

Consistent subgrid scale modeling for oceanic climate models

Florian Lemarié

▶ To cite this version:

Florian Lemarié. Consistent subgrid scale modeling for oceanic climate models. IMPT 2021 - Ecole d'automne 2021 - Institut des Mathématiques pour la Planète Terre - Impacts morphologiques du changement climatique, Nov 2021, Lyon, France. hal-03534071

HAL Id: hal-03534071 https://hal.inria.fr/hal-03534071

Submitted on 19 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Consistent subgrid scale modeling for oceanic climate models

Florian Lemarié – Inria (EPC Airsea), Laboratoire Jean Kuntzmann, Grenoble, France

In collaboration with: M. Perrot (LJK, UGA), G. Madec (LOCEAN, Paris 6), E. Blayo (LJK, UGA), E. Mémin (Inria Rennes)

Scales of motion and processes present in the ocean occur on a wide range of scales from global ($\mathcal{O}(10^7 \text{ m}, 10^{10} \text{ s})$) to micro ($\mathcal{O}(10^{-3} \text{ m}, 10^{-3} \text{ s})$) scales

Various important processes occur on scales that are too fine to be resolved

Processes smaller than the grid size must be homogenized (i.e. averaged)

 \Rightarrow subgrid models (a.k.a. "parameterizations")

Scales of motion and processes present in the ocean occur on a wide range of scales from global ($\mathcal{O}(10^7 \text{ m}, 10^{10} \text{ s})$) to micro ($\mathcal{O}(10^{-3} \text{ m}, 10^{-3} \text{ s})$) scales

Various important processes occur on scales that are too fine to be resolved

Processes smaller than the grid size must be homogenized (i.e. averaged)

 \Rightarrow subgrid models (a.k.a. "parameterizations")

Scales of motion and processes present in the ocean occur on a wide range of scales from global ($\mathcal{O}(10^7 \text{ m}, 10^{10} \text{ s})$) to micro ($\mathcal{O}(10^{-3} \text{ m}, 10^{-3} \text{ s})$) scales

Various important processes occur on scales that are too fine to be resolved

Processes smaller than the grid size must be homogenized (i.e. averaged)

 \Rightarrow subgrid models (a.k.a. "parameterizations")

A great variety of processes need to be parameterized:

- · Unresolved waves (e.g. breaking internal waves)
- Local turbulence (e.g. boundary layer turbulence)
- Mesoscale eddies
- Intermittent coherent structures (e.g. convective plumes)

Challenges :

- Appropriate choice of an averaging operator to separate the resolved and unresolved scales
- ▷ Variety of processes → structurally different subgrid models (diffusive/viscous term, advective term, drag, etc.)

FIG. 2. Instantaneous energy transfer from mean flow to waves $(10^{-6}\,W\,m^{-3})$ at 300 m depth in a high-resolution model of the North Atlantic Ocean. The position of the section shown in Fig. 3 at

Energy transfers from the thousand of kilometers scales, to the centimeters scales

In the case of the oceanic turbulence

- 1. From the large-scale currents to the mesoscale eddies. The large-scale oceanic currents are unstable which generate eddies with scales of 10 to 100 kilometers (the mesoscales).
- 2. The mesoscale eddies then interact and generate submesoscale turbulent filaments on scales from 10 kilometers to 100 meters.
- 3. Only at scales below approximately 10 meters, the turbulence becomes three-dimensional and it is described as stratified microscale turbulence

 \Rightarrow discretizing fluid equations without further approximations and parameterizations would require computers about 10^{10} times faster and bigger in storage than present supercomputers

(Fox-Kemper et al., 2014)

Content

- 1. Averaged oceanic primitive equations
- 2. Standard turbulent boundary layer closures
- 3. Coupling two turbulent Ekman boundary layers
- 4. Multi-fluid representation of oceanic convection

Averaged oceanic primitive equations

Un-averaged oceanic primitive equations

Energy consistent seawater Boussinesq system (e.g. Young, 2010)

In Cartesian geopotential coordinate

$$\partial_{t}\mathbf{v} + 2\mathbf{\Omega} \times \mathbf{u} + \nabla \cdot (\mathbf{u} \otimes \mathbf{v}) = -\frac{1}{\rho_{0}} \nabla p - \frac{\rho}{\rho_{0}} \mathbf{g}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_{t}\varphi + \nabla \cdot (\mathbf{u}\varphi) = F_{\varphi}, \qquad (\varphi = \Theta, S_{A})$$

$$\rho = \rho_{\text{eos}}(\Theta, S_{A}, p_{0}(z))$$

$$\mathbf{u} = (u, v, w)^{T}$$

$$\mathbf{v} = (u, v, 0)^{T}$$

$$\mathbf{\Omega} = (0, 0, f/2)^{T} \text{ shallow ocean traditional assumption}$$

$$p = p_{h} + \rho_{0}g\eta$$

$$\mathbf{g} = (0, 0, g) \text{ spherical geoid assumption}$$

Common approximations:

- Geometrical assumptions (spherical geoid approximation, traditional shallow-ocean approximation)
- Dynamical assumptions (Hydrostatic and Boussinesq assumptions)

Which filter is adequate to construct the coarse-grained equations ?

Scale separation operator ${\cal S}$ to obtain the following decomposition for any variable φ

$$\begin{array}{lll} \varphi & = & \overline{\varphi} + \varphi' \\ \overline{\varphi} & = & \mathcal{S}(\varphi) & (\text{resolved part}) \\ \varphi' & = & (\text{Id} - \mathcal{S})(\varphi) & (\text{unresolved part}) \end{array}$$

The scale separation operator should be chosen

- to reduce the complexity of the problem (limit the number of degrees of freedom)
- such that the averaged equations keep the same form as the un-averaged equations

Example of the continuity equation:

$$abla \cdot \overline{\mathbf{u}} = -\mathcal{S}(
abla \cdot \mathbf{u}')$$

Scale separation operator must commute with differential operators otherwise the resolved field is no longer incompressible

Which filter $S(\varphi)$ is adequate to construct the coarse-grained equations ?

• Ensemble average (statistical description of the flow)

$$S_E(\varphi) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \varphi_n(\mathbf{x}, t)$$

Low-pass filter

$$\mathcal{S}_F(\varphi) = \sum_{|\mathbf{k}| \le k_e} F(\varphi) e^{i\mathbf{k} \cdot \mathbf{x}}$$

• Space averaging (B(x, r): ball of center x and radius r)

$$\mathcal{S}_B(\varphi) = \frac{1}{|B|} \int_{B(x,r)} \varphi(y,z,t) dy$$

Time averaging

$$\mathcal{S}_T(\varphi) = \frac{1}{T} \int_{t-T}^t \varphi(\mathbf{x}, \tau) d\tau$$

Space-Time averaging

$$\mathcal{S}_T \circ \mathcal{S}_B(\varphi) = \frac{1}{T} \int_{t-T}^t \mathcal{S}_B(\varphi) d\tau$$

Filter properties

	\mathcal{S}_E	\mathcal{S}_F	\mathcal{S}_B	\mathcal{S}_T	$\mathcal{S}_T \circ \mathcal{S}_B$
Linearity $S(u+v) = S(u) + S(v)$	Х	Х	Х	Х	Х
Derivatives and averages commute	X	Х	Х	Х	Х
Double averages $\mathcal{S} \circ \mathcal{S}(u) = \mathcal{S}(u)$	Х	Х			
Product average $S(vS(u)) = S(v)S(u)$	X				

Only the ensemble averaging satisfies all properties

Link with observations and experiments: turbulence is assumed ergodic

 \Rightarrow The ergodic theorem of probability theory (Neveu[1967]) says that, under certain conditions, statistical means can be replaced by time averages or spatial averages in the case of multidimensional processes.

Averaging of nonlinear dynamics

Any physical variable designated by φ can be decomposed in ensemble mean and fluctuating components (**Reynolds decomposition**)

$$\varphi = \overline{\varphi} + \varphi', \qquad \qquad \overline{\varphi'} = 0$$

For any physical variable designated by φ

$$\partial_t \varphi + \nabla \cdot (\mathbf{u}_h \varphi) + \partial_z (w\varphi) = F_{\varphi}$$

Apply the decomposition and use properties of ensemble averaging

$$\partial_t \overline{\varphi} + \nabla \cdot (\overline{\mathbf{u}}_h \overline{\varphi}) + \partial_z (\overline{w} \ \overline{\varphi}) = \overline{F}_{\varphi} - \nabla \cdot (\overline{\mathbf{u}'_h \varphi'}) - \partial_z \overline{w' \varphi'}$$

- Subgrid-scale parameterization problem = find a closed expression for $\overline{\mathbf{u}'_h \varphi'}$ and $\overline{w' \varphi'}$ in terms of the known resolved-scale variables
- Because of the stratification, in many oceanic turbulent problems, the dominant term is the vertical eddy transport

Averaging of nonlinear EOS

For practical reasons a constraint is to treat the averaged variables in the same way as the un-averaged variables

Averaged equations traditionally use the hydrostatic assumption

$$\partial_z \overline{p}_h = -g \rho_{
m eos} \left(\overline{\Theta}, \overline{S}, p_0(z)\right)$$

but it can not be obtained from the average operation

$$\partial_{z}\overline{p}_{h} = -g\overline{\rho_{\text{eos}}\left(\overline{\Theta} + \Theta', \overline{S} + S', p_{0}(z)\right)} \approx -g\rho_{\text{eos}}\left(\overline{\Theta}, \overline{S}, p_{0}(z)\right) - g\left[\left(\partial_{S}^{2}\rho\right)\frac{\overline{(S')^{2}}}{2} + \left(\partial_{\Theta S}\rho\right)\overline{S'\Theta'} + \left(\partial_{\Theta}^{2}\rho\right)\frac{\overline{(\Theta')^{2}}}{2}\right] + \dots$$

Subgrid scale variability of S and Θ neglected in hydrostatic balance

Averaged primitive equations

$$\partial_{t}\overline{\mathbf{v}} + 2\mathbf{\Omega} \times \overline{\mathbf{u}} + \nabla \cdot (\overline{\mathbf{u}} \otimes \overline{\mathbf{v}}) = -\frac{1}{\rho_{0}} \nabla \overline{p} - \frac{\overline{\rho}}{\rho_{0}} \mathbf{g} - \nabla \cdot (\overline{\mathbf{v}'\varphi'}) - \partial_{z}(\overline{w'\mathbf{v}'})$$

$$\nabla \cdot \overline{\mathbf{u}} = 0$$

$$\partial_{t}\overline{\varphi} + \nabla \cdot (\overline{\mathbf{u}}\overline{\varphi}) = \overline{F}_{\varphi} - \nabla \cdot (\overline{\mathbf{v}'\varphi'}) - \partial_{z}(\overline{w'\varphi'}), \qquad (\varphi = \Theta, S_{A})$$

$$\overline{\rho} = \rho_{\text{eos}}(\overline{\Theta}, \overline{S_{A}}, p_{0}(z))$$

Notion of physics-dynamics coupling

- Resolved fluid dynamics component = the dynamical core or simply "dynamics"
- · Parameterizations that represent the unresolved and under-resolved processes = "physics"

Traditionally the 2 components are discretized mostly independently of each other (compartmentalization of the model codes)

Recent effort to address physics-dynamics coupling issues (Gross et al., 2018)

Energetic considerations

Solid arrows: explicitly resolved energy transfers Dashed arrows: parameterized transfers

GM = adiabatic, potential-energy diminishing eddy transport scheme

Energetic considerations

Parameterizations are linked in an energetically consistent way

Eden (2016) "Closing the energy cycle in an ocean model", Ocean Modelling

- Energetic considerations
- Convergence in time and space (scale-awareness)
 - Statistical assumptions of some parameterizations are satisfied only in specific range of scales
 - "Grey zone": resolution threshold where a process that was completely unresolved at larger scales becomes partially resolved

- Energetic considerations
- · Convergence in time and space (scale-awareness)
- · Compatibility with the laws of physics

- → Compatibility of the model formulation with the second law of thermodynamics: positive definiteness of the entropy production specifies the direction of the subgrid fluxes, but not their amount (this is the task of the physics parameterizations)
- → Realizability conditions on Reynolds stress tensor

- Energetic considerations
- Convergence in time and space (scale-awareness)
- Compatibility with the laws of physics
- The whole problem must be well-posed

Alternatives to Reynolds averaging

• LANS – α model (Holm et al., 2005): extension of the Leray regularization of the NS equations

$$\partial_{t} \mathbf{u}_{h} + \widetilde{\mathbf{u}}_{h} \cdot \nabla \mathbf{u}_{h} + \widetilde{w} \partial_{z} \mathbf{u}_{h} + (\nabla \widetilde{\mathbf{u}}_{h})^{T} \cdot \mathbf{u}_{h} = -f \mathbf{e}_{z} \times \widetilde{\mathbf{u}}_{h} - \frac{1}{\rho_{0}} \nabla p + \mathbf{F}$$

$$\partial_{z} p = -\rho g$$

$$\nabla \cdot \widetilde{\mathbf{u}}_{h} + \partial_{z} \widetilde{w} = 0$$

$$\mathbf{u}_{h} = \left(1 - \alpha^{2} (\nabla^{2} + \partial_{z}^{2})\right) \widetilde{\mathbf{u}}_{h} \qquad (\widetilde{\mathbf{u}}_{h} = G_{\alpha} * \mathbf{u}_{h})$$

- converges toward NS when $\alpha \to 0$
- α = effective cutoff scale
- $\widetilde{\mathbf{u}}_h$ is smoother than \mathbf{u}_h
- α parameter controls the strength of smoothing in a Helmholtz inversion operator

Attempt to parameterize the effects of mesoscale eddies but requires closure schemes for other processes (e.g. vertical mixing parameterizations)

Globally averaged horizontal kinetic energy (Hecht et al., 2008)

Alternatives to Reynolds averaging

• Fluid flow dynamics under location uncertainty (Memin, 2014)

Deterministic transport: $d\mathbf{X}_t = \mathbf{u}dt$

$$D_t\varphi := \partial_t\varphi + \mathbf{u} \cdot \nabla\varphi = 0$$

Stochastic transport: $d\mathbf{X}_t = \mathbf{u}dt + \boldsymbol{\sigma}d\mathbf{B}_t$ $(\mathbf{a}(\mathbf{x},t) = \boldsymbol{\sigma}\boldsymbol{\sigma}^T(\mathbf{x},t)),$ $\boldsymbol{\sigma}$: noise diffusion tensor $\mathbf{X}_t = \mathbf{X}_0 + \underbrace{\int_0^t \mathbf{u}(\mathbf{X}_s,s)ds}_{\text{slow}} + \underbrace{\int_0^t \boldsymbol{\sigma}(\mathbf{X}_s,s)d\mathbf{B}_s}_{\text{fast (Brownian)}}$ Itô integral $\mathbb{D}_t \varphi := d_t \varphi + (\mathbf{u} - \underbrace{\frac{1}{2}\nabla \cdot \mathbf{a}}_{\text{Spatial inhomogeneity}}) \cdot \nabla \varphi dt + \underbrace{\boldsymbol{\sigma}d\mathbf{B}_t \cdot \nabla \varphi}_{\text{backscattering}} - \underbrace{\frac{1}{2}\nabla \cdot (\mathbf{a}\nabla \varphi)}_{\text{turbulent diffusion}} dt = 0$

requires a smoothing operator in space for practical implementations

Standard turbulent boundary layer closures

Turbulence closure problem (vertical eddy transport)

Most operationally used closures employ the concept of the downgradient turbulent transport

 $\overline{w'u'} = -\underline{K_m}\partial_z \overline{u}, \qquad \overline{w'v'} = -\underline{K_m}\partial_z \overline{v}, \qquad \overline{w'\Theta'} = -\underline{K_h}\partial_z \overline{\Theta}$

• K_m and K_h are the unknowns to be determined from the turbulence closure theory.

 $K_m, K_h \propto u' \; l'$

- u': typical magnitude of the eddy velocity
- l': typical length scale of the eddies (the mixing length)
- ▷ Use turbulent KE $E_K = \frac{1}{2} \left(\overline{u'u'} + \overline{v'v'} + \overline{w'w'} \right)$ to quantity the intensity of turbulence

 $u' \sim \sqrt{E_K}$

 \triangleright Geophysical approximations to derive an evolution equation for E_K

$$\begin{array}{ll} (\partial_{z}\mathbf{u},\partial_{z}\Theta) & \gg & (\partial_{x,y}\mathbf{u},\partial_{x,y}\Theta) \\ \partial_{z}(\overline{w'\mathbf{u}'},\overline{w'\Theta'}) & \gg & \overline{w}\partial_{z}(\mathbf{u},\Theta) \end{array}$$
(horizontal homogeneity)

Moment-based approach

Subgrid-scale boundary-layer turbulence

$$\frac{1}{n} \left(\partial_t \overline{(\varphi')^n} + \overline{\mathbf{u}}_h \cdot \nabla \overline{(\varphi')^n} + \overline{w} \partial_z \overline{(\varphi')^n} \right) + \overline{\mathbf{u}'_h(\varphi')^{n-1}} \cdot \nabla \overline{\varphi} + \overline{w'(\varphi')^{n-1}} \partial_z \overline{\varphi} \\
= -\frac{1}{n} \left(\nabla \cdot \overline{\mathbf{u}'_h(\varphi')^n} + \partial_z \overline{w'(\varphi')^n} \right) + \overline{(\varphi')^{n-1}} \left(\nabla \cdot \overline{\mathbf{u}'_h\varphi'} + \partial_z \overline{w'\varphi'} \right) + \overline{(\varphi')^{n-1}F'_{\varphi}}$$

From geophysical approximations the following prognostic equation for E_K is obtained:

$$\partial_t E_K + \partial_z \underbrace{\left(\overline{w'E_K} + \frac{1}{\rho_0}\overline{w'p'} - \nu\nabla E_K\right)}_{-K_e \partial_z E_K} = \underbrace{-\overline{w'\mathbf{u}'_h} \cdot \partial_z \overline{\mathbf{u}}_h}_{\text{Shear production}} + \underbrace{\frac{g}{\rho_0}\overline{w'\rho'}}_{\text{buoyancy}} - \underbrace{\frac{\nu}{2} \|\nabla \mathbf{u}'\|^2}_{\text{dissipation } \epsilon}$$

- $\rightarrow \varepsilon$: ultimate dissipation of KE of all motions
 - Kolmogorov (1941) : $\varepsilon = E_K^{3/2}/l'$
 - Evolution equation for ε (k- ε closure scheme)

Alternative approach (KPP scheme, Large et al., 1994)

Subgrid-scale boundary-layer turbulence

Parameterization formulated as a decision tree

 $K_{m,h}(z) = w_{m,h} \left(\frac{h_{\rm bl}}{G(z/h_{\rm bl})} \right), \qquad \qquad w_{m,h} = \kappa \ u_{\star} \ \psi_{m,h}(z, u_{\star}, \partial_z \Theta)$

• $h_{\rm bl}$: extent of the boundary layer determined from Richardson number

$$\operatorname{Ri} = \frac{(g/\rho_0)\partial_z \rho}{\|\partial_z \mathbf{u}_h\|^2}$$

- G: "universal" non-dimensional shape function
- u_{\star} : friction velocity determined from surface boundary condition
- $\psi_{m,h}$: "stability" functions

Surface boundary conditions for $\overline{w' \mathbf{u}'_h}$ and $\overline{w' \Theta'}$ terms

Monin-Obukhov similarity theory

- Neutrally-stratified atmosphere \rightarrow "logarithmic boundary layer"
- · During stratification conditions profiles significantly deviate from the logarithmic law

Monin-Obukhov theory : basis to derive turbulent quantities in the surface layer from the mean variables

 \rightarrow Generalization of the classical logarithmic boundary layer to stratified conditions

$$\begin{aligned} -\overline{w'\mathbf{u}_{h\,\mathrm{sfc}}} &= C_D \|\overline{\mathbf{u}_h^{\mathrm{a}}}(z=\delta_{\mathrm{sl}}) - \overline{\mathbf{u}_h}(z=\eta)\| \left(\overline{\mathbf{u}_h^{\mathrm{a}}}(z=\delta_{\mathrm{cls}}) - \overline{\mathbf{u}_h}(z=\eta)\right) \\ -\overline{w'\Theta'}_{\mathrm{sfc}} &= u_\star\Theta_\star = C_H \|\overline{\mathbf{u}_h^{\mathrm{a}}}(z=\delta_{\mathrm{sl}}) - \overline{\mathbf{u}_h}(z=\eta)\| \left(\overline{\Theta}^{\mathrm{a}}(z=\delta_{\mathrm{sl}}) - \overline{\Theta}(z=u_\star^2) - \overline{\Theta}(z=u_\star^2)\right) \\ &= u_\star^2 = \|\overline{w'\mathbf{u}_{h\,\mathrm{sfc}}}\| \end{aligned}$$

 C_D and C_H are solution of a nonlinear system (bulk algorithm)

 η)

Examples of unsteady boundary layer models

KPP model (unstratified case)

$$\begin{split} \frac{K_m(z) &= \kappa u_\star h_{\rm bl} G(z/h_{\rm bl}) + \nu_m \\ h_{\rm bl} &= c \, u_\star / f \\ u_\star^2 &= \|K_m \partial_z \mathbf{u}_h(0,t)\| \\ {}_{\rm bl} G(z/h_{\rm bl}) &= z \left(1 - \frac{z}{h_{\rm bl}}\right)^2 \times H\left(1 - \frac{z}{h_{\rm bl}}\right) \end{split}$$

Examples of unsteady boundary layer models

TKE model (unstratified case) + appropriate mixing length model to specify l(z)

$$\begin{split} & \boldsymbol{K_m}(z) &= c_m l \sqrt{E_K} + \nu_m \\ & \partial_t E_K &= K_m \|\partial_z \mathbf{u}_h\|^2 + \partial_z \left(c_e K_m \partial_z E_K \right) - \frac{c_e E_K^{3/2}}{l} \\ & E_K(z=0,t) &= \frac{u_\star^2}{\sqrt{c_m c_\varepsilon}} \\ & E_K(z,t=0) &= E_K^0(z) \end{split}$$

F. Lemarié – Subgrid closures for ocean models

Examples of unsteady boundary layer models

Stationary TKE model (unstratified case) + appropriate mixing length model to specify l(z)

$$K_{\boldsymbol{m}}(z) = eta \ l^2(z) \|\partial_z \mathbf{u}_h\| +
u_m, \qquad eta = c_m \sqrt{rac{c_m}{c_\epsilon}}$$

Mathematical stability of closure models

• An example : analogy with a local Ri-dependent model

 $\partial_t \phi = \partial_z \left(K(z) \partial_z \phi \right), \qquad K(z) = \left(\partial_z \phi \right)^{-2}$

 $\triangleright \ \frac{K(z) > 0 \ \rightarrow \ \phi}{$ $ $ $ original equation can be reexpressed as } }$

$$\partial_t \left(\partial_z \phi \right) = \partial_z \left(\widetilde{K}(z) \partial_z \left(\partial_z \phi \right) \right), \qquad \widetilde{K}(z) = -(\partial_z \phi)^{-2}$$

 \rightarrow the gradient can grow unbounded

• Numerical test :
$$\phi(z, t = 0) = z$$
, $\phi(z = -1, t) = -1$, $\phi(z = 1, t) = 1$

Mathematical stability of closure models

• An example : analogy with a local Ri-dependent model

 $\partial_t \phi = \partial_z \left(\frac{K(z)}{\partial_z \phi} \right), \qquad \frac{K(z)}{\partial_z \phi} = \left(\partial_z \phi \right)^{-2}$

▷ $K(z) > 0 \rightarrow \phi$ remains bounded ▷ Original equation can be reexpressed as

$$\partial_t \left(\partial_z \phi \right) = \partial_z \left(\widetilde{K}(z) \partial_z \left(\partial_z \phi \right) \right), \qquad \widetilde{K}(z) = -(\partial_z \phi)^{-2}$$

 \rightarrow the gradient can grow unbounded

- Ill-behaved solution due to the continuous formulation of the closure model and not to the details of its numerical discretisation
 - ightarrow 0-equation closures are hard to study since it can change the diffusive nature of the equation
- More generally, spurious oscillations generally noticed are of a mathematical or a numerical nature ?

Energetic consistency - mixing terms vs turbulent closure

$$\begin{array}{rcl} \partial_t u - \partial_z \left(K_m \partial_z u \right) &=& 0 \\ \partial_t b - \partial_z \left(K_s \partial_z b \right) &=& 0 \end{array} \xrightarrow{} & \begin{array}{rcl} \partial_t \mathbf{KE} - \partial_z \left(K_m \partial_z \mathbf{KE} \right) &=& -K_m \left(\partial_z u \right)^2 &=& -\mathbf{F} \\ \partial_t \mathbf{PE} - \partial_z \left(\left(-z \right) K_s \partial_z b \right) &=& K_s \quad \partial_z b &=& -\mathbf{F} \end{array}$$

 $\partial_t \text{TKE} - \partial_z \left(K_e \partial_z \text{TKE} \right) = P + B - \varepsilon$

Energy budget in a water column (ignoring the contribution of B.C.) :

$$E = \int_{z_{\text{bot}}}^{z_{\text{top}}} (\text{KE} + \text{PE} + \text{TKE}) dz \qquad \rightarrow \qquad \partial_t E = -\int_{z_{\text{bot}}}^{z_{\text{top}}} \varepsilon dz$$

 The discrete counterpart of it tells you unambiguously how to discretize forcing terms in the TKE equation

Burchard H. (2002). Energy-conserving discretisation of turbulent shear and buoyancy production. Ocean Modelling

Coupling two turbulent Ekman boundary layers

Classical Ekman boundary layer equations

Ekman boundary layer theory's three-term balance equation for horizontal momentum

$$f\mathbf{e}_z \times (\mathbf{u}_h - \mathbf{u}_G) + \partial_z \overline{w'\mathbf{u}'_h} = 0$$

See Klein (2004) for a rigorous multiple scales derivation from the 3D compressible equations

Well posedness with KPP viscosities

$$\begin{split} \mathbf{z}_{\infty}^{\mathbf{a}} & \mathbf{u}_{h}^{\mathbf{a}} = \mathbf{u}_{G}^{\mathbf{a}} \\ f\mathbf{e}_{z} \times (\mathbf{u}_{h}^{\mathbf{a}} - \mathbf{u}_{G}^{\mathbf{a}}) = \partial_{z} \left(K_{m}^{\mathbf{a}}(z, \boldsymbol{u}_{*}) \partial_{z} \mathbf{u}_{h}^{\mathbf{a}} \right) \\ \delta^{\mathbf{a}} & \bullet \\ \delta^{\mathbf{a}} \\ \delta^{\mathbf{a}} & \mathbf{u}_{k}^{\mathbf{a}} \partial_{z} \mathbf{u}_{h}^{\mathbf{a}} (\delta^{\mathbf{a}}) = \boldsymbol{u}_{s}^{2} \frac{\delta \mathbf{u}}{\|\delta \mathbf{u}\|} \\ & \mathbf{u}_{s}^{2} = C_{D} \|\mathbf{u}_{h}^{\mathbf{a}} (\delta^{\mathbf{a}}) - \mathbf{u}_{h}^{\mathbf{a}} (\delta^{\mathbf{o}})\|^{2} = C_{D} \|\delta \mathbf{u}\|^{2} \\ & \bullet \\ & \bullet \\ & \bullet \\ \mathbf{u}_{s}^{\mathbf{a}} - \mathbf{u}_{G}^{\mathbf{a}} \mathbf{u}_{h}^{\mathbf{a}} (\delta^{\mathbf{a}}) = \boldsymbol{u}_{s}^{2} \frac{\delta \mathbf{u}}{\|\delta \mathbf{u}\|} \\ & f\mathbf{e}_{z} \times (\mathbf{u}_{h}^{\mathbf{o}} - \mathbf{u}_{G}^{\mathbf{o}}) = \partial_{z} \left(K_{m}^{\mathbf{o}}(z, \boldsymbol{u}_{*}) \partial_{z} \mathbf{u}_{h}^{\mathbf{o}} \right) \\ & \mathbf{z}_{\infty}^{\mathbf{o}} \\ & \bullet \\ & \mathbf{u}_{h}^{\mathbf{o}} = \mathbf{u}_{G}^{\mathbf{o}} \end{split}$$

Under the assumption that $\delta_{\alpha} \leq h_{\rm bl}^{\alpha} \leq z_{\infty}^{\alpha}$, $(\alpha = {\rm a, o})$ there is a unique solution to the problem (Thery, 2021, PhD; in coll. with V. Martin)

Multi-fluid representation of oceanic convection

Work undertaken as part of the AAP "Changement climatique, Défis environnementaux et Mathématiques"

Beyond the downgradient flux assumption

In convective conditions, turbulent fluxes are dominated by processes unrelated to local gradients (strong fluxes exist even when $\partial_z \overline{\Theta} = 0$)

Usual approaches :

- · Increase vertical diffusion to 'mix' unstable density profiles
- Mass flux convection scheme

$$\overline{w'\Theta'}_{\text{non-local}} = M(\Theta_p - \overline{\Theta}), \qquad M = \underbrace{a_p}_{w_p} \underbrace{w_p}_{w_p}$$

Mass-flux scheme = ODEs on a_p , w_p , Θ_p controlled by entrainment/detrainment rates (e.g. Giordani et al., 2020)

Limitations of typical mass flux convection schemes

- · The plume equations are often not consistent with the equations used in the dynamical core
- Based on the assumption that $a_p \ll 1$, (what to do when $\Delta x \sim L_{conv}$?)
- Stationarity and horizontal homogeneity (no dynamical memory, no horizontal propagation)

Objectives:

- Re-derive rigorously mass flux scheme from a multi-fluid approach (Yano 2014; Thuburn et al., 2018)
- Apply the modelling under location uncertainty approach to represent uncertainties
- Use LES simulations (Croco ocean model) to "tune" the parameterization

Conclusion

Some basic principles to approach to the parameterization problem in a consistent manner

- Energetic considerations
- Convergence in time and space (scale-awareness)
- · Compatibility with the laws of physics
- The whole problem must be well-posed

Remarks

- ▷ Moment-based approach is extensively used to represent local turbulence
- ▷ Representing intermittent coherent structures is an important challenge for ocean climate models
- Much needed efforts for "deconstructing" a particular parameterization formulation to list the approximations made during its design
- Close link between subgrid-scale parameterization and numerical algorithm (physics/dynamics coupling)
- ▷ Going beyond the Reynolds decomposition ? Alternative clear guiding principle to pursue ?

References

- Gross M., Wan H., Rasch P., Caldwell P., Williamson D., Klocke D., Jablonowski C., Thatcher D., Wood N., Cullen M., Beare B., Willett M., Lemarié F., Blayo E., Malardel S., Termonia P., Gassmann A., Lauritzen P., Johansen H., Zarzycki C., Sakaguchi K. & R. Leung, 2018: *Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress*, Monthly Weather Review, 146(11), 3505-3544
- Klein R., 2004: Multiple Scales Asymptotics for Atmospheric Flows, 4th European Conference on Mathematics, Stockholm, Sweden
- Lauritzen, P., N. Kevlahan, A. Adcroft, A. Donahue, T. Dubos, C. Eldred, A. Gassmann, B. Harrop, A. Herrington, C. Jablonowski, H. Johansen, W. Large, V. Larson, F. Lemarié, D. Randall, P. Rasch, B. Shipway, R. Tailleux, H. Wan, 2021: *Reconciling and improving formulations for thermodynamics and conservation principles in Earth system models*. In preparation for J. adv. model. earth syst.
- Thuburn J., H. Weller, G. Vallis, R. Beare & M. Whitall, 2018: A framework for convection and boundary layer parameterization derived from conditional filtering. Journal of the Atmospheric Sciences, 75(3), 965-981.
- Pelletier C., F. Lemarié, E. Blayo, M.-N. Bouin and J.-L. Redelsperger, 2021: Two-sided turbulent surface layer parameterizations for computing air-sea fluxes. Quart. J. Roy. Meteorol. Soc.
- Thery, S. 2021: Etude numérique des algorithmes de couplage océan-atmosphère avec prise en compte des paramétrisations physiques des couches limites. Université Grenoble Alpes