
Abstract

The Internet Engineering Task Force (IETF) and its Lightweight Authenticated
Key Exchange working group have produced a solution that enables public-key
based authenticated key exchange over the most constrained Internet of Things
radio communication technologies. We describe the Ephemeral Diffie-Hellman
over COSE (EDHOC) protocol, its expected security properties, and invite the
community for a formal study.
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Introduction

Low-power radio communication technologies like 6TiSCH [1], LoRAWAN [2] or
NB-IoT enable multi-year lifetime of Internet-of-Things (IoT) devices even when
they are powered with off-the-shelf batteries. They also present inherent com-
munication challenges: bandwidth is scarce and can be as low as byte / second;
communication may be intermittent and prone to several-second delays; maxi-
mum transmission units are on the order of 50 bytes. Devices that support these
networks are typically equipped with micro-controllers running at 10’s of MHz,
with 10’s of kB of Random Access Memory (RAM) and several hundred kB of
code memory. They have some level of hardware acceleration of cryptographic
algorithms: AES acceleration is commonly present, acceleration of operations
and algorithms over different elliptic curves (e.g. NIST P-256, Curve25519),
and hash functions (e.g. SHA-256) is becoming increasingly present in new chip
designs.

The Internet community has focused during this past decade on enabling
these IoT devices and networks to run Internet Protocol (IP)-based communi-
cation stacks. The Internet Engineering Task Force (IETF) first standardized
an IPv6 compression layer called 6LoWPAN in 2007, followed by the standard-
ization of new protocols that are adapted for low-power networks. The Con-
strained Application Protocol (CoAP) was published in 2014 as the specialized
web transfer protocol. Its security extension, Object Security for Constrained
RESTful Environments (OSCORE) requires an efficient key exchange protocol.

The IETF formed the Lightweight Authenticated Key Exchange (LAKE)
working group in 2019; it collected requirements and started working on a solu-
tion. A deliverable of the standardization effort, the Ephemeral Diffie-Hellman
over COSE (EDHOC) protocol, is expected to become an important component
in securing constrained networks and devices of the Internet of Things (IoT).
EDHOC will be submitted for publication as an Internet Standard (RFC) in
2022. The working group solicits formal analysis of the latest version of the
protocol [3] by the community to incorporate feedback before it is submitted
for publication. The goal of this document is to summarize the relevant aspects
of the protocol to facilitate formal analysis.

Motivation and Use Cases

EDHOC is designed to enable public-key based authenticated key exchange of
two peers potentially running on constrained devices over low-power IoT ra-
dio communication technologies. The keys derived by EDHOC can be used to
protect the applications, which includes the protection of data through authen-
ticated encryption. One example application is the OSCORE protocol stan-
dardized in RFC8613 [4]. The three main use cases considered by the working
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group for EDHOC are (1) IETF 6TiSCH, multihop mesh networking technol-
ogy; (2) LoRaWAN, low-power wide area technology; (3) NB-IoT, low-power
cellular technology. To illustrate the challenge of performing authenticated key
exchange over these technologies, consider that a typical LoRaWAN packet is
51 bytes long and takes 2.8 s of airtime before a next packet can be sent, as-
suming the frequently used LoRA SF12 spreading factor and the 125 kHz band-
width. Other technologies have different but similarly constraining requirements
on performance, which has influenced the protocol design with the overarching
goals:

• minimize the number of messages to complete the protocol;

• minimize message sizes to reduce the number of fragments;

• minimize code and memory footprint by reusing primitives that are al-
ready used by security-related protocols in other parts of the protocol
stack. These include CBOR [5] for efficient encoding and COSE [6] for
object security.

As an example, one instance of the EDHOC protocol has three messages of
sizes 37, 45, and 19 bytes.

Internet Threat Model

We consider the traditional Internet threat model, as documented in RFC3552 [7].
The communicating endpoints are trustworthy and the attacker has nearly com-
plete control over the communication channel. The attacker can read, remove,
change, or inject forged messages.

Security Goals

We summarize here the security goals of the protocol.
Mutual Authentication. At the end of the protocol session, each peer

shall have freshly authenticated the other peer’s long-term credentials. Peers
shall agree on a fresh session identifier, roles and credentials of both peers.

Confidentiality. Only the two peers authenticated during the protocol
session shall be in possession of the derived shared secret. By compromising
the long-term credential of either peer, an attacker shall not be able to compute
past session keys (forward secrecy).

Downgrade Protection. The protocol should account for potentially long
deployment times by including modular and negotiable support for crypto-
graphic primitives. At the end of the protocol session, both peers shall agree
on both the cryptographic algorithms that were proposed and those that were
chosen.

Security Level. The protocol should establish a key with a target security
level of ≥ 127 bits.
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Identity Protection. The protocol should protect the identity of one peer
against active attackers, and the identity of the other peer against passive at-
tackers.

Protection of External Data. The protocol should allow for external
security applications to piggyback data within specific fields in the protocol
messages. The external data shall have the same level of protection as the
protocol message it is carried within. In EDHOC, this data is called External
Authorization Data (EAD) and is carried in each protocol message.

Protocol Design

Building Blocks

The cryptographic core of EDHOC is based on the theoretical SIGMA-I proto-
col through its MAC-then-Sign variant [8], complemented by the key schedule
inspired by the Noise XX pattern [9]. Compact encoding is achieved through the
use of CBOR, standardized in RFC8949 [5]. EDHOC uses the cryptographic
algorithms standardized in COSE in RFC8152 [6], a wrapper around different
key derivation functions instantiated based on the selected hash function, with a
custom definition of a binary additive stream cipher for unauthenticated encryp-
tion leveraging the key derivation Expand function. EDHOC is not bound to a
particular transport layer, although it is expected to be mainly transported over
CoAP. EDHOC relies on the transport layer to handle message loss, message re-
ordering, message duplication, fragmentation, demultiplexing, Denial-of-Service
(DoS) protection against non-routable addresses, and message correlation.

Overview

The two EDHOC peers are denoted as the Initiator and the Responder. The
key exchange in EDHOC is based on ephemeral Elliptic Curve Diffie-Hellman
keys. Each peer authenticates using its long-term credential, which can either
be a signature key or a static Diffie-Hellman key. The type of credential of
each peer determines the authentication method (see Table 1), which is agreed
out-of-band.

When a peer uses a signature key for authentication, the protocol message
sent by that peer includes a signature. When a peer uses a static Diffie-Hellman
key to authenticate, the signature is replaced by a (shorter) message authenti-
cation code (MAC). The MAC is in fact calculated as an output of the Extract-
and-Expand functions keyed with the Diffie-Hellman static-ephemeral secret.
We illustrate how the different keys and MACs are derived in Fig. 2.

The Initiator selects a cipher suite for the session. It generates an ephemeral
Diffie-Hellman key X and signals G X to the Responder. If the Responder ac-
cepted the cipher suite, it continues the protocol and sends message 2 to the
Initiator, which includes the Responder’s ephemeral Diffie-Hellman key. The
Initiator verifies message 2 and continues the protocol by sending message 3.
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Initiator Responder

Suites_I, G_X, C_I , EAD_1

G_Y, Enc (ID_R, MAC_2, EAD_2), C_R

AEAD( ID_I, MAC_3, EAD_3 )

AEAD( EAD_4 )

message_1

message_2

 message_3

message_4

Figure 1: The EDHOC protocol when instantiated with STAT-STAT method.
The generic protocol is defined in draft-ietf-lake-edhoc-12 [3]. Enc() de-
notes unauthenticated encryption, while AEAD() denotes authenticated encryp-
tion with associated data. MAC denotes “message authentication code”, and is
calculated as an output of the Expand function (see Fig. 2). EAD stands for
External Authorization Data.

Once the Responder receives and successfully verifies message 3, peers are mu-
tually authenticated and in possession of a shared session secret. At this point,
the protocol specifies an optional message 4 which the Responder can use to
explicitly signal the key confirmation. Depending on the use case, the key con-
firmation can also be achieved by sending the application data protected with
the exported EDHOC key.

Table 1: Authentication Method Types.

Id Initiator Responder Abbreviation
0 Signature Signature SIG-SIG

1 Signature Static DH SIG-STAT

2 Static DH Signature STAT-SIG

3 Static DH Static DH STAT-STAT

Cipher Suites and Extensibility

EDHOC defines the concept of a cipher suite as an ordered set of standardized
algorithms and a MAC length parameter used for static DH authentication
methods.
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KEYSTREAM2ExpandPRK2eExtractGXY Enc (stream-
cipher) in m2

ExpandPRK3e2mExtractGRX MAC2

R uses 
STAT?Y

N

Expand K3  / IV3 AEAD in m3

I uses 
STAT?

ExpandPRK4x3mExtractGIY MAC3

Expand

N
Y

TH2

TH3

TH4

context

context

K4  / IV4
AEAD in m4

Figure 2: EDHOC key schedule, adapted from Norrman et al. [10]. Light
blue boxes denote Diffie-Hellman shared secrets (GXY , GRX , GIY ), where
X and Y denote the ephemeral keys, and I and R the long-term static DH
keys. Yellow boxes denote intermediate keying material (PRK2e, PRK3e2m,
PRK4x3m). Dark blue boxes denote AEAD keys and Initialization Vectors
(IVs), and the keystream for the binary additive stream cipher used for en-
cryption in message 2. Conditional boxes forward the input to the output,
depending on the evaluation of the condition (Y/N). THi denotes transcript
hashes.

In principle, any combination of standardized algorithms is possible, but the
specification pre-defines several suites which are deemed efficient for constrained
devices. These include combinations of AES-CCM authenticated encryption
with different tag lengths, the underlying elliptic curves (P-256, Curve25519)
and signature algorithms (ECDSA, EdDSA). The predefined cipher suites are
listed in Table 3. Additionally, through cipher suite values that explicitly de-
note private use, the specification allows deployment-specific combinations of
algorithms.

EDHOC supports all the signature algorithms and authentication credential
types defined by COSE [6]. A COSE signature is determined by the signature
algorithm and the authentication key algorithm, just like in TLS 1.3 and IKEv2.
The authentication key algorithm depends on the type of the authentication
credential (signature or static DH).

Post-Quantum resistance is not the main focus of the protocol as it targets
constrained environments. However, the EDHOC method SIG-SIG supports
Post-Quantum Cryptography (PQC) signatures: the key exchange in SIG-SIG

can trivially be exchanged with a PQC Key Encapsulation Method (KEM). The
Ephemeral-Static ECDH implicit authentication cannot trivially be replaced
with a PQC KEM. EDHOC with KEMs for authentication would require the
standardization of a new method.
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Generic Key Derivation Function

Table 2: Instantiating EDHOC Extract and Expand functions.

Hash algorithm Extract() Expand()

SHA-2 HKDF-Extract HKDF-Expand
SHAKE128 KMAC128 KMAC128
SHAKE256 KMAC256 KMAC256

EDHOC uses a generic Extract-and-Expand key derivation function which
is instantiated based on the hash algorithm in the selected cipher suite (see Ta-
ble 2). The intent is to align the hash algorithm used in the cipher suite with the
one in the key derivation function, and so require a single hash implementation
on a constrained device.

Key Schedule

EDHOC derives a fixed-length uniformly pseudorandom key (PRK) from the
DH shared secrets using the Extract function. Method SIG-SIG derives a single
PRK (PRK2e) using the ephemeral-ephemeral shared secret. The theoretical
SIGMA-I protocol does not specify any specific key schedule. EDHOC uses
a key schedule inspired by the noise protocol where a new key is derived for
each use and each derivation use as much available information as possible.
Static DH methods derive the PRKs from all the available DH shared secrets
(ephemeral-ephemeral, static-ephemeral for each peer). Each time a shared
secret is available, it is passed to the Extract function together with the previous
PRK. The PRK at different stages of the protocol, the transcript hashes and
the context information are passed as an input to the Expand function to derive
the intermediary keying material: a keystream for the binary additive stream
cipher for the encryption operation of message 2, MAC keys in message 2 and
message 3, and AEAD keys in message 3 and message 4. Fig. 2 illustrates the
key schedule. Method STAT-STAT is similar to the Noise XX protocol but uses the
MAC-then-Encrypt approach from SIGMA instead of the Encrypt-then-MAC
approach used in Noise XX.

Derivation of Application Keys

EDHOC-Exporter function allows applications to derive the keying material based
on the performed protocol session. As an input to the function, each application
provides a static unique label value that is assigned through the standardization
process, together with a runtime specific context parameter and the desired key
length. The application keying material is an output of the Expand function
with PRK4x3m of the EDHOC session as the pseudorandom keying material,
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transcript hash TH4 and application inputs as the additional info parameter.
Fig. 3 illustrates EDHOC-Exporter.

Lightweight Rekeying

EDHOC provides an EDHOC-KeyUpdate function for applications to perform
lightweight rekeying without needing to rerun the complete protocol. The input
to the function is a nonce (e.g. a counter or a random number) that needs to be
provided by the application and agreed upon by the Initiator and the Responder.
The nonce and the PRK4x3m of the current session are passed as inputs to the
Extract function. The output of Extract replaces the PRK4x3m session keying
material. The function aims at providing forward secrecy: the compromise of
a long-term authentication key does not compromise past session keys, and the
compromise of a session key does not compromise past session keys. However,
the compromise of a single session key does lead to the compromise of all future
session keys derived using the EDHOC-KeyUpdate function. In use cases where
this is not desirable, it is necessary to re-run the complete EDHOC protocol.
Fig. 4 illustrates EDHOC-KeyUpdate.

Expand

PRK4x3m

label
context
length

TH4

Application 
key

EDHOC-Exporter()

Figure 3: EDHOC-Exporter function is used for the derivation of application
keying material. Label, context and length are provided by the application.
Label is a static value registered for each EDHOC application.

Extract

PRK4x3m

nonce PRK4x3m

EDHOC-KeyUpdate()

Figure 4: EDHOC-KeyUpdate function. Nonce is provided by the application.
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Discussion

How EDHOC Meets the Security Goals

We discuss here how the EDHOC design attempts to meet the security goals
presented before. We also reference the relevant proofs available for earlier ver-
sions of the protocol. Note that a thorough discussion of the expected EDHOC
properties is presented in the Security Considerations section in the specifica-
tion [3].

Mutual authentication. Norrman et al. [10] studied the -00 version of
the specification in the symbolic Dolev-Yao model with idealized cryptographic
primitives using Tamarin. They prove the mutual injective agreement property
that covers the identity of the Responder, roles of the peers, session keying
material, connection identifiers and cipher suites. In case the Initiator is using
static DH keys, the proof does not cover the Initiator identity and the Initiator’s
ephemeral-static DH key share. The injective agreement proof for the Responder
covers both of these parameters. They additionally prove implicit agreement
for both the Initiator and the Responder. Based on the injective and implicit
agreement properties, the authors infer the KCI resistance.

Confidentiality. Norrman et al. [10] prove the forward secrecy of the ses-
sion keying material for all authentication methods. In addition, the specifica-
tion defines the EDHOC-KeyUpdate function for lightweight rekeying. The output
of the Extract function in EDHOC-KeyUpdate replaces the current session key-
ing material (PRK4x3m). We intuitively argue that this construction provides
forward secrecy.

Downgrade protection. The injective agreement proof by Norrman et
al. [10] covers the cipher suites and connection identifiers. We therefore argue
that the protocol is resistant against downgrade attacks.

Identity Protection. EDHOC makes the same design tradeoffs as TLS
1.3 and IKEv2, and opts for the SIGMA-I variant of the SIGMA protocol: the
Responder’s identity is protected against passive attackers and the Initiator’s
identity is protected against active attackers. These properties are expected
to hold also for Static DH-based authentication methods, an extension to the
original SIGMA design.

Protection of External Authorization Data (EAD). EAD1 and EAD2

transported in message 1 and message 2, respectively, are considered unpro-
tected by EDHOC. EAD3 and EAD4 are considered protected. We note in the
specification that the external security applications using these fields need to
avoid including sensitive information, which may break the security properties
of the protocol.

Non-repudiation was discussed as an additional property that is useful
for LAKE use cases, but has not be set as a goal. If either EDHOC peers
authenticates with a signature, the other peer can prove that it performed a
protocol session by presenting the input to the signature function as well as the
signature itself. With both peers using static DH keys, both peers can deny
having participated in the protocol session.
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Challenges

EDHOC used with the authentication method SIG-SIG is an instance of the
MAC-then-Sign variant of the SIGMA-I protocol. Other EDHOC methods use
static DH keys for authentication, an aspect that departs from the traditional
SIGMA design. EDHOC’s method STAT-STAT is an abstraction of SIGMA with
both SIGMA signatures replaced by MACs calculated from the ephemeral-static
DH shared secrets. While this is a similar approach as used by Noise XX, EDHOC
STAT-STAT is not a direct instance of Noise XX: EDHOC STAT-STAT uses MAC-
then-Encrypt approach to align with SIGMA-I, instead of Encrypt-then-MAC
used by Noise XX. EDHOC keeps the MAC-then-Encrypt SIGMA structure also
in SIG-STAT and STAT-SIG methods with heterogeneous authentication keys,
but replaces the signature with a MAC calculated from an ephemeral-static DH
shared secret whenever a peer uses a static DH key. In summary, the building
blocks of these static DH methods originate from solid and formally verified pro-
tocols. The research question we pose to the community is whether the integra-
tion of SIGMA and Noise XX, as used in EDHOC, is secure in the computational
model and whether the protocol meets the security goals outlined before? Have
the changes introduced in the protocol since it underwent the symbolic analysis
introduced a regression?

Another important aspect to consider is the security level. As a reminder,
the message size is an inherent constraint of LAKE environments. EDHOC
specifies cipher suites that in case of static DH keys allow for MACs of at least
64-bits. Methods SIG-STAT and STAT-SIG use a signature in one direction and
a MAC in the other direction. Method STAT-STAT does not use a signature
operation at all. The questions we pose to the research community is whether
the security level goal is met, taking into account all the possible combinations
of EDHOC methods, cipher suites and algorithms?

Finally, real-world protocols are as secure as their implementations. At the
time of the writing, EDHOC has been implemented through seven indepen-
dent implementations. These include general purpose Java and Python-based
implementations, as well as the implementations in (memory unsafe) C target-
ing embedded systems. The implementations were tested for interoperability
through several interop testing events. To increase confidence in the security of
the implementations targeting embedded systems, we invite the community to
also study and contribute the executable code.
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