
HAL Id: hal-03536643
https://hal.inria.fr/hal-03536643

Submitted on 26 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SMT-Based Planning Synthesis for Distributed System
Reconfigurations

Simon Robillard, Hélène Coullon

To cite this version:
Simon Robillard, Hélène Coullon. SMT-Based Planning Synthesis for Distributed System Recon-
figurations. FASE 2022 : 25th International Conference on Fundamental Approaches to Software
Engineering, Apr 2022, Munich, Germany. �hal-03536643�

https://hal.inria.fr/hal-03536643
https://hal.archives-ouvertes.fr

SMT-Based Planning Synthesis for Distributed
System Reconfigurations

Simon Robillard1(�) and Hélène Coullon2

1 LIRMM, CNRS, Université de Montpellier, France
2 IMT Atlantique, Inria, LS2N, Nantes, France

Abstract. Large distributed systems with an emphasis on adaptability
are now considered a necessity in many domains, yet reconfiguration of
these systems is still largely carried out in an ad hoc fashion, a process
that is both inefficient and error-prone. In this paper, we tackle the
planification problem for the reconfiguration of distributed systems in
the component-based reconfiguration model Concerto. Specifically, given
some tasks to execute and a desired final state of the system, we show how
to compute a reconfiguration plan that guarantees satisfaction of inter-
component dependencies and is also optimized for parallel execution. Our
technique relies on an SMT solver to compute the required dependencies
between components and ultimately schedule the reconfiguration. We
illustrate the use of this technique on a variety of synthetic examples as
well as a real use case in the context of an OpenStack system.

Keywords: reconfiguration, planning, synthesis, component models, dis-
tributed systems

1 Introduction

Large distributed software systems are now ubiquitous, with component-based
systems (e.g., service-oriented architectures or microservices) offering a conve-
nient way to structure large applications. Indeed, isolating functionalities in com-
ponents and building systems through composition greatly enhances adaptabil-
ity and scalability of applications, two important requirements for many orga-
nizations. This approach is also promoted by the massive adoption of highly-
distributed computing infrastructures such as cloud and edge computing.

However, the advantages of distributed architectures come at the price of
increased complexity and technical challenges related to observability, coordina-
tion, maintenance, etc. Notably, the system reconfigurations that are required
to achieve adaptability commonly lead to faults. For example, a study of 597
unplanned outages that affected popular cloud services between 2009 and 2015
found that 16% of them were caused by a software or hardware upgrade [16]. The
study concludes that “the complexity of cloud hardware and software ecosystem
has outpaced existing testing, debugging, and verification tools”. Indeed, testing
and debugging methods are largely inadequate in the context of distributed sys-
tems, while the adoption of more suitable formal methods remains marginal in

http://orcid.org/0000-0003-4751-380X
http://orcid.org/0000-0003-2573-2147

2 S. Robillard, H. Coullon

industry. The latter can be attributed to the difficulty of using formal methods
and tools. Yet formal methods can lighten the burden of program developers and
system administrators instead of adding to it, with synthesis techniques used to
generate correct-by-construction programs. In that spirit, we propose to em-
ploy a Satisfiability Modulo Theories (SMT) solver to automate the planning of
reconfigurations (deployment, migrations, software updates, etc.) of component-
based systems, i.e., to generate programs that coordinate the non-functional
operations required to perform such reconfigurations. There have been some
attempts to synthesize reconfiguration programs for component-based systems
(some of them relying on an SMT solver), but they either target ad hoc, non-
executable models [20], or are limited to specific cases such as deployment [22],
where the problem of executing parallel tasks is reduced to finding a precedence
order. In contrast, our work targets the full scope of the component-based re-
configuration model Concerto [9], which provides a formally-defined execution
model with expressive constraints on parallelism, as well as a concrete execution
engine, making it suitable for formal analysis and experimental work.

In Concerto, reconfigurations are driven by asynchronous behavior requests
to components. The execution of a behavior may depend on the state of other
components: such dependencies are denoted by ports that form the interface of
components, indicating their provisions and requirements towards each other.
Section 2 gives an overview of Concerto, for a more complete presentation, the
reader can refer to [9]. Our goal with this work is to automatically generate
reconfiguration scripts for systems of Concerto components, i.e., determine re-
quired behaviors and coordinate their execution. We take as starting point a
reconfiguration goal composed of behaviors to execute over some components
and a specification of the final state of the system, particularly the statuses of
ports. That goal may be provided by a system administrator, or could have been
generated in the context of an autonomic control loop [19]. Importantly, it is a
partial specification that typically only mentions parts of the system. For exam-
ple, an administrator may specify only that a certain utility component should
execute a behavior to update its software, whereas the completion of this task
actually requires other components to suspend and later resume their activity.

Since a reconfiguration goal can require changes in any component of a sys-
tem, the search space for reconfiguration scripts grows rapidly with the number
of components. To synthesize reconfigurations for large systems, we propose a
novel technique that takes advantage of the nature of component-based mod-
els. It first solves the problem for each component individually, by considering
the internals of the component to find relevant behaviors, under the simplifying
assumption that external requirements are all satisfied. Later the method coor-
dinates behaviors over the whole system, relying on a first-order encoding of the
scheduling problem and making use of the model-finding capabilities of an SMT
solver. If this step fails due to unsatisfied dependencies, individual component
reconfiguration goals are refined and the process iterated. Section 3 describes this
method, and Section 4 measures its performance and scalability on a variety of
synthetic examples, and illustrates its applicability on a real use case.

SMT-Based Planning Synthesis for Distributed System Reconfigurations 3

2 Reconfiguration With Concerto

Components and Assemblies. A distributed system in Concerto is represented as
an assembly, i.e., a collection of components that correspond to control entities
for the elements of the system. Components are not intended to represent the
functional aspects of those elements, but instead to pilot the actions (installation,
maintenance, suspension of service, etc.) required to operate them during their
lifespan. In other words, a Concerto component is a wrapper around a new or
legacy piece of software (e.g., service, module), typically written by its developer,
that acts as replacement for scripts to install and maintain it.

The structural interface of a component is provided by its provide ports and
use ports. Provide ports denote services or data provided by that component
when those ports are active, while use ports denote requirements that the com-
ponent has when those ports are active. Ports can be connected in an assembly
to allow the satisfaction of component requirements. Connected ports impose
synchronization rules between their components: a use port cannot be activated
unless connected to an active provide port (the user component may have to
wait for that requirement to be fulfilled in order to continue its internal activity)
and a provide port cannot be deactivated while connected to an active use port.

Internally, components are characterized by places representing milestones in
the life cycle, and transitions between places, mapped to concrete reconfiguration
actions (e.g., starting a virtual machine, downloading an image, etc.). The inter-
nal state of a component is given by its places: at any point during execution, one
or more places are active. While a place π is active, transitions originating from
it can be (simultaneously) fired, after which π ceases to be active. Conversely, a
place π′ becomes active after the completion of all the transitions that reach it.
The completion of a transition takes a non-deterministic duration after firing,
modeling the execution of the associated action. Active places also determine the
statuses of ports: each port is bound to a set of places, and is active whenever
one of them is active. Thus the status of ports changes according to the life cycle
of the component. In graphic representations, ports are linked to the place (or
set of places, denoted by rounded boxes) to which they are bound.

The last characteristic attribute of a component is its set of behaviors. A
behavior is a subset of the transitions in a component, such that the associated
subgraph is acyclic. At any point in an execution, a component may execute one
behavior. Only then can the transitions in that behavior be fired. The behaviors
of a component serve as its operational interface: a component may have one
behavior including the actions to start it, another including the actions to update
it, etc. A component can be requested to execute a behavior, which will determine
its evolution and the actions that it performs. Graphically, different behaviors
are represented by depicting transitions in different colors.

Figure 1 gives a graphic representation of an assembly. Component dep1
includes three places (uninstalled, installed and running) and three transi-
tions (arrows between places) that belong to three behaviors (deploy, update,
and uninstall). Place running is active (denoted by a token) and bound to pro-

4 S. Robillard, H. Coullon

vide port service, whereas places installed and running are bound to provide
port config. Both ports are connected to use ports belonging to server.

server

uninstalled

service

deploy

suspend

config1

service1

running

sconf1

configured

s2
running

uninstalled

config

dep2

deploy

update

config2

service2

s1

service

running

uninstalled

config

dep1

deploy

update

sconf2

allocated

uninstall

installed

installed

uninstall

uninstall

Fig. 1: A Concerto assembly with three components. For readability, the bindings
of ports config1 and config2 are only partially depicted: they also contain
places configured, running, s1 and s2.

Reconfiguration Scripts. Concerto is equipped with a simple language to exe-
cute reconfigurations. Whereas a Concerto component is written by a developer,
the reconfiguration language is intended to be used by system administrators
or DevOps engineers. Components are piloted through asynchronous requests
via the command pushB(id, b) that asks the component identified by id to
execute behavior b. The command takes its name from the fact that requests
received by a component are queued and asynchronously executed by that com-
ponent in the order in which they were received. While a component executes
a behavior request, transitions in that behavior are fired until the component
reaches a state where none of them can be fired. The behavior request is then
considered complete, and the component executes the next one, until no more re-
quests remain. The Concerto language also provides synchronization commands:
wait(id) blocks the execution of the reconfiguration program until the compo-
nent identified by id has executed all behaviors requests submitted to it, and
waitAll() blocks the execution until all components have executed all pending
behavior requests. These three commands allow parallel asynchronous execution
in Concerto, leading to more efficient reconfigurations. Based on the description
of the components provided by their developers, Concerto can execute reconfig-
uration scripts , allowing for empirical performance comparisons [10].

SMT-Based Planning Synthesis for Distributed System Reconfigurations 5

The goal of this work is to generate a reconfiguration script using the three
aforementioned commands to execute behaviors over components and bring them
to a desired state. In addition to those three commands, the Concerto language
also provides four usual commands to modify the topology of an assembly: create
and delete components, connect and disconnect them. These operations are out
of the scope of reconfiguration planning as we define it. Indeed, the decision to
modify the topology of the assembly is usually taken by the same entity that
determines reconfiguration goals (system administrator or autonomic analysis
tool) [15, 17] rather than left to the planning phase. Furthermore, if topological
changes in the assembly are deemed necessary, they can almost always be imple-
mented through a reconfiguration script with the following steps: (i) creations
of components, (ii) creations of connections, (iii) changes in component states,
(iv) deletions of connections and (v) deletions of components [5, 7]. The main
difficulty is to determine the operations of the third step that take the compo-
nents to a safe state, in particular ensuring that none of the connections that
will be deleted include an active use port. Computing a reconfiguration program
to lead components to a desired state (or to have them perform some required
operations) is the focus of this paper.

As an example, consider the assembly in Figure 1, where all the components
are running. We wish to run software updates on dep1 and dep2, but this will
deactivate their provide port service. To carry out the updates, component
server must first deactivate its corresponding use ports, which is accomplished
by executing its behavior suspend. Figure 2a depicts a reconfiguration script
that performs this, then returns the components to a running state. No explicit
synchronization is needed between the suspension of server and the updates: the
execution model of Concerto ensures that the updates cannot be executed as long
as the provide ports are in use. An explicit synchronization is however needed
before re-deploying the server, to prevent it from reactivating its use ports before
the updates start. As a side note, the ports config (that represent configuration
information that is not affected by the update, such as connection information)
remain active throughout the reconfiguration: the fine-grained management of
dependencies in Concerto avoids a full restart of the system. This assembly also
illustrates the capacity of Concerto components to execute actions in parallel:
for example, after server has reached place allocated, it can fire multiple
transitions, corresponding to independent reconfiguration actions.

Concerto provides structured semantic tools to design efficient reconfigura-
tion plans with highly parallel, asynchronous execution. However, taking full
advantage of these features adds complexity to the internal structure of compo-
nents and to associated reconfiguration scripts. Automated synthesis of recon-
figuration scripts is therefore particularly useful in this context.

3 Reconfiguration Script Synthesis

This section describes the synthesis process used to generate reconfiguration
scripts. This process takes as input a description of the current state of the

6 S. Robillard, H. Coullon

system, namely the topology of the assembly (components and their connec-
tions) and the active places. We assume that the system is in a state where no
component has pending behavior requests or ongoing transitions. Besides that
information, the synthesis process also depends on a reconfiguration goal that
is composed of (i) constraints Γports on the final state of ports and (ii) a set of
behaviors Γbhv to execute on designated components.

The constraints Γports are given by a partial function that maps specific in-
stances of component ports to a boolean indicating whether that port is required
to be active or inactive. A reconfiguration satisfies that goal if it ends in a state
such that for any component c and port p, if Γports(c, p) is defined, the port p of
component c is active if and only if Γports(c, p) = >. Where the value of Γports

is undefined, any status of the port satisfies the constraint. This means that a
reconfiguration goal does not have to specify a unique final state for components,
but instead allows for multiple target states. It may appear tedious to specify
constraints for all components of an assembly when a reconfiguration is specif-
ically aimed at a subset of it, but in practice the current state of the assembly
can be used to guide the choice of Γports for those other components. A reason-
able strategy might specify that provide ports active before the reconfiguration
should remain active, and leave other ports unspecified.

The other element of the reconfiguration goal is the set Γbhv , where each
element is a pair composed of a component and a behavior. The reconfiguration
satisfies it if it executes at least all these behaviors on the corresponding compo-
nents. The set Γbhv alone may not correspond to a feasible reconfiguration. For
example, a system administrator wishing to update the components of Figure 1
might give a behavior goal Γbhv = {(dep1, update), (dep2, update)} and a port
goal Γports that maps every port instance to >. The behaviors listed in that
reconfiguration goal are not enough to carry it out, as it lacks a behavior to
deactivate the use ports of the server prior to the update, and behaviors to re-
activate all ports after the update. The synthesis process must therefore deduce
necessary behaviors to carry out the reconfiguration goal, then schedule their
executions in a suitable order. It proceeds as follows:

1. for each component independently, we find a sequence of behaviors that satis-
fies the goal, assuming that ports requirements are fulfilled (Subsection 3.1);

2. we find a global schedule for these sequences of behaviors (Subsection 3.2);
3. if the scheduling problem is found unsatisfiable, we analyze the incomplete

schedule to deduce unsatisfied port requirements, compute additional recon-
figuration sub-goals and iterate the process (Subsection 3.3);

4. once a feasible solution has been found, we attempt to optimize it by relaxing
synchronization conditions (Subsection 3.4).

3.1 Determining Sequences of Component Behaviors

A procedure localSeq(c, actc,Γbhv ,Γports) finds a sequence of behaviors that sat-
isfies a reconfiguration goal Γ for a single component c starting in a state with
active places actc. This is achieved by enumerating all sequences of behaviors

SMT-Based Planning Synthesis for Distributed System Reconfigurations 7

with at most one occurrence of any behavior, and selecting one that satisfies
the goal constraints. In practice, this enumeration is short because the num-
ber of behaviors of a component is usually small. More importantly, for a given
component state (denoted by its active places), many behaviors do not have tran-
sitions originating from the active places. Since executing these behaviors would
not have any effect, they can be ignored during the enumeration. Consequently,
the number of useful sequences of behaviors to analyze is often much lower than
the number of permutations. If no satisfying sequence is found by localSeq , then
the problem has no solution, and the whole synthesis process fails. However, if
multiple solutions are returned, the best possible sequence is picked, according
to some (possibly user-defined) selection criterion. Some interesting optimiza-
tion criteria are: the length of a sequence, its execution time (if time estimations
are available for individual transitions, this may be computed with great accu-
racy [10]), the number of transitions it executes sequentially, or the number of
ports it (de)activates. In our experiments, we used this last criterion, as it picks
the component reconfiguration that is least likely to induce changes in other
components, leading to simpler and potentially faster reconfiguration plans.

In order to coordinate sequences or behaviors across the assembly, we keep
track of ports requirements and activity during each behavior of a sequence. In
particular, for each behavior in a sequence, we record use ports of the component
that are activated at least once by the behavior (they must be connected to an
active provide port during the execution of the behavior), and provide ports that
are deactivated at least once (they must not be connected to an active use port).
In addition, we also record the status of each port at the end of the behavior.
This information is computed with a simple traversal of the behavior graph,
starting from the places that are active at the beginning of the behavior.

In the example of the update for the assembly in Figure 1, localSeq de-
termines that components dep1 and dep2 should each execute the sequence
[update, deploy]: the first behavior is included in Γbhv and the second is re-
quired to take the components to a state that satisfies Γports .

3.2 Assembly-Level Reconfiguration Scheduling

Once sequences of behaviors to execute over each component have been deter-
mined, we turn our attention to the whole assembly and attempt to compute a
sequence of reconfiguration commands (specifically, behavior requests and syn-
chronization requests) that execute these behaviors. The challenge is to coordi-
nate these behaviors in a way that satisfies all port requirements. To facilitate
coordination and to restrict the search space, we specifically try to generate a re-
configuration composed of steps, such that each component executes at most one
behavior per step, and each step is followed by a global synchronization request.
This assumption on parallelism is reminiscent of the BSP model [4]. Figure 2b
gives an example of such a reconfiguration, to be compared with Figure 2a, which
achieves the same result with fewer synchronization points.

8 S. Robillard, H. Coullon

pushB(server , suspend)
pushB(dep1 , update)
pushB(dep2 , update)
pushB(dep1 , deploy)
pushB(dep2 , deploy)
wait(dep1)
wait(dep2)
pushB(server , deploy)
wait(server)

(a) Target reconfiguration program.

pushB(server , suspend)
waitAll ()
pushB(dep1 , update)
pushB(dep2 , update)
waitAll ()
pushB(dep1 , deploy)
pushB(dep2 , deploy)
waitAll ()
pushB(server , deploy)
waitAll ()

(b) A reconfiguration with four syn-
chronized steps.

Fig. 2: A reconfiguration plan to perform updates on components dep1 and dep2
of the assembly in Figure 1, then restore the system to a working state.

SMT Constraints To find a reconfiguration plan, ordering constraints and port
requirements are encoded as a problem in a many-sorted first-order logic (i.e.,
the logic is equipped with sorts that partition the domain, similarly to a simple
type system), and an SMT solver is used to obtain a solution. That encoding
of the scheduling problem centers around a sort Behavior, with a finite num-
ber of elements that represent the behaviors to schedule. The main task of the
SMT solver is to find an interpretation for a function schedule that maps be-
haviors to a reconfiguration step during which to execute them. Conceptually,
schedule could range over natural numbers, with behavior b executed at the ith
step if i = schedule(b). However, such a model would require constraints with
universal quantifiers over natural numbers, which pose a challenge for SMT
solvers. It is also unnecessary, since there are only a finite number of behaviors
to schedule: the number of steps required is at most the number of behaviors,
when only one component executes a behavior at each step. If behaviors are
executed in parallel over different components, fewer steps are required. Con-
sequently, to improve the performance of the solver, the different steps of the
reconfiguration are represented by another finite-domain sort Step, with elements
step1, . . . stepn, stepfinal. The element stepfinal represents the ultimate state of the
system rather than a reconfiguration step. Accordingly, the scheduling function
has the signature schedule : Behavior → Step, and the problem contains the
constraint schedule(b) 6= stepfinal for each behavior b.

A successor function succ : Step → Step is needed to describe the effect
of a reconfiguration step on the subsequent state of the system. Constraints
succ(stepi) = stepi+1 (for 0 6 i < n), succ(stepn) = stepfinal and succ(stepfinal) =
stepfinal define the interpretation of succ. Likewise, to easily express sequentiality
constraints, a function int : Step → Int maps each step to its step number, as
defined by constraints int(stepi) = i. With this function, sequentiality is easily
expressed: for any two consecutive behaviors b1 and b2 in the sequence of be-
haviors to schedule for a given component, the constraint int(schedule(b1)) <
int(schedule(b2)) is added. This function reintroduces an infinite domain, which
we sought to eliminate with the sort Step. However, since the problem contains

SMT-Based Planning Synthesis for Distributed System Reconfigurations 9

no quantifiers over integers, the solver only has to check that the aforementioned
formula is satisfied by a speculated interpretation of schedule. This limited form
of integer reasoning has a negligible impact on the search.

The main difficulty in scheduling a reconfiguration lies in ensuring that
ports requirements are satisfied for each behavior of a component. A predicate
actp : Step→ Bool is introduced for each (use or provide) port p to indicate the
activity status of the port at the beginning of reconfiguration steps. The status
of each port p after each behavior b is uniquely defined, as determined during
the computation of the sequences of behaviors of the component to which the
port belongs. Correspondingly, a constraint [¬]actp(succ(schedule(b))) is added
to reflect that status. The square brackets denote the absence or presence of
the negation, depending on whether the port is inactive or active at the end of
the behavior. Conversely, the status of a port cannot change if its component is
not executing a behavior. For a component with behaviors b1, . . . , bn, the con-
straint schedule(b1) 6= stepi ∧ · · · ∧ schedule(bn) 6= stepi =⇒ (actp(stepi) ⇐⇒
actp(succ(stepi))) is added for every step i such that 0 6 i < n. Ports require-
ments can then be modeled. Let u be a use port that needs to be provided (i.e.,
connected to an active provide port) during behavior b, and p the provide port
to which it is connected, the constraint actp(schedule(b)) ensures that p is active
(and u provided) when b begins. Conversely, for a provide port p deactivated by
a behavior b and connected to a use port u, ¬actu(schedule(b)) ensures that u
is inactive when b begins. Furthermore, for any behavior b that activates a use
port u and any behavior b′ that deactivates the connected provide port p, the
constraint schedule(b) 6= schedule(b′) ensures that the behaviors are executed at
different steps, hence separated by a synchronization barrier.

The problem3 is passed to an SMT solver. If satisfiable, the interpretation
found for schedule is used to build a reconfiguration script such as in Figure 2b.

Note that the scheduling problem could be encoded as a SAT problem. How-
ever, SMT solvers can reason about the theory EUF (equality and uninterpreted
functions) using a dedicated congruence algorithm. We also use (non-recursive)
data types, for which some SMT solvers have a dedicated reasoning algorithm [3],
to represent the domains of Behavior and Step. These capabilities allow us to en-
code the problem straightforwardly and obtain solutions efficiently. Also note
that the size of the scheduling problem is only a function of the number of be-
haviors to schedule and the number of component ports, but does not depend
on the internal complexity of components, so that optimized components with
several parallel transitions will not adversely affect the synthesis method.

3.3 Determining Missing Behaviors

Until now, we have considered the scheduling problem under the assumption of
a fixed sequence of behaviors to schedule for each component. In general, a set
of behaviors may have no feasible schedule. For example, it is not possible to

3Illustrating instances for the running example, in the SMT-LIB file format, can be
found at https://doi.org/10.5281/zenodo.5820571.

https://doi.org/10.5281/zenodo.5820571

10 S. Robillard, H. Coullon

fully execute the behavior update on components dep1 and dep2 of the assembly
in Figure 1 without first deactivating the use ports service1 and service2 of
component server, i.e., executing its behavior suspend. To plan reconfigurations
for an incomplete set of behaviors, we use our SMT encoding of the scheduling
problem to detect the point in the reconfiguration at which additional changes
must be performed, then we create new component reconfiguration sub-problems
and use the solutions to augment the sequences of behaviors to schedule.

Let S be a mapping that associates to each component a sequence of be-
haviors (i.e., the sequence to be executed by that component, as determined in
Subsection 3.1), a maximal executable schedule S′ of S is a mapping that asso-
ciates to each component c a prefix of S(c), such that (i) the scheduling problem
corresponding to the sequences in S′ has a solution (ii) no reconfiguration prob-
lem built by extending a prefix in S′ with one behavior has a solution. Intuitively,
a maximal executable schedule is a point up to which the reconfiguration S can
be carried out, before unsatisfied port requirements prevent further execution.

Procedure 1 iteratively computes a maximal executable schedule S′ and uses
the resulting information to refine the sequences of behaviors to execute for
each component, until a solution is found that executes them all. By analyzing
the statuses of ports in the assembly at the end of the execution of S′ (which
depend only on the last behavior in each sequence), and comparing them to
the requirements of the first unscheduled behaviors in S, we deduce a set of
provide ports to activate and use ports to deactivate to allow further scheduling
of S, and compute intermediary ports constraints Γ’ports . For each component
c that does not have unscheduled behaviors in S, we determine a sequence s1
of behaviors that satisfies this intermediate goal (assuming that the component
starts with active places actcS′ corresponding to its state after executing the last
behavior in S′(c)) and a sequence s2 that takes the component from its state
after executing s1 (active places actcs1) to one that satisfies the port constraints
Γports of the original goal. Sequences of behaviors to execute are thus extended
([] denotes the empty sequence, and s1 · s2 the concatenation of two sequences).
To ensure a monotonic search, sequences are extended only for components c
without unscheduled behaviors in S, i.e., not the components that brought about
the intermediary goal Γ’ports . If no such extension can be found (¬progress), the
scheduling of S is blocked by a circular dependency between components and the
synthesis process fails. If the procedure terminates, it returns a reconfiguration
script corresponding to a solution of the scheduling problem of S.

Consider the example of running updates in the assembly of Figure 1. Initially
(see Subsection 3.1), the mapping S of sequences of behaviors computed with
localSeq is defined by S(dep1) = S(dep2) = [update, deploy], and S(server) =
[], because Γbhv does not include any behavior for that component, and the com-
ponent is already in a state that satisfies Γports . This combination of sequences of
behaviors has no feasible schedule. In particular, the mapping S′ that associates
to every component the empty sequence is found to be a maximal executable
schedule of S. The first unscheduled behaviors in S are two instances of update,
they require use ports service1 and service2 of component server to be deac-

SMT-Based Planning Synthesis for Distributed System Reconfigurations 11

Procedure globalSolution(A,Γbhv ,Γports) is
for c ∈ A do S(c)← localSeq(c, actcA,Γbhv ,Γports);
while findMaxExecSchedule(S) 6= S do

S′ ← findMaxExecSchedule(S) ;
Γ’ports ← port conditions required to execute, for every component c,
the first behavior in S(c) that is not in S′(c);

progress ← false ;
for c ∈ A such that S′(c) = S(c) do

s1 ← localSeq(c, actcS′ ,Γbhv \S′(c),Γ’ports) ;
s2 ← localSeq(c, actcs1 , ∅,Γports) ;
if s1 6= [] or s2 6= [] then

S(c)← S′(c) · s1 · s2 ;
progress ← true ;

end
end
if ¬ progress then fail ;

end
return reconfigurationScriptOfSolution(S) ;

end

Procedure 1: Synthesizes a reconfiguration script.

tivated. Consequently, two new reconfiguration sub-goals are created for server.
The first requires it to reach a state where the two ports are deactivated, a call
to localSeq returns the solution s1 = [suspend]. From the resulting component
state, the second reconfiguration sub-goal requires server to go to a state that
satisfies Γports , in this case localSeq returns the sequence s2 = [deploy]. S is
updated so that S(server) = [suspend, deploy]. At this point, S is found to
be a maximal executable schedule of itself, and the corresponding solution is re-
turned, i.e., the reconfiguration plan in Figure 2b. Note that Procedure 1 is not
guaranteed to terminate, nor is it a complete search algorithm. In particular, it
relies on two heuristics: the selection function used when localSeq finds multiple
candidate sequences, and the choice of maximal executable schedule for a given
mapping S.

Computing a Maximal Executable Schedule Procedure 1 relies on a function
findMaxExecSchedule to compute a maximal executable schedule of a mapping
S, illustrated in Procedure 2, that maintains a mapping containing prefixes of
elements in S (initially mapping every component to the empty sequence) and
incrementally extends those prefixes, checking every time the satisfiability of
the corresponding scheduling problem. This procedure calls the SMT solver to
check the satisfiability of the scheduling problems. In the actual implementation,
some simple checks are also used to quickly detect some trivially unsatisfiable
or satisfiable instances of the scheduling problem, although these are left out of
Procedure 2 for clarity. The procedure continues until all behaviors have been
included or no additional behavior can be scheduled. A maximal executable

12 S. Robillard, H. Coullon

schedule always exists (the mapping that associates every component to the
empty sequence always has a satisfiable scheduling problem, and may be maxi-
mal), and findMaxExecSchedule always finds one. However maximal executable
schedules are not unique, and a bad choice may result in an ineffective recon-
figuration plan. In the example above, during the second iteration, the mapping
S of sequences to schedule is defined by S(server) = [suspend, deploy] and
S(dep1) = S(dep2) = [update, deploy]. S itself is a maximal executable sched-
ule of S, but so is the mapping S′ defined by S′(server) = [suspend, deploy]
and S′(dep1) = S′(dep2) = []. S′ corresponds to the case where the server
is restarted too early. Picking this maximal executable schedule will ultimately
lead to a reconfiguration that stops the server at least twice. To avoid this, a
good heuristic for findMaxExecSchedule is to extend in priority the prefixes for
which the added behavior is least likely to affect other components, i.e., those
that deactivate the fewest provide ports and activate the fewest use ports.

Procedure findMaxExecSchedule(S) is
suffixes ← S ;
for c such that suffixes(c) is defined do prefixes(c)← [];
progress ← true ;
while progress do

progress ← false ;
for c such that suffixes(c) 6= [] do

b← head(suffixes(c)) ;
if the scheduling problem for prefixes extended with b is satisfiable
then

progress ← true ;
prefixes(c)← prefixes(c) · [b] ;
suffixes(c)← tail(suffixes(c)) ;

end
end

end
return prefixes ;

end

Procedure 2: Computes a maximum executable schedule for sequences
of behaviors S.

3.4 Relaxation of Synchronization Barriers

The assumption that reconfigurations should proceed in globally synchronized
steps, although useful to find a solution, severely limits the potential for inter-
component parallelism, a key feature of Concerto. A final optimization stage
takes the reconfiguration plan with synchronized steps and relaxes synchroniza-
tion where possible. First, every command waitAll() is replaced with a sequence

SMT-Based Planning Synthesis for Distributed System Reconfigurations 13

of commands wait(c) for every component c that executes a behavior in the pre-
ceding step. This preserves the semantics of the reconfiguration and makes the
targets of synchronization explicit. Then, for a given step i and a given command
wait(c) after this step, we apply the following rule: if for all behaviors executed
by c since the last command wait(c) up to step i, no provide (resp., use) port is
deactivated (resp., activated) and connected to a use (resp., provide) port that
is activated (resp., deactivated) at step i+ 1, then wait(c) can be delayed until
after step i + 1. This rule is applied for every step in order, delaying barriers
as late as possible and removing duplicates. This transformation reduces the
number of barriers yet ensures that behaviors with conflicting effects on ports
remain separated by an explicit synchronization. Port requirements for behaviors
do not have to be taken into account, as the Concerto execution model ensures
implicit synchronization for those. As an example, this optimization applied to
the reconfiguration plan in Figure 2b yields the one in Figure 2a.

4 Experiments

The implementation described here, the examples, and the experimental results
are available at https://doi.org/10.5281/zenodo.5820571.

4.1 Implementation

We implemented the synthesis process in a Python tool that attempts to pro-
duce a reconfiguration script for a given assembly and reconfiguration goal. The
process is entirely automated. Given a description of an assembly and a recon-
figuration goal, it generates relevant scheduling problems and interacts with an
SMT solver to generate reconfiguration programs. Intermediate scheduling prob-
lems can be output in the SMT-LIB file format, the standard used by most SMT
solvers [2], and can be solved using any solver that complies with version 2.6 of
the SMT-LIB standard. The preferred mode of operation for our tool does not
output files, but interacts with the SMT solver Z3 [23] through the Z3 Python
API. This interface makes it easy to analyze interpretations returned by the
solver for satisfiable problems, and thus to reconstruct schedules. This is the
mode of operation used to conduct the experiments described below.

4.2 Results Over Synthetic Examples

To test our technique on a variety of cases, we devised assemblies with four types
of topology. In central-user assemblies, a set of provider components, each with
a pair of provide ports, is connected to different use ports of one central user
component. In central-provider assemblies, one central provider component has
a pair of provide ports that is connected to (a pair of use ports of) multiple
other components. In linear assemblies, components form a chain such that
each component has a pair of provide ports connected to the pair of use ports
of the next component. In stratified architectures, components are organized in

https://doi.org/10.5281/zenodo.5820571

14 S. Robillard, H. Coullon

levels containing up to three components, such that each component in a level
has a pair of provide ports connected to use ports on every component in the
level above (i.e., a provide port can be connected to up to three use ports).
Every component in these assemblies is equipped with behaviors to deploy it,
update or suspend it, and uninstall it. Figure 3 depicts those four topologies, with
internal nets of components omitted for clarity. As an example of the internal
structure of components, Figure 1 shows the central-user assembly with three
components. For other types and sizes of assembly, components follow similar
internal structures, adapted to offer adequately many ports.

For each architecture, we generated assemblies with 10, 30 and 100 com-
ponents (scaling the number of providers for central-user, the number of users
for central-provider, the length of the chain for linear or the number of levels
for stratified), and ran three scenarios. The deployment scenario starts with all
components uninstalled, Γports requires the activation of a provide port on the
last component(s) in the dependency order, while Γbhv is empty. The update
scenario starts with all components running, Γports requires a similar final state,
and Γbhv includes update behaviors for components that are first in the depen-
dency order and no behavior for the others. The uninstall scenario starts with
all components running, Γports requires the deactivation of all ports, while Γbhv

is empty. Each scenario affects every component of the assembly.

(a) Central-user (b) Central-provider (c) Linear (d) Stratified

Fig. 3: The four assembly topologies in synthetic examples.

Table 1 describes the solving process and resulting solution for these 36 exam-
ples. Experiments were executed on a computer with an 8-core 1.6GHz processor
and 16 GiB of RAM. Solutions were successfully generated for all but 4 exam-
ples (the process was aborted after one hour). For 21 of them, the process took
less than a minute. Results indicate that the solving time, and ultimately the
success of the method, depend on the topology of the assembly: the assemblies
for which some reconfigurations could not be computed within one hour are
those with long chains of dependencies (linear and stratified assemblies with 100
components). This can be explained in two ways: firstly, the propagation of port
requirements and the deduction of missing behaviors requires a number of iter-
ations of the main loop of Procedure 1 proportional to the length of the longest
chain of dependency. Secondly, architectures with long chains of dependencies

SMT-Based Planning Synthesis for Distributed System Reconfigurations 15

are less conducive to parallel execution of behaviors, and therefore the instances
of scheduling problems solved have a high number of steps, leading to a large
search space and long solving times. For example, the deployment of 100 compo-
nent in the linear architecture ultimately requires 100 steps. For each of the 17
instances of the scheduling problem solved to compute that reconfiguration, the
SMT solver took on average 147 seconds to return a solution. In contrast, to de-
ploy 100 components in the central-user architecture, the reconfiguration script
requires only 2 steps, as a result the SMT solver was able to return a solution
after only 0.21 seconds on average each time it was called. For difficult problems,
the solving time is dominated by calls to the SMT solver as shown in the solving
time column of Table 1 (in parentheses, the cumulated time taken by the SMT
solver). Overall, these examples show that our method is able to plan reconfig-
urations affecting large number of components. Furthermore, architectures with
a very large number of components, such as microservice architectures, typically
have a shallow depth rather than long chains of dependencies, and scale horizon-
tally [21,24,25], similarly to our central-user and central-provider architectures.
Our method scales well in those conditions.

Writing a correctly coordinated reconfiguration plan with tens of asynchro-
nous behaviors is a non-trivial task. It is particularly difficult when explicit syn-
chronizations commands are needed in the reconfiguration script. The execution
model of Concerto ensures that this is seldom necessary, but some synchroniza-
tion barriers are required, e.g., in the update scenarios to prevent early restarts
that would block the updates. Our synthesis technique determines synchroniza-
tion points required for completion of the reconfigurations, but it also avoids
synchronization points that would slow the execution unnecessarily. It performs
these tasks quickly, with a time gain that is especially significant when compared
to the service interruption that an incorrect reconfiguration would cause.

4.3 OpenStack Use Case

We also tested our method on a real OpenStack system. OpenStack is the de facto
standard open-source solution to address the IaaS level of the cloud paradigm,
it can be seen as the open-source operating system of the cloud.

In previous work [8], Madeus, a subset of Concerto restricted to deployment,
was used to deploy an OpenStack system. Following the deployment strategy of
the reference production deployment tool Kolla, 11 components were specified,
resulting in a real OpenStack deployment up to 70% faster than Kolla. Here we
use the same components, extended with behaviors for reconfiguration. We ana-
lyzed the official installing, updating and uninstalling procedures of OpenStack
to design the associated internal nets. Figure 4 depicts those components and
their connections, with details of the internal structure depicted for the four main
components, and omitted for clarity on seven others. The reconfiguration starts
with all components running. The reconfiguration scenario requires an update of
the database component (Γbhv = {(mariadb, update), (mariadb, deploy)}) and
Γports specifies that all ports must eventually return to their initial (active) state.
Our method generates a reconfiguration plan in 1.95 seconds, correctly deducing

16 S. Robillard, H. Coullon

assembly solving plan
arch. size smt time (s) steps bhvs

de
pl
oy

m
en
t

c-user
10 2 (2) 0.25 (0.02) 2 10
30 5 (5) 1.99 (0.18) 2 30
100 17 (17) 23.94 (3.59) 2 100

c-provider
10 2 (2) 0.33 (0.08) 2 10
30 5 (5) 3.95 (1.80) 2 30
100 17 (17) 93.07 (68.67) 2 100

linear
10 2 (2) 0.40 (0.08) 10 10
30 5 (5) 9.19 (4.27) 30 30
100 17 (17) 2689.86 (2512.22) 100 100

stratified
10 3 (3) 0.64 (0.09) 5 10
30 6 (6) 12.04 (5.28) 12 30
100 18 (18) 1274.52 (1121.40) 35 100

up
da

te

c-user
10 6 (5) 1.69 (0.78) 4 20
30 12 (11) 25.07 (18.59) 4 60
100 36 (35) 1737.29 (1654.67) 4 200

c-provider
10 13 (4) 1.79 (0.41) 4 20
30 40 (11) 22.98 (9.97) 4 60
100 133 (34) 685.54 (541.69) 4 200

linear
10 50 (5) 12.72 (3.26) 20 20
30 446 (11) 1388.50 (825.06) 60 60
100 – – – –

stratified
10 20 (6) 14.55 (5.82) 13 26
30 147 (16) 2306.85 (1885.17) 34 86
100 – – – –

in
te
rr
up

ti
on

c-user
10 3 (3) 0.54 (0.14) 3 11
30 6 (6) 6.01 (2.76) 3 31
100 18 (18) 162.51 (125.51) 3 101

c-provider
10 4 (4) 0.91 (0.30) 3 19
30 10 (10) 12.36 (7.25) 3 59
100 34 (34) 571.73 (514.48) 3 199

linear
10 10 (10) 1.30 (0.19) 10 10
30 30 (30) 39.31 (13.69) 30 30
100 – – – –

stratified
10 4 (4) 2.50 (1.10) 9 19
30 11 (11) 132.59 (108.53) 23 59
100 – – – –

Table 1: Results of the synthesis process on synthetic examples. For each prob-
lem, the table indicates the architecture of the assembly and (arch.) its number
of components (size), the number of problems solved by the SMT solver (smt)
followed in parentheses by the number of those that were found satisfiable, the
total solving time in seconds followed in parentheses by the cumulated time taken
by the SMT solver (time), the number of steps in the solution before relaxation
of the synchronization barriers (steps), and the number of behaviors executed in
that solution (bhvs).

SMT-Based Planning Synthesis for Distributed System Reconfigurations 17

initiated

configured

bootstrapped

restarted

registered

deployed

initiated

deployed

pulled initiated

pulled

ready

restarted

deployed

initiated

deployed

pulled
mariadb

deploy

uninstall

update

interupt

keystone

deploy

uninstall

stop

uninstall

update

deploy

uninstall

stop

pause

pause

deploy

interupt

nova

neutron

glance

facts

haproxy

ovswitch

memcached

rabbitmq

common

Fig. 4: A Concerto assembly for an OpenStack system.

missing behaviors for mariadb as well as components affected by the interruption
of its service, i.e., keystone, nova, neutron, and glance. The generated plan
coordinates 12 behaviors on these 5 components. After optimization, it includes
only 2 synchronization points needed to ensure the complete re-deployment of
mariadb and keystone, whose services are required by other components.

While the scale of this use case may seem limited, its architecture is not
trivial. This real-world scenario leads to a complicated synchronization problem.
The 12 behaviors in the reconfiguration program require 8 global synchronization
steps before optimization. The optimization phase reduces this to 2 individual
synchronization points, thus enhancing the level of parallelism and asynchrony of
the reconfiguration program, while preserving its correctness. A DevOps engineer
or system administrator would be challenged to write such a program without
errors or unnecessary synchronization points, whereas our solution only requires
them to specify a reconfiguration goal.

5 Related work

For models with fixed component life cycles, planning and scheduling techniques
have been used to plan reconfigurations [1, 13]. Pre-established protocols can
also be used: while such solutions are in general less flexible, they have desirable
features such as decentralized coordination [14] or recovery policies [6]. Com-
paratively fewer works study the problem of reconfiguration planning in models
with programmable component life cycles, such as Concerto. Kikuchi et al. [20]
synthesize reconfiguration plans with a model finder. Unlike us, they assume that
all available reconfiguration operations are given in the input of the scheduling
problem, which may limit scalability. Operations and reconfiguration goal are

18 S. Robillard, H. Coullon

encoded in the Alloy specification language, and synthesis is performed by the
Alloy Analyzer. This work relies on a simple ad hoc component-based model,
with reconfiguration operations that must be sequentially ordered. The model
does not have specific execution semantics, instead the list of operations has to
be given by the user, with their effects described as constraints on the states
before and after the operations. Therefore the correctness of the correspondence
between the synthesized procedure and its executable counterpart depends on
the user. Metis [22] closes that gap between planning and execution, as it sched-
ules deployment plans for distributed systems in the Aeolus model [12], which
has formal execution semantics. The authors first describe the problem as a
generic planning problem and use standard planners to solve it, then present a
specialized solving algorithm. Metis is limited to deployment rather than gen-
eral reconfiguration, making the computation of dependencies more straightfor-
ward. Aelous shares many similarities with Concerto, but lacks intra-component
parallelism and asynchronous commands in its reconfiguration language. These
features improve the efficiency of reconfigurations but also make them more dif-
ficult to plan. Note that these features can also be represented through planning
and scheduling problems [18], typically solved by approximation.

The problem of determining reconfiguration goals (i.e., the analysis phase) is
complementary to the planning problem. Engage [15] uses a SAT solver to build
a complete target configuration (a set of components to deploy) from a partial
specification, based on a hierarchical specification of a distributed software stack.
It also performs limited planning, namely sequentially ordering deployments.
Engage does not account for the state of the system, and is thus limited to
initial deployments or reconfigurations from the ground up. Zephyrus [11] and
ConfSolve [17] are two tools to infer, from the state of the system/environment,
a target configuration that could be used as an entry of our planning tool.

6 Conclusion

We have described a synthesis method for reconfiguration plans of component-
based systems, that relies on (i) finding local solutions at the component level,
(ii) finding a schedule that coordinates those solutions at the assembly level, with
the help of an SMT solver, (iii) determining unsatisfied dependencies to refine
the reconfiguration goal until it becomes satisfiable, and (iv) optimizing the syn-
thesized reconfiguration plan to improve its level of parallel and asynchronous
execution. Dividing the problem in this manner, as opposed to attempting to
solve it at once with an SMT solver, is a key to solving large instances, although
it leads to incompleteness (the third step relies on an incomplete search guided
by some heuristic choices). This design decision does not appear to affect the suc-
cess of the method or the quality of synthesized plans, and allows the technique
to scale to applications with large number of components, as demonstrated in
our experiments on synthetic examples and a real use case. To improve scalabil-
ity on complex architectures, this technique could be adapted to a hierarchical
composition model, which would lend itself to a recursive resolution algorithm.

SMT-Based Planning Synthesis for Distributed System Reconfigurations 19

References

1. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration
planning for distributed software systems. In: Proceedings. 15th IEEE International
Conference on Tools with Artificial Intelligence. pp. 39–46. IEEE (2003)

2. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory of
inductive data types. Journal on Satisfiability, Boolean Modeling and Computation
3, 21–46 (2007)

4. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using
BSP. Oxford Unviersity Press (2020)

5. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assem-
blies. In: 35th International Conference on Software Engineering (ICSE). pp. 13–22
(2013)

6. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assemblies.
In: 2013 35th International Conference on Software Engineering (ICSE). pp. 13–22.
IEEE (2013)

7. Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for structural
reconfiguration of components under behavioural adaptation. Electronic Notes in
Theoretical Computer Science 263, 95–110 (2010)

8. Chardet, M., Coullon, H., Pérez, C., Pertin, D., Servantie, C., Robillard, S.: En-
hancing separation of concerns, parallelism, and formalism in distributed software
deployment with Madeus (2020), https://hal.inria.fr/hal-02737859, preprint

9. Chardet, M., Coullon, H., Robillard, S.: Toward safe and efficient reconfiguration
with Concerto. Science of Computer Programming 203 (2021)

10. Chardet, M., Hélène, C., Perez, C.: Predictable efficiency for reconfiguration of
service-oriented systems with Concerto. In: 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID). pp. 340–349
(2020)

11. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche,
A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. p. 211–222 (2014)

12. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: A component model
for the cloud. Information and Computation pp. 100–121 (2014)

13. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.:
Model driven provisioning: Bridging the gap between declarative object models and
procedural provisioning tools. In: ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing. pp. 404–423.
Springer (2006)

14. Etchevers, X., Coupaye, T., Boyer, F., De Palma, N.: Self-configuration of dis-
tributed applications in the cloud. In: 2011 IEEE 4th International Conference on
Cloud Computing. pp. 668–675. IEEE (2011)

15. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: A deployment management
system. In: ACM SIGPLAN PLDI. pp. 263–274 (2012)

16. Gunawi, H.S., Hao, M., Suminto, R.O., Laksono, A., Satria, A.D., Adityatama, J.,
Eliazar, K.J.: Why does the cloud stop computing? lessons from hundreds of service
outages. In: Proceedings of the Seventh ACM Symposium on Cloud Computing.
pp. 1–16 (2016)

https://hal.inria.fr/hal-02737859

20 S. Robillard, H. Coullon

17. Hewson, J.A., Anderson, P., Gordon, A.: A declarative approach to automated
configuration. In: lisa’12: Proceedings of the 26th international conference on Large
Installation System Administration: strategies, tools, and techniques. pp. 51–66
(2012)

18. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.L., Krishnan, V.: The CHAMPS
system: Change management with planning and scheduling. In: 2004 IEEE/IFIP
Network Operations and Management Symposium (IEEE Cat. No. 04CH37507).
vol. 1, pp. 395–408. IEEE (2004)

19. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer (2003)
20. Kikuchi, S., Tsuchiya, S., Hiraishi, K.: Synthesis of configuration change procedure

using model finder. IEICE TRANSACTIONS on Information and Systems 96(8),
1696–1706 (2013)

21. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study. Journal of Systems and Software
126, 1–16 (2017). https://doi.org/https://doi.org/10.1016/j.jss.2017.01.001

22. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment
of cloud applications. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence. pp. 213–220 (2013)

23. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems. LNCS, vol. 4963, pp. 337–340. Springer
(2008)

24. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architec-
ture. O’Reilly Media, Inc. (2016)

25. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: A
systematic mapping study. In: CLOSER (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/https://doi.org/10.1016/j.jss.2017.01.001
http://creativecommons.org/licenses/by/4.0/

SMT-Based Planning Synthesis for Distributed System Reconfigurations 21

Appendix A Algorithm to find a sequence of behaviors
for a single component

Procedure enum(seq , act , bhvs,Γ’bhv ,Γ’ports) is
if Γ’bhv = ∅ and act satisfies Γ’ports then return {seq};
R← ∅ ;
for b ∈ bhvs such that b has outgoing transitions from act do

act ′ ← places active after execution of b starting from act ;
R← R ∪ enum(seq ·[b], act ′, bhvs \{b},Γ’bhv \{b},Γ’ports) ;

end
return R ;

end
Procedure localSeq(c, actc,Γbhv ,Γports) is

L← enum([], actc, bhvsc,Γbhv
c,Γports

c) ;
if L = ∅ then

fail ;
else

return bestSolution(L) ;
end

end

Procedure 3: Finds a sequence of behaviors that satisfies the reconfigu-
ration goal for a component c.

Procedure 3 shows how a sequence of behavior that satisfies a goal for a single
component c is found: enum recursively enumerates sequences of behaviors, it
returns the set of sequences that include requested behaviors and ensure that the
component finishes in a state that satisfies the port constraints. The argument
seq denotes the sequence being analyzed, act denotes the active places after
the execution of that sequence, bhvs is the set of candidate behaviors whose
permutations remain to be tested, Γ’bhv denotes the behaviors that remain to
be included in the sequence to satisfy the goal, and Γ’ports the port conditions
to satisfy. bestSolution return the best sequence in a set, according to some
(possibly user-defined) optimization criterion. Solutions returned by localSeq are
valid under the assumption that all ports requirements are eventually satisfied
by the other components connected to those ports, hence Procedure 1 may call
localSeq multiple times with refined reconfiguration goals for a component c.

Appendix B Internal structure of components used in
synthetic benchmarks

Figure 5 describes the three types of components used in the synthetic bench-
marks of Section 4.2. Provider components are used in all four architectures, user

22 S. Robillard, H. Coullon

components are used in the central-provider and linear architectures, and paral-
lel user components are used in central-user and stratified architectures. Parallel
user components can be scaled to offer p pairs of use ports, to accommodate the
architecture. The internal net is adapted accordingly with p places suspended
and sconf. Recall that the internal structure of components does not affect the
complexity of scheduling problems, and that the time required for synthesis is
dominated by the solving of these problems.

For some instances of user and parallel user components in the assemblies,
the provide ports are not connected to other components (and not shown in
Figure 3). All other component ports are connected in the assemblies.

service

running

uninstalled

config

deploy

update

installed

stop

(a) Provider component

service_out

running

uninstalled

config_out

deploy

suspend

stop

service_in

config_in

configured

installed

(b) User component

uninstalled

deploy

suspend

config3

service2

running

sconf2

suspended3

config2

service1

suspended2

sconf3

allocated

stop

sconf1

config1

suspended1

service3

service_out

config_out

configured

(c) Parallel user component (shown here
with p = 3)

Fig. 5: The components used in synthetic benchmarks.

	SMT-Based Planning Synthesis for Distributed System Reconfigurations

