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GLOBAL LINEAR CONVERGENCE OF EVOLUTION STRATEGIES1

ON MORE THAN SMOOTH STRONGLY CONVEX FUNCTIONS2

YOUHEI AKIMOTO ∗, ANNE AUGER † , TOBIAS GLASMACHERS ‡ , AND DAIKI3

MORINAGA §4

Abstract. Evolution strategies (ESs) are zeroth-order stochastic black-box optimization heuris-5
tics invariant to monotonic transformations of the objective function. They evolve a multivariate6
normal distribution, from which candidate solutions are generated. Among different variants, CMA-7
ES is nowadays recognized as one of the state-of-the-art zeroth-order optimizers for difficult problems.8
Albeit ample empirical evidence that ESs with a step-size control mechanism converge linearly, the-9
oretical guarantees of linear convergence of ESs have been established only on limited classes of10
functions. In particular, theoretical results on convex functions are missing, where zeroth-order and11
also first-order optimization methods are often analyzed. In this paper, we establish almost sure lin-12
ear convergence and a bound on the expected hitting time of an ES family, namely the (1 + 1)κ-ES,13
which includes the (1+1)-ES with (generalized) one-fifth success rule and an abstract covariance ma-14
trix adaptation with bounded condition number, on a broad class of functions. The analysis holds for15
monotonic transformations of positively homogeneous functions and of quadratically bounded func-16
tions, the latter of which particularly includes monotonic transformation of strongly convex functions17
with Lipschitz continuous gradient. As far as the authors know, this is the first work that proves18
linear convergence of ES on such a broad class of functions.19

Key words. Evolution strategies, Randomized Derivative Free Optimization, Black-box opti-20
mization, Linear Convergence, Stochastic Algorithms21

AMS subject classifications. 65K05, 90C25, 90C26, 90C56, 90C5922

1. Introduction. We consider the unconstrained minimization of an objective23

function f : Rd → R without the use of derivatives where an optimization solver sees24

f as a zeroth-order black-box oracle [12, 47, 48]. This setting is also referred to as25

derivative-free optimization [15]. Such problems can be advantageously approached26

by randomized algorithms that can typically be more robust to noise, non-convexity27

and irregularities of the objective function than deterministic algorithms. There has28

been recently a vivid interest in randomized derivative-free algorithms giving rise to29

several theoretical studies of randomized direct search methods [25], trust region [9,26]30

and model-based methods [13, 49]. We refer to [40] for an in-depth survey including31

the references of this paragraph and additional ones.32

In this context, we investigate Evolution Strategies (ES), which are among the33

oldest randomized derivative-free or zeroth-order black-box methods [16,50,53]. They34

are widely used in applications in different domains [4, 11, 20–22, 27, 39, 44, 56, 57].35

Notably a specific ES called covariance-matrix-adaptation ES (CMA-ES) [30] is among36

the best solvers to address difficult black-box problems. It is affine-invariant and37

implements complex adaptation mechanisms for the sampling covariance matrix and38

step-size. It performs well on many ill-conditioned, non-convex, non-smooth, and non-39

separable problems [29,52]. ES are known to be difficult to analyze. Yet, given their40

importance in practice, it is essential to study them from a theoretical convergence41
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perspective.42

We focus on the arguably simplest and oldest adaptive ES, denoted (1+1)-ES. It43

samples a candidate solution from a Gaussian distribution whose step-size (standard44

deviation) is adapted. The candidate solution is accepted if and only if it is better45

than the current one (see pseudo-code Algorithm 2.1). The algorithm shares some46

similarities with simplified direct search whose complexity analysis has been presented47

in [38]. Yet the (1+1)-ES is comparison-based and thus invariant to strictly increasing48

transformations of the objective function. Simplified direct search can be thought of as49

a variant of mesh adaptive direct search [1,6]. Arguably, in contrast to direct search,50

a sufficient decrease condition cannot be guaranteed. This causes some difficulties51

for the analysis. The (1+1)-ES is rotational invariant, while direct search candidate52

solutions are created along a predefined set of vectors. While the CMA-ES should53

always be preferred for practical applications over the (1+1)-ES variant analyzed here,54

this latter variant achieves faster linear convergence on well-conditioned problems55

when compared to algorithms with established complexity analysis (see [54, Table 6.356

and Figure 6.1] and [8, Figure B.4] where the random pursuit algorithm and the57

(1+1)-ES algorithms are compared, and also Appendix A).58

Prior theoretical studies of the (1+1)-ES with 1/5 success rule have established59

the global linear convergence on differentiable positively homogeneous functions (com-60

posed with a strictly increasing function) with a single optimum [7, 8]. Those results61

establish the almost sure linear convergence from all initial states. They however62

do not provide the dependency of the convergence rate with respect to the dimen-63

sion. A more specific study on the sphere function f(x) = 1
2‖x‖2 establishes lower64

and upper bounds on the expected hitting time of an ε-ball of the optimum in65

Θ(log(d‖m0 − x∗‖/ε)), where x∗ is the optimum of the function, m0 is the initial66

solution, and d is the problem dimension [3]. Prior to that, a variant of the (1+1)-ES67

with one-fifth success rule had been analyzed on the sphere and certain convex qua-68

dratic functions establishing bounds on the expected hitting time with overwhelming69

probability in Θ(log(κfd‖m0 − x∗‖/ε)), where κf is the condition number (the ra-70

tio between the greatest and smallest eigenvalues) of the Hessian [33–36]. Recently,71

the class of functions where the convergence of the (1+1)-ES was proven has been72

extended to continuously differentiable functions. This analysis does not address the73

question of linear convergence, focusing only on convergence as such, which is possibly74

sublinear [23].75

Our main contribution is as follows. For a generalized version of the (1+1)-76

ES with one-fifth success rule, we prove bounds on the expected hitting time akin77

to linear convergence, i.e., hitting an ε-ball in Θ(log ‖m0 − x∗‖/ε) iterations on a78

quite general class of functions. This class of functions includes all composites of79

Lipschitz-smooth strongly convex functions with a strictly increasing transformation.80

This latter transformation allows to include some non-continuous functions, and even81

functions with non-smooth level sets. We additionally deduce linear convergence with82

probability one. Our analysis relies on finding an appropriate Lyapunov function with83

lower and upper-bounded expected drift. It is building on classical fundamental ideas84

presented by Hajek [28] and widely used to analyze stochastic hill-climbing algorithms85

on discrete search spaces [42].86

Notation. Throughout the paper, we use the following notations. The set of87

natural numbers {1, 2, . . . , } is denoted N. Open, closed, and left open intervals on R88

are denoted by (, ), [, ], and (, ], respectively. The set of strictly positive real numbers89

is denoted by R>. The Euclidean norm on Rd is denoted by ‖ ‖. Open and closed90
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GLOBAL LINEAR CONVERGENCE OF EVOLUTION STRATEGIES 3

balls with center c and radius r are denoted as B(c, r) = {x ∈ Rd : ‖x− c‖ < r} and91

B̄(c, r) = {x ∈ Rd : ‖x − c‖ 6 r}, respectively. Lebesgue measures on R and Rd are92

both denoted by the same symbol µ. A multivariate normal distribution with mean93

m and covariance matrix Σ is denoted by N (m,Σ). Its probability measure and its94

induced probability density under Lebesgue measure are denoted by Φ(·;m,Σ) and95

ϕ(·;m,Σ). The indicator function of a set or condition C is denoted by 1 {C}. We96

use Bachmann-Landau notations: o(·), O(·), Θ(·), Ω(·), ω(·).97

2. Algorithm, Definitions and Objective Function Assumptions.98

2.1. Algorithm: (1+1)-ES with Success-based Step-size Control. We99

analyze a generalized version of the (1+1)-ES with one-fifth success rule presented in100

Algorithm 2.1, which implements one of the oldest approaches to adapt the step-size101

in randomized optimization methods [16, 50, 53]. The specific implementation was102

proposed in [37]. At each iteration, a candidate solution xt is sampled. It is centered103

in the current incumbent mt and follows a multivariate normal distribution with mean104

vector mt and covariance matrix equal to σ2
t Id where Id denotes the identity matrix.105

The candidate solution is accepted, that is mt becomes xt, if and only if xt is better106

than mt (i.e. f(xt) 6 f(mt)). In this case, we say that the candidate solution is107

successful. The step-size σt is adapted so as to maintain a probability of success to be108

approximately the target success probability denoted by ptarget :=
log(1/α↓)

log(α↑/α↓)
. To do109

so, the step-size is increased by the increase factor α↑ > 1 in case of success (which is110

an indication that the step-size is likely to be too small) and decreased by the decrease111

factor α↓ < 1 otherwise. The covariance matrix Σt of the sampling distribution of112

candidate solutions is adapted in the set Sκ of positive-definite symmetric matrices113

with determinant det(Σ) = 1 and condition number Cond(Σ) 6 κ. We do not assume114

any specific update mechanism for Σ, but we assume that the update of Σ is invariant115

to any strictly increasing transformation of f . We call such an update comparison-116

based (see Lines 7 and 11 of Algorithm 2.1). Then, our algorithm behaves exact-117

equally on f and on g ◦ f for all strictly increasing functions g : R → R
(
i.e., g(s) Q118

g(t) ⇔ s Q t
)
. This defines a class of comparison-based randomized algorithms and119

we denote it as (1+1)-ESκ. For κ = 1, it is simply denoted as (1+1)-ES.120

Algorithm 2.1 (1+1)-ESκ with success-based step-size adaptation

1: input m0 ∈ Rd, σ0 > 0, Σ0 = I, f : Rd → R, parameter α↑ > 1 > α↓ > 0
2: for t = 1, 2, . . . , until stopping criterion is met do
3: sample xt ∼ mt + σtN (0,Σt)
4: if f

(
xt
)
6 f

(
mt

)
then

5: mt+1 ← xt . move to the better solution
6: σt+1 ← σtα↑ . increase the step size
7: Σt+1 ∈ Sκ . adapt the covariance matrix
8: else
9: mt+1 ← mt . stay where we are

10: σt+1 ← σtα↓ . decrease the step size
11: Σt+1 ∈ Sκ . adapt the covariance matrix

Note that α↑ and α↓ are not meant to be tuned depending on the function prop-121

erties. How to choose such constants for Σt = Id is well-known and is related to122

the so-called evolution window [51]. In practice, α↓ = α
−1/4
↑ is the most commonly123

used setting, which leads to ptarget = 1/5. It has been shown to be close to optimal,124
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Fig. 2.1: Convergence of the (1+1)-ES (left) and the (1+1)-CMA-ES (middle) on 10

dimensional ellipsoidal function f(x) = 1
2

∑d
i=1 κ

i−1
d−1

f x2
i with κf = 100, 101, . . . , 106.

The y-axis displays the distance to the optimum (and not the function value). We
employ the covariance matrix adaptation mechanism proposed by [5], where σ is
adapted as in Algorithm 2.1 with α↑ = e0.1 and α↓ = e−0.025. Note the logarithmic
scale of the time axis of the left plot vs. the linear time axis of the middle plot.
Right: Three runs of (1+1)-ES (α↑ = e0.1 and α↑ = e−0.025) on 10 dimensional
spherical function f(x) = 1

2‖x− x∗‖2 with initial step-size σ0 = 10−4, 1, and 104 (in
blue, red, green, respectively). Plotted are the distance to the optimum (dotted line),
the step-size (dashed line), and the potential function V (θ) defined in (4.5) (solid line)
with v = 4/d, ` = α−10

↑ , and u = α−10
↓ .

which gives nearly optimal (linear) convergence rate on the sphere function [16, 50].125

Hereunder we write θ = (m,σ,Σ) as the state of the algorithm, θt = (mt, σt,Σt) and126

the state-space is denoted by Θ.127

Figure 2.1 shows typical runs of the (1+1)-ES and a version of (1+1)-ESκ pro-128

posed in [5], which is known as the (1+1)-CMA-ES, on a 10-dimensional ellipsoidal129

function with different condition numbers κf of the Hessian. It is empirically observed130

that Σt in the (1+1)-CMA-ES approaches the inverse Hessian ∇2f(mt) of the objec-131

tive function up to the scalar factor if the objective function is convex quadratic. The132

runtime of (1+1)-ES scales linearly with κf (notice the logarithmic scale of the hori-133

zontal axis), while the runtime of the (1+1)-CMA-ES suffers only an additive penalty,134

roughly proportional to the logarithm of κf . Once the Hessian is well approximated135

by Σ (up to a scalar factor), it approaches the global optimum geometrically at the136

same rate for different values of κf .137

In our analysis, we do not assume any specific Σ update mechanism, hence it does138

not necessarily behave as shown in Figure 2.1. Our analysis is therefore the worst139

case analysis (for the upper bound of the runtime) and the best case analysis (for the140

lower bound of the runtime) among the algorithms in (1+1)-ESκ.141

2.2. Preliminary definitions.142

2.2.1. Spatial Suboptimality Function. The algorithms studied in this paper143

are comparison-based and thus invariant to strictly increasing transformations of f . If144

the convergence of the algorithms is measured in terms of f , say by investigating the145

convergence or hitting time of the sequence f(mt), this will not reflect the invariance146

to monotonic transformations of f because the first iteration t0 such that f(mt0) 6 ε147

is not equal to the first iteration t′0 such that g(f(mt′0
)) 6 ε for some ε > 0. For this148

reason, we introduce a quality measure called spatial suboptimality function [23]. It149

is the dth root of the volume of the sub-levelset where the function value is better or150
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equal to f(x):151

Definition 2.1 (Spatial Suboptimality Function). Let f : Rd → R be a measur-152

able function with respect to the Borel σ algebra of Rd (simply referred to as measurable153

function in the sequel). Then the spatial suboptimality function fµ : Rd → [0,+∞] is154

defined as155

(2.1) fµ(x) = d
√
µ (f−1 ((−∞, f(x)])) = d

√
µ
({
y ∈ Rd

∣∣ f(y) 6 f(x)
})

.156

We remark that for any f , the suboptimality function fµ is greater or equal to zero.157

For any f and any strictly increasing function g : Im(f) → R, f and its composite158

g◦f have the same spatial suboptimality function such that hitting time of fµ smaller159

than ε > 0 will be the same for f or g ◦ f . Moreover, there exists a strictly increasing160

function g such that fµ(x) = g(f(x)) holds µ-almost everywhere [23, Lemma 1].161

We will investigate the expected first hitting time of ‖mt − x∗‖ to ε > 0. For162

this, we will bound the first hitting time of ‖mt − x∗‖ to ε by the first hitting time163

of fµ(mt) to a constant times ε. To understand why, consider first a strictly convex164

quadratic function f with Hessian H and minimal solution x∗. We have fµ(x) =165

Vd
[
2(f(x)−f(x∗))/ det(H)1/d

]1/2
for all x ∈ Rd, where Vd = π1/2/Γ1/d(d/2+1) is the166

dth root of the volume of the d-dimensional unit hyper-sphere [2]. This implies that167

the first hitting time of fµ(mt) translates to the first hitting time of
√
f(mt)− f(x∗).168

We have
√
λmin‖x − x∗‖ 6

√
f(x)− f(x∗) 6

√
λmax‖x − x∗‖, where λmin and λmax169

are the minimal and maximal eigenvalues of H. E.g., consider f(x) = ‖x− x∗‖2 + 1.170

Then the above condition also translates to the first hitting time of ‖mt − x∗‖. More171

generally, we will formalize an assumption on f later on (Assumption A1), which172

allow us to bound ‖x − x∗‖ by a constant times fµ(x) from above and below (see173

(2.6)), implying that the first hitting time of ‖mt − x∗‖ to ε is bounded by that of174

fµ(mt) to ε, times a constant.175

2.2.2. Success Probability. The success probability, i.e., the probability of176

sampling a candidate solution xt with an objective function better than or equal177

to that of the current solution mt, plays an important role in the analysis of the178

(1+1)-ESκ with success-based step-size control mechanism. We present here several179

useful definitions related to the success probability.180

We start with the definition of the success domain with rate r and the success181

probability with rate r. The probability to sample in the r-success domain is called182

success probability with rate r. When r = 0 we simply talk about success probability.1183

Definition 2.2 (Success Domain). For a measurable function f : Rd → R and184

m ∈ Rd such that fµ(m) <∞, the r-success domain at m with r ∈ [0, 1] is defined as185

(2.2) Sr(m) = {x ∈ Rd | fµ(x) 6 (1− r)fµ(m)} .186

Definition 2.3 (Success Probability). Let f be a measurable function and let187

m0 ∈ Rd be the initial search point satisfying fµ(m0) <∞. For any r ∈ [0, 1] and any188

m ∈ S0(m0), the success probability with rate r at m under the normalized step-size189

1For r = 0, the success domain S0(m) is not necessarily equivalent to the sub-levelset S′0(m) :=
{x ∈ Rd | f(x) 6 f(m)}, where it always holds that S′0(m) ⊆ S0(m). However, since it is guaranteed
that µ(S0(m) \S′0(m)) = 0 by [23, Lemma 1], due to the absolute continuity of Φ(; 0,Σ) for Σ ∈ Sκ,
the success probability with rate r = 0 is equivalent to Prz∼N (0,Σ)

[
m+ fµ(m) · σ̄z ∈ S′0(m)

]
, with

σ̄ defined in (2.3).
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σ̄ is defined as190

(2.3) psucc
r (σ̄;m,Σ) = Pr

z∼N (0,Σ)
[m+ fµ(m)σ̄z ∈ Sr(m)] .191

Definition 2.3 introduces the notion of normalized step-size σ̄ and the success192

probability is defined as a function of σ̄ rather than the actual step-size σ = fµ(m)σ̄.193

This is motivated by the fact that as m approaches the global optimum x∗ of f , the194

step-size σ needs to shrink for the success probability to be constant. If the objective195

function is f(x) = 1
2‖x− x∗‖2 and the covariance matrix is the identity matrix, then196

the success probability is fully controlled by σ̄t = σt/fµ(mt) ∝ σt/‖mt − x∗‖ and is197

independent of mt. This statement can be formalized in the following way.198

Lemma 2.4. If f(x) = 1
2‖x− x∗‖2, then letting e1 = (1, 0, . . . , 0), we have

psucc
r (σ̄;m, I) = Pr

z∼N (0,I)
[m+ fµ(m)σ̄z ∈ Sr(m)] = Pr

z∼N (0,I)
[‖e1 + Vdσ̄z‖ 6 (1− r)] .

Proof. The suboptimality function is the d-th rooth of the volume of a sphere of199

radius ‖x − x∗‖. Hence fµ(x) = Vd‖x − x∗‖. Then, the proof follows the derivation200

in Section 3 in [3].201

Therefore, σ̄ is more discriminative than σ itself. In general, the optimal step-size is202

not necessarily proportional to neither ‖mt − x∗‖ nor fµ(mt).203

Since the success probability under a given normalized step-size depends on m204

and Σ, we define the upper and lower success probability as follows.205

Definition 2.5 (Lower and Upper Success Probability). Let X ba = {x ∈ Rd :206

a < fµ(x) 6 b}. Given the normalized step-size σ̄ > 0, the lower and upper success207

probabilities are defined as208

plower
(a,b] (σ̄) = inf

m∈X ba
inf

Σ∈Sκ
psucc

0 (σ̄;m,Σ) , pupper
(a,b] (σ̄) = sup

m∈X ba
sup

Σ∈Sκ
psucc

0 (σ̄;m,Σ) .209

210

A central quantity for our analysis is the limit for σ̄ to 0 of the success proba-211

bility psucc
0 (σ̄;m,Σ). Intuitively, if this limit is too small for a given m (compared to212

ptarget), because the ruling principle of the algorithm is to decrease the step-size if the213

probability of success is smaller than ptarget, the step-size will keep decreasing, caus-214

ing undesired convergence. Following Glasmachers [23], we introduce the concepts of215

p-improbability and p-criticality. They are defined in [23] by the probability of sam-216

pling a better point from the isotropic normal distribution in the limit of the step-size217

to zero. Here, we define p-improvability and p-criticality for a general multivariate218

normal distribution.219

Definition 2.6 (p-improvability and p-criticality). Let f be a measurable func-220

tion. The function f is called p-improvable at m ∈ Rd under the covariance matrix221

Σ ∈ Sκ if there exists p ∈ (0, 1] such that222

(2.4) p = lim inf
σ̄→+0

psucc
0 (σ̄;m,Σ) .223

Otherwise, it is called p-critical.224

The connection to the classical definition of the critical points for continuously dif-225

ferentiable functions is summarized in the following proposition, which is an extension226

of Lemma 4 in [23], taking a non-identity covariance matrix into account.227
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x*

m

x* m

Fig. 2.2: The sampling distribution is indicated by the mean m and the shaded orange
circle, indicating one standard deviation. The blue set is the sub-levelset S0(m) of
points improving upon m. Left: Illustration of property A1 in Subsection 2.3. The
blue set is enclosed in the red (outer) ball of radius Cufµ(m) and contains the dark
green (inner) ball of radius C`fµ(m). The shaded light green ball indicates the worst
case situation captured by the bound, namely that the small ball is positioned within
the large ball at maximal distance to m. Right: Illustration of property A2 in
Subsection 2.3. Although the level set has a kink at m, there exists a cone centered
at m covering a probability mass of plimit of improving steps (inside S0(m)) for small
enough step size σ (green outline). It contains a smaller cone (red outline) covering a
probability mass of ptarget.

Proposition 2.7. Let f = g ◦ h be a measurable function where g is any strictly228

increasing function and h is continuously differentiable. Then, f is p-improvable with229

p = 1/2 at any regular point m where ∇h(m) 6= 0 under any Σ ∈ Sκ. Moreover, if230

h is twice continuously differentiable at a critical point m where ∇h(m) = 0 and at231

least one eigenvalue of ∇2f(m) is non-zero, under any Σ ∈ Sκ, m is p-improvable232

with p = 1 if ∇2h(m) has only non-positive eigenvalues, p-critical if ∇2h(m) has only233

non-negative eigenvalues, and p-improvable with some p > 0 if ∇2h(x) has at least234

one strictly negative eigenvalue.235

Proof. Note that psucc
0 (σ̄;m,Σ) on f is equivalent to psucc

0 (σ̄;m, Id) on f ′(x) =236

f(m+
√

Σ(x−m)). Therefore, it suffices to show that the claims hold for Σ = Id on237

f ′, which is proven in Lemma 4 in [23].238

2.3. Main Assumptions on the Objective Functions. Given positive real239

numbers a and b satisfying 0 6 a < b 6 +∞, and a measurable objective function,240

let X ba be the set defined in Definition 2.5.241

We pose two core assumptions on the objective functions under which we will242

derive an upper bound on the expected first hitting time of [0, ε] by fµ(mt) (Theo-243

rem 4.5) provided a 6 ε 6 fµ(m0) 6 b. First, we require to be able to embed and244

include balls of radius scaling with fµ(m) into the sublevel sets of f . We do not245

require this to hold on the whole search space but, for a set X ba .246

A1 We assume that f is a measurable function and that there exists X ba such247

that for any m ∈ X ba , there exist an open ball B` with radius C`fµ(m) and a248

closed ball B̄u with radius Cufµ(m) such that it holds B` ⊆ {x ∈ Rd | fµ(x) <249

fµ(m)} and {x ∈ Rd | fµ(x) 6 fµ(m)} ⊆ B̄u.250
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We do not specify the center of those balls that may or may not be centered on an251

optimum of the function. We will see in Proposition 4.1 that this assumption allows252

to bound plower
(a,b] (σ̄) and pupper

(a,b] (σ̄) by tractable functions of σ̄ which will be essential253

for the analysis. The property is illustrated in Figure 2.2.254

The second assumption requires that the functions are p-improvable for p which255

is lower-bounded uniformly over X ba .256

A2 Let f be a measurable function, we assume that there exists X ba and there257

exists plimit > ptarget such that for any m ∈ X ba and any Σ ∈ Sκ, the objective258

function f is p-improvable for some p > plimit, i.e.,259

(2.5) lim inf
σ̄↓0

plower
(a,b] (σ̄) > plimit .260

The property is illustrated in Figure 2.2. This assumption implies in particular for261

a continuous function that X ba does not contain any local optimum. This latter as-262

sumption is required to obtain global convergence [23, Theorem 2] even without any263

covariance matrix adaptation (i.e. with κ = 1) and it can be intuitively understood:264

If we have a point which is p-improvable with p < ptarget and which is not a local265

minimum of the function, then, starting with a small step-size, the success-based step-266

size control may keep decreasing the step-size at such a point and the (1+1)-ESκ will267

prematurely converge to a point that is not a local optimum.268

If A1 is satisfied with balls centered at the optimum x∗ of the function f , then it269

is easy to see that for all x ∈ X ba270

(2.6) C`fµ(x) 6 ‖x− x∗‖ 6 Cufµ(x) .271

If the balls are not centered at the optimum, we have the one-side inequality ‖x−x∗‖ 6272

2Cufµ(x). Hence, the expected first hitting time of fµ(mt) to [0, ε] translates to an273

upper bound for the expected first hitting time of ‖mt − x∗‖ to [0, 2Cuε].274

We remark that A1 and A2 satisfied for a = 0 allow to include some non-275

differentiable functions with non-convex sublevel sets as illustrated in Figure 2.2.276

We now give two examples of functions that satisfy A1 and A2, including function277

classes where linear convergence of numerical optimization algorithms are typically278

analyzed. The first class consists of quadratically bounded functions. It includes all279

strongly-convex functions with Lipschitz continuous gradient. It also includes some280

non-convex functions. The second class consists of positively homogeneous functions.281

The levelsets of a positively homogeneous function are all geometrically similar around282

x∗.283

A3 We assume that f = g ◦ h where g is a strictly increasing function and h is284

measurable, continuously differentiable with the unique critical point x∗, and285

quadratically bounded around x∗, i.e., for some Lu > L` > 0,286

(L`/2)‖x− x∗‖2 6 h(x)− h(x∗) 6 (Lu/2)‖x− x∗‖2 .(2.7)287288

A4 We assume that f = g◦h where h is continuously differentiable and positively289

homogeneous with a unique optimum x∗, i.e., for some γ > 0290

(2.8) h(x∗ + γx) = h(x∗) + γ (h(x∗ + x)− h(x∗)) .291

The following lemmas show that these assumptions imply A1 and A2. The proofs292

of the lemmas are presented in Appendix B.1 and Appendix B.2, respectively.293

Lemma 2.8. Let f satisfy A3. Then, f satisfies A1 and A2 with a = 0, b = ∞,294

C` = 1
Vd

√
L`
Lu

and Cu = 1
Vd

√
Lu
L`

.295
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Lemma 2.9. Let f be positively homogeneous satisfying A4, then the suboptimality296

function fµ(x) is proportional to h(x)− h(x∗) and satisfies A1 and A2 for a = 0 and297

b =∞ with Cu = sup{‖x− x∗‖ : fµ(x) = 1} and C` = inf{‖x− x∗‖ : fµ(x) = 1}.298

3. Methodology: Additive Drift on Unbounded Continuous Domains.299

3.1. First Hitting Time. We start with the generic definition of the first hitting300

time of a stochastic process {Xt : t > 0}, defined as follows.301

Definition 3.1 (First hitting time). Let {Xt : t > 0} be a sequence of real-302

valued random variables adapted to the natural filtration {Ft : t > 0} with initial303

condition X0 = β0 ∈ R. For β < β0, the first hitting time TXβ of Xt to the set304

(−∞, β] is defined as TXβ = inf{t : Xt 6 β}.305

The first hitting time is the number of iterations that the stochastic process306

requires to reach the target level β < β0 for the first time. In our situation, Xt =307

‖mt − x∗‖ measures the distance from the current solution mt to the target point308

x∗ (typically, global or local optimal point) after t iterations. Then, β = ε > 0309

defines the target accuracy and TXε is the runtime of the algorithm until it finds an310

ε-neighborhood B(x∗, ε). The first hitting time TXε is a random variable as mt is a311

random variable. In this paper, we focus on the expected first hitting time E[TXε ]. We312

want to derive lower and upper bounds on this expected hitting time that relate to313

the linear convergence of Xt towards x∗. Such bounds take the following form: There314

exist CT , C̃T ∈ R and CR > 0, C̃R > 0 such that for any 0 < ε 6 β0315

(3.1) C̃T +
log (‖m0 − x∗‖/ε)

C̃R
6 E[TXε |F0] 6 CT +

log(‖m0 − x∗‖/ε)
CR

.316

That is, the time to reach the target accuracy scales logarithmically with the ratio317

between the initial accuracy ‖m0 − x∗‖ and the target accuracy ε. The first pair of318

constants, CT and C̃T , capture the transient time, which is the time that adaptive319

algorithms typically spend for adaptation. The second pair of constants, CR and C̃R,320

reflect the speed of convergence (logarithmic convergence rate). Intuitively, assuming321

that CR and C̃R are close, the distance to the optimum decreases in each step at a rate322

of approximately exp(−CR) ≈ exp(−C̃R). While upper-bounds inform us about the323

(linear) convergence, the lower-bound helps understanding whether the upper bounds324

are tight.325

Alternatively, linear convergence can be defined as the following property: there326

exits C > 0 such that327

(3.2) lim sup
t→∞

1

t
log
‖mt − x∗‖
‖m0 − x∗‖

6 −C almost surely.328

When we have an equality in the previous statement, we say that exp(−C) is the329

convergence rate.330

Figure 2.1 (right plot) visualizes three different runs of the (1+1)-ES on a function331

with spherical level sets with different initial step-sizes. First of all, we clearly observe332

linear convergence. The first hitting time of B(x∗, ε) scales linearly with log(1/ε) for333

a sufficiently small ε > 0. Second, its convergence speed is independent of the initial334

condition. Therefore, we expect to have universal constants CR and C̃R independent335

of the initial state. Last, depending on the initial step-size, the transient time can336

vary. If the initial step-size is too large or too small, it does not produce progress in337

terms of ‖mt − x∗‖ until the step-size is well adapted. Therefore, CT and C̃T depend338

on the initial condition, with a logarithmic dependency on the initial multiplicative339

mismatch.340
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3.2. Bounds of the Hitting Time via Drift Conditions. We are going to use341

drift analysis that consists in deducing properties of a sequence {Xt : t > 0} (adapted342

to a natural filtration {Ft : t > 0}) from its drift defined as E[Xt+1 | Ft] − Xt [28].343

Drift analysis has been widely used to analyze hitting times of evolutionary algorithms344

defined on discrete search spaces (mainly on binary search spaces) [10,18,19,31,32,45].345

Though they were developed mainly for finite search spaces, the drift theorems can346

naturally be generalized to continuous domains [41,43]. Indeed, Jägersküpper’s work347

[33,35,36] is based on the same idea, while the link to the drift analysis was implicit.348

Since many drift conditions have been developed for analyzing algorithms on dis-349

crete domains, the domain of Xt is often implicitly assumed to be bounded. However,350

this assumption is violated in our situation, where we will use Xt = log
(
fµ(mt)

)
351

as the quality measure, which takes values in R ∪ {−∞}, and is meant to approach352

−∞. We refer to [3] for additional details. In general, translating expected progress353

requires bounding the tail of the progress distribution, as formalized in [28].354

To control the tails of the drift distribution, we construct a stochastic process355

{Yt : t > 0} iteratively as follows: Y0 = X0 and356

(3.3) Yt+1 = Yt + max
{
Xt+1 −Xt,−A

}
1 {TXβ >t} −B1 {TXβ 6t}357

for some A > B > 0 and β < β0 with X0 = β0. It clips Xt+1 −Xt to some constant358

−A (A > 0) from below. We introduce the indicator 1 {TXβ >t} for a technical reason.359

The process disregards progress larger than A, and it fixes the progress of the step360

that hits the target set to B. It is formalized in the following theorem, which is our361

main mathematical tool to derive an upper bound of the expected first hitting time362

of (1+1)-ESκ in the form of (3.1).363

Theorem 3.2. Let {Xt : t > 0} be a sequence of real-valued random variables364

adapted to a filtration {Ft : t > 0} with X0 = β0 ∈ R. For β < β0, let TXβ =365

inf {t : Xt 6 β} be the first hitting time of the set (−∞, β]. Define a stochastic process366

{Yt : t > 0} iteratively through (3.3) with Y0 = X0 for some A > B > 0, and let367

TYβ = inf {t : Yt 6 β} be the first hitting time of the set (−∞, β]. If Yt is integrable,368

i.e. E
[∣∣Yt∣∣] <∞, and369

(3.4) E
[
max {Xt+1 −Xt,−A} 1 {TXβ >t}

∣∣Ft] 6 −B1 {TXβ >t} ,370

then the expectation of TXβ satisfies371

(3.5) E
[
TXβ
]
6 E

[
TYβ
]
6
A+ β0 − β

B
.372

Proof of Theorem 3.2. We consider the stopped process X̄t = Xmin{t,TXβ }
. We373

have Xt 6 X̄t for t 6 TXβ and X̄t 6 Ymin{t,TXβ }
for all t > 0. Therefore, we have374

TXβ = T X̄β 6 TYβ . Let Ȳt = Ymin{t,TYβ }
. By construction it holds Yt 6 Ȳt for t 6 TYβ375

and TYβ = T Ȳβ . Hence, TXβ 6 TYβ 6 T Ȳβ .376

We will prove that377

(3.6) E[Ȳt+1 | Ft] 6 Ȳt −B1 {TYβ >t} .378

We start from379

(3.7) E[Ȳt+1 | Ft] = E[Ȳt+11 {TYβ 6t} | Ft] + E[Ȳt+11 {TYβ >t} | Ft]380
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and bound the different terms:381

(3.8) E[Ȳt+11 {TYβ 6t} | Ft] = E[Ȳt1 {TYβ 6t} | Ft] = Ȳt1 {TYβ 6t}382

where we have used that 1{TXβ >t}, Yt, 1{TYβ >t}, and Ȳt are all Ft-measurable. Also383

384

(3.9) E[Ȳt+11 {TYβ >t} | Ft] = E[Yt+1 | Ft]1 {TYβ >t}385

6 (Yt −B1 {TXβ >t} −B1 {TXβ 6t})1 {TYβ >t} = (Ȳt −B)1 {TYβ >t} ,386387

where we have used condition (3.4). Hence, by injecting (3.8) and (3.9) into (3.7),388

we obtain (3.6). From (3.6), by taking the expectation we deduce E[Ȳt+1] 6 E[Ȳt] −389

B Pr[TYβ > t]. Following the same approach as [43, Theorem 1], since TYβ is a random390

variable taking values in N, it can be rewritten as E[TYβ ] =
∑+∞
t=0 Pr[TYβ > t] and thus391

it holds392

BE
[
TYβ
] t̃→∞←− t̃∑

t=0

B Pr
[
TYβ > t

]
6

t̃∑
t=0

(
E[Ȳt]− E[Ȳt+1]

)
= E[Ȳ0]− E[Ȳt̃] .393

Since Yt+1 > Yt − A, we have YTYβ > β − A. Given that Ȳt̃ > YTYβ , we deduce that

E[Ȳt̃] > β −A for all t̃. With E[Ȳ0] = β0, we have

E
[
TYβ
]
6 (A/B) +B−1(β0 − β) .

Since E[TXβ ] 6 E[TYβ ], this completes the proof.394

This theorem can be intuitively understood: we assume for the sake of simplicity a395

process Xt such that Xt+1 > Xt−A. Then (3.4) states that the process progresses in396

expectation by at least −B. The theorem concludes that the expected time needed to397

reach a value smaller than β when started in β0 equals to (β0−β)/B (what we would398

get for a deterministic algorithm) plus A/B. This last term is due to the stochastic399

nature of the algorithm. It is minimized if A is as close as possible to B, which400

corresponds to a highly concentrated process.401

Jägersküpper [35, Theorem 2] established a general lower bound of the expected402

first hitting time of the (1+1)-ES. We borrow the same idea to prove the following403

general theorem for a lower bound of the expected first hitting time, which generalizes404

[36, Lemma 12]. See Theorem 2.3 in [3] for its proof.405

Theorem 3.3. Let {Xt : t > 0} be a sequence of real-valued random variables406

adapted to a filtration {Ft : t > 0} and integrable such that X0 = β0, Xt+1 6 Xt, and407

E[Xt+1 | Ft] − Xt > −C for C > 0. For β < β0 we define TXβ = min {t : Xt 6 β}.408

Then the expected hitting time is lower bounded by E
[
TXβ

]
> −(1/2)+(4C)−1(β0−β).409

4. Main Result: Expected First Hitting Time Bound.410

4.1. Mathematical Modeling of the Algorithm. In the sequel, we will an-411

alyze the process {θt : t > 0} where θt = (mt, σt,Σt) ∈ Rn × R> × Sκ generated by412

the (1+1)-ESκ algorithm. We assume from now on that the optimized objective func-413

tion f is measurable with respect to the Borel σ-algebra. We equip the state-space414

X = Rn × R> × Sκ with its Borel σ-algebra denoted B(X ).415
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4.2. Preliminaries. We present two preliminary results. In Assumption A1, we416

assume that for m ∈ X ba , we can include a ball of radius C`fµ(m) into the sublevel417

set S0(m) and embed S0(m) into a ball of radius Cufµ(m). This allows us to upper418

bound and lower bound the probability of success for all m ∈ X ba , for all Σ ∈ Sκ,419

by the probability to sample inside of balls of radius Cufµ(m) and C`fµ(m) with420

appropriate center. From this we can upper-bound pupper
(a,b] (σ̄) by a function of σ̄.421

Similarly we can lower-bound plower
(a,b] (σ̄) by a function of σ̄. The corresponding proof422

is given in Appendix B.3.423

Proposition 4.1. Suppose that f satisfies A1. Consider the lower and upper424

success probabilities pupper
(a,b] and plower

(a,b] defined in Definition 2.5, then425

pupper
(a,b] (σ̄) 6 κd/2Φ

(
B̄
(

0,
Cu
σ̄κ1/2

)
; 0, I

)
(4.1)426

plower
(a,b] (σ̄) > κ−d/2Φ

(
B̄
(

(2Cu − C`)κ1/2

σ̄
e1,

C`κ
1/2

σ̄

)
; 0, I

)
,(4.2)427

428

where e1 = (1, 0, . . . , 0).429

We use the previous proposition to establish the next lemma that guarantees the430

existence of a finite range of normalized step-size that leads to the success probability431

into some range (pu, p`) independent of m and Σ, and provides a lower bound on the432

success probability with rate r when the normalized step-size is in the above range.433

Its proof is provided in Appendix B.4.434

Lemma 4.2. We assume that f satisfies A1 and A2 for some 0 6 a < b 6 ∞.435

Then, for any pu and p` satisfying 0 < pu < ptarget < p` < plimit, the constants436

σ̄` = sup
{
σ̄ > 0 : plower

(a,b] (σ̄) > p`

}
and σ̄u = inf

{
σ̄ > 0 : pupper

(a,b] (σ̄) 6 pu

}
437
438

exist as positive finite values. Let ` 6 σ̄` and u > σ̄u such that u/` > α↑/α↓. Then,439

for r ∈ [0, 1], p∗r defined as440

(4.3) p∗r := inf
`6σ̄6u

inf
m∈X ba

inf
Σ∈Sκ

psucc
r (σ̄;m,Σ)441

is lower bounded by a positive number defined by442

(4.4) min
`6σ̄6u

κ−d/2Φ

(
B
((

(2Cu − (1− r)C`)κ1/2

σ̄

)
e1,

(1− r)C`κ1/2

σ̄

)
; 0, I

)
.443

4.3. Potential Function. Lemma 4.2 divides the domain of the normalized444

step-size into three disjoint subsets: σ̄ ∈ (0, `) is a too small normalized step-size445

situation where we have psucc
0 (σ̄;m,Σ) > p` for all m ∈ X ba and Σ ∈ Sκ; σ̄ ∈ (u,∞)446

is a too large normalized step-size situation where we have psucc
0 (σ̄;m,Σ) 6 pu for all447

m ∈ X ba and Σ ∈ Sκ; and σ̄ ∈ [`, u] is a reasonable normalized step-size situation where448

the success probability with rate r is lower bounded by (4.4). Since ptarget ∈ [pu, p`],449

the normalized step-size is supposed to be maintained in the reasonable range.450

Our potential function is defined as follows. In light of Lemma 4.2, we can take451

` 6 σ̄` and u > σ̄u such that u/` > α↑/α↓. With some constant v > 0, we define our452

potential function as453

(4.5) V (θ) = log(fµ(m)) + max

{
0, v log

[
α↑`fµ(m)

σ

]
, v log

[
σ

α↓ufµ(m)

]}
.454
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The rationale behind the second term on the right-hand side (RHS) is as follows.455

The second and third terms inside max are positive only if the normalized step-size456

σ̄ = σ/fµ(m) is smaller than `α↑ and greater than uα↓, respectively. The potential457

value is log fµ(m) if the normalized step-size is in [`α↑, uα↓] and it is penalized if the458

normalized step-size is too small or too large. We need this penalization for the follow-459

ing reason. If the normalized step-size is too small, the success probability is close to460

1/2 for non-critical points, assuming f = g ◦h where h is a continuously differentiable461

function, but the progress per step is very small because the step-size directly controls462

the progress for instance measured as ‖mt+1 −mt‖ = σt‖N (0,Σt)‖1{f(mt+1)6f(mt)}.463

If the normalized step-size is too large, the success probability is close to zero and464

produces no progress with high probability. If we would use log fµ(m) as a potential465

function instead of V (θ) then the progress is arbitrarily small in such situations, which466

prevents the application of drift arguments. The above potential function penalizes467

such situations, and guarantees a certain progress in the penalized quantity since the468

step-size will be increased or decreased, respectively, with high probability, leading to469

a certain decrease of V (θ). We illustrate in Figure 2.1 that log(fµ(m)) cannot work470

alone as a potential function while V (θ) does: when we start from a too small or too471

large step-size, log(fµ(m)) looks constant (doted line in green and blue). Only when472

the step-size is started at 1, we see progress in log(fµ(m)). Also, the step size can473

always get arbitrarily worse, with a very small probability, which forces us to handle474

the case of badly adapted step size properly. Yet the simulation of V (θ) shows that in475

all three situations (small, large and well adapted step-sizes compared to the distance476

to the optimum), we observe a geometric decrease of V (θ).477

4.4. Upper Bound of the First Hitting Time. We are now ready to establish478

that the potential function defined in (4.5) satisfies a (truncated)-drift condition from479

Theorem 3.2. This will in turn imply an upper bound on the expected hitting time of480

fµ(m) to [0, ε] provided a 6 ε. The proof follows the same line of argumentation as the481

proof of [3, Proposition 4.2], which was restricted to the case of spherical functions. It482

was generalized under similar assumptions as in this paper, but for a fixed covariance483

matrix equal to the identity, in [46, Proposition 6]. The detailed proof is given in484

Appendix B.5.485

Proposition 4.3. Consider the (1+1)-ESκ described in Algorithm 2.1 with state486

θt = (mt, σt,Σt). Assume that the minimized objective function f satisfies A1 and487

A2 for some 0 6 a < b 6∞. Let pu and p` be constants satisfying 0 < pu < ptarget <488

p` < plimit and p` + pu = 2ptarget. Then, there exists ` 6 σ̄` and u > σ̄u such that489

u/` > α↑/α↓, where σ̄` and σ̄u are defined in Lemma 4.2. For any A > 0, taking v490

satisfying 0 < v < min
{

1, A
log(1/α↓)

, A
log(α↑)

}
, and the potential function (4.5), we491

have492

(4.6) E [max{V (θt+1)− V (θt),−A}1 {mt∈X ba} | Ft] 6 −B1 {mt∈X ba}493

where494

(4.7) B = min

{
Ap∗r − v log

(
α↑
α↓

)
, v

p` − pu
2

log

(
α↑
α↓

)}
,495

and p∗r = inf σ̄∈[`,u] infm∈X ba infΣ∈Sκ p
succ
r (σ̄;m,Σ) with r = 1−exp

(
− A

1−v

)
. Moreover,496

for any A > 0 there exists v such that B < A is positive.497
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We apply Theorem 3.2 along with Proposition 4.3 to derive the expected first498

hitting time bound. To do so, we need to confirm that it satisfies the prerequisite of499

the theorem: integrability of the process {Yt : t > 0} defined in (3.3) with Xt = V (θt).500

Lemma 4.4. Let {θt : t > 0} be the sequence of parameters θt = (mt, σt,Σt)501

defined by the (1+1)-ESκ with the initial condition θ0 = (m0, σ0,Σ0) optimizing a502

measurable function f . Set Xt = V (θt) as defined in (4.5) and define the process Yt503

as defined in Theorem 3.2. Then, for any A > 0, {Yt : t > 0} is integrable, i.e.,504

E[|Yt|] <∞ for each t.505

Proof of Lemma 4.4. The drift Yt+1 = Yt+max
{
V (θt+1)−V (θt),−A

}
1 {TXβ >t}−506

B1 {TXβ 6t} is by construction bounded by −A from below. It is also bounded by a507

constant from above. Indeed, from the proof of Proposition 4.3, it is easy to find508

the upper bound, say C, of the truncated one-step change, ∆t in the proof of Propo-509

sition 4.3, without using A1 and A2. Let D = max{A,C}. Then, by recursion,510

|V (θt)| 6 |V (θ0)| + |V (θt) − V (θ0)| 6 |Y0| + Dt. Hence E[|Yt|] 6 |Y0| + Dt < ∞ for511

all t.512

Finally, we derive the expected first hitting time of log fµ(mt).513

Theorem 4.5. Consider the same situation as described in Proposition 4.3. Let514

Tε = min{t : fµ(mt) 6 ε} be the first hitting time of fµ(mt) to [0, ε]. Choose a 6515

ε < fµ(mt) 6 b, where a and b appear in Definition 2.5. If m0 ∈ X ba , the first hitting516

time is upper bounded by E[Tε] 6
(
V (θ0)− log(ε) +A

)
/B for A > B > 0 described in517

Proposition 4.3, where V (θ) is the potential function defined in (4.5). Equivalently,518

we have E[Tε] 6 CT + C−1
R log(fµ(m0)/ε), where519

CT =
A

B
+
v

B
max

{
0, log

(
α↑`fµ(m0)

σ0

)
, log

(
σ0

α↓ufµ(m0)

)}
, CR = B .520

521

Moreover, the above result yields an upper bound of the expected first hitting time of522

‖mt − x∗‖ to [0, 2Cuε].523

Proof. Theorem 3.2 with Proposition 4.3 and Lemma 4.4 together bounds the524

expected first hitting time of V (θt) to (−∞, log(ε)] by
(
V (θ0)− log(ε) +A

)
/B. Since525

log fµ(mt) 6 V (θt), Tε is bounded by the first hitting time of V (θt) to (−∞, log(ε)].526

The inequality is preserved if we take the expectation. The last claim is trivial from527

the inequality ‖x− x∗‖ 6 2Cufµ(x), which holds under A1.528

Theorem 4.5 shows an upper bound on the expected hitting time of the (1+1)-ESκ529

with success-based step-size adaptation for linear convergence towards the global op-530

timum x∗ on functions satisfying A1 and A2 with a = 0. Moreover, for b = ∞, this531

bound holds from all initial search points m0. If a > 0, the bound in Theorem 4.5532

does not translate into linear convergence, but we still obtain an upper bound on the533

expected first hitting time of the target accuracy ε > a. This is useful for under-534

standing the behavior of (1+1)-ESκ on multimodal functions, and on functions with535

degenerated Hessian matrix at the optimum.536

4.5. Lower Bound of the First Hitting Time. We derive a general lower537

bound of the expected first hitting time of ‖mt − x∗‖ to [0, ε]. The following results538

hold for an arbitrary measurable function f and for a (1+1)-ESκ with an arbitrary539

σ-control mechanism. The following lemma provides the lower bound of the expected540

one-step progress measured by the logarithm of the distance to the optimum.541

Lemma 4.6. We consider the process {θt : t > 0} generated by a (1+1)-ESκ algo-542

rithm with an arbitrary step-size adaptation mechanism and an arbitrary covariance543
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matrix update optimizing an arbitrary measurable function f . We assume d > 2544

and κt = Cond(Σt) 6 κ. We consider the natural filtration Ft. Then, the expected545

single-step progress is lower-bounded by546

(4.8) E[min(log(‖mt+1 − x∗‖/‖mt − x∗‖), 0) | Ft] > −κ
d
2
t /d .547

Proof of Lemma 4.6. Note first that log(‖mt+1 − x∗‖/‖mt − x∗‖) = log(‖xt −548

x∗‖/‖mt − x∗‖)1 {f(xt)6f(mt)}. This value can be positive since f(xt) 6 f(mt) does549

not imply ‖xt − x∗‖ 6 ‖mt − x∗‖ in general. Clipping the positive part to zero,550

we obtain a lower bound, which is the RHS of the above equality times the indica-551

tor 1 {‖xt−x∗‖6‖mt−x∗‖}. Since the quantity is non-positive, dropping the indicator552

1 {f(xt)6f(mt)} only decreases the lower bound. Hence, we have min(log(‖mt+1 −553

x∗‖/‖mt − x∗‖), 0) > log(‖xt − x∗‖/‖mt − x∗‖)1 {‖xt−x∗‖6‖mt−x∗‖}. Then,554

555

E[min(log(‖mt+1 − x∗‖)− log(‖mt − x∗‖), 0) | Ft]556

> E[log(‖xt − x∗‖/‖mt − x∗‖)1 {‖xt−x∗‖6‖mt−x∗‖} | Ft] .557558

We rewrite the lower bound of the drift. The RHS of the above inequality is the559

integral of log(‖x−x∗‖/‖mt−x∗‖) in the integral domain B̄(x∗, ‖mt−x∗‖) under the560

probability measure Φ
(
;mt, σ

2
tΣt
)
. Performing a variable change (through rotation561

and scaling) so that mt−x∗ becomes e1 = (1, 0, · · · , 0) and letting σ̃t = σt/‖mt−x∗‖,562

we can further rewrite it as the integral of log(‖x‖) in B̄(0, 1) under Φ
(
; e1, σ̃

2
tΣt
)
.563

With κt = Cond(Σt), we have ϕ
(
; e1, σ̃

2
tΣt
)
6 κ

d/2
t ϕ

(
; e1, κtσ̃

2
t I
)
, see Lemma B.1. Al-564

together, we obtain the lower bound E[log(‖xt−x∗‖/‖mt−x∗‖)1 {‖xt−x∗‖6‖mt−x∗‖} |565

Ft] > κ
d/2
t

∫
B̄(0,1)

log(‖x‖)ϕ
(
; e1, κtσ̃

2
t I
)

dx. The RHS is equivalent to −κd/2t times566

the single step progress of the (1+1)-ES on the spherical function at mt = e1 and567

σ =
√
κσ̃t, which is proven in the proof of Lemma 4.4 of [3] to be lower bounded by568

1/d for d > 2. This completes the proof.569

The following theorem proves that the expected first hitting time of (1+1)-ESκ is570

Ω(log(‖m0−x∗‖/ε)) for any measurable function f , implying that it can not converge571

faster than linearly. In case of κ = 1 the lower runtime bound becomes Ω(d(log(‖m0−572

x∗‖/ε))), meaning that the runtime scales linearly with respect to d. The proof is a573

direct application of Lemma 4.6 to Theorem 3.3.574

Theorem 4.7. We consider the process {θt : t > 0} generated by a (1+1)-ESκ575

described in Algorithm 2.1 and assume that f is a measurable function with d > 2. Let576

Tε = inf{t : ‖mt − x∗‖ 6 ε} be the first hitting time of [0, ε] by ‖mt − x∗‖. Then, the577

expected first hitting time is lower bounded by E[Tε] > −(1/2)+ d
4κd/2

log(‖m0−x∗‖/ε).578

The bound holds for arbitrary step-size adaptation mechanisms. If A1 holds, it gives579

a lower bound for the expected first hitting time bound of fµ(mt) to [0, 2C`ε].580

Proof of Theorem 4.7. Let Xt = log‖mt − x∗‖ for t > 0. Define Yt iteratively as581

Y0 = X0 and Yt+1 = Yt + min(Xt+1−Xt, 0). Then, it is easy to see that Yt 6 Xt and582

Yt+1 6 Yt for all t > 0. Note that E[Yt+1 − Yt | Ft] = E[min(Xt+1 − Xt, 0) | Ft] =583

E[min(log(‖mt+1−x∗‖/‖mt−x∗‖), 0) | Ft], where the RMS is lower bounded in light584

of Lemma 4.6. Then, applying Theorem 3.3, we obtain the lower bound. The last585

statement directly follows from ‖x− x∗‖ 6 2C`fµ(x) under A1.586

4.6. Almost Sure Linear Convergence. Additionally to the expected first587

hitting time bound, we can deduce from Proposition 4.3, almost sure linear conver-588

gence as stated in the following proposition.589
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Proposition 4.8. Consider the same situation as described in Proposition 4.3,590

where a = 0 and 0 < b 6∞. Then, for any m0 ∈ X b0 , σ0 > 0 and Σ ∈ Sκ, we have591

(4.9) Pr

[
lim sup
t→∞

1

t
log fµ(mt) 6 −B

]
= Pr

[
lim sup
t→∞

1

t
log ‖mt − x∗‖ 6 −B

]
= 1 ,592

where B > 0 is as defined in Proposition 4.3. Hence almost sure linear convergence593

holds at a rate exp(−C) such that exp(−C) 6 exp(−B).594

Proof of Proposition 4.8. Let V be defined in (4.5). Let Y0 = V (θ0) and Yt+1 =595

Yt + max(−A, V (θt+1) − V (θt)). Define Zt = Yt − Et−1[Yt] for t > 0. Then, {Zt} is596

a martingale difference sequence on the filtration {Ft} produced by {θt}. We hence597

have 1
t log fµ(mt) 6 1

tV (θt) 6 1
tYt, and from Proposition 4.3 we obtain598

Yt = Et−1[Yt] + Zt = Yt−1 + Et−1[Yt − Yt−1] + Zt 6 Yt−1 −B + Zt .599600

By repeatedly applying the above inequality and dividing it by t, we obtain 1
tYt 6601

−B+ 1
tY0 + 1

t

∑t
i=1 Zi, where limt→∞

1
tY0 = 0 and

∑t
i=1 Zi is a martingale sequence.602

In light of the strong law of large numbers for martingales [14], if
∑∞
t=1 E[Z2

t ]/t2 <∞,603

we have limt→∞
1
t

∑t
i=1 Zi = 0 almost surely. By the definition of V (θt) and the604

working mechanism of the (1+1)-ESκ, we have V (θi)−V (θi−1) 6 v log(α↑/α↓). Hence,605

E[Z2
i ] = E[(Yi−Ei−1[Yi])

2] = E[max(−A, V (θi)−V (θi−1))2] 6 max(A, v log(α↑/α↓))
2.606

Hence, we have lim supt→∞
1
t log fµ(mt) 6 −B + limt→∞

1
tY0 + limt→∞

1
t

∑t
i=1 Zi =607

−B almost surely. Along with ‖x− x∗‖ 6 2Cufµ(x), we obtain Equation (4.9).608

4.7. Wrap-up of the Results: Global Linear Convergence. As a corollary609

to the lower-bound from Theorem 4.7, the upper bound from Theorem 4.5, Proposi-610

tion 4.8 stating the almost sure linear convergence and the fact that different assump-611

tions discussed in Section 2.3 imply A1 and A2, we summarize our linear convergence612

results in the following theorem.613

Theorem 4.9 (Global Linear Convergence). We consider the (1+1)-ESκ opti-614

mizing an objective function f . Suppose either615

(a) f satisfies A1 and A2 for a = 0, plimit > ptarget, and m0 ∈ X b0 ; or616

(b) f satisfies either A3 or A4, ptarget < 1/2, and m0 ∈ Rd.617

Then, for any σ0 > 0 and Σ0 ∈ Sκ, the expected hitting time E[Tε] of ‖mt − x∗‖ to
[0, ε] is Θ

(
log(‖m0 − x∗‖/ε)

)
for all ε > 0. Moreover, both fµ(mt) and ‖mt − x∗‖

linearly converge almost surely, i.e.

Pr

[
lim sup
t→∞

1

t
log fµ(mt) 6 −B

]
= Pr

[
lim sup
t→∞

1

t
log‖mt − x∗‖ 6 −B

]
= 1 ,

where B > 0 is as defined in Proposition 4.3. The convergence rate exp(−C) is thus618

upper-bounded by exp(−B).619

4.8. Tightness in the Sphere Function Case. Now we consider a specific620

convex quadratic function, namely the sphere function f(x) = 1
2‖x‖2 where the spa-621

tial suboptimality function equals fµ(x) = Vd‖x‖. In Theorem 4.9 we have formu-622

lated that the expected hitting time of a ball of radius ε for the (1+1)-ESκ equals623

Θ(log ‖m0 − x∗‖/ε). Yet, this statement does not give information on how the con-624

stants hidden in the Θ-notation scale with the dimension. In particular the conver-625

gence rate of the algorithm is upper-bounded by exp(−B) where B is given in (4.7),626

see Theorem 4.5. In this section, we estimate precisely the scaling of B in Proposi-627

tion 4.3 with respect to the dimension and compare it with the general lower bound628
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of the expected first hitting time given in Theorem 4.7. We then conclude that the629

bound is tight with respect to the scaling with d in the case of the sphere function.630

Let us assume κ = 1, that is, we consider the (1+1)-ES without covariance matrix631

adaptation (Σ = I). Then, plower
(a,b] (σ̄) = pupper

(a,b] (σ̄) = psucc
r (σ̄;m,Σ), where the right-632

most side is independent of m and Σ as described in Lemma 2.4. This means that633

the success probability is solely controlled by the normalized step-size σ̄.634

The following proposition states that the convergence speed is Ω(1/d), hence the635

expected first hitting time scales as O(1/d). The proof is provided in Appendix B.6.636

Proposition 4.10. For A = 1/d, ptarget ∈ Θ(1) and log(α↑/α↓) ∈ ω(1/d), we637

have B ∈ Ω(1/d).638

Two conditions on the choice of α↑ and α↓: ptarget = log(1/α↓)/ log(α↑/α↓) ∈639

Θ(1) and log(α↑/α↓) ∈ ω(1/d), are understood as follows. The first condition implies640

that the target success probability ptarget must be independent of d. In the 1/5 success641

rule, α↑ and α↓ are set so that ptarget = 1/5 independent of d. The second condition642

implies that the factors of the step-size increase and decrease must be log(α↑) ∈ ω(1/d)643

and log(1/α↓) ∈ ω(1/d). Note that on the sphere function the normalized step-size644

σ̄ ∝ σ/‖m − x∗‖ is kept around a constant during the search. It implies that the645

convergence speed of ‖m−x∗‖ and σ must agree. Therefore the speed of the adaptation646

of the step-size must not be too small to achieve Θ(d) scaling of the expected first647

hitting time.648

Proposition 4.10 and Theorem 4.5 imply E[Tε] ∈ O(d log(‖m0‖/ε)) and Theo-649

rem 4.7 implies E[Tε] ∈ Ω(d log(‖m0‖/ε)). They yield E[Tε] ∈ Θ(d log(‖m0‖/ε)). This650

result shows i) that the runtime of the (1+1)-ES on the sphere function is propor-651

tional to d as long as log(α↑/α↓) ∈ ω(1/d), and ii) that from our methodology one652

can derive a tight bound of the runtime in some cases. The result is formally stated653

as follows.654

Theorem 4.11. The (1+1)-ES (Algorithm 2.1) with κ = 1 and ptarget < 1/2655

converges globally and linearly in terms of log‖mt−x∗‖ from any starting point m0 ∈656

Rd, σ0 > 0, and Σ0 = I on any function f(x) = g(‖x − x∗‖), where g is a strictly657

increasing function. Moreover, if ptarget ∈ Θ(1) and log(α↑/α↓) ∈ ω(1/d), the expected658

first hitting time Tε of log‖mt−x∗‖ to (−∞, log(ε)] is Θ(d log(‖m0‖/ε)) and the almost659

sure convergence rate is upper-bounded by exp(−Θ(1/d)).660

Since the lower bound holds for an arbitrary σ-adaptation mechanism, the above661

result not only implies that our upper bound is tight, but it also implies that the662

success-based σ-control mechanism achieves the best possible convergence rate except663

for a constant factor on the spherical function.664

5. Discussion. We have established the almost sure global linear convergence665

of the (1+1)-ESκ and also expressed as a bound on the expected hitting time of an666

ε-neighborhood of the solution. Assumption A1 has been the key to obtaining the667

expected first hitting time bound of (1+1)-ESκ in the form of (3.1). The convergence668

results hold on a wide class of functions. It includes669

(i) strongly convex functions with Lipschitz gradient, where linear convergence670

of numerical optimization algorithm is usually analyzed,671

(ii) continuously differentiable positively homogenous functions, where previous672

linear convergence results had been introduced, and673

(iii) functions with non-smooth level sets as illustrated in Figure 2.2.674

Because the analyzed algorithms are invariant to strictly monotonic transformations of675

the objective functions, all results that hold on f also hold on g◦f where g : Im(f)→ R676
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is a strictly increasing transformation, which can thus introduce discontinuities on the677

objective function. In contrast to the previous result establishing the convergence of678

CMA-ES [17] by adding a step to enforce a sufficient decrease (which works well for679

direct search methods, but which is unnatural for ESs), we did not need to modify680

the adaptation mechanism of the (1+1)-ES to achieve our convergence proofs. We681

believe that this is crucial, since it allows our analysis to reflect the main mechanism682

that makes the algorithm work well in practice.683

Theorem 4.11 proves that we can derive a tight convergence rate with Propo-684

sition 4.3 on the sphere function in the case where κ = 1, i.e., without covariance685

matrix adaptation. This partially supports the utility of our methodology. However,686

its derivation relies on the fact that both the level sets of the objective function and687

the equal-density curves of the sampling distribution are isotropic, and hence does688

not generalize immediately. Moreover, the lower bound (Theorem 4.7) seems to be689

loose even for κ = 1 on convex quadratic functions, where we empirically observe that690

the logarithmic convergence rate scales like Θ(1/Cond(∇∇f)), see Figure 2.1, while691

its dependency on the dimension is tight.692

A better lower bound of the expected first hitting time and a handy way to693

estimate the convergence rate are relevant directions of future work. Further directions694

of future work are as follows:695

Proving linear convergence of (1+1)-ESκ does not reveal the benefits of (1+1)-ESκ696

over the (1+1)-ES without covariance matrix adaptation. The motivation of the intro-697

duction of the covariance matrix is to improve the convergence rate and to broaden698

the class of functions on which linear convergence is exhibited. None of them are699

achieved in this paper.700

On convex quadratic functions, we empirically observe that the covariance matrix701

approaches a stable distribution that is closely concentrated around the inverse Hes-702

sian up to a scalar factor, and the convergence speed on all convex quadratic functions703

is equal to that on the sphere function (see Figure 2.1). This behavior is not described704

by our result.705

Covariance matrix adaptation is also important for optimizing functions with non-706

smooth level sets. On continuously differentiable functions, we can always set α↑ and707

α↓ so that p =
log(1/α↓)

log(α↑/α↓)
< plimit = 1/2. This is the rationale behind the 1/5 success708

rule, where p = 1/5. Indeed, p = 1/5 is known to approximate the optimal situation on709

the sphere function where the expected one-step progress is maximized [50]. Therefore,710

one does not need to tune these parameters in a problem-specific manner. However,711

if the objective is not continuously differentiable and levelsets are non-smooth, then712

plimit is in general smaller than 1/2. For example, it can be as low as plimit = 1/2d on713

f(x) = ‖x‖∞ = maxi=1,...,n|xi|. Without an appropriate adaptation of the covariance714

matrix the success probability will be smaller than p = 1/5 and one must tune α↑ and715

α↓ in order to converge to the optimum, which requires information about plimit. By716

adapting the covariance matrix appropriately, the success probability can be increased717

arbitrary close to 1/2 (by elongating steps in the direction of the success domain) and718

α↑ and α↓ do not require tuning.719

To achieve a reasonable convergence rate bound and broaden the class of functions720

on which linear convergence is exhibited, one needs to find another potential function721

V that may penalize a high condition number Cond(∇∇f(mt)Σt) and replace the722

definitions of pupper and plower accordingly. This point is left for future work.723
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from the black-box optimization benchmarking bbob-2009, in GECCO, 2010, pp. 1689–1696.794

[30] N. Hansen and A. Ostermeier, Completely derandomized self-adaptation in evolution strate-795
gies, Evolutionary Computation, 9 (2001), pp. 159–195.796

[31] J. He and X. Yao, Drift analysis and average time complexity of evolutionary algorithms,797
Artificial intelligence, 127 (2001), pp. 57–85.798

[32] J. He and X. Yao, A study of drift analysis for estimating computation time of evolutionary799
algorithms, Natural Computing, 3 (2004), pp. 21–35.800
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[37] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos, Learn-809
ing probability distributions in continuous evolutionary algorithms–a comparative review,810
Natural Computing, 3 (2004), pp. 77–112.811
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Appendix A. Some Numerical Results.857

We present experiments with five algorithms on two convex quadratic functions.858

We compare (1+1)-ES, (1+1)-CMA-ES, simplified direction search [38], random pur-859

suit [54], and gradientless descent [24].860

All algorithms were started at the initial search point x0 = 1√
d
(1, . . . , 1) ∈ Rd. We861

implemented the algorithms as follows, with their parameters tuned where necessary:862

The ES always uses the setting α↑ = exp(4/d) and α↓ = α
−1/4
↑ for step size adaptation.863

We set the constant c in the sufficient decrease condition of Simplified Direction864

Search to 1
10 , and we employed the standard basis as well as the negatives of these865

vectors as candidate directions. In each iteration we looped over the set of directions866

in random order. Randomizing the order greatly boosted performance over a fixed867

order. Random Pursuit was implemented with a golden section line search in the range868

[−2σ, 2σ] with a rather loose target precision of σ/2, where σ is either the initial step869

size or the length of the previous step. For Gradientless Descent we used the initial870

step size as the maximal step size and defined a target precision of 10−10. This target871

is reached by the ES in all cases. The experiments are designed to demonstrate several872

different effects: (a) We perform all experiments in d = 10 and d = 50 dimensions to873

investigate dimension-dependent effects. (b) We investigate best-case performance by874

running the algorithms on the spherical function ‖x‖2, i.e., on the separable convex875

quadratic function with minimal condition number. The initial step size is set to876

σ0 = 1. All algorithms have a budget of 100d function evaluations. (c) We investigate877

the dependency of the performance on initial parameter settings by repeating the878

same experiment as above, but with an initial step size of σ0 = 1
1000 . All algorithms879

have a budget of 700d function evaluations. (d) We investigate the dependence on880

problem difficulty by running the algorithms on an ellipsoid problem with a moderate881

condition number of κf = 100. The eigenvalues of the Hessian are evenly distributed882

on a log-scale. We use σ0 = 1 like in the first experiment. All algorithms have a budget883

of 500d function evaluations. The experimental results are presented in Figure A.1.884

Interpretation. We observe only moderate dimension-dependent effects, besides885

the expected linear increase of the runtime. We see robust performance of the ES, in886

particular with covariance matrix adaptation. The second experiment demonstrates887

the practical importance of the ability to grow the step size: the ES is essentially888

unaffected by wrong initial parameter settings while the gradientless descent and the889

simplified direct search are (which can be understood directly from the algorithms890

themselves). This property does not show up in convergence rates and is therefore891

often (but not always) neglected in algorithm design. The last experiment clearly892

demonstrates the benefit of variable-metric methods like CMA-ES. It should be noted893

that variable metric techniques can be implemented into most existing algorithms.894

This is rarely done though, with random pursuit being a notable exception [55].895

Appendix B. Proofs.896
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Fig. A.1: Comparison of (1+1)-ES with and without covariance matrix adapta-
tion with three well-analyzed derivative-free optimization algorithms on two convex
quadratic functions. The left column of plots shows the performance on the sphere
function ‖x‖2 in dimensions 10 (top) and 50 (bottom). The middle column shows the
same problem, but the initial step size is smaller by a factor of 1000 (and the horizontal
axis differs), simulating that the distance to the optimum was under-estimated. The
right column shows the performance on the ellipsoid function (defined in Figure 2.1).
The plots show the evolution of the best-so-far function value (on a logarithmic scale),
with five individual runs (thin curves) as well as median performance (bold curves).

B.1. Proof of Lemma 2.8. Since fµ is invariant to g, without loss of gener-897

ality we assume f(x) = h(x) − h(x∗) in this proof. Inequality (2.7) implies that898

f(y) 6 f(x) ⇒ (L`/2)‖y − x∗‖2 6 f(x), meaning that {y : f(y) 6 f(x)} ⊆899

B̄
(
x∗,
√

f(x)
L`/2

)
. Since fµ(x) is the dth root of the volume of the left-hand side900

of the above relation, we find fµ(x) 6 µ
1
d

(
B̄
(
x∗,
√

f(x)
L`/2

))
= Vd

√
f(x)
L`/2

. Analo-901

gously, we obtain B
(
x∗,
√

f(x)
Lu/2

)
⊆ {y : f(y) < f(x)} and fµ(x) > Vd

√
f(x)
Lu/2

.902

From these inequalities, we obtain {y : f(y) 6 f(x)} ⊆ B̄
(
x∗,
√

Lu
L`

fµ(x)
Vd

)
and903

B
(
x∗,
√

L`
Lu

fµ(x)
Vd

)
⊆ {y : f(y) < f(x)}. This implies A1 for X∞0 . A2 is immedi-904

ately implied by Proposition 2.7. This completes the proof.905

B.2. Proof of Lemma 2.9. We first prove that A1 holds for a = 0 and b =∞906

with Cu = sup{‖x − x∗‖ : fµ(x) = 1} and C` = inf{‖x − x∗‖ : fµ(x) = 1} and they907

are finite.908

It is easy to see that the spatial suboptimality function fµ(x) is proportional909

to h(x) − h(x∗). Let fµ(x) = c(h(x) − h(x∗)) for some c > 0. Then, fµ is also a910

homogeneous function. Since it is homogeneous, A1 reduces to that there are open911

and closed balls with radius C` and Cu satisfying the conditions described in the912

assumption with fµ(m) = 1. Such constants are obtained by Cu = sup{‖x − x∗‖ :913

fµ(x) = 1} and C` = inf{‖x− x∗‖ : fµ(x) = 1}.914

Due to the continuity of f there exists an open ball B around x∗ such that915

h(x) < h(x∗) + 1/c for all x ∈ B. Then, it holds that fµ(x) < 1 for all x ∈ B. It916

implies that C` is no smaller than the radius of B, which is positive. Hence, C` > 0.917
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We show the finiteness of Cu by a contradiction argument. Suppose Cu = ∞.918

Then, there is a direction v such that fµ(x∗ + Mv) 6 1 with an arbitrarily large919

M > 0. Since fµ is homogeneous, we have fµ(x∗ + v) 6 1/M and this must hold for920

any M > 0. This implies fµ(x∗ + v) = c(h(x) − h(x∗)) = 0, which contradicts the921

assumption that x∗ is the unique global optimum. Hence, Cu <∞.922

The above argument proves that A1 holds with the above constants for a = 0 and923

b =∞. Proposition 2.7 proves A2.924

B.3. Proof of Proposition 4.1. For a given m ∈ X ba , there is a closed ball B̄u925

such that S0(m) ⊆ B̄u, see Figure 2.2. We have926

pupper
(a,b] (σ̄) = supm∈X ba supΣ∈Sκ

∫
S0(m)

ϕ
(
x;m, (fµ(m)σ̄)

2
Σ
)
dx927

6 supm∈X ba supΣ∈Sκ
∫
B̄u ϕ

(
x;m, (fµ(m)σ̄)

2
Σ
)
dx︸ ︷︷ ︸

(∗1)

.928

929

The integral is maximized if the ball is centered at m. By a variable change (x ←930

x−m),931

(∗1) 6
∫
‖x‖6Cufµ(m)

ϕ
(
x; 0, (fµ(m)σ̄)

2
Σ
)
dx =

∫
‖x‖6Cu/σ̄ ϕ(x; 0,Σ)dx932

6 κd/2Φ
(
B̄
(
0, Cu

σ̄κ1/2

)
; 0, I

)
.933934

Here we used Φ
(
B̄(0, r)

)
; 0,Σ) 6 κd/2Φ

(
B̄
(
0, κ−1/2r

)
; 0, I

)
for any r > 0, which is935

proven in Lemma B.1 below. The right-most side (RMS) of the above inequality is936

independent of m. It proves (4.1).937

Similarly, there are balls B` and B̄u such that B` ⊆ S0(m) ⊆ B̄u. We have938

plower
(a,b] (σ̄) = infm∈X ba infΣ∈Sκ

∫
S0(m)

ϕ
(
x;m, (fµ(m)σ̄)

2
Σ
)
dx939

> infm∈X ba infΣ∈Sκ
∫
B` ϕ

(
x;m, (fµ(m)σ̄)

2
Σ
)
dx︸ ︷︷ ︸

(∗2)

.940

941

The integral is minimized if the ball is at the opposite side of m on the ball B̄u, see942

Figure 2.2. By a variable change (moving m to the origin) and letting em = m/‖m‖,943

(∗2) >
∫
‖x−((2Cu−C`)fµ(m))em‖6C`fµ(m)

ϕ
(
x; 0, (fµ(m)σ̄)

2
Σ
)
dx944

=
∫
‖x−((2Cu−C`)/σ̄)em‖6C`/σ̄ ϕ(x; 0,Σ)dx945

> κ−d/2Φ
(
B̄
((

(2Cu−C`)κ1/2

σ̄

)
em,

C`κ
1/2

σ̄

)
; 0, I

)
.946

947

Here we used Φ
(
B̄(c, r); 0,Σ

)
> κ−d/2Φ

(
B̄(κ1/2c, κ1/2r); 0, I

)
for any c ∈ Rd and r > 0948

(Lemma B.1). The RMS of the above inequality is independent of m as its value is949

constant over all unit vectors em. Replacing em with e1, we have (4.2).950

Lemma B.1. For all Σ ∈ Sκ, κ−d/2ϕ
(
x; 0, κ−1I

)
6 ϕ

(
x; 0,Σ

)
6 κd/2ϕ (x; 0, κI)951

and κ−d/2Φ (B(
√
κc,
√
κr); 0, I) 6 Φ

(
B(c, r); 0,Σ

)
6 κd/2Φ (B(c/

√
κ, r/
√
κ); 0, I).952

Proof. For Σ ∈ Sκ, we have det(Σ) = 1 and Cond(Σ) = λmax(Σ)/λmin(Σ) 6953

κ. Since det(Σ) = 1 and det(Σ) =
∏d
i=1 λi(Σ), we have λmax(Σ) > 1 > λmin(Σ).954

Therefore, we have λmin(Σ) > λmax/κ > κ−1 and λmax(Σ) 6 κλmin(λ) 6 κ. Then we955

obtain κ−1xTIx 6 xTΣ−1x 6 κxTIx. With this inequality we have956
957

ϕ
(
x; 0,Σ

)
= (2π)−d/2 exp(−xTΣ−1x/2) 6 (2π)−d/2 exp(−xTIx/(2κ)))958

= κd/2(2πκ)−d/2 exp(−xTIx/(2κ))) = κd/2ϕ
(
x; 0, κI

)
.959960
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Analogously, we obtain ϕ
(
x; 0,Σ

)
> κ−d/2ϕ

(
x; 0, κ−1I

)
. Taking the integral over961

B(c, r), we obtain the second statement.962

B.4. Proof of Lemma 4.2. The upper bound of pupper
(a,b] given in (4.1) is strictly963

decreasing in σ̄ and converges to zero when σ̄ goes to infinity. This guarantees the964

existence of σ̄u as a finite value. The existence of σ̄` > 0 is obvious under A2.965

A1 guarantees that there exists an open ball B` with radius C`(1 − r)fµ(m) such966

that B` ⊆ {x ∈ Rd | fµ(x) < (1 − r)fµ(m)}. Then, analogously to the proof of967

Proposition 4.1, the success probability with rate r is lower bounded by968

(B.1) psucc
r (σ̄;m,Σ) > κ−d/2Φ

(
B
((

(2Cu−(1−r)C`)κ1/2

σ̄

)
e1,

(1−r)C`κ1/2

σ̄

)
; 0, I

)
.969

The probability is independent of m, positive, and continuous in σ̄ ∈ [`, u]. Therefore970

the minimum is attained. This completes the proof.971

B.5. Proof of Proposition 4.3. First, we remark that mt ∈ Xa,b is equivalent972

to the condition a < fµ(mt) 6 b. If fµ(mt) 6 a or fµ(mt) > b, both sides of (4.6) are973

zero, hence the inequality is trivial. In the following we assume that mt ∈ X ba .974

For the sake of simplicity we introduce log+(x) = log(x)1 {x>1}. We rewrite the975

potential function as976

V (θt) = log (fµ(mt)) + v log+
(
α↑`fµ(mt)

σt

)
+ v log+

(
σt

α↓ufµ(mt)

)
.(B.2)977

978

The potential function at time t+ 1 can be written as979

980

V (θt+1) = log fµ(mt+1) + v log+ `fµ(mt+1)
σt

1 {σt+1>σt}︸ ︷︷ ︸
P2

+ v log+ α↑`fµ(mt)
α↓σt

1 {σt+1<σt}︸ ︷︷ ︸
P3

981

+ v log+ α↑σt
α↓ufµ(mt+1)1 {σt+1>σt}︸ ︷︷ ︸

P4

+ v log+ σt
ufµ(mt)

1 {σt+1<σt}︸ ︷︷ ︸
P5

.982

983

We want to estimate the conditional expectation984

(B.3) E [max{V (θt+1)− V (θt) , −A} | θt] .985

We partition the possible values of θt into three sets: first the set of θt such that986

σt < `fµ(mt) (σt is small), second the set of θt such that σt > ufµ(mt) (σt is large),987

and last the set of θt such that `fµ(mt) 6 σt 6 ufµ(mt) (reasonable σt). In the988

following, we bound (B.3) for each of the three cases and in the end our bound B will989

equal the minimum of the three bounds obtained for each case.990

Reasonable σt case:
fµ(mt)
σt

∈
[

1
u ,

1
`

]
. In case of success, where 1 {σt+1>σt} = 1,991

we have fµ(mt+1)/σt+1 6 fµ(mt)/(α↑σt) 6 1/(α↑`), implying that P2 is always 0.992

Similarly, in case of failure, fµ(mt+1)/σt+1 = fµ(mt)/(α↓σt) > 1/(α↓u) and we find993

that P5 is always zero. We rearrange P3 and P4 into994

P3 = v log+
(
α↑`fµ(mt)
α↓σt

)
1 {σt+1<σt} ,995

P4 = v
[
log
(

α↑σt
α↓ufµ(mt)

)
− log

(
fµ(mt+1)
fµ(mt)

)]
1
{
α↓ufµ(mt+1)

α↑σt
<1

}
1 {σt+1>σt} .996

997
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Then, the one-step change ∆t = V (θt+1)− V (θt) is upper bounded by998

999

(B.4) ∆t 6
(

1− v1
{
α↓ufµ(mt)

α↑σt
<1

}
1 {σt+1>σt}

)
log
(
fµ(mt+1)
fµ(mt)

)
1000

+ v log+
(
α↑`fµ(mt)
α↓σt

)
1 {σt+1<σt}+ v log+

(
α↑σt

α↓ufµ(mt)

)
1 {σt+1>σt}1001

6 (1− v) log
fµ(mt+1)
fµ(mt)

+ v log+ α↑`fµ(mt)
α↓σt

1 {σt+1<σt}+ v log+ α↑σt
α↓ufµ(mt)

1 {σt+1>σt} .1002
1003

The truncated one-step change max{∆t , −A} is upper bounded by1004

1005

(B.5) max{∆t , −A} 6 (1− v) max
{

log
(
fµ(mt+1)
fµ(mt)

)
, − A

1−v

}
1006

+ v log+
(
α↑`fµ(mt)
α↓σt

)
1 {σt+1<σt}+ v log+

(
α↑σt

α↓ufµ(mt)

)
1 {σt+1>σt} .1007

1008

To consider the expectation of the above upper bound, we need to compute the1009

expectation of the maximum of log
(
fµ(mt+1)
fµ(mt)

)
and − A

1−v . Let a 6 0 and b ∈ R1010

then max(a, b) = a1 {a>b} + b1 {a6b} 6 b1 {a6b}. Applying this and taking the1011

conditional expectation, a trivial upper bound for the conditional expectation of1012

max
{

log
(
fµ(mt+1)
fµ(mt)

)
, − A

1−v

}
is − A

1−v times the probability of log
(
fµ(mt+1)
fµ(mt)

)
being1013

no greater than − A
1−v . The latter condition is equivalent to fµ(mt+1) 6 (1−r)fµ(mt)1014

corresponding to successes with rate r = 1− exp
(
− A

1−v

)
or better. That is,1015

(B.6) (1− v)E
[
max

{
log
(
fµ(mt+1)
fµ(mt)

)
, − A

1−v

}]
6 −Apsucc

r

(
σt

fµ(mt)
;mt,Σt

)
.1016

Note also that the expected value of 1 {σt+1>σt} is the success probability, namely,1017

psucc
0

(
σt

fµ(mt)
;mt,Σt

)
. We obtain an upper bound for the conditional expectation of1018

max{∆t , −A} in the case of reasonable σt as1019

1020

(B.7) E [max{∆t , −A}|θt] 6 −Apsucc
r

(
σt

fµ(mt)
;mt,Σt

)
1021

+

(
log
(
α↑
α↓

)
+ log

(
`fµ(mt)
σt

)
︸ ︷︷ ︸

60

)
v
(

1− psucc
0

(
σt

fµ(mt)
;mt,Σt

))
1022

+

(
log
(
α↑
α↓

)
+ log

(
σt

ufµ(mt)

)
︸ ︷︷ ︸

60

)
vpsucc

0

(
σt

fµ(mt)
;mt,Σt

)
6 −Ap∗r + v log

(
α↑
α↓

)
.1023

1024

Small σt case:
fµ(mt)
σt

> 1
` . If `fµ(mt) > σt, the 2nd summand in (B.2) is positive.1025

Moreover, if σt+1 < σt, we have `fµ(mt+1) = `fµ(mt) > σt > σt+1 and hence the1026

2nd summand in (B.2) is positive for V (θt+1) as well. If σt+1 > σt, any regime can1027
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happen. Then, V (θt+1)− V (θt) =1028

= log
fµ(mt+1)
fµ(mt)

− v log
α↑`fµ(mt)

σt
+ v log

`fµ(mt+1)
σt

1
{
`fµ(mt+1)

σt
>1
}

1 {σt+1>σt}1029

+ v log
α↑`fµ(mt)
α↓σt

1
{
α↑`fµ(mt)

α↓σt
>1

}
1 {σt+1<σt}1030

+ v log
α↑σt

α↓ufµ(mt+1)1
{
α↓ufµ(mt+1)

α↑σt
<1

}
1 {σt+1>σt}1031

= log
(
fµ(mt+1)
fµ(mt)

) [
1 + v

(
1
{
`fµ(mt+1)

σt
>1
}
− 1

{
α↓ufµ(mt+1)

α↑σt
<1

})
1 {σt+1>σt}

]
1032

− v log
(
α↓ufµ(mt)

α↑σt

)
1
{
α↓ufµ(mt+1)

α↑σt
<1

}
1 {σt+1>σt}1033

− v log
(
`fµ(mt)
σt

) [
1− 1

{
`fµ(mt+1)

σt
>1
}

1 {σt+1>σt} − 1
{
α↑`fµ(mt)

α↓σt
>1

}
1 {σt+1<σt}

]
1034

− v
(

log(α↑)− log
(
α↑
α↓

)
1
{
α↑`fµ(mt)

α↓σt
>1

}
1 {σt+1<σt}

)
.1035

1036

On the RMS of the above equality, the first term is guaranteed to be non-positive1037

since v ∈ (0, 1). The second and third terms are non-positive as well since
α↓ufµ(mt)

α↑σt
>1038

α↓u
α↑`

>1 and
`fµ(mt)
σt

> 1. Replacing the indicator 1
{
α↑`fµ(mt)

α↓σt
>1

}
with 1 in the last1039

term provides an upper bound. Altogether, we obtain1040

∆t = V (θt+1)− V (θt) 6 −v (log(α↑)− log(α↑/α↓)1 {σt+1<σt}) .1041

Note that the RHS is larger than −A since it is lower bounded by −v log(α↑) and1042

v 6 A/ log(α↑). Then, the conditional expectation of max{∆t , −A} is1043

1044

(B.8) E [max{∆t , −A}|Ft] 6 −v
(

log
(
α↑
α↓

)
psucc

0

(
σt

fµ(mt)
;mt,Σt

)
+ log(α↓)

)
1045

6 −v
(

log
(
α↑
α↓

)
p` + log(α↓)

)
= −v log

(
α↑
α↓

)
(p` − ptarget) = −v p`−pu2 log

(
α↑
α↓

)
.1046

1047

Here we used E[1{σt+1 < σt} | Ft] = 1−psucc
0

(
σt

fµ(mt)
;mt,Σt

)
for the first inequality,1048

psucc
0

(
σt

fµ(mt)
;mt,Σt

)
> p` for the second inequality, and ptarget = log

(
1
α↓

)
/ log

(
α↑
α↓

)
=1049

(pu + p`)/2 for the last equality.1050

Large σt case:
fµ(mt)
σt

< 1
u . Since

fµ(mt+1)
σt+1

6 fµ(mt)
α↓σt

< 1
α↓u

, the 3rd summand in1051

(B.2) is positive in both V (θt) and V (θt+1). For the 2nd summand in (B.2), recall that1052

α↑`fµ(mt)/σt < α↑`/u 6 α↓ < 1 since we have assumed that u/` > α↑/α↓. Hence,1053

for V (θt) the 2nd summand in (B.2) is zero. Also, α↑`‖mt+1‖/σt+1 6 α↑`/(α↓u) =1054

(α↑/α↓)`/u > 1 and thus for V (θt+1) the 2nd summand in (B.2) also equals 0. We1055

obtain1056

V (θt+1)− V (θt) = (1− v)
(

log (fµ(mt+1))− log (fµ(mt))
)

+ v log (σt+1/σt) .1057

The first term on the RHS is guaranteed to be non-positive since v < 1, yielding1058

∆t 6 v log(σt+1/σt). On the other hand,1059

v log(σt+1/σt) = v (log(α↑)1 {σt+1>σt}+ log(α↓)1 {σt+1<σt})1060

= v (log(α↑/α↓)1 {σt+1>σt} − log(1/α↓))1061

> −v log(1/α↓) > −A ,10621063
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where the last inequality comes from the prerequisite v 6 A/ log(1/α↓). Hence,1064

max{∆t , −A} 6 max{v log(σt+1/σt),−A} = v log(σt+1/σt) .1065

Then, the conditional expectation of max{∆t , −A} is1066

1067

(B.9) E [max{∆t , −A}|θt] 6 v
(

log(α↓) + log
(
α↑
α↓

)
psucc

0

(
σt

fµ(mt)
;mt,Σt

))
1068

6 v
(

log(α↓) + log
(
α↑
α↓

)
pu

)
= v log

(
α↑
α↓

)
(−ptarget + pu) = −v p`−pu2 log

(
α↑
α↓

)
.1069

1070

Here we used psucc
0

(
σt

fµ(mt)
;mt,Σt

)
6 pu.1071

Conclusion. Inequalities (B.7)–(B.9) together cover all possible cases and we1072

hence obtain (4.7).1073

Finally, we prove the positivity of B for an arbitrary A > 0. Lemma 4.21074

guarantees the positivity of p∗r for any choice of A since r = 1 − exp(−A/(1 −1075

v)) ∈ (0, 1) for any A > 0 and v < 1. Therefore, Ap∗r > 0 for any A and v 61076

min(1, A/ log(1/α↓), A/ log(α↑)). Moreover, for a sufficiently small v, p∗r is strictly1077

positive for any A > 0. Therefore, one can take a sufficiently small v that satisfies1078

Ap∗r > v log(α↑/α↓). The first term in the minimum in (4.7) is positive. The second1079

term therein is clearly positive for v > 0. This completes the proof.1080

B.6. Proof of Proposition 4.10. Consider d > 2. We set A = 1/d. We bound1081

B from below by taking a specific value for v ∈ (0, min(1, A/ log(1/α↓), A/ log(α↑))1082

instead of considering sup for v. Our candidate is v = Ap′

log(α↑/α↓)
2

(2+p`−pu) , where1083

p′ = inf σ̄∈[`,u] pr′(σ̄) and r′ = 1−exp
(
−A
(
1− 1

d log(α↑/α↓)

)−1)
. It holds v < 1

d log(α↑/α↓)
1084

and hence r′ > r, from which we obtain p′ < p∗.1085

We bound the terms in (4.7) as: Ap∗ − v log(α↑/α↓) = p′

d

(
p∗

p′ − 2
2+p`−pu

)
>1086

p′

d

(
p`−pu

2+p`−pu

)
and v p`−pu2 log

(
α↑
α↓

)
= p′

d
p`−pu

2+p`−pu . Therefore, we have B > p′

d
p`−pu

2+p`−pu .1087

Note that one can take p`−pu ∈ Θ(1) since the only condition is ptarget = (p`+pu)/2 ∈1088

Θ(1). To obtain B ∈ Ω(1/d), it is sufficient to show p′ ∈ Θ(1) for d→∞.1089

Fix p` and pu independently of d. In the light of Lemma 3.1 in [3], we have that1090

p0 : R> → (0, 1/2) is continuous and strictly decreasing from 1/2 to 0 for all d ∈ N.1091

Therefore, for each d ∈ N there exists an inverse map p−1
0 : (0, 1/2) → R>. Define1092

σ̂d` = dVdp
−1
0 (p`) and σ̂du = dVdp

−1
0 (pu) for each d ∈ N. It follows from Lemma 3.21093

in [3] that plim
0 : σ̄ 7→ limd→∞ p0(σ̄) is also strictly decreasing, hence invertible. The1094

existence of limd→∞ p0(·) is also proved in [3]. We let σ̂∞` = (plim
0 )−1(p`) and σ̂∞u =1095

(plim
0 )−1(pu). Because of the pointwise convergence of p0(σ̄ = σ̂/(dVd)) to plim

0 (σ̂), we1096

have σ̂d` → σ̂∞` and σ̂du → σ̂∞u for d → ∞. Hence, for any û > σ̂∞u and ˆ̀< σ̂∞` with1097

u/` > α↑/α↓, there exists D ∈ N such that for all d > D we have û > σ̂du and ˆ̀< σ̂d` .1098

Now we fix û and ˆ̀ in this way. This amounts to selecting u = dVdû and ` = dVd ˆ̀.1099

We have limd→∞ dr′ = 1 since limd→∞ d log(α↑/α↓) =∞ and hence according to1100

Lemma 3.2 in [3] we have1101

lim infd→∞ p′ = lim infd→∞minσ̄∈[`,u] {pr′(σ̄)} = lim infd→∞minσ̂∈[ˆ̀,û] pr′
(

σ̂
dVd

)
1102

(?)
= minσ̂∈[ˆ̀,û] limd→∞

(
pr′
(

σ̂
dVd

))
= minσ̂∈[ˆ̀,û] Ψ

(
− 1
σ̂ − σ̂

2

)
,1103
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where the equality (?) follows from the pointwise convergence of pr′ to limd→∞ pr′1105

and the continuity of pr′ and limd→∞ pr′ .
2 This completes the proof.1106

2Let {fn : n > 1} be a sequence of continuous functions on R and f be a continuous function such
that f is the pointwise limit limn fn(x) = f(x) of the sequence. Since they are continuous, there exist
the minimizers of fn and f in a compact set [`, u]. Let xn = argmin fn(x) and x∗ = argmin f(x),
where argmin is taken over x ∈ [`, u] and we pick one if there exist more than one minimizers.
It is easy to see that fn(xn) 6 fn(x∗), hence lim infn fn(xn) 6 lim infn fn(x∗) = f(x∗). Let
{ni : i > 1} be the sub-sequence of the indices such that lim infn fn(xn) = limi fni (xni ). Since
{xni : i > 1} is a bounded sequence, Bolzano-Weirstraß theorem provides a convergent sub-sequence
{xnik : k > 1} and we denote its limit as x∗. Of course we have lim infn fn(xn) = limk fnik

(xnik
).

Due to the continuity of {fn : n > 1} and the pointwise convergence to f , we have limk fnik
(xnik

) =

limk fnik
(x∗) = f(x∗). Therefore, lim infn fn(xn) = f(x∗) 6 f(x∗). Since x∗ is the minimizer of f

in [`, u] and x∗ ∈ [`, u], it must hold f(x∗) > f(x∗). Hence, lim infn fn(xn) = f(x∗).
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