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there is nothing unusual. In this i/o system, the prior probability is not subject to any constraint,
hence the posterior probability equals the prior.

The difficulty comes with the consideration of the output constraint observe y. This suggests
taking for the instrumental σ-algebra H the σ-algebra generated by y. Accordingly, we partition
(66) as

C :

 observe y defining H, the σ-algebra generated by y,
whose atom is represented by a value for y.

yn = f(vn, rf n) defining C and consistency set Ωc, equal to Ω
(67)

where f is the function resulting from computing y from the pair (w, rf ) by using system of
equations (66) in which the first equation has been deleted (other variables are also computed).
This defines the auxiliary relation C and we have Ωc = Ω. The σ-algebra F is generated by the
pair (w, rf ) of random variables, and H is the σ-algebra generated by y =def f(w, rf ). Atoms of
H consist of any reachable value for y. Then, π(· | H) = π(· | y) is the conditional distribution of
the pair (w, rf ) given a reachable value for y, and Ωc = Ω, showing that the considered system
is consistent. 2

As a side result, the discussion of this example suggests how sampling can be performed in
practice for ReactiveBayes programs involving continuous distributions.
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