
HAL Id: hal-03031413
https://hal.inria.fr/hal-03031413v3

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical-Task Reservoir for Online Semantic
Analysis from Continuous Speech

Luca Pedrelli, Xavier Hinaut

To cite this version:
Luca Pedrelli, Xavier Hinaut. Hierarchical-Task Reservoir for Online Semantic Analysis from
Continuous Speech. IEEE Transactions on Neural Networks and Learning Systems, 2021,
�10.1109/TNNLS.2021.3095140�. �hal-03031413v3�

https://hal.inria.fr/hal-03031413v3
https://hal.archives-ouvertes.fr


Hierarchical-Task Reservoir for Online
Semantic Analysis from Continuous Speech

Luca Pedrelli
1. INRIA Bordeaux Sud-Ouest. Bordeaux, France

2. LaBRI, Bordeaux INP, CNRS, UMR 5800.
3. Institut des Maladies Neurodégénératives,
Université de Bordeaux, CNRS, UMR 5293.

orcid.org/0000-0002-4752-7622

Xavier Hinaut
1. INRIA Bordeaux Sud-Ouest. Bordeaux, France

2. LaBRI, Bordeaux INP, CNRS, UMR 5800.
3. Institut des Maladies Neurodégénératives,
Université de Bordeaux, CNRS, UMR 5293.

orcid.org/0000-0002-1924-1184

Abstract—In this paper, we propose a novel architecture
called Hierarchical-Task Reservoir (HTR) suitable for real-time
applications for which different levels of abstraction are available.
We apply it to semantic role labeling based on continuous speech
recognition. Taking inspiration from the brain, that demonstrates
hierarchies of representations from perceptive to integrative
areas, we consider a hierarchy of four sub-tasks with increasing
levels of abstraction (phone, word, part-of-speech and semantic
role tags). These tasks are progressively learned by the layers of
the HTR architecture. Interestingly, quantitative and qualitative
results show that the hierarchical-task approach provides an
advantage to improve the prediction. In particular, the quali-
tative results show that a shallow or a hierarchical reservoir,
considered as baselines, do not produce estimations as good as
the HTR model would. Moreover, we show that it is possible
to further improve the accuracy of the model by designing skip
connections and by considering word embedding in the internal
representations. Overall, the HTR outperformed the other state-
of-the-art reservoir-based approaches and it resulted in extremely
efficient w.r.t. typical RNNs in deep learning (e.g. LSTMs). The
HTR architecture is proposed as a step toward the modeling of
online and hierarchical processes at work in the brain during
language comprehension.

Index Terms—Recurrent Neural Networks, Hierarchical Reser-
voir Computing, Natural Language Processing, Speech Recog-
nition, Part-of-Speech, POS tagging, Semantic Role Labeling,
Anytime Process, Hierarchical Processing.

I. INTRODUCTION

The number of models trained with End-to-End training
over sequences has increased in the past years, in particular
for speech recognition and natural language processing (NLP).
However, it is usually costly in training time and data, while
the training is performed offline. Conversely, human brains
are able to process sentences online and learn incrementally to
understand languages. Children start understanding and talking
with much less data than such deep learning applications. One
of the differences is that the human brain is likely to learn
various levels of abstractions (e.g. phoneme, word, part-of-
speech, semantic role of a group of words) in an incremental
fashion instead of an end-to-end training. This hierarchical
building of language building blocs is probably what enables
children to learn quickly with little data.

Recently, deep learning networks have created a break-
through in object and speech recognition. Latent represen-

tations of words and sentences, such as Word2Vec [1], and
subsequent developments, such as transformers like BERT
[2], enabled important progress on language modeling and
natural language processing (NLP). However, no equivalent
breakthrough happened towards the understanding of how the
brain performs similar functions. This is probably due to the
gap in the learning mechanisms between deep learning and
brains.

Several mechanisms are subject to debates about biological
plausibility. However, relying on back-propagation learning is
often not considered plausible, especially if the gradient needs
to go backwards through several layers. Back-propagation
through time (BPTT) makes the implausibility a step further,
as it needs to unfold time, which means to virtualise it as
a spatial dimension in order to train e.g. a recurrent neural
network (RNN).

Modeling brain processes, from raw acoustic signals up
to language understanding, are a long-term research project.
There is no such multi-level and hierarchical model on lan-
guage today: this is an important shortage for the neuro-
linguistic and psycho-linguistic communities. If one considers
a model at one level only (e.g. sentence level), it means that
this sentence model is agnostic to the processes going on until
the word recognition. Thus, the modeler needs to make arbi-
trary assumptions (usually very simplified) on the dynamics of
the hierarchical processes going on, in more perceptive layers,
from raw speech processing to word recognition. Kröger et
al. [3] did an interesting neurocomputational model of speech
perception and production that spans on multiple levels, but
only until phonemic map.

Christiansen & Chater propose that the brain is in the Now
or Never Bottleneck [4] when processing a stimulus (e.g. an
utterance): it is forced to extract the necessary information as
soon as possible, otherwise, the information will be lost. Thus,
the rich perceptual input needs to be recoded as it arrives, in or-
der to capture the key elements of the sensory information [4].
These compressed (or “chunked”) representations are abstrac-
tions of inputs (filtering out the details) rather than predictions
encoding all the fluctuations of fast incoming inputs. Memory
limitations also apply to these recoded representations; hence
the brain needs to chunk the compressed representations into

https://orcid.org/0000-0002-4752-7622
https://orcid.org/0000-0002-1924-1184


multiple levels of representation of increasing abstraction in
perception, and decreasing levels of abstraction in action [4].
Therefore, each sequence of chunks at one level will be
encoded as a single chunk to a higher level. In summary,
they suggest that the brain must implement this hierarchical
“Chunk and Pass” [4] mechanism to solve the “Now or Never
Bottleneck” problem.

State-of-the-art tools in NLP have little in common with the
dynamical processes happening in our brains when reading a
sentence. Most deep learning approaches for NLP use RNNs
inside their architectures in order to model the temporal depen-
dencies of the time-series input, and eventually, to implement
a language model depending on the field of the task [5]–[12].
A way to address long-time dependencies between words is
the use of bidirectional architectures and attention mechanisms
[9], [10], [13]. In general, the whole sentence needs to be
parsed before producing an output. Our brain processes a
sentence in an online and anytime fashion: we are able to
partially understand the sentence (and even predict it) before
it ends.

For example, for speech applications in human-robot inter-
action [14]–[16], it is common to parse sentences based on a
hand-written grammar parser, while the speech is processed
with cloud speech APIs. Speech recognition modules based
on sequence transduction approaches [7], [17], [18] have two
main limitations: 1) the maximal length of the sentences need
to be known beforehand and 2) the whole sentence needs to
be parsed in order to produce the phone recognition of the
input signal. Therefore, it puts time constraints for real-time
human-robot interactions. Additionally, it is not suitable to
model biologically plausible cognitive processes at work.

The brain is organised in hierarchical structures: for in-
stance, a visual stimulus will go through the primary visual
areas one after another: LGN, V1, V2, V3, V4, and so
on. Already in the early 90’s, Felleman & Van Essen [19]
found a hypothetical global brain hierarchy. The deep learning
approaches (DL), in particular the Convolutional Neural Net-
works (CNN), took successful inspiration from it. However,
one could say that it is only a “shallow” inspiration because
the brain is processing information in a much more dynamic
way than how CNNs work. This is exemplified by the pres-
ence of feedforward and feedback connections in such brain
hierarchies [20] (e.g. there are strong feedback connections
from area V4 to area V2). A similar hierarchy starting from
primary auditory areas has been proposed [21].

Although CNNs were successfully used to predict human
brain fMRI responses [22], deep Recurrent Neural Networks
(RNNs) [23]–[25] seem a better choice to really model hierar-
chical brain dynamics. They intrinsically develop hierarchical
and distributed temporal features [26]–[28]. However, from
the learning mechanisms point of view, the use of back-
propagation in deep neural networks makes these approaches
not biologically plausible. An interesting alternative to RNN
back-propagation training is the Reservoir Computing (RC)
paradigm [29], [30]. Recently, hierarchical [8], [17] and deep
reservoir architectures [27], [28] achieved state-of-the-art re-

sults. In particular, Hierarchical Reservoir Computing (HRC)
architectures obtained good results in speech recognition field
[17].

Given such aspects, we propose a new architecture for
semantic analysis from audio speech, called Hierarchical-Task
Reservoir (HTR), with the following features: a) a model
suitable for efficient real-time applications, b) a model able to
learn progressively more abstract sub-tasks through a layers
hierarchy, c) a model able to develop a hierarchical temporal
representation and d) a model suitable for linguistic analysis
in the neuroscience field.

First, we extend the speech recognition dataset TIMIT [31]
building a novel corpus computing the Semantic Role Labeling
(SRL) of the sentences pronounced in the audio speech. Then,
we evaluate and compare HTR architectures on the SRL task.
Finally, we quantitatively analyze the dynamics progressively
developed in the HRT layers starting from the speech signal,
provided as MFCC (Mel Frequency Cepstrum Coefficients).
We expect the hierarchical-task architecture to enforce various
abstraction levels of information through the different layers.
One aim is to provide a richer representation of the input signal
that could be denoised at different abstraction levels, instead
of just denoising the raw signal. For this reason, HTR should
achieve a better performance w.r.t. a 1-layered architecture.
Since from POS tags there is not all the information to
predict SRL tags, the prediction provided by the last layer
(SRL from POS) could be difficult. However, the information
sequentially carried by the layers could be enough to improve
the prediction.

This work represents an extension of the preliminary stud-
ies regarding language comprehension through anytime POS
tagging with a biologically plausible architecture [32]. In this
paper, we introduce a novel real-time application based on
SRL extending the Hierarchical-Task Reservoir architecture.
Accordingly, we also extended the TIMIT [31] corpus by
computing the SRL tags for all sentences. Moreover, we also
experimentally studied the effect of word embedding and skip
connections (in this case, between word representations and
SRL task) on the prediction quality of the HTR architecture.

This paper is organized as in the following. In Section II,
we describe the ESN and HRC architectures within RC. In
Section III, we propose the HTR architecture. In Section IV,
we define the method based on anytime semantic analysis
from continuous speech. In Section V, we evaluate the HTR
architectures on the anytime semantic analysis. Finally, we
discuss the results of the analysis in Section VI.

II. RESERVOIR COMPUTING

Within Recurrent Neural Networks (RNNs), Reservoir
Computing (RC) [33] represents a biologically plausible and
efficient framework for architectural design. In particular, Echo
State Networks (ESNs) are a class of RNNs implemented
according to the RC framework in which the recurrent layer
(i.e. the reservoir) is non-linear, randomly initialized and left
untrained. Within ESN architectures, in this work, we consider
the Leaky Integrator Echo State Network (LI-ESN) [34].



Figure 1 shows an example of LI-ESN architecture composed
of a non-linear reservoir and a linear output (i.e. the readout).
The following formula defines (omitting the bias for the ease

Fig. 1. The Echo State Network model.

of notation) the computation of the state at time step t:

x(t) = (1− a)x(t− 1) + a tanh(Winu(t) + Wx(t− 1)), (1)

where x(t) ∈ RNR is the state vector at time step t, u(t) ∈
RNU is the input vector at time t, W ∈ RNR×NR is the matrix
of the recurrent weights, Win ∈ RNR×NU is the matrix of the
input weights, a ∈ [0, 1] is the leaking rate parameter and
tanh is the activation function represented by the hyperbolic
function. The recurrent weights in W are randomly initialized
and rescaled according to the echo state property (ESP) [35].
Typically, in order to achieve the ESP, the maximum absolute
eigenvalue of W (i.e. the spectral radius of W) is rescaled to be
less than 1. Moreover, in practical applications it is shown that
the ESP can be obtained also with a spectral radius ρ ≥ 1 [36].
The input weights in Win are randomly initialized in order to
obtain a specific euclidean norm σ of the matrix Win. The
following formula computes the output of LI-ESN:

y(t) = Woutx(t), (2)

Wout is the matrix of the output weights and y(t) ∈ RNY

is the output vector at time step t. The output layer is the
only part of the ESN that is trained, in particular, the training
consists in finding the free parameters in Wout through linear
regression approaches. In the following, we use the term ESN
to refer to the LI-ESN model.

Hierarchical RC (HRC) [17] is a class of RNNs character-
ized by a hierarchy of layers in which each layer is composed
of an ESNs. In this architecture, each layer is trained starting
from the output of the previous layer. In this way, each layer
can correct the error resulting from the previous layer. In
general, a hierarchical recurrent network is intrinsically (prior
to learning) able to develop multiple time-scale dynamics as
shown in Deep Reservoir Computing [27], [28].

III. HIERARCHICAL-TASK RESERVOIR

In this work, we introduce a novel hierarchical model
characterized by a stack of layers called Hierarchical-Task
Reservoir (HTR). Each layer is an ESN trained on a different
task. The main idea is to consider progressively more abstract

tasks addressed by the layers. In this way, the deep recurrent
architecture can impose (by training) a progressively more
abstract (the labels are considered with a decreasing level
of frequencies) representation of the input signal. The whole
architecture is trained as a pipeline of tasks. The last layer
addresses the final task that we aim to solve. The first ESN is
trained on the first task by considering the input signal. Then
each ESN is trained by considering as input the output of the
previous ESN. The whole recurrent architecture is trained in
pipeline fashion from the first to the last task. With respect to
HRC presented in [17] there are two main differences: (i) HTR
addresses a hierarchy of different tasks instead of addressing
the same task in each layer as in HRC. Accordingly, the whole
architecture can learn a progressively different representation
of the input signal. (ii) HTR optimizes the hyperparameters
of each layer instead to fix input scales and leak rates as
in HRC. Accordingly, each task is optimized with different
hyperparameters.

Figure 2 shown the main HTR architecture used in this
work. The following formula computes the state of each layer
l = 1, ..., NL:

x(l)(t) = (1− a(l))x(l)(t− 1) + a(l) f(W(l)
in i(l)(t) + W(l)x(l)(t− 1))

(3)
where x(l)(t) ∈ RNR is the state vector at time step t of layer
l, W(l) ∈ RNR×NR is the matrix of the recurrent weights of
layer l, W(l)

in ∈ RNR×N
(l)
U is the matrix of the input weights

of layer l, a(l) ∈ [0, 1] is the leaking rate parameter and f is
the activation function (f = tanh in this case). The input i(l)

of the layer l is computed as follows:

i(l)(t) =


u(t) if l = 1

y(l−1)(t) if l > 1.
(4)

where u(1) ∈ RN
(1)
U is the input vector of dimension N

(1)
U

and y(l−1)(t) ∈ RN
(l)
U is the output vector of layer l − 1 of

dimension RN
(1)
U . The computation of the output of layer l is

defined in the following equation:

y(l)(t) = W(l)
outx

(l)(t), (5)

where W(l)
out is the matrix of the output weights. The recurrent

weights in W(l) are randomly initialized and rescaled to fix
a spectral radius ρ(l). W(l)

in is randomly initialized in order to
obtain an euclidean norm σ(l). It is worth mentioning that,
in deep recurrent architectures, the spectral radius ρ(l) and
the input norm σ(l) are crucial hyperparameters to control
the stability of the network [37]. Each layer is independently
trained by finding the output weights Wout through ridge
regression approaches as in standard RC.

The basic HTR model considered in our experiments is
SP⇒PH⇒WD⇒POS⇒SRL. For each task (PH, WD, POS,
SRL) the outputs are expressed as one-hot encoding if not
stated otherwise. When considering word embedding we notify
it with WE (instead of WD). (i) The model first estimates the
phones from the input speech audio (the task SP⇒PH). (ii)



Then, ESN 2 estimates words from the phones estimated by
ESN 1 (the task PH⇒WD). (iii) The ESN 3 estimates the
POS tagging from the words estimated by ESN 2 (the task
WD⇒POS). (iv) Finally, ESN 4 estimates the SRL from the
POS tagging estimated by ESN 3 (the task POS⇒SRL). The
procedure of HTR optimization is described in Algorithm 1,
NConfigs represents the number of hyperparameter configura-
tions used in the random search. In the following, we consider
NConfigs = 100 for all experiments.

Fig. 2. The base HTR model considered in our experiments
(SP⇒PH⇒WD⇒POS⇒SRL). First ESN 1 estimates the phones from the
input speech audio. Then, ESN 2 estimates words from the phones estimated
by ESN 1). The ESN 3 estimates the POS tagging from the words estimated by
ESN 2. Finally, ESN 4 estimates the SRL from the POS tagging estimated by
ESN 3. In some experiments, one-hot encoding of words (WD) are replaced
by word embedding (WE).

IV. SEMANTIC ANALYSIS FROM AUDIO SPEECH

Here, we present a novel anytime approach based on Se-
mantic Role Labeling (SRL) from audio speech. The aim of

TABLE I
THE LIST OF TASKS CONSIDERED IN THE EXPERIMENTS.

Task Description
SP⇒PH estimate phones from audio speech
PH⇒WD estimate words from estimated phones
WD⇒POS estimate POS from estimated words
POS⇒SRL estimate SRL from estimated POS
SRL⇒SRL estimate SRL from estimated SRL
SP⇒SRL estimate SRL from estimated speech
PH⇒SRL estimate SRL from estimated phones
WD⇒SRL estimate SRL from estimated words
PH⇒WE estimate word embeddings from estimated phones
WE⇒POS estimate POS from estimated word embeddings
WE⇒SRL estimate SRL from estimated word embeddings

the task is to classify the semantic role of the pronounced
word in the input audio in real-time each 10 ms.

In this work, we consider a hierarchical architecture that
addresses a pipeline of tasks starting from speech audio. Since
we need to start from a continuous speech recognition task,
we consider the TIMIT [31] dataset. This corpus is composed
of 630 American speakers. The training set is composed of
540 speakers and the test set is composed of 90 speakers.
The validation set is composed of the last 135 speakers of
the training set. Each speaker pronounces 10 sentences. The
audio is labeled each 10 ms by 61 phone classes and by
6012 word classes. The number of considered phones are
reduced from 61 to 51 as performed in [17]. In the case of
word classes, we only kept the first 50 most frequent labels.
The other words are grouped in a single label called out-of-
vocabulary (OOV). Moreover, in order to improve the quality
of the representation we also considered a word embedding
trained on Wikipedia by using fastText [38] tools. To have
a fair comparison with the one-hot-encoding approach used
to address the 50 most frequent words, we produced a word
embedding with dimension 50.

We extended the dataset by computing the POS tagging
by using SpaCy [39] tools for each sentence with a total of
17 grammatical elements. The POS labeling is performed by
computing a POS tag for each word. Then, the POS tag is
associated with a class label for each frame that belongs to the
duration of the word in the speech signal. Finally, a silence
label “h” is considered as an additional class in correspondence
with silence frames in the speech signal.

Moreover, in order to form the SRL dataset, we used Al-
lenNLP [40] tools computing the SRL of the TIMIT sentences
with a total of 27 labels. Since in SRL there is a different
labeling for each verb, in this work we consider a different
classifier for each verb. Considering the order of the verbs in
the sentence from the left to the right, we associate the ith verb
of the sentence to the ith classifier (i.e. a readout in the case
of ESN) with a maximum of 6 verbs considered. Accordingly,
the ith classifier is trained on the labels of the ith verb. If
the ith verb is not present in the sentence, its labels are “X”.
Finally, as in the case of the other tasks, an additional label “h”
represents 10ms of silence in the input audio. The input audio



is preprocessed through Mel Frequency Cepstral Coefficients
(MFCC) as in [17] with a hamming window of 25 ms and a
window shift of 10ms. For each 10ms, the Mel Frequency
Cepstral Coefficients (MFCC) [17] algorithm computes the
39 components (including 13 ∆1 and 13 ∆2) used as input
for the architectures by using a Fourier transform approach
(see [17] for the full setup on MFCC preprocessing of TIMIT
data). Thus, each input sequence is composed of a vector of 39
components for each frame of 10ms (e.g. an audio speech of 1
second is represented by an input sequence of 100 time steps
and each time step is composed of a vector of 39 components).

Table I shows the list of the tasks addressed by model
architectures in the next experiments.

As an evaluation metric for the models, we consider the
frame error rate (FER) by computing the ratio of the not
correctly classified frames on the total number of frames.
Table VIII shows the hyperparameter ranges used in the
random search for the model optimization performed for each
HTR layer. For each configuration of hyperparameters, we
randomly initialize 5 models (called guesses). Finally, the
result achieved by a configuration is the average of the results
achieved by the 5 guesses.

In order to design a real-time approach with a good trade-
off between efficiency and accuracy and to perform several
experiments on a medium/big dataset, we fix the number of
recurrent units at NR = 1000 for each layer.

Table II shows the architectures used for the experimental
comparison. In particular, HTR is the proposed model intro-
duced in Section III. While, HRC and ESN represent the state-
of-the-art RC approaches described in Section II.

TABLE II
THE MAIN RC MODELS CONSIDERED FOR THE QUANTITATIVE

COMPARISON.

Model Hierarchy
HTR (proposed) SP⇒PH ⇒WD⇒POS⇒SRL
HRC SP⇒SRL⇒SRL⇒SRL⇒SRL
ESN SP⇒SRL

For the ESN model, we used 4000 units in order to have
the same number of internal units as in the HRC and HTR
architectures (which have 1000 units in each of the four
layers).

V. RESULTS

A. Quantitative Comparison on Task SRL

In this section, we show the experimental comparison be-
tween HTR (Hierarchical-Task Reservoir, the proposed archi-
tecture), HRC (hierarchical reservoir baseline), ESN (shallow
reservoir baseline) and Long Short Term Memory (a typical
literature RNN approach called LSTM) on the SRL task.
The test results achieved by HTR, HRC, ESN and LSTM
are shown in Table III. In particular, HTR outperforms the
other RC approaches achieving a test error of 22.32% while
HRC achieved a test error of 23.61% and ESN achieved a test
error 23.44%. Interestingly, HRC is not able to improve the

TABLE III
THE ERRORS ACHIEVED IN TEST SET BY HTR, HRC, ESN AND LSTM ON

TASK SRL.

Model Test FER
HTR 22.32(0.16)%
HRC 23.61(0.14)%
ESN 23.44(0.02)%
LSTM 33.18(0.23)%

result achieved by ESN. This highlights that a pipeline of ESN
modules that address the same SRL task is not able to improve
the results obtained by the ESN with a single layer composed
of the same number of total recurrent units. Conversely, the
learning based on hierarchical-task, addressing progressively
more abstract tasks from the first to the last layer, allows
the model to significantly improve the test error on task SRL
obtaining 1.29 points more than HRC and 1.12 points more
than ESN.

In order to have a comparison with a typical fully-trained
RNN approach used in deep learning, we considered an
LSTM recurrent network which is used in literature [8] as
a baseline comparison with hierarchical RC architectures on
speech recognition tasks. As described in [41] it is difficult
to define a fair comparison between randomized and fully-
trained RNNs. However, the setting proposed in [41] is adapted
to show the potential of RC-based approaches w.r.t. typical
literature approaches. Given such aspects, we performed an
experimental assessment considering the same setting used in
[41] for the optimization of the LSTM model. Table III shows
the test FER obtained by LSTM on the SRL task. The LSTM
model (with the same number of free parameters w.t.r. the
RC approach) obtained a test FER of 33.18%. This result
highlights the effectiveness of the RC approaches in terms
of performance that achieved significantly lower Test FERs
(see Table III) than the LSTM approach. Moreover the LSTM
model spent 4813.83 seconds for the training process w.r.t. the
HTR (our approach) model which only spent 217.08 seconds.
We can conclude that the proposed approach is more efficient
than typical fully-trained RNNs in the literature.

B. Quantitative Results of HRC by Increasing Layers

Here, we present the test error achieved by HRC on the
SRL task by increasing the layers number. As we can see from
Table IV the HRC with 1, 2, 3 and 4 number of layers achieved
a test error of 23.85%, 23.58%, 23.50% and 23.61% on the
SRL task. As we can note, the test error obtained by HRC

TABLE IV
THE ERRORS ACHIEVED IN TEST SET BY THE HRC MODEL INCREASING

THE LAYERS NUMBER ON TASK SRL.

Hierarchical Reservoir Computing Test FER
SP⇒SRL 23.85(0.11)%
SP⇒SRL⇒SRL 23.58(0.18)%
SP⇒SRL⇒SRL⇒SRL 23.50(0.02)%
SP⇒SRL⇒SRL⇒SRL⇒SRL 23.61(0.14)%

improves until layer 3. After that, the error no longer improves



with 4 layers. This highlights that it is difficult to improve the
Anytime SRL task just by considering a pipeline of ESNs
without the additional abstraction of the tasks addressed in
the layers of HTR.

C. Improve Results of HTR by Increasing Layer Abstraction

Here, we present the test error achieved by HTR on the
SRL task by increasing the layers number. From Table IV we
can see that the HTR with 1, 2, 3 and 4 number of layers
achieved a test error of 23.85%, 23.06%, 22.34% and 22.32%
on the SRL task. Interestingly, these results highlight that
HTR is able to have a significant progressive improvement
with the increasing of layers. From Figure 7, we can see

TABLE V
THE ERRORS ACHIEVED IN TEST SET BY HTR MODEL

INCREASING THE LAYERS NUMBER ON TASK SRL.

Hierarchical-Task Reservoir Test FER
SP⇒SRL 23.85(0.11)%
SP⇒PH⇒SRL 23.06(0.11)%
SP⇒PH⇒WD⇒SRL 22.34(0.33)%
SP⇒PH⇒WD⇒POS⇒SRL 22.32(0.16)%

the comparison between the test errors achieved by HTR and
HRC with a number of layers that goes from 1 to 4. Note
that, while the test error achieved by HRC quickly saturates,
the test error achieved significantly decreases with increasing
layers. In conclusion, these results show the crucial role of
the hierarchical-task method, which addresses progressively
abstract tasks, in improving the performance achieved on the
final SRL task. However, from Figure 7 it is worth noting that
the decrease of error obtained by HTR in the last layer (i.e.
the POS⇒SRL task) is very small. This can be motivated by
the fact that the information provided by the POS task alone
is not sufficient to solve the SRL task. A possible solution
is considering a skip connection between the WD layer to
the SRL layer in order to add useful information to the last
layer and improve the performance. A skip connection is a
direct link between two layers that are not linked in the default
hierarchical architecture.

D. Comparison of Prediction Quality by Increasing Layers

Here, we compare the output predictions performed by HTR
and HRC on task SRL at the increasing of layers. In this
example, we take into account the sentence “don’t ask me
to carry an oily rag like that”. Concerning the SRL task we
consider the labels relative to the verb “carry”: “O O ARG0
O V ARG1 ARG1 ARG1 ARG1 ARG1” where V is the verb
and ARG0 and ARG1 are the arguments of the verb where
ARG0 is the Proto-Agent and ARG1 is the Proto-Patient. The
Figure 3a shows the input signal represented by the MFCC
of the audio speech. The Figures 3b, c, d and e represent the
values of the HTR output by considering 1, 2, 3 and 4 number
of layers, respectively.

The lines represented in Figures 3b, c, d and e are the
components of the output of the HTR model with a different

a)
SP

0 50 100 150 200 250 300

b)
SP
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

X

V

carry

X

ARG1

an

X

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

c)
SP
⇒ PH
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

d)
SP
⇒ PH
⇒ WD
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

X

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

e)
SP
⇒ PH
⇒ WD
⇒ POS
⇒ SRL

SIL

SIL

SIL

X

O

don't

O

O

ask

ARG0

ARG0

me

O

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

ARG0
ARG1
O
V
X
SIL

1st comp.

other comp.

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0

1

0 50 100 150 200 250 300

0

1

0

1

0

1

Fig. 3. An example of the prediction components provided by the HTR
model with a number of layers that goes from 1 to 4. Figure a) represents
the audio speech in the form of MFCC components. Figure b) represents the
output predictions of the architecture SP⇒SRL (1 layer). Figure c) represents
the output predictions of the architecture SP⇒PH⇒SRL (2 layers). Figure d)
represents the output predictions of the architecture SP⇒PH⇒WD⇒SRL (3
layers). Finally, Figure e) represents the output predictions of the architecture
SP⇒PH⇒WD⇒POS⇒SRL (4 layers). Time-steps are represented in the x-
axis while the output values of the neural components are represented in the
y-axis. Each component represents a class and for each time-step the model
predicts the class related to the component with the maximum value.

number of layers. For each time-step, the output SRL esti-
mated by the model is the class relative to the component with



the maximum value. The labels (i.e. the target ground truth)
and the estimated classes over time are represented above the
components values. Note that the estimations represented in
Figure 3b suffer from uncertainty. Indeed, many prediction
ranges are too flat to have a clear estimation. However,
considering the estimations produced by the 2-layered HTR
architecture, we note that the quality of the predictions is
significantly improved due to a better separation of the predic-
tion ranges. Finally, the estimation quality further improved
by adding more layers as shown in Figure 3d and e. This
highlights that the estimation quality is progressively improved
considering more sub-tasks inside the HTR architecture before
solving the final SRL task.

Concerning the HRC model, the Figures 8b, c, d and e
represent the values of the HRC output on the SRL task by
considering 1, 2, 3 and 4 number of layers, respectively. In
this case, there is no significant improvement of predictions if
we add layers in the HRC architecture.

Overall, the predictions performed by the HTR model
(Figure 3e) have a significantly better quality compared with
the predictions performed by the HRC model (Figure 8e).
This confirms the quantitative experiments shown in Section V
highlighting the importance to have a progression of different
tasks in order to progressively improve the prediction. Note
that Figures 3a, b and Figures 8a, b display exactly the
same results, because the same reservoirs with the same
hyperparameters were used.

E. Analysis of Layer Representations in HTR

Here, we qualitatively analyze the internal representations
(i.e. the output of each layer) learned by HTR with 4 lay-
ers. Figures 4b, c, d and e represent the estimation values
performed by the architecture SP⇒PH⇒WD⇒POS⇒SRL.
Interestingly, the lower recurrent layers have a dynamic that
is faster than the higher layers. This is expected since the
frequency of the labels used to learn the sub-tasks is progres-
sively lower in the higher layers. In other words, the learning
based on a progressively lower frequency of labels forces a
progressively lower frequency in the signals of the output
layers.

Concerning the ability of HTR to correct errors between
two different tasks, an interesting example can be seen in
correspondence of the word label “carry” in the outputs of the
HTR layers (see Figures 4c, d and e). Despite the prediction
relative to the word is wrong (i.e. “OOV” instead of “carry”)
in layers 3 and 4 the model is able to correct the predictions
performing the correct estimation for POS and SRL tasks
(“VERB” and “V” labels). These results showed that the HTR
model is able to correct the estimation in the higher layers by
progressively extrapolating the information from the previous
layers though the sub-task predictions are incorrect.

F. Skip Connections in HTR

Here, we consider the use of skip connections in the HTR
architecture. In particular, from Figure 7 we can see that the
improvement achieved by layer 4 is very small. The POS

0 50 100 150 200 250 300

0

1

e)
SP
⇒ PH
⇒ WD
⇒ POS
⇒ SRL

SIL

SIL

SIL

X

O

don't

O

O

ask

ARG0

ARG0

me

O

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

0 50 100 150 200 250 300

0

1

b)
SP
⇒ PH

SIL

SIL

SIL

aa

ow

don't

ae

ae

ask

iy

iy

me

iy

ix

to

axr

r

carry

n

n

an

ae

oy

oily

ae

ae

rag

ay

ay

like

ae

ae

that

SIL

SIL

SILSentence

Target
PH

Output
PH

0 50 100 150 200 250 300

0

1

c)
SP
⇒ PH
⇒ WD

OOV

SIL

SIL

don't

OOV

don't

ask

OOV

ask

me

OOV

me

year

OOV

to

carry

OOV

carry

an

OOV

an

oily

OOV

oily

OOV

rag

rag

like

OOV

like

that

OOV

that

me

SIL

SILSentence

largest

2nd
largest

0 50 100 150 200 250 300

0

1

d)
SP
⇒ PH
⇒ WD
⇒ POS

SIL

SIL

SIL

AUX

AUX

don't

VERB

VERB

ask

PRON

PRON

me

PRON

PART

to

VERB

VERB

carry

VERB

DET

an

ADJ

ADJ

oily

NOUN

NOUN

rag

SCONJ

SCONJ

like

DET

DET

that

SIL

SIL

SILSentence

Target
POS

Output
POS

a)
SP
1st comp.

other comp.

0 50 100 150 200 250 300

ARG0
ARG1
O
V
X
SIL

Fig. 4. An example of the prediction components by each layer of the
HTR model SP⇒PH⇒WD⇒POS⇒SRL (4 layers). Figure a) represents
the audio speech in the form of MFCC components. Figure b) represents the
output predictions of the architecture SP⇒PH. Figure c) represents the output
predictions of the architecture SP⇒PH⇒WD. Figure d) represents the output
predictions of the architecture SP⇒PH⇒WD⇒POS. Finally, Figure e) repre-
sents the output predictions of the architecture SP⇒PH⇒WD⇒POS⇒SRL.
Time-steps are represented in the x-axis while the output values of the neural
components are represented in the y-axis. Each component represents a class
and for each time-step the model predicts the class related to the component
with the maximum value.

information alone could be not enough to improve the error
on the SRL task. Then, we add skip connections from the



output of ESN 2 to the input of ESN 4 in order to carry the
WD information to the POS⇒SRL layer. In this way, we can
study if adding sub-tasks information can help the model to
improve the prediction. In the implementation of this solution,
the input of layer 4 is concatenated with the output of layer 2
in order to obtain the skip connection.

TABLE VI
THE ERRORS OBTAINED IN TEST SET BY HTR WITH SKIP CONNECTION

ON TASK SRL.

Models Test FER
SP⇒PH⇒WD⇒SRL 22.34(0.33)%
SP⇒PH⇒WD⇒POS⇒SRL 22.32(0.16)%
SP⇒PH⇒WDskip⇒POS⇒SRL 21.93(0.03)%

Table VI presents the results achieved by the HTR archi-
tecture with the use of the skip connection. Interestingly, the
use of skip connection obtains an improvement of 0.39 FER
points. It is worth mentioning that both POS information and
skip connection are crucial to improve the performance since
the architecture without the POS task (SP⇒PH⇒WD⇒SRL)
obtains a worse result.

G. Word Embedding in HTR

Here, we experimentally study the effect obtained by the use
of word embeddings (WE) in the HTR architecture instead of
using one-hot-encoding (WD). Moreover, in order to exploit
the WE information in the SRL task, as in the previous section,
we consider skip connections from the output of ESN 2 to the
input of ESN 4.

TABLE VII
THE ERRORS OBTAINED IN TEST SET BY HTR WITH WORD EMBEDDING

AND SKIP CONNECTION ON TASK SRL.

Models Test FER
SP⇒PH⇒WE⇒SRL 22.18(0.16)%
SP⇒PH⇒WE⇒POS⇒SRL 22.43(0.16)%
SP⇒PH⇒WEskip⇒POS⇒SRL 21.50(0.03)%

Table VII presents the results achieved by the model HTR
with the use of WE and skip connections. In this case, the use
of skip connections enables to obtain an improvement of 0.93
FER points. Overall, the use of WE and skip connections al-
lows us to achieve an improvement of 0.43 points w.r.t. the use
of WD and skip connection. Table IX (in Supp. Mat.) shows
the hyper-parameters selected in the random search for each
layer in the best HTR model SP⇒PH⇒WEskip⇒POS⇒SRL.

H. Qualitative analysis of Word Embedding in HRT

This section is described in Supplementary Material in
subsection VII-A.

I. Qualitative analysis of Word Embedding and skip connec-
tions in HRT

This section is described in Supplementary Material in
subsection VII-B.

VI. DISCUSSION

Inspiring from brain hierarchical organisation, both in terms
of spatial organisation (anatomy) and processes abstraction,
we propose a new reservoir architecture: the Hierarchical-Task
Reservoir (HTR). For this purpose, we introduced a novel
task for anytime semantic analysis from continuous speech
recognition extending the TIMIT corpus. The aim of this task
is to perform real-time classification (frame by frame) of the
semantic roles of the utterance in the input audio stream. The
HTR is composed of a hierarchy of layers in which each layer
is composed of an ESN that addresses a different task (i.e.
phone, word, POS and SRL) starting from the input of the
previous layer.

The qualitative experiments highlight that sub-tasks learned
to produce a progressively decreasing temporal frequency of
labels when going towards the top of the hierarchy. This fea-
ture can help the HTR to progressively develop a meaningful
level of abstraction of the input signal in order to improve the
performance of the whole task.

Another advantage that we exploited in HTR is the possi-
bility to directly combine a different kind of information from
different tasks by using skip connections between layers. In
particular, since we obtained a small improvement by adding
the POS layer in HTR, we considered also an architectural
variant with skip connection between the word layer and the
SRL layer in order to avoid a possible bottleneck due to the
POS layer. In this way, the SRL can be predicted starting
from the word in addition to the POS tag. The results show
that the use of skip connection significantly improves the
performance and outperforms also the HTR with 3 layers
(without POS layer). This highlights that the task hierarchy
and the skip connection are both important to develop and
provide a meaningful representation to improve the whole
semantic analysis task.

Moreover, we additionally considered the embedding word
representation in HTR in replacement of the use of one-hot-
encoding with OOV word. The qualitative analysis of the
prediction highlighted that the embedding layer allows the
architecture to improve the quality of the SRL prediction. In
particular, the quality of prediction is significantly enhanced
by the use of skip connection between the output of ESN 2
(with the word embedding) and the input of ESN 4 (with the
POS tagging).

The best HTR architecture (which combines both word
embedding and skip connection) obtained 21.50% error. This
is an interesting result considering the difficulty of the task
that we proposed (starting from MFCC inputs), the difficulty
of the TIMIT corpus (which contains a lot of variability due
to numerous speakers that provide only 10 sentences each,
and which contains complex sentences), and the imposed
online answers the architecture have to provide (usually SRL
is performed offline: the whole sentence is parsed before
answering). This latter point is particular because at a given
point in time (e.g. before the first verb is seen) the architecture
often does not have enough information to give the correct



answer (e.g. the first noun-phrase of the sentence could be
the agent (e.g. ARG0) or the recipient (e.g. ARG2) of the
sentence). Thus, this could be easily changed if one looked
for the best performance by permitting the architecture to wait
until the end of the sentence before answering: the semantic
roles classification would be enhanced by a good margin.

In order to experimentally assess the potential of the
proposed RC-based approach, we performed an experimen-
tal comparison with the LSTM model which represents a
typical RNN from the deep learning domain for continuous
speech recognition suitable for online computation. Overall,
the experimental results show that the proposed approach
is significantly performant and extremely efficient w.r.t. the
LSTM-based approach.

In general, the approaches introduced in this paper regarding
HTR are interesting also from the point of view of typical
deep learning models based on back-propagation. Indeed, the
learning of different kind of abstractions in the layers is a key
point in deep learning [24], [42]. Therefore, in future works
the hierarchical-task approach could be combined with back-
propagation, for instance by forcing different loss constraints
in different layers on the basis of a hierarchy of tasks [26].
Hopefully, this approach could enable back-propagation to use
less training data for comparable performance. Because, with
the same number of samples (i.e. sentences), the hierarchical-
task design provides more information to the internal represen-
tations. Moreover, the use of skip connections in deep RNN
can also help the back-propagation process allowing the model
to improve the performance [43], [44]. Therefore, the HTR
can be considered as a sort of baseline for the design and
the development of deep architectures based on a hierarchy of
tasks and skip connections.

One can observe that the HTR outputs dynamics decrease
in frequency across the layers, future work could try to
make a hierarchy of tasks without providing the intermediate
labels. Just by imposing a decreasing frequency constrain (i.e.
a slower speed) on the output representations across layers
without using intermediate labels. This idea is similar to
previous work related to RNNs [26], [45].

Overall, the HTR model and the anytime semantic analysis
task, introduced in this paper, are interesting tools for further
studies regarding language comprehension in neuroscience
approaches [46], [47] or for the implementation of a real-
time human-robot interaction (HRI) [14]–[16], [48]. In future
work, we will use this efficient HTR architecture in Human-
Robot Interaction (HRI) context. Indeed, the availability of
different levels of abstraction would provide more robust
speech processing for real-time and noisy HRI environments.

Regarding the neuroscience field, in future work, it would be
interesting to get more inspiration from neurobiological find-
ings on brain hierarchy: in primate brains there are feedforward
and feedback connections between brain areas of different
abstraction levels [20]. Indeed, the information does not only
go from sensory (i.e. less abstract) to more integrated areas
(i.e. more abstract), it also flows from more abstract to less
abstract areas. Thus, hierarchical models could be designed to

incorporate bottom-up processing (i.e. from sensory to more
abstract representations) and top-down processing (i.e. from
abstract to more sensory representations). In order to apply
this idea to the current HTR model, composed of feedforward
reservoirs, we could add backwards reservoirs (i.e. feedback
reservoirs)1. These backwards reservoirs would be trained
to predict a less abstract task (of the layer n − 1) given
a more abstract task (of the layer n). This would enable
these backwards reservoirs to predict and update low-level
representations based on more high-level representations. Most
importantly, this could enable to not only predict but also to
postdict [49] low-level outputs: this corresponds to predict the
past given current information, i.e. update previous beliefs or
perceptions. The integration of both prediction and postdiction
in an architecture reminds the ability of bi-LSTMs to use both
past and future input features [50]. Consequently, the output
representations may need to be updated in order to use a
kind of a-temporal representation of readouts: i.e. representing
outputs for t− n, t and t+ n for any time step n, instead of
just representing the current output at time step t.

The proposed HTR architecture is a promising first step
towards general hierarchical modeling of language compre-
hension and production starting from a speech signal. Further
works in this line of research could focus on the addition
of more abstract layers to perform tasks such as sentence
chunking/segmentation, Name Entity Recognition or Senti-
ment Analysis. Moreover, because the long-term goal of this
architecture is to model brain processes, thus is not limited to
speech or natural language processing, but sufficiently general
to be applied to a variety of tasks, such as gesture recognition
or sensorimotor learning.

In a nutshell, we proposed a new way of training the hierar-
chical reservoir architecture which is more effective compared
to the original training for our application: both quantitatively
and qualitatively (given the increased robustness of the outputs
obtained). In general, we could even argue that our approach
provides quantitative and qualitative advantages by exploiting
the hierarchical reservoir topology for applications that have an
intrinsic hierarchical latent structure. The qualitative advantage
is also provided by the interpretability of the results (e. g.
the output dynamics) in the intermediate layers. Moreover, as
we have shown, this HTR model can address the application
we used, but it is not limited to such applications. Indeed,
many applications that have latent representations that are hi-
erarchical/compositional can be represented with hierarchical
labels. In general, any application where one has to recognize
something which consists of smaller parts (the edges and
features of an object for vision for instance, and the same
for audio). This is true for any kind of “gesture” recognition;
gesture seen in a large sketch, for motor actions patterns or
audio patterns, where parts of a continuous sequence can be
chunked together to form a “gesture”. In many applications
these gestures are compositional, thus producing a hierarchy

1The word feedback could be misleading because already used in Reservoir
Computing terminology. Thus, we replace the word feedback by backwards
in the following discussion.



of chunks/gestures that could be represented at different levels
of abstraction. An obvious continuation of our approach to
future work is the application to musical data, where audio
inputs can be represented as note pitch, rhythm, chords,
harmony, etc. Even more generally, the HTR approach can
be used to modelize continuous and online applications based
on sequences by changing the frequencies of the labels in
each layer of the architecture. Similarly to the RC-HMM [8]
triphone approach for speech recognition (i.e. three HMM
states), we can consider a different label for each state of
the Markov chain. Therefore in the HTR approach, the higher
layers can be used to address fewer states in order to impose
a decrease in the frequency of the labels in the higher layers.
In this way, the HTR approach can provide the advantages
shown in this work on a general time-series application.

ACKNOWLEDGMENT

This work was founded by the Inria CORDI-S “Hurricane”
grant.

REFERENCES

[1] T. Mikolov et al. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

[2] J. Devlin et al. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

[3] B. J. Kröger et al. Towards a neurocomputational model of speech
production and perception. Speech Communication, 51(9):793–809,
2009.

[4] M. H. Christiansen and N. Chater. Creating language: Integrating
evolution, acquisition, and processing. MIT Press, 2016.

[5] T. Mikolov et al. Extensions of recurrent neural network language model.
In ICASSP 2011, pp. 5528–5531. IEEE, 2011.

[6] C. Chelba et al. One billion word benchmark for measuring progress in
statistical language modeling. CoRR, abs/1312.3005, 2013.

[7] A. Graves et al. Speech recognition with deep recurrent neural networks.
In IEEE ICASSP, pp. 6645–6649, 2013.

[8] F. Triefenbach et al. Phoneme recognition with large hierarchical
reservoirs. In NIPS, pp. 2307–2315, 2010.

[9] I. Sutskever et al. Sequence to sequence learning with neural networks.
In NIPS, pp. 3104–3112, 2014.

[10] D. Bahdanau et al. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[11] A. Kumar et al. Ask me anything: Dynamic memory networks for
natural language processing. CoRR, abs/1506.07285, 2015.

[12] M. Luong et al. Effective approaches to attention-based neural machine
translation. CoRR, abs/1508.04025, 2015.

[13] A. Vaswani et al. Attention is all you need. In NIPS, pp. 5998–6008,
2017.

[14] X. Hinaut et al. Exploring the acquisition and production of grammatical
constructions through human-robot interaction with echo state networks.
Frontiers in Neurorobotics, 8, 2014.

[15] J. Twiefel et al. Using Natural Language Feedback in a Neuro-inspired
Integrated Multimodal Robotic Architecture. In Proc. of RO-MAN, New
York City, USA, 2016.

[16] X. Hinaut and J. Twiefel. Teach your robot your language! trainable
neural parser for modelling human sentence processing: Examples for
15 languages. IEEE TCDS, 2019.

[17] F. Triefenbach et al. Acoustic modeling with hierarchical reser-
voirs. IEEE Transactions on Audio, Speech, and Language Processing,
21(11):2439–2450, November 2013.

[18] J. K. Chorowski et al. Attention-based models for speech recognition.
In NIPS, pp. 577–585, 2015.

[19] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing
in the primate cerebral cortex. In Cereb cortex. Citeseer, 1991.

[20] N. T. Markov and H. Kennedy. The importance of being hierarchical.
Current Opinion in Neurobiology, 23(2):187–194, April 2013.

[21] J. H. Kaas and T. A. Hackett. Subdivisions of auditory cortex and
processing streams in primates. Proceedings of the National Academy
of Sciences, 97(22):11793–11799, 2000.

[22] A. J. Kell et al. A task-optimized neural network replicates human audi-
tory behavior, predicts brain responses, and reveals a cortical processing
hierarchy. Neuron, 98(3):630–644, 2018.

[23] J. Schmidhuber. Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2):234–242,
1992.

[24] S. E. Hihi and Y. Bengio. Hierarchical recurrent neural networks for
long-term dependencies. In NIPS, pp. 493–499, 1995.

[25] M. Hermans and B. Schrauwen. Training and analysing deep recurrent
neural networks. In NIPS, pp. 190–198, 2013.

[26] Y. Yamashita and J. Tani. Emergence of functional hierarchy in a
multiple timescale neural network model: a humanoid robot experiment.
PLoS Comput Biol, 4(11):e1000220, 2008.

[27] C. Gallicchio et al. Deep reservoir computing: a critical experimental
analysis. Neurocomputing, 268:87–99, 2017.

[28] C. Gallicchio et al. Design of deep echo state networks. Neural
Networks, 108:33 – 47, 2018.

[29] D. Verstraeten et al. An experimental unification of reservoir computing
methods. Neural Networks, 20(3):391–403, 2007.

[30] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3):127–
149, 2009.

[31] J. Garofolo et al. Timit acoustic-phonetic continuous speech corpus.
Linguistic Data Consortium LDC93S1, 1993.

[32] L. Pedrelli and X. Hinaut. Hierarchical-Task Reservoir for Anytime POS
Tagging from Continuous Speech. In IJCNN 2020.

[33] H. Jaeger. The ”echo state” approach to analysing and training recurrent
neural networks. Technical Report 148, German National Research
Center for Information Technology GMD, Bonn, Germany, 2001.

[34] H. Jaeger et al. Optimization and applications of echo state networks
with leaky-integrator neurons. Neural Networks, 20(3):335–352, 2007.

[35] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science,
304(5667):78–80, 2004.

[36] C. Gallicchio. Chasing the echo state property. In ESANN, 2018.
[37] C. Gallicchio and A. Micheli. Echo state property of deep reservoir

computing networks. Cognitive Computation, 9(3):337–350, May 2017.
[38] P. Bojanowski et al. Enriching word vectors with subword information.

Transactions of the Association for Computational Linguistics, 5:135–
146, 2017.

[39] M. Honnibal et al. spaCy: Industrial-strength Natural Language Pro-
cessing in Python, 2020.

[40] M. Gardner et al. AllenNLP: A Deep Semantic Natural Language
Processing Platform. CoRR, abs/1803.07640, 2018.

[41] C. Gallicchio et al. Comparison between DeepESNs and gated RNNs
on multivariate time-series prediction. In ESANN 2019, pp. 619–624.
ESANN (i6doc. com), 2019.

[42] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In ECCV, pp. 818–833. Springer, 2014.

[43] R. K. Srivastava et al. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[44] K. He et al. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

[45] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for
long-term dependencies. In Advances in neural information processing
systems, pp. 493–499, 1996.

[46] X. Hinaut and P. Dominey. Real-time parallel processing of grammatical
structure in the fronto-striatal system: a recurrent network simulation
study using reservoir computing. PLoS ONE, 8(2):e52946, 2013.

[47] X. Hinaut. Which input abstraction is better for a robot syntax
acquisition model? phonemes, words or grammatical constructions? In
IEEE ICDL-EpiRob, September 2018.

[48] X. Hinaut and M. Spranger. Learning to parse grounded language using
reservoir computing. In IEEE ICDL-EpiRob, August 2019.

[49] A. Hanuschkin et al. A hebbian learning rule gives rise to mirror neurons
and links them to control theoretic inverse models. Frontiers in Neural
Circuits, 7, 2013.

[50] Z. Huang et al. Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991, 2015.



VII. SUPPLEMENTARY MATERIAL

A. Qualitative analysis of Word Embedding in HRT

In this section, we evaluate the quality of the prediction
by using the word embedding layer in HTR. Figure VII-A
shows the output prediction provided by the architecture
PS⇒PH⇒WE⇒POS⇒SRL. In this case (with the WE layer),

SP
⇒ PH
⇒ WE
⇒ POS
⇒ SRL

SIL

SIL

SIL

X

O

don't

O

O

ask

ARG0

ARG0

me

O

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

0 50 100 150 200 250 300

0

1

ARG0
ARG1
O
V
X
SIL

Fig. 5. Outputs of HTR with the use of word embedding. The Figure
shows the output values of the architecture PS⇒PH⇒WE⇒POS⇒SRL.

there is a slight improvement of the quality of prediction
w.r.t. to the use of the one-hot-encoding word layer (WD
layer). In particular, the prediction are more regular and
smooth w.r.t. the predictions of PS⇒PH⇒WD⇒POS⇒SRL
(see Figures VII-A and 4e). Moreover, the HTR with word
embedding presents a better certainty in some areas of the
prediction (for instance in the right part of Figure VII-A).

B. Qualitative analysis of Word Embedding and skip connec-
tions in HRT

In this section, we evaluate the quality of the prediction
combining word embedding and skip connection in HTR.
Figure 6 shows the output prediction provided by the archi-
tecture PS⇒PH⇒WEskip⇒POS⇒SRL. Interestingly, we can

ARG0
ARG1
O
V
X
SIL

SP
⇒ PH
⇒ WEskip
⇒ POS
⇒ SRL

SIL

SIL

SIL

X

O

don't

O

O

ask

ARG0

ARG0

me

O

O

to

V

V

carry

ARG1

ARG1

an

ARG1

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

0 50 100 150 200 250 300

0

1

Fig. 6. Outputs of HTR with the use of word embedding and
skip connection. The Figure shows the output values of the architecture
PS⇒PH⇒WEskip⇒POS⇒SRL.

see that with the use of skip connection the quality of predic-
tion is further improved. Indeed, the prediction components
are more separated meaning an improvement of certainly. For
instance, after some initial steps the predicted component is
very high while the other components are very near zero (see
Figure 6).

Table IX shows the hyper-parameters selected in the
random search for each layer in the best HTR model
SP⇒PH⇒WEskip⇒POS⇒SRL.

Algorithm 1 HTR Optimization

1: procedure OPTIMIZEHTR(i(1), NConfigs)
2: for l in 1, ..., NL do
3: θ(l) = initConfigs(NConfigs)
4: . initialize NConfigs

5: HTR(l) = bestModel(θ(l), l)
6: . model selection on task l
7: i(l+1) = output(HTR(l), i(l))
8: . output of layer l as input of layer l + 1

return HTR
9: . return the optimized HTR model

Hyper-parameter ranges
spectral radius ρ(l) logarithmic distribution in [0.1, 10]
input norm σ(l) logarithmic distribution in [0.1, 10]
leaky integrator a(l) uniform distribution in [0.1, 1]
ridge (regularization) λ(l) sampling in [100, 10−1, ..., 10−8]

TABLE VIII
RANGE OF HYPER-PARAMETERS VALUES USED IN THE RANDOM SEARCH

FOR THE MODEL SELECTION OF EACH HTR LAYER l.

Fig. 7. The errors achieved in Test set by HTR and HRC model increasing
the layers number. The standard deviations are represented by the vertical
ranges.

TABLE IX
THE HYPER-PARAMETERS SELECTED FOR EACH LAYER IN THE BEST HTR

MODEL SP⇒PH⇒WESKIP⇒POS⇒SRL.

H.p. l = 1 l = 2 l = 3 l = 4

ρ(l) 0.8616 1.1786 1.2298 1.4277

σ(l) 0.7210 8.8463 2.6722 8.0801

a(l) 0.2961 0.4663 0.6632 0.2265

λ(l) 6.56 · 10−3 4.59 · 10−5 1.49 · 10−5 8.23 · 10−7



a)
SP
1st comp.

other comp.

e)
SP
⇒ SRL
⇒ SRL
⇒ SRL
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

X

V

carry

X

ARG1

an

X

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

b)
SP
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

X

V

carry

X

ARG1

an

X

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

d)
SP
⇒ SRL
⇒ SRL
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

X

V

carry

X

ARG1

an

X

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

c)
SP
⇒ SRL
⇒ SRL

SIL

SIL

SIL

X

O

don't

X

O

ask

X

ARG0

me

X

O

to

X

V

carry

X

ARG1

an

X

ARG1

oily

ARG1

ARG1

rag

ARG1

ARG1

like

ARG1

ARG1

that

SIL

SIL

SILSentence

Target
SRL

Output
SRL

ARG0
ARG1
O
V
X
SIL

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0

1

0 50 100 150 200 250 300

0

1

0 50 100 150 200 250 300

0

1

0 50 100 150 200 250 300

0

1

Fig. 8. An example of the prediction components provided by the HRC
model with a number of layers that goes from 1 to 4. Figure a) represents
the audio speech in the form of MFCC components. Figure b) represents the
output predictions of the architecture SP⇒SRL (1 layer). Figure c) represents
the output predictions of the architecture SP⇒SRL⇒SRL (2 layers). Figure d)
represents the output predictions of the architecture SP⇒SRL⇒SRL⇒SRL
(3 layers). Finally, Figure e) represents the output predictions of the architec-
ture SP⇒SRL⇒SRL⇒SRL⇒SRL (4 layers). Time-steps are represented in
the x-axis while the output values of the neural components are represented
in the y-axis. Each component represents a class and for each time-step the
model predicts the class related to the component with the maximum value.


