
HAL Id: hal-03537976
https://hal.inria.fr/hal-03537976

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming and verifying real-time design using
logical time

Fabien Siron, Dumitru Potop-Butucaru, Robert de Simone, Damien Chabrol,
Amira Methni

To cite this version:
Fabien Siron, Dumitru Potop-Butucaru, Robert de Simone, Damien Chabrol, Amira Methni. Pro-
gramming and verifying real-time design using logical time. FDL 2021 - Forum on specification &
Design Languages, Sep 2021, Antibes, France. �hal-03537976�

https://hal.inria.fr/hal-03537976
https://hal.archives-ouvertes.fr

Programming and verifying real-time design using
logical time

Fabien Siron∗†, Dumitru Potop-Butucaru†, Robert de Simone†, Damien Chabrol∗ and Amira Methni∗
∗Krono-Safe - Massy, France

†INRIA - Paris/Sophia-Antipolis, France
∗firstname.lastname@krono-safe.com
†firstname.lastname@inria.fr

Abstract—The design of embedded control software calls for
stringent real-time constraints. For that, formalisms and theories
based on the notion of logical time give abstraction of real-time
durations that are usually not known at design level. Comparison
between synchronous languages, Logical Execution Time (LET)
and the PsyC language can be fruitful, in our case, with the
goal of empowering the industrial language PsyC, which is close
to LET, with (logical) time and functional verification methods
inspired from synchronous languages.

I. INTRODUCTION

The design of embedded control software, extensively inter-
acting with its physical environment, calls for stringent real-
time constraints. But effective real-time durations are often not
known of designers (either fluctuating or not yet set), while
temporal system correctness must imperatively be established
at early stage, for safety-critical reasons.

A number of formalisms and theories have introduced
notions of logical time, so that design flow can be split in two:
full design (specification, programming, verification) enforcing
Logical Time assumptions on the one hand, validation of these
assumptions regarding the physical implementation (time) on
the other hand. Synchronous languages and Multiform Logical
Time [1], Logical Execution Time [2], and the PsyC language
[3] propose domain-specific languages (on top of general-
purpose C) using Logical Time variations for their primitive
constructs. Comparison can be fruitful, in our case, with the
goal of empowering the industrial language PsyC, which is
close to LET , with (logical) time and functional verification
methods inspired from synchronous languages.

II. SYNCHRONOUS LANGUAGES

Synchronous languages target determinism and concurrency.
For that, computations react simultaneously and instanta-
neously with the tick of a global common clock. Time cannot
be used explicitly but through the use of a sequence of
reactions. Hence, time is said to be logical. The synchronous
hypothesis, then, ensures that if every computation is bounded
by the next reaction, then physical time can be safely ignored
[1].

The compilation of synchronous languages is however quite
complex. Besides causality issues, it is also generally not
possible to compile them to parallel code. Moreover, execution
time is usually limited to the reaction time of the system

Fig. 1. Description of a LET interval

through an analysis called worst case reaction time (WCRT).
This makes the schedulability analysis of certain systems (i.e
multi-rate systems) quite pessimistic.

More recent work addresses this kind of issues through
the use of a weaker form of synchrony. CoReA (by Boniol,
[4]) is a synchronous process algebra in which reactions are
synchronous but communication is always delayed to the next
instant. More recently, Forget and al introduced Prelude [5] as
a synchronous data-flow multi-rate language based on Lustre.
Basically, the reaction time of each flow is bounded by its next
activation. That is, each flow has its own reaction rate.

III. LOGICAL EXECUTION TIME

The Logical Execution Time (LET) [2] paradigm abstracts
the physical time through a sequence of logical instants,
similarly to the synchronous paradigm. However, contrary
to the latter, computation takes time and is not considered
instantaneous. For that, each computation must fit in a logical
interval, called LET interval. Furthermore, communications
are only made on the boundaries of LET intervals. Inputs are
read at their beginning and outputs are made visible to other
tasks at their end (see figure 1). Such abstraction is justified
because the observable execution time of a given function does
not really depends on the execution time of its computation.
It actually depends on when communication is done.

In a way, LET extends logical time with the concept of
duration. This allows a precise schedulability analysis due
to an increased execution time variability. In turn, this also
makes multi-rate systems easy to compile to parallel code (i.e.
for multitasking platform, multicore platform . . .). Moreover,
determinism coming from the synchronous paradigm is also

clock S = 1000 ∗ MS;
agent My Agent(uses realtime , starttime 1 MS)
{

body start
{

/∗ computation ∗/
advance 1 with S;
/∗ i n f i n i t e loop on s tar t body ∗/

}
}

Listing 1. Example of a PsyC agent

preserved as all communications are made available on prede-
fined dates.

Although LET is generally classified into a timed model
of computation due to its proximity with the timed-triggered
architecture (TTA) [6], all LET instants (i.e. LET interval
boundaries) are relative to the same common global clock.
Thus, like for the synchronous model, time is logical and is
not made explicit. As an example, Giotto, a periodic timed-
triggered LET language has been extended to handle events
with the xGiotto [2] language. This is actually a generalization
of the LET paradigm to handle non constant LET intervals (i.e.
where their boundaries depend on external events). As both
LET and the synchronous model are based on logical time,
they share some big similarities. Even if LET executions are
not considered instantaneous (i.e. they are only bounded by
the end of the interval), it is actually a correct abstraction
to consider execution to be instantaneous if and only if
communication is delayed to the next activation date (i.e. the
end of the interval). That is, the synchronous model, can be
used to abstract the LET paradigm. This is actually very close
to the model proposed by CoReA [4]. This abstraction allows
to obtain a simpler model which can be used, in turn, for
verification.

IV. THE PSYC LANGUAGE

The PsyC language is an implementation of a generalized
form of the LET paradigm (i.e. similarly to xGiotto) which
is dedicated to safety-critical real-time software [3]. It was
actually made as an extension of the C language to ease
the integration of applications written with the latter. PsyC
is packaged in a software suite called ASTERIOS which is
produced by the company Krono-Safe. This toolsuite is used
to allow the integration of safety-critical applications in the
avionic domain certified at the highest level of criticity (DAL-
A, DO-178C).

A PsyC application is composed of tasks called agents that
are sequential units of computation formed of LET intervals.
The content of an agent is composed of C code in which
a special instruction, advance n with c, specifies the
boundaries of the LET intervals. Informally, its semantics is
to advance the logical time of n ticks of a clock c derived

from the temporal source. Determinism is a consequence
of the visibility principle for inter-task communication. Data
are timestamped at the dates where they are made visible,
that is, the end of the LET interval. Moreover, for a given
function, its external data (i.e. its inputs) are visible if and
only if their timestamp is smaller or equal than the activation
date of the LET interval. At the application level, agents
are composed together in parallel in a synchronous way and
communicate together with a sampled communication means
called temporal variable.

The listing 1 shows the example of a PsyC agent that do
some periodic processing on clock S. There is, however, a
little difficulty as the first non empty LET interval of the
agent is actually smaller than the period of S. This is a very
classical issue coming from synchronous languages and logical
clocks. A property we might want to check, is to ensure that
the latency between the input and the output of this task is
bounded by a minimum and a maximum value.

V. DISCUSSION ET PERSPECTIVE

As the synchronous model is actually an abstraction of the
LET paradigm, it can be used to express logical models of
LET based languages. Those models can be used to express
the formal semantics of such languages, or they can be used for
a simulation purpose where execution time is not relevant. But
the more interesting result is probably to abstract LET systems
using the synchronous model to use synchronous verification
techniques. For PsyC, it is possible, for example, to give
translation rule to Esterel which is very close. This is actually
a correct way to give a formal semantics of PsyC as Esterel is
formally defined. Moreover, this allows simulation and formal
verification using synchronous techniques.

VI. CONCLUSION

The LET paradigm ensures determinism while allowing
easy compilation and fine-grained schedulability analysis.
However, today, there is almost no work on the formal
verification of complex LET based languages such as PsyC.
This work suggests that the similarity between LET and syn-
chronous languages can be exploited to reuse the verification
techniques of the latter on LET based languages. A more
precise positioning of PsyC will be developed in futur work.

REFERENCES

[1] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proceedings of the IEEE, vol. 79, 10 1991.

[2] C. Kirsch and A. Sokolova, “The logical execution time paradigm,” in
Advances in Real-Time Systems. Springer Berlin Heidelberg, 10 2012.

[3] D. Chabrol, G. Vidal-Naquet, V. David, C. Aussagues, and S. Louise,
“Oasis: A chain of development for safety-critical embedded real-time
systems,” in 2nd European Congress Embedded Real Time Software.
(ERTS 2004), 01 2004.

[4] F. Boniol, “CoReA: A synchronous calculus of parallel communicating
reactive automata,” in PARLE’94 Parallel Architectures and Languages
Europe. Springer, 1994.

[5] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A Multi-Periodic Syn-
chronous Data-Flow Language,” in 11th IEEE High Assurance Systems
Engineering Symposium, Dec. 2008.

[6] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embed-
ded Applications, 2nd ed. Springer Publishing Company, 2011.

