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Frame Fields for CAD models

David Desobry1, François Protais1, Nicolas Ray1, Etienne Corman1, and
Dmitry Sokolov1

INRIA Nancy-Grand Est, 54000 Nancy, France

Abstract. Given a triangulated surface, a unit length tangent vector
field can be used to orient entities located on the surface, such as glyphs
or strokes. When these entities are invariant under a π/2 rotation (squares,
or curvature hatching), the orientation can be represented by a frame
field i.e. four orthogonal tangent unit vectors at each point of the sur-
face. The generation of such fields is a key component of recent quad
meshing algorithms based on global parameterization, as it defines the
orientation of the final facets. State-of-the-art methods are able to gen-
erate smooth frame fields subject to some hard constraints (direction
and topology) or smooth constraints (matching the curvature direction).
When we have a surface triangular mesh, and a vector defined on each
facet, we can’t directly know if all the vectors are colinear. We first have
to define the (so called) parallel transport of every edge to compare the
vectors on a common plan.
When dealing with CAD models, the field must be aligned with feature
edges. A problem occurs when there is a low angle corner formed by
two colliding feature edges. Our solution not only defines the parallel
transport to obtain smoothed frame fields on a surface triangular mesh,
it also redefines the parallel transport wherever there is a low angle
corner, to smooth a frame field as if these corners’ angles were π/2.

Keywords: Frame Fields · CAD models · Geometry Processing

Fig. 1: Producing a frame field with minimal rotation on a CAD model is not
sufficient for quad meshing (upper row). Our algorithm allows to handle those
sharp edges configurations.
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1 Introduction

State-of-the-art quandrangular mesh generation proceeds in two steps: first a
guiding frame field is computed, second a parametrization representing the quads
is extracted. The frame field defines the orientation of the quads at each point of
the domain, whereas the parameterization step determines the vertex positions
of the quads. So, frame fields are an intermediate result in the pipeline of quad
mesh generation. A high quality quad mesh typically has low distortion and
few singular vertices (valence ̸= 4). Frame fields are produced by a numerical
optimization that maximizes the smoothness of the field, naturally preventing
creation of singularities: in the vicinity of a singular point a field has a high
curvature that is penalized by the optimization.

CAD models are particular surfaces because they have a network of feature
edges that must be preserved during the remeshing process. Thus, a feature edge
of the input triangle mesh must be a feature edge of the output quandrangular
mesh. Unfortunately, these edges can meet with acute angle making it impossible
to fit a perfect quadrangle in such a sharp corner, as illustrated in Figure 2. As a
consequence, the guiding frame field computed as an intermediate step cannot be
turned into a quad mesh and the standard quad meshing method fails. Typical
failure cases are shown in Figure 9.

These problematic sharp corners are omnipresent in CAD models as they
appear naturally from fillets and chamfers – common designs for mechanical
pieces. In the ABC dataset [12] (a collection of one million Computer-Aided
Design models) we found that more than 65% of the models have potentially
problematic sharp corners. In Thingi10k [22], which is not specialized in CAD
models, around 35% of the dataset present at least one sharp corner. This is
why non-orthogonality and metric deformation has been a common subject of
research recently. In this paper, we propose an easier and much faster way to
deal with these problematic cases than previous works.

Fig. 2: If two colliding feature edges produce a low angle corner constraint, a
classical frame field will align with both feature edge as if they were parallel. It
produces a 1/2 singularity that can’t be meshed with valid quads.

1.1 Contribution

Our solution automatically produces high quality orthogonal frame field aligned
with feature edges with a topology compatible with quad meshing on CAD
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models. It then relaxes the orthogonality of the frame field to match even more
the feature edges configurations that require non-orthogonality.

These two steps are performed by solving two linear systems, so the impact
on performances compared to standard orthogonal frame field generation is very
low. Previous works [9, 5, 7] are providing some solutions to solve these problems,
but they are much harder to implement, require non-linear optimizations that
highly impact performances, and need fine parameter tuning to results close to
ours.

The rest of the paper is organized as follows: after a review of related work,
we formalize the problem in §2, recall the mathematical background for orthog-
onal frame field generation § 3.3, and present our first contribution to avoid
degenerate fields § 3. In § 4, we further optimize the field curvature by relaxing
its orthogonality. We evaluate the quality of our field in § 5 for producing quad
meshes.

1.2 Related Work

Frame field generation has been an active research area during the last decade
[21]. They were introduced in computer graphics to place hatches in non photo-
realistic rendering [6]. However, the main application is quad meshing by global
parameterization that was discovered a few years later [17], and improved in [2,
10].

Frame fields are usually produced by numerical optimization. The objective
is to minimize the field smoothness, with some minor application dependent
modifications like following the surface curvature [17], or better represent a 3D
field projected in 2D [7]. Most works are contributing to better optimize the
smoothness or to add geometric and topological constraints. The main challenge
of frame field generation comes from the field topology (mostly the position
and type of field singularities), which requires adding integer constraints in the
optimization problem.

The first solution was to use periodic functions where the field topology was
“encoded” in the modulus of the function. The idea comes from the observation
that if the kth direction of a frame have an angle of α+kπ/2 with a fixed vector,
then cos(4(α + kπ/2)) is the same for all directions. Therefore Hertzmann et
al. [6] encode a frame by a cosine and minimizes the L2-norm between adjacent
samples. It is, however, more efficient to optimize the field with both the sine
and the cosine [17], that is usually referred as representation vector or complex
representation. The problem when working with these variables is to preserve the
constraint that cos2(4α) + sin2(4α) = 1, making the problem highly non linear.
Forcing the norm of the frame field [11, 1] improves the results but seriously
impacts performances.

In some cases, control over the field topology is desirable. For instance, to
reduce the number of singularities, change their types, or enforce the field behav-
ior along non contractible loops. Complete control over the field topology can be
obtained directly [20], or by modification of an existing field [15]. The problem
is that the topology is defined by a large set of integers (a bit more than the
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index of each point of the surface that can be a singularity), that are very hard
to set. In [2, 7], these integers variables are automatically optimized, but could
probably be constrained to force some of the topological degrees of freedom.

In practice, automatically generated field topology is not always the best,
but it is difficult to choose a topology before generating the frame field. One
can fix the topology of an existing frame field [15] as a post-processing. Another
possibility is to modify the optimization problem in a way that will favor locally
high field curvature against producing singularities on geometric details [19].
Our method is inspired by this work to control the impact of sharp corners.

Non orthogonal frame fields were introduced in [14] for generating planar
quad meshes, where directions must be conjugate instead of orthogonal. Chang-
ing the metric of the surface [16, 9] naturally stretches the crosses, that loose
their orthogonality. However, setting the metric prior to the cross constraints
makes it hard to support alignment with feature edges, and the optimization be-
comes more challenging. Representing the field as root of a complex polynomial
[3, 4] also supports non orthogonal frames, but introduces non-linear optimiza-
tion problems and requires fine parameter tuning. In [7], the 2D frame field is
the projection of a frame field defined on a surface, leading to non orthogonal
frame fields, obtained by minimizing a different objective function. It should
be possible to adapt it for our case, but it makes the solution dependent of a
non trivial implementation of their mixed-integer solver. We instead solve the
topology with orthogonal frames, then further optimize its geometry by relaxing
the orthogonality. It should be possible to produce frame fields similar to ours
using these methods, but it requires to adapt complex optimizations framework,
whereas our method only requires to solve a couple of linear systems. More-
over, we support extreme distortions on sharp corners that would challenge the
solvers.

2 Formalization and our approach overview

Our pipeline takes as input a triangle mesh with identified feature edges, and
computes a non-orthogonal, per-triangle constant frame field aligned with the
feature edges. The goal is to compute a frame field with the lowest total rotation;
the field must not have index 1/2 singularities at sharp corners. In practice, we
relax the orthogonality of the field at the very last step, therefore in this section
we give formal definitions for the total rotation and the singularity indices both
for orthogonal and non-orthogonal fields.

N.B. Our frame field will be represented on faces of a triangulated surface. It
makes frames independent across feature edges, thus we can cut the mesh along
feature edges without loss of generality. From now on, feature edges will be
considered as boundaries; it considerably simplifies the notations.

Orthogonal frame fields: a frame on a triangle consists of a set of four tangent
unit vectors

{
v, v⊥,−v,−v⊥

}
. It is common to endow each triangle i with a

reference vector bi and describe the frame as a rotation angle αi of the reference
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vector bi around the normal. Thus, a frame field can be represented by the set
of angles {αi, αi + π/2, αi + 2π/2, αi + 3π/2}, refer to Fig. 3–left.

The rotation of an orthogonal frame field is usually measured by the rotation
rij between frames of two adjacent triangles i, j:

rij = −αi + αj + cij + pijπ/2, (1)

where cij accounts for the change (once both triangles rotated into a common
plane) between the reference vectors bi and bj , therefore −αi + αj + cij is the
rotation between two adjacent frames. Since the frame is invariant under π/2 ro-
tation, the integer pij reflects the matching between the branches of the frames
(see Fig. 4). In most cases, pij is chosen to minimize the rotation. The prob-
lem to generate the smoothest orthogonal frame field can be formulated as the
minimization of the total field rotation:

argmin
∑
ij

r2ij subject to boundary constraints. (2)

The last thing we need to define for orthogonal frame fields is the frame field
index. For a vertex v we define the index as follows:

I(v) := 1

2π

 ∑
ij∈E(v)

rij − θv

+ 1− 1∂Ω(v)

2
, (3)

where 1∂Ω(v) ∈ {0, 1} is the indicator variable telling us whether it is a boundary
vertex or not, E(v) denotes the set of dual edges over the 1-ring of the vertex
v, and θv is the sum of all mesh angles at the vertex (all the triangle corners
incident to the vertex). Most common indices are illustrated in Figure 5, they
follow the convention used in [13].

Fig. 3: A non-orthogonal frame
(right) has an extra degree of free-
dom ρi pulling the second branch
away from orthogonality.

Fig. 4: (αi) are frame angles, cij is
the rotation between reference vec-
tors of triangles i and j. Integer pij
disambiguates the modulo π/2.

Non orthogonal frame fields: We want to relax the orthogonality constraint so
non-orthogonal frames fit neatly sharp boundary corners. Thus, we need to add



6 Desobry et al.

Fig. 5: Index for boundary vertices
with a constant field. From left to
right: indices 1/2, 1/4, 0,−1/4.

Fig. 6: Non orthogonal frame fields
have two angular differences r0ij and

r1ij , one for each pair of vectors.

(a) Smoothest field
(b) Constrain only the 1-
ring of the sharp corner

(c) Propagate the field
curvature

Fig. 7: Frame field on a sharp corner: the smoothest field’s streamlines are con-
verging to the corner, constraining the curvature of its one ring just moves the
singularity to an adjacent vertex, so we need to further propagate the modifica-
tion of the field curvature.

an extra parameter to the above representation to take into account the skewness
of the frame. We introduce the angle ρi measuring the deviation from orthogonal-
ity; non-orthogonal frames are represented by a set of four unit vectors obtained
by rotating bi by angles (αi, αi + π/2 + ρi, αi + 2π/2, αi + 3π/2 + ρi), refer to
the right panel of Fig. 3 for an illustration.

Non-orthogonal frames loose the invariance under π/2 rotation. Thus, it is
important to note that the skewness parameter ρi is, by convention, always
applied to the second and fourth branches. In order to measure how a frame
rotates across the edge shared by two adjacent triangles i and j, we need to
define two r0ij and r1ij . These angles account for the rotation of the first and third
branches and the skew second and fourth branches respectively as illustrated in
Fig. 6.

Imagine that the first branch of the frame on triangle i is matched with the
first (or third) branch of the frame on triangle j (i.e. pij = 0 mod 2) then r0ij
is given by Eq. (1). In this case the second branch matches on i the second (or
fourth) branch on j and r1ij is computed by reapplying Eq. (1) with angles αi+ρi
and αj + ρj .

When pij mod 2 = 1, the first branch of the frame on triangle i is matched
with the second (or fourth) branch of the frame on triangle j then r0ij is obtained
by replacing αj by αj + ρj in Eq. (1).
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The overall formula can be summarized by:{
r0ij = −αi + αj + cij + pij

π
2 + (pij mod 2)ρj

r1ij = −αi − ρi + αj + cij + pij
π
2 + (1− (pij mod 2))ρj

(4)

Then the smoothest non orthogonal frame field is the one minimizing the total
rotation:

argmin
∑
ij

(
r0ij

)2
+
(
r1ij

)2
subject to boundary constraints. (5)

Our approach overview: as explained in § 3.1, one daunting challenge for quad
meshing a CAD model is the omnipresence of sharp corners. It forces index
1/2 boundary singularities to appear in the smoothest frame fields, making it
impossible to extract a valid quad-mesh. To avoid this situation the main idea
is to trade some smoothness against the appearance of acceptable singularities
on sharp corners (Fig. 7). More precisely, we alter the notion of smoothness to
ban unmeshable configurations.

So, given a triangle mesh with boundary (recall that all feature edges are
considered as a boundary), our algorithm computes two tangent directions per
triangle by following the steps described in the subsequent sections:

– § 3: compute an orthogonal frame field without index 1/2 singularities at
sharp corners. The idea is to change the objective rotation ω (§ 3.2) and
then to compute the smoothest frame field with respect to ω (§ 3.3)

– § 4: compute a non-orthogonal field that reduces the field rotation w.r.t
the orthogonal field. In other words, we relax the orthogonality constraint.

3 Compute a meshable orthogonal frame field

A standard way to compute the smoothest (orthogonal) frame field is to mini-
mize the total field rotation

∑
ij r

2
ij under boundary constraints. The problem,

however, is that this approach often leads to unmeshable frame fields (§ 3.1). To
avoid this pitfall, we do not generate frame fields whose rotation is the smallest
possible, but rather the closest to a prescribed rotation ω that prevents sharp
corner collapses (§ 3.2). We represent ω by a rotation angle ωij between each
pair of adjacent triangles i and j. Once this target rotation has been obtained,
the frame field is simply computed by minimizing the distance to the target∑

ij(rij − ωij)
2, § 3.3 provides all necessary details.

3.1 Problem characterization

A frame field becomes non quad meshable whenever there is a boundary vertex
with index of 1/2 (see Figure 2).

Let v be a boundary vertex with a small total angle θv. The frame field
minimizing the rotation is very likely to be such that

∑
ij∈E(v) rij = θv i.e.
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placing an index of 1/2 on vertex v. Note that Eq. (3) provides a way to detect
potential problematic configurations. Indeed, if the total angle at a boundary
vertex is θv < π/4, minimizing the rotations of the frames around this vertex
leads to the problematic index 1/2 singularity, with a total field rotation of θv.
This case can be avoided by forcing the frame rotation to be as close as possible
to a target rotation field ω in this situation.

From a differential geometry point of view, ω is a 1-form that we use to
redefine the parallel transport. In contrast to redefinition of the metric [16, 9], it
does not modify the orthogonality of the frames.

3.2 Prescribe the target field rotation ω

In this section, we start by reviewing a naive fix: a very local target rotation
prescription, and then a global one that gives great quality results.

A naive local fix. The target rotation field ω should promote 1/4 index
singularity in places where the smoothest frame field (Eq. (2)) is likely to place
an index 1/2 singularity. More precisely, for each boundary vertex v with total
angle θv < π/2, setting its index to 1/4 constrains the sum of field rotation in the
1-ring by Eq. (3):

∑
ij∈E(v) rij = θv−π/2. We therefore add this constraint to the

target rotation, that we write as dω(v) = θv − π/2, where dω(v) =
∑

ij∈E(v) ωij

denotes the exterior derivative of ω, extended to the boundary of the surface.
Why is it so local? If we simply evenly distribute θv−π/2 on the ωij of each

dual edge ij ∈ E(v), it indeed moves the singularity away from the boundary, but
only as little as possible. The common case of two adjacent boundary triangles
i and j (Fig. 7-middle) is very representative of this behavior. As detailed in
Fig. 8, imposing dω(v) = ωji = θv − π/2 will lead to a matching rotation
of rji = θv − π/2. As we are looking for the smoothest field, the rotation on
neighboring dual edges jk and ki will be rjk = rki = θv/2. By Eq. (3), the index
of center vertex is then −1/4: the singularity has barely moved away from the
boundary.

What happened here is that dω(v) is perturbing the energy Eq. (8) needed
for choosing the index of v: as observed in [19], it acts as the angle defect.
Moreover, if the triangles i, j share the edge v, v′, increasing ωij mechanically
increases dω(v) and decreases dω(v′) by the same amount. As a consequence,
the sum remains null, i.e.

∑
v dω(v) = 0. When altering ω only in the 1-ring of v,

we are simply moving dω(v) to its neighboring vertex... that naturally becomes
the new singular vertex.

A global solution. Instead of forcing the nearest vertex to become a sin-
gularity, it is often better to place it a bit farther. To do so, the modification of
dω(v) that prevents index 1/2 on sharp corners should not just be transferred to
it’s nearest neighbor: it would be better to have dω(v) = 0 for all other vertices.
Unfortunately, the constraint

∑
ij dω(v) = 0 makes it impossible, so we instead

distribute the constrained dω(v) of sharp corner vertices onto all other vertices.
A two step optimization method can be used to determine ω:

– we compute a scalar K(v) per vertex v such that
∑

v K(v)2 is minimal,
K(v) = π/2 − θv on sharp corners v, and

∑
v K(v) = 0. The solution just
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distributes the sum of the −K(v) of the sharp corners on other vertices.
This optimization is done independently for each connected component of
the surface (that are likely to be generated when cutting the surface along
feature edges).

– we then minimize argmin
∑

ij ∥ωij∥2 under the constraint dω(v) = K(v).
The constraint

∑
v K(v) = 0 guarantees the existence of a solution.

This global solution is not always optimal, we don’t want the field distorsion
to spread too far from the sharp corner and produce global distorsions. In pratice,
we initialize K(v)← π/2−θv for sharp corners and K(v)← 0 for other vertices.
Then, for each sharp corner vs, we compute the set of vertices that can be reached
by following less than 5 edges. This is a tradeoff that permit to avoid both local
or global high distorsion. Let n be the size of this set of vertices, we update K
for all vertices of the set : K(v) ← K(v) − K(vs)/n. We then optimize omega
values argmin

∑
ij ∥ωij∥2 under the constraint dω(v) = K(v).

Fig. 8: Local fix of a sharp corner: We set ωij ← θv − π/2 to force I(v) = 1/4.
If ωjk and ωki are null, then dω(v′) = θv − π/2. Therefore, the final frame field
will have rij = ωij , rjk = rki = θv/2, leading to an index 1/4 at v′.

3.3 Computing an orthogonal frame field

Let us start with a brief primer on smoothest orthogonal frame field generation
(Eq. (2)). The state of the art is to lock boundary frames to have one direction
tangent to the boundary, and to minimize the total field rotation. Note that if
a triangle has two boundary edges, one can split the triangle in three by adding
a vertex at the center to avoid overconstraining the problem .

The smoothest field is the field with minimum rotation rij . To avoid having
to deal with integer variable pij , a well-known trick is to use a “representation
vector” as it is referred to in [18]. The smoothest orthogonal frame field is the
one having zero rotation across every dual edge (i.e. rij = 0). Thus in Eq. (1)
one can multiply by 4i and take the complex exponential, leading to:

e4iαi = e4iαje4icije2ipijπ. (6)

Since pij is integer, the last term is equal to one. We can perform a change of
variable zi = e4iαi , representing a frame by a unit complex number per triangle.
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Then the smoothest frame field is obtained by solving the following optimization
problem:

argmin
∥z∥=1

∑
ij

∥zi − zje
4icij∥2 subject to boundary constraints. (7)

As CAD models have many feature edges that force ∥zi∥ = 1 on neighboring
triangles, a common practice to solve this problem is to use an ordinary least
square method and ignore the unit norm constraint. At the end of the process,
the variables pij are set in order to minimize rij in Eq. (1).

So long for the smoothest frame fields, but recall that we want to compute a
frame field whose variation is as close to the prescribed rotation ω as possible. It
turns out that this problem can be solved exactly as the smoothest frame field
by a simple update of the optimization problem (7):

argmin
∥z∥=1

∑
ij

∥zi − zje
4i(cij−ωij)∥2 subject to boundary constraints. (8)

As for the variables pij , they are now set to minimize rij − ωij .

4 Relax the orthogonality

At this point, we generate quad-meshable orthogonal frame fields by minimizing∑
ij(rij−ωij)

2. The geometry can be further optimized by relaxing the orthogo-

nality constraint. The objective here is to minimize
∑

ij

(
r0ij

)2
+
(
r1ij

)2
as defined

in Eq. (4).
Instead of working with variables ρi, αi, we will optimize the rotation angles

to apply to each vector of the frame field: γ0
i for even vectors and γ1

i for odd
vectors. The final frame field will be obtained by updating αi ← αi + γ0

i , and
setting ρi ← γ1

i − γ0
i .

We can rewrite Eq. (4) for the new variables γ0
i and γ1

i :{
r0ij = −(αi + γ0

i ) + αj + γ
pij mod 2
j + cij + pij

π
2

r1ij = −(αi + γ1
i ) + αj + γ

(pij+1) mod 2
j + cij + pij

π
2

The new field is obtained by minimizing:

argmin

∑
ij

[(
r0ij

)2
+

(
r1ij

)2]
+ ϵ

∑
i

(
γ0
i − γ1

i

)2 ,

where ϵ = 10−2. Note that the term
∑

i

(
γ0
i − γ1

i

)2
favors the field to be or-

thogonal, which is necessary for under-constrained configurations such as ring
or torus.

To prevent degenerate frames, once the energy is minimized, we check whether
|γ0

i − γ1
i | > α, where 0 < α < π/2 is the maximum deviation from the orthog-

onality. We use α = 0.45π in our experiments. If the condition is not satisfied,
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we fix the frame locally by applying the smallest possible modification to γ0
i and

γ1
i : if γ

0
i > γ1

i then γ0
i ← (γ0

i + γ1
i + α)/2 and γ1

i ← (γ0
i + γ1

i − α)/2, otherwise
γ0
i ← (γ0

i + γ1
i − α)/2 and γ1

i ← (γ0
i + γ1

i + α)/2.

5 Results and applications

Fig. 9: Each model is remeshed with (foreground) and without (background)
fixing sharp corners by our method.

The running time was not major consideration in this work because, as
long as we stick to solving a couple of linear systems, generating the frame
field is not the weakest part of the quad meshing process. Our algorithm is
3 to 5 times slower than the fastest way to produce orthogonal frame fields
(without taking the representation vector norm into account). The extra time
is consumed by computing ω and relaxing the orthogonality. For example, a
model of 35K triangles is optimized in 3 seconds: 0.4 seconds to compute ω, 0.5
seconds to optimize the orthogonal field, and 1.3 to relax the orthogonality. As
a comparison, computing the global parameterization take 155 seconds.

5.1 Quad meshing

A family of quad meshing algorithms takes a frame field as input, computes a
global parameterization and extract quads from it. To compute the presented
results, we used the quadcover algorithm [10]. From a quadcover parameteriza-
tion, the extracted quad mesh have extraordinary vertices (valence ̸= 4) only on
the singularities of the input frame field.
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To work on CAD models with sharp corners, we choosed to act on the input
frame field to make it compatible with high quality quad mesh algorithm like
[10].

Previous works like [17, 8, 5] handled those CAD models cases from tradi-
tional frame fields, but at the cost of apparition of more extraordinary vertices
in the output quad mesh.(see Fig 10)

Fig. 10: The quad mesh gener-
ated by [5] (left) needs a lot
more singularities to deal with
feature edges than ours (right).

Fig. 11: Our method produces a
quad mesh aligned with feature
curves even in the presence of
extremely sharp corners.

Conclusion

Typical meshing algorithm of the computer graphics domain aren’t adapted
to handle sharp corners configurations that are omnipresent in CAD models.
However, previous work showed that releasing the orthogonality constraint on
frame fields is a sufficient fix in many cases.

A geometrical approach of generating non-orthogonal frame field induces
non-linear systems that often cost a lot of computation time when compared to
the linear systems of an orthogonal frame field.

Our solution solves it in a more combinatorial way, from an orthogonal field.
Instead of having to optimize non-orthogonal frames, we redefine the parallel
transport near every sharp corners to make a classical orthogonal optimization
solves non-orthogonal issues. The relaxation of the orthogonality then permits
to obtain a geometrically smoothed non-orthogonal frame fields.

The advantages of the method are that the computation time is as unsignifi-
cant as the implementation time compared to classical orthogonal surface frame
fields, and the results fields are guaranteed to be meshable with a small amount
of extraordinary vertices on sharp corners.

The drawbacks comes from the fact that it is based on combinatory : If the
input triangle mesh has inconsistent size, the parameter of the field rotation
propagation could be too local or too global. Moreover, if the feature edge de-
tection is of bad quality, the algorithm could try to solve problems that doesn’t
exist, and so provide a suboptimal solution.
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