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∗∗ Université Côte d’Azur - Inria Sophia-Antipolis, France (e-mail:

zakarya.el-khiyati@inria.fr, laetitia.giraldi@inria.fr).
∗∗∗ Laboratory MSDA, Mohammed VI Polytechnic University, Green

City, Morocco (email: youssef.essousy@um6p.ma).

Abstract: We study the swimming strategies that maximize the speed of the three-sphere
swimmer using reinforcement learning methods. First of all, we ensure that for a simple model
with few actions, the Q-learning method converges. However, this latter method does not fit a
more complex framework (for instance the presence of boundary) where states or actions have
to be continuous to obtain all directions in the swimmer’s reachable set. To overcome this issue,
we investigate another method from reinforcement learning which uses function approximation,
and benchmark its results in absence of walls.

Keywords: Reinforcement learning control, Micro-swimming, Three-sphere swimmer, Function
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1. INTRODUCTION

The optimization of micro-swimmers’ displacement is a
subject of growing interest in recent literature, since it
could boost the use of such robots as medical tools (Sitti
(2009); Servant et al. (2015)). The solution of such op-
timization problems requires to take into account the
swimmer’s hydrodynamics as a constraint. However, solv-
ing this coupled problem is a challenging task due to
the numerical complexity of the equation of motion of
the swimmer. Indeed, the swimmer’s displacements are
governed by partial differential equations describing the
behaviour of the surrounding fluid.

The problem of finding the best strategy of locomotion
(Lauga (2020); Tam and Hosoi (2007)) is associated with
the optimization of a certain cost function which could be
described either as the speed (El Alaoui-Faris et al. (2020))
or as the energy of the system (Lohéac et al. (2013);
Nasouri et al. (2019)). One solution to tackle this type
of problems is to solve a simpler problem deriving from
the first order condition of the optimization problem (see
Alouges et al. (2019)). An equivalent strategy is to consider
an optimal control approach and to describe the solution
using Pontryagin maximum principle (Mart́ın et al. (2016);
Giraldi et al. (2015)).

More recently, reinforcement learning (Alageshan et al.
(2020); Tsang et al. (2020); Liu et al. (2021)) and deep
reinforcement learning (Garnier et al. (2021)) have been
applied to fluid mechanics in order to control the fluid flow,
optimize the shape or the swimming strategy of swimmers
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(Esparza López et al. (2019)). Alternative strategies as
genetic algorithms have also been investigated (Ishimoto
(2016)).

The use of reinforcement learning tabular methods (Q-
learning in the first place) is well adapted to study prob-
lems where the state and the action belong to small finite
dimensional spaces. This aspect was exploited in Tsang
et al. (2020); Liu et al. (2021) to study the optimal
swimming strategy for sphere-swimmers at low Reynolds
number, finding the travelling wave to be the optimal
arm activation strategy. However, when the state space
has an continuous component (orientation, distance from
a wall), tabular methods are not suitable anymore and
a modification of reinforcement learning is needed. In a
more complex framework (for instance the presence of
boundary), states or actions have to be considered in a
large finite dimensional space to obtain all directions in
the swimmer’s reachable set.

This paper investigates another method from reinforce-
ment learning which uses function approximation to over-
come this issue. More precisely, we apply the reinforcement
learning method called differential semi-gradient SARSA
(Sutton and Barto (2018)) to the well-known 3-spheres
swimmer (Najafi and Golestanian (2004)). We study the
optimal gait of the swimmer when the distances between
the spheres can take more than two discrete values. As
expected, we find that the optimal strategy remains a
square stroke. The paper is organised as follows: in section
2, the 3-spheres swimmer model, its dynamics and the
optimization problem are presented; in section 3, the re-
inforcement learning framework is discussed, justifying its
applicability to the problem at hand; in section 4 numerical



results on the optimization of the swimming gait of the 3-
spheres swimmer are illustrated.

2. MATHEMATICAL MODELLING

2.1 3-spheres swimmer

The 3-spheres swimmer Najafi and Golestanian (2004) is
composed of three aligned spheres having the same radius
R (see Fig 1). The two outer spheres, B1 and B2, are
connected to the central one B3 by thin extensible links.
The propulsion of the swimmer is ensured by changing the
lengths, dL and dR, of the left and right connecting arms in
a non-reversible fashion, in order to break the time-reversal
symmetry of the Stokes equations (see Scallop theorem in
Purcell (1977)).

dL dR
B1 B2B3

Fig. 1. Three-sphere swimmer and notations.

2.2 Swimmer’s dynamics

Let us denote by xCM the center of mass of the swimmer.
Since at low Reynolds number inertial effects are absent
and the spheres have the same properties, xCM is the
average of the centers of the spheres. The motion of the
swimmer derives from the solution of the following Stokes
problem, with i = 1, 2, 3,



−µ∆u+∇p = 0, in Ft,

∇ · u = 0, in Ft,

u = U + ω × (x− xCM (t)) + ud(t) on ∂Bi,

mU̇ = −Ffluid = 0,

Jω̇ = −Mfluid = 0.
(1)

where the fluid domain Ft is equal to R3\ ∪i=1,2,3

Bi, the hydro-dynamical forces Ffluid (resp. moments

Mfluid) are defined by
∑3

i=1

∫
∂Bi

σ(u(s), p(s))ds (resp.∑3
i=1

∫
∂Bi

σ(u(s), p(s))× (x− xCM (t))ds), where σ is the

Cauchy tensor σ(u, p) := (∇u+∇ut)− pId. The absence
of inertia and external forces leads to Ffluid = Mfluid = 0,
from which follows that values of U and ω, associated to
a change in the elongation speed of the links ud, encoding
the swimming strategy, are instantaneously attained.

System (1) is solved using the Feel++ finite element li-
brary (for more details on the numerical schemes see Berti
et al. (2021)). Instead of considering the three-dimensional
problem, we restrict to its two-dimensional section: this re-
duction is justified by the qualitatively similar behaviour of
the two and three-dimensional 3-spheres swimmer shown
in Figure 2, and it also reduces sensibly the computational
cost of the numerical simulations.

2.3 Optimization problem

The paper focuses on the optimization problem of finding
the best strategy, t 7→ (dL(t); dR(t)) with a bounded speed
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Fig. 2. Comparison of the three-sphere swimmer displace-
ment as a function of its arm elongation. In this case,
the spheres have radii R = 1, the discrete space of
attainable arm lengths is L = {l0, l1}, where l1 = 10
and l0 = l1 − ε. The same qualitative behaviour is
seen in the 2D and 3D case.

of deformation, for swimming as fast as possible. Below,
the maximal speed of deformation is a positive real number
given by M . For a given large T , the optimization problem
reads as

max
t 7→ (dL(t); dR(t))

(xCM , dL, dR) solution of (1)
||ud|| ≤M

xCM (T )− xCM (0). (2)

3. REINFORCEMENT LEARNING METHODS

3.1 Methods

We focus on solutions of (2) where dL and dR are step-
wise constant functions with values in a finite set L .

=
{l0, ..., lN} (see Figure 3). More precisely, the arm lengths
will vary only in a predefined set of values and only one
arm at a time.
To this end, we will be using reinforcement learning (RL)
tools.
In the reinforcement learning framework, the 3-spheres

dL = lN dL = l2 dL = l1 dL = l0 dR = l0

Fig. 3. Representation of the set L of preset lengths.

swimmer will be learning through interaction with its
environment how to map states to actions in such way
as to maximize some perceived rewards.
The formal framework under which RL algorithms are
studied is that of Markov Decision Processes (MDPs).
Given a probability space, an MDP is defined as a quadru-
plet (S,A, P,R), where S is a finite states space, A is a
finite actions space, P : S × A × S → [0, 1] defines the
state transition probability kernel and R : S × A → R is
the immediate reward function.



We will denote by St, At and Rt the state, the action and
the reward at time t respectively.

The state of the 3-spheres swimmer at time t is completely
determined by the tuple (dL(t), dR(t)) = St ∈ L2, so our
states space S is L2. The actions space will consist of
four actions: either extending, or retracting, the left or
the right arm. The reward Rt will consist of the horizontal
displacement of the center of mass of the swimmer between
times t− 1 and t, i.e., Rt

.
= xCM (t)− xCM (t− 1),∀t ≥ 1.

A key property here is the Markov property - that is,
the distribution of (St+1, Rt+1) is independent of the
previous states and actions S0:t−1, A0:t−1 conditionally on
the current action St. This property is verified by our
system since it is deterministic and (At, St) completely
determines (St+1, Rt+1).

Mapping states to actions will be done according to a
policy π which can be defined as a function π(.|.) : A ×
S → [0, 1] such that π(a|s) is the probability to select
action a given that the current state is s.

Our goal will be to maximize a long term return. Two
different forms of the return will be used in this work
depending on the method. First, the discounted return Gt

is defined, for a discount factor γ ∈ [0, 1], as

Gt
.
=

∞∑
k=t

γk−tRk+1∀t = 0, 1, 2, ...

The second form of the return Gt is introduced in section
3.3.
We further define the value function of a state s under a
policy π as

vπ(s)
.
= Eπ(G0|S0 = s),

and the value of state-action pair (s, a) under a policy π
as

qπ(s, a)
.
= Eπ(G0|S0 = s,A0 = a),

where Eπ is the expectation conditioned on the agent
following the policy π.

The value function vπ indicates how good a given state
is when following a policy π. Similarly, the action-value
function qπ assesses the attractiveness of a state-action
pair (s, a) by giving the expected return of taking the
action a starting from the state s and following the policy
π after that.

A policy π is said to be better than another policy π′ if
for all states s ∈ S, vπ(s) ≥ vπ′(s).

Under the MDP framework, there always exists a policy
that is better than all the other policies. All such policies
share the same value and action-value functions, they are
denoted by π∗ and their value function (resp. action-value
function) by v∗ (resp. q∗).

3.2 Q-learning

Algorithm 1 is guaranteed to converge almost surely to
the optimal action-value function q∗ under the following
assumptions (Watkins and Dayan (1992))

(1) Every action is visited an infinite number of times in
the limit;

(2) The learning rate sequence (αt) decreases according
to the usual stochastic approximation conditions:

Algorithm 1 Q-learning (Watkins)

1: Initialize the state S
2: Initialize the action A
3: for t = 1, 2, ... do
4: Run the simulation with action A
5: Observe the reward R and next state S′

6: Choose the next action A′ (ϵ-greedily)
7: q(S,A)← q(S,A)+α(R+γmax q(S′, .)− q(S,A))
8: S ← S′

9: A← A′

10: end for ∑
k≥0

αk(s, a) =∞,∀(s, a) ∈ S ×A, (3)

∑
k≥0

α2
k(s, a) <∞,∀(s, a) ∈ S ×A. (4)

This algorithm was used to successfully find the optimal
gait for the 3-spheres swimmer with N = 1 in Tsang et al.
(2020).

3.3 Function approximation

The Q-learning methods is useful for problems with a small
state space, as the amount of time and data needed to
obtain reliable estimations of the value functions becomes
unrealistic as the state space gets larger. In this section
we describe an alternative, approximate solution method
named differential semi-gradient SARSA in Sutton and
Barto (2018). The problem we ultimately want to tackle
using this method is that of 3-spheres swimmer near a wall
where few arm lengths is no longer sufficient to describe
all the reachable set of the swimmer and in addition its
orientation and the distance from the wall are also needed;
the continuous nature of these additional state variables
prohibits the use of exact solution methods.

Our discrete observations of the new state variables no
longer satisfy the Markov property and with that we lose
some of the results we previously had. For instance, the
existence of an optimal policy in the sense that we defined
above is no longer guaranteed (Singh et al. (1994)). A
commonly used way to order policies in this context is
by resorting to the average reward of policy r(π) defined
as follows:

r(π)
.
= lim

∞
Eπ(Rt|S0).

The return is then defined as:

Gt
.
= Rt+1 − r(π) +Rt+2 − r(π) +Rt+3 − r(π) + ...,

and the definitions of the value function and the action-
value function remain the same after replacing the return
with its new form. Policies are then ordered according to
their corresponding average rewards.

The main idea of approximate solution methods is to use
an approximate representation q̂ of the value functions
(and/or the policy, but not in our case). We write

q(s, a) ≈ q̂(s, a, w),

where w ∈ Rd are weight parameters that will be modified
instead of updating the state-action values directly.

We use a linear representation for q(s, a) ≈ x(s, a)Tw,
where the feature vector x is constructed using tile coding



Table 1. Symmetries of the three-sphere swimmer that are
exploited by our algorithm.

Initial state Action Reward
(x, li) extend right arm δ

(x, li+1) retract right arm −δ
(li+1, x) retract left arm δ
(li, x) extend left arm −δ

(see Sutton and Barto (2018)), to which we apply algo-
rithm 2 from Sutton and Barto (2018) for our control
problem. The numerical results are shown in the following
section. To reduce simulation time during the learning
process, we leverage the deterministic nature of our system
and use the simulation only when a new state-action pair
arises for the first time. We also exploit the symmetries
in Table 1 satisfied by the system to further reduce the
required computations.

Algorithm 2 Differential semi-gradient sarsa

1: Initialize the state S
2: Initialize the action A
3: for t = 1, 2, ... do
4: Run the simulation with action A
5: Observe the reward R and next state S′

6: Choose the next action A′ (ϵ-greedily)
7: δ ← R− R̄+ q̂(S′, A′, w)− q̂(S,A,w)
8: R̄← R̄+ βδ
9: w ← w + αδ∇q̂(S,A,w)

10: S ← S′

11: A← A′

12: end for

4. NUMERICAL RESULTS

The reinforcement learning method we have employed
(see Algorithm 2) allowed us to recover the results of
Tsang et al. (2020) for the 3-spheres swimmer in infinite
domain, where we exploited the qualitative agreement
found between the two and three dimensional 3-spheres
swimmers, reported in Figure 2. Figure 4 presents these
results: the swimming strategy that was recovered at the
end of the learning process, as well as the behaviour
of the Q-function, are shown. It can be seen that the
convergence of the algorithm to the optimal policy takes
around 400 iterations, that is four times more than the
Q-learning approach by Tsang et al. (2020). This can be
justified by the smaller learning rate we considered, which
was inversely proportional to the number of tilings that
discretized our domain. The results from fluid simulations
were fed to the learning algorithm using two approaches,
resulting in the same optimal strategy: one one hand, for
each agent-environment interaction, a simulation was run;
on the other hand, exploiting the time reversibility of the
flow and the absence of inertia (see also Table 1), the
displacement resulting from each simulation was stored
and accessed instead of repeating the action. As it was
previously said, the optimal strategy that was found in
this case is the travelling wave.
We now enlarge the state space by inserting an interme-
diate length between the two that were used before. The
action space will now be different for each state, containing
a minimum of two actions and a maximum of four. The
actions correspond to elongation and retraction of one arm
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Fig. 4. The 3-spheres swimmer recovers the travelling wave
strategy as the optimal one. On the top, we show the
the convergence of the Q-function, and on the bottom,
the optimal swimming stroke.

at a time, of a fixed amount: this obliges the agent to pass
through the states with intermediate lengths, and to make
sure that all actions produce a similar reward. The results
for this case are presented in Figure 5, where we see that
the optimal strategy is again a travelling wave, and each
link passes from one length extremum to the other before
the following link is activated. We considered a last case
in which two intermediate lengths were available, and we
found once more the travelling wave strategy to be the
optimal one. We report in Figure 6 the optimal stroke
that was repeatedly found, in the 3-spheres swimmer phase
space of axes dL− dR. A travelling wave, composed of 4N
actions, proved to be the optimal swimming strategy for
the 3-spheres swimmer when multiple intermediate link
lengths are accessible to the agent. Independently of the
number of intermediate arm lengths N , the optimal policy
policy π∗ is a deterministic policy verifying π∗(a|(li, lj)) =
1, where

• a = extend right arm when i = 0 and j ∈ {0, ..., N −
1};
• a = extend left arm when j = 0 and i ∈ {0, ..., N−1};
• a = retract right arm when i = N and j ∈ {1, ..., N};
• a = retract left arm when j = N and i ∈ {1, ..., N}.

The optimal policy translates to piece-wise functions
(dL(t), dR(t)) prescribing the length of the arms
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Fig. 5. The results when L = {l0, l1, l2} are presented.
On the top, we report the convergence plots of the
Q-function. On the bottom, we present the optimal
swimming strategy that was found.

dL(t) =



l0 +
lN − l0

N
t, if dR(t) = l0, 0 ≤ t ≤ N,

lN −
lN − l0

N
t, if dR(t) = lN , 0 ≤ t ≤ N,

l0, if dR(t) decreases,

lN , if dR(t) increases,
(5)

dR(t) =



l0 +
lN − l0

N
t, if dL(t) = lN , 0 ≤ t ≤ N,

lN −
lN − l0

N
t, if dL(t) = l0, 0 ≤ t ≤ N,

l0, if dL(t) increases,

lN , if dL(t) decreases.
(6)
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Fig. 6. In the top figure, trajectory in the 3-spheres
swimmer phase space of the optimal strokes for the
3-spheres swimmer, with intermediate lengths. In the
bottom figure, the optimal stroke when intermediate
lengths are available.

We present in Figure 7 the cumulative displacement, in
log-log scale, for the cases when N = 1, 2, 3. The three
curves show the same asymptotic behaviour, which means
that the same optimal propulsion speed is reached in the
three cases. It can be seen that the optimal strategy is
found at different iteration numbers TN , that are larger
as the number of intermediate lengths grows, which also
give an approximate idea of the learning time for different
values of N .

5. CONCLUSION

We have shown that, using a differential semi-gradient
SARSA method, we are able to recover the optimal square
stroke of the 3-spheres swimmer. As expected, the intro-
duction of intermediate arm lengths does not vary the
optimal swimming strategy. Thus, this paper validates the
coupling of a reinforcement learning algorithm with a finite
element approach to study the swimmer’s dynamics in
a toy case. The direct perspective is to study SARSA
methods in more complex environments requiring large
number of actions or states, for instance the presence of a
plane wall.
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