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1 Introduction

This paper is motivated by the design of public policies in the job market domain,
building upon the state of the art in recommender systems [23]. The specifics of the
job market is that, while recommender systems aim at independently recommending to
each user the most desirable item for them, it is inappropriate to recommend the same
irresistible job ad to many job seekers: this would induce a congestion phenomenon
at the population level and a poor eventual satisfaction at the individual level. More
generally in domains such as job or matrimonial markets, referred to as reciprocal rec-
ommendation settings [17], an appropriate recommendation policy should globally take
into account the populations of job seekers and job ads, and somehow connect both
populations in a congestion-free way.

Taking inspiration from related works in recommender systems [15,16,5] and in
econometrics [6,9], this paper investigates the coupling of optimal transport [8,20] with
recommender systems. The presented approach, referred to as Congestion avoiding rec-
ommendation with Optimal Transport (CAROT), learns matchings between the users
(job seekers) and the items (job ads) populations, aimed to maximize some trade-off
between the interestingness of the recommended items, and their sufficient diversity
at the population level (as opposed to recommendation serendipity [14], aimed at the
recommendation diversity at the individual level). The scientific questions considered
in the paper thus regard: i) how to define a new recommendation indicator, namely
the congestion; ii) how to algorithmically bound this congestion; iii) how to assess the
trade-off between the mainstream recommendation performance indicator, that is, re-
call, and congestion.

The contribution of the paper is threefold. Firstly, congestion avoidance is formal-
ized within the optimal transport framework (Section 3). Secondly, the CAROT al-
gorithm proposed to tackle this problem is agnostic regarding the data distribution (as
opposed to the assumptions done in [15,16,9,6]), and is less computationally demanding
than e.g. combinatorial optimization approaches [25]. Thirdly, the merits of CAROT
are empirically demonstrated on a large scale proprietary dataset in the job market do-
main, kindly provided by the French National Employment Agency, Pôle emploi. The
experimental results (Section 4) demonstrate the robustness of the approach and yield
some unexpected lessons about the interactions of the recall and congestion indica-
tors. The paper concludes with some research perspectives. Experiments on the public
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benchmark MAR, in the matrimonial market domain, are presented for the sake of com-
parative evaluation with [15] in supplementary material.

2 Formal background

This section defines the reciprocal recommendation problem, referring the reader to
[17] for a comprehensive survey, and discusses some related work. The optimal trans-
port setting is thereafter introduced for the sake of self-containedness [8,20].

Notations. Let n (respectively m) denote the number of users (resp. items), with xi
(resp. yj) the description of the i-th user (resp. j-th item). The boolean collaborative
matrix Mi,j is such that Mi,j = 1 iff user i selected item j.

Position of the problem. A recommender system usually learns a scoring function φ
such that the matrix defined from φi,j = φ(xi, yj) maximizes the fit with the collabo-
rative matrix M (expressed in terms of mean-square error or KL divergence), penalized
with a regularization term [1]. With no loss of generality it is assumed in the remainder
that the items recommended to the i-th user are ordered by increasing φi,j .

In reciprocal recommendation [17], item j is subject to capacity constraint nj : only
the top nj users selecting this item can be served. New optimization objectives and
algorithms need be defined to accommodate such constraints.

Related works. An early approach facing reciprocal recommendation, [11] proceeds
by learning scoring function φ as the solution of a constrained optimization problem.
[25] casts reciprocal recommendation as a (NP-hard) multi-objective optimization prob-
lem, where the additional objective accounts for satisfying the capacity constraints; it
is tackled using greedy optimization. In [2], the scoring function φ is used to estimate
the global popularity of an item; the recommendation is repaired at the individual level,
shifting upward or downward the items recommended to a given user depending on the
item popularity. [5], inspired from decentralized economic models, considers the scor-
ing functions reflecting the mutual utility of xi w.r.t. yj , and uses an optimal transport
approach (see below) to construct a 1-to-1 recommendation, or matching.

Computational optimal transport. Optimal transport (OT) aims to map some (continu-
ous or discrete) distribution µ onto another distribution ν. In the following, µ (respec-
tively ν) stands for the uniform discrete distribution on the set of n users (resp. on the
set of m items). Denoting Γ (µ, ν) the set of measures such that their marginals with
respect to 1st and 2nd arguments respectively are µ and ν, letting Ci,j be the cost of
mapping i onto j, the OT problem aims to find the joint distribution γ∗ in Γ (µ, ν) s.t.:

γ∗(C) = arg min
γ∈Γ (µ,ν)

n∑
i=1

m∑
j=1

γi,jCi,j (1)

A tractable relaxation of the above optimization problem is proposed by Cuturi [8], by
regularization with an entropic term:

γ∗(C, ε) = arg min
γ∈Γ (µ,ν)

n∑
i=1

m∑
j=1

γi,j (Ci,j + ε log(γi,j)) (2)
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with ε the regularization weight. The optimal solution of Eq. (2) is of the form γi,j =
αi exp (−Ci,j/ε)βj , where α and β enforce the constraints on the marginals of γ.

Discussion The main approaches in OT-based recommendation assume the observed
collaborative matrix M to be the optimal solution of an OT plan based on some match-
ing cost C [6,10,15,16]: they learn C from training data, and use the estimated cost
model to build matchings on other data.

In the context of the job market, it is however debatable whether the actual match-
ing, i.e. the observed collaborative matrixM , should be viewed as the solution of an op-
timal transport plan: by construction,M is the result of a decentralized process whereas
the OT solution results from a centralized one. Accordingly, the proposed approach will
be structured along two phases: learning the matching cost functionC fromM (without
assuming M to be an OT solution), and using C within an OT process.

3 Overview of CAROT

Let φi,j in R denote the sought recommendation score of the j-item for the i-th user,
and define boolean indicator 1li→j,k,φ as 1 iff j ranks among the k top recommendations
for i. Subscript φ is omitted if clear from context.

Performance criteria Beside the standard Recall@k indicator, measuring the fraction of
users for which the actually preferred item is ranked among the top-k recommendations,

Recall@k(φ) =
1

n

n∑
i=1

m∑
j=1

Mi,j .1li→j,k (3)

we define the notion of item market share MS`(j) of item j as follows, to measure the
fraction of users i such that j is among the top ` items recommended to i (with ` < m):

MS`(j) =
1

n× `

n∑
i=1

1li→j,`

Informally, the congestion is minimized if the entropy of the market shares is minimized
(all the more so as ` goes to 1):

Congestion@`(φ) :=
m∑
j=1

MS`(j) log (MS`(j)) (4)

For the sake of fair comparisons, the congestion indicator is mapped to [−1, 0] by di-
vision by log(m); the perfect congestion avoidance is obtained for equal market shares
of the items, with −1 as optimal value.
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Enforcing congestion avoidance with OT. As said, optimal transport is applied based
on a cost matrix Ci,j depending on the learned recommendation score φi,j . Leaving
end-to-end learning of Ci,j for further work, we consider Ci,j = g(φi,j), with g a
monotonous scalar function, hyper-parameter of the approach, such that the cost Ci,j of
transporting i toward j increases with φi,j (that is, as the relevance of matching i and j
decreases). Additionally, φi,j is capped to the score of the 1,000-th item recommended
to each i, noted φ(1000)i (φi,j ← max(φi,j , φ

(1000)
i ) in the following).

Four g functions have been considered, respectively linear, or exponential functions
of φi,j , or rank-based, or NDCG-like [3].

For a fair comparison of the results obtained with same entropic regularization
weight ε, Ci,js are normalized s.t.

∑
i,j Ci,j = 1.

The CAROT algorithm Overall, CAROT is a 2-step process: i) learning a scoring
function φ; ii) solving the optimal transport problem defined from Cij = g(φi,j).

CAROT: 1. Learning φ. The two considered recommendation learning approaches are
XGBOOST and neural networks (NN). XGBOOST is a state of art recommender system
based on gradient boosting [23], that can be efficiently trained by aggressively subsam-
pling the negative pairs (i, j), at the expense of a lesser scalability in recommendation.
NN is a neural net, whose architecture is tailored to the specifics of the domain (e.g.,
considering submodules devoted to geographic or skill-related informations). The de-
scriptions of user xi and item yj are mapped onto latent spaces, respectively noted
zx,i and zy,j , and their adequacy φi,j is sought as zTx,iAzy,j with A a matrix [4]. The
mappings and matrix A are learned in an end-to-end fashion using a triplet loss [24].
Formally, assuming that each user selects a single item, considering wlog (up to a per-
mutation of the items) that user i selects item i, the learning goal is to

Minimize
n∑
i=1

m∑
j=1,j 6=i

(φi,i − φi,j + η)+ (5)

with A+ = max(0, A) and η > 0 hyper-parameter of the approach. As for XGBOOST
case, negative sampling is used to cope with the number of negative pairs. The hyper-
parameters of XGBOOST and NN are detailed in Appendix C.

CAROT: 2. Optimal transport. Depending on the regularization weight ε and the g
function (with Cij = g(φi,j)), discrete distribution γ is trained by optimizing Eq. (2).
Note that the extension of the approach to the general reciprocal recommendation case
(e.g. where several positions are opened for the j-th job ad) is straightforward by mak-
ing νj proportional to the capacity constraint of item j.

Eventually, the CAROT recommendation proceeds deterministically, ordering the
j items recommended to user i in decreasing order w.r.t. γi,j .

4 Experimental validation

After detailing the goals of experiments and experimental setting, this section presents
the empirical validation of the approach (detailed in Appendix D).



Congestion-Avoiding Job Recommendation with Optimal Transport 5

Experimental setting The first goal of experiments is to assess the efficiency of the
proposed approach in terms of trade-off between recall and congestion. The second
goal is to investigate how the results depend on the hyper-parameters of the approach
(φ being learned using XGBOOST or NN; entropic regularization weight ε ranging in
10−2, . . . , 102; transport cost Cij defined as g(φij) with g ranging in {Id, Exp, Ndcg,
Rank}).

With each hyper-parameter setting is associated seven performance indicators: re-
call@k with k = 1, 10, 100, congestion@k with k = 1, 10, and coverage@k with
k = 1, 10, indicating the fraction of items involved in top-k recommendation of at least
one user. Additional performance indicators are reported and discussed in Appendix D.

The performance is assessed on a proprietary benchmark dataset JOB from Pôle em-
ploi. The training set includes circa 1,650,000 job seekers, 477,000 job ads and 43,000
matches (signed contracts) reported in Ile de France during the Feb.-Oct 2018 period.
The description xi (respectively yj) of a job seeker (resp. job ad) is inR448 (respR582).
Function φ is learned on the training set; the optimal transport plan γ is computed on the
test set, restricted to the job sector of logistics for scalability reasons, including 110,000
job seekers, 14,200 job ads and 450 matches in Nov. 2018. Complementary results on a
public benchmark in the domain of the matrimonial market are discussed in Appendix
A for the sake of comparative evaluation.

Table 1: Comparative Results on JOB: Recall, Coverage and Congestion.

Algorithm Recall (%) Coverage (%) Congestion
@1 @10 @100 @1 @10 @1 @10

φRandom 0 0.21 0.65 99.95 100 -0.99 -0.99

φ XGB 9.62 31.40 61.59 12.94 25.16 -0.62 -0.64

C
A

R
O

T
-X

G
B γXGB ,g = Id+,ε = 1.0 4.81 21.99 57.87 21.61 31.76 -0.74 -0.75

γXGB ,g = Id+,ε = 0.1 2.18 15.31 56.01 27.54 41.24 -0.78 -0.81
γXGB ,g = Id+,ε = 0.01 4.37 20.45 43.21 46.75 57.61 -0.85 -0.79
γXGB ,g = ndcg,ε = 1.0 9.62 31.61 62.36 12.96 26.14 -0.62 -0.67
γXGB ,g = ndcg,ε = 0.1 8.97 25.38 46.06 14.69 30.84 -0.67 -0.74
γXGB ,g = ndcg,ε = 0.01 5.03 14.00 18.81 36.81 57.52 -0.82 -0.81

φ NN 5.68 28.66 57.98 6.02 17.78 -0.46 -0.49

C
A

R
O

T
-N

N

γNN ,g = Id+,ε = 1.0 6.78 26.14 60.39 11.99 26.30 -0.62 -0.65
γNN ,g = Id+,ε = 0.1 2.40 19.03 50.43 28.23 40.16 -0.80 -0.79
γNN ,g = Id+,ε = 0.01 3.93 16.30 27.89 53.38 62.35 -0.83 -0.70
γNN ,g = ndcg,ε = 1.0 5.68 27.46 59.08 6.02 19.75 -0.46 -0.55
γNN ,g = ndcg,ε = 0.1 5.25 23.3 49.01 8.85 26.40 -0.53 -0.65
γNN ,g = ndcg,ε = 0.01 1.53 12.36 24.28 35.41 51.56 -0.81 -0.81

Results Table 1 summarizes the results, with mainly three lessons. Firstly, NN is dom-
inated by XGBOOST in terms of all three performance indicators: recall, coverage and
congestion; furthermore, the lesser recall of NN (4% loss in recall@100) comes with
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a much lower coverage (7% loss in coverage@1). This counter-performance is blamed
on the architecture of the neural net (ongoing experiments suggest that the refinement
of specific modules accounting for geographic and skill-related aspects allows NN to
catch up). Secondly, coverage (@1 and @10) monotonically increases, and recall (@1,
@10, @100) monotonically decreases as ε decreases from 1 to .01, leaving little hope
that one can combine a good coverage with a decent recall. More encouraging is the fact
that the congestion@1 can be significantly improved (from -.62 to .78) at the expense
of a moderate recall loss (recall@10 goes from 62% to 56%) for g = Id, ε = .1.

The option g = ndcg has little (slightly positive) effects for ε = 1 and strongly
detrimental effects for ε = .1 or .01.

Surprisingly, decreasing ε yields a better (lower) congestion at the expense of a
worse recall. This effect was unexpected as the higher ε, the more uniform the transport
plan γ (everything else being equal) hence the lower the congestion should be. The
tentative interpretation for this fact (backed by complementary experiments reported
in Appendix B) is that all performance indicators depend on the order induced by γ,
as opposed to, the actual γi,j values. While the variance of γi,j does decrease as ε
increases, the “winner take all" phenomenon persists, i.e. the top-1 recommendations
over all users cover a meager 13% to 20% of the items.

5 Conclusion and Perspectives

Along the "AI for good" trend [13], this paper aims to prevent the undesirable effects
of recommender systems in the domain of job market. Specifically, if some job ads are
independently recommended to many job seekers, then a congestion phenomenon is
observed at the global level, entailing a waste of time and other detrimental effects for
both populations of job seekers and recruiters.

The proposed approach takes inspiration from optimal transport, with the idea of
globally "transporting" the job seekers population onto the job ads population, enforc-
ing a decent recall with low congestion. The key question thus becomes the definition
of the transport cost. In this paper, the transport cost is based on a mainstream recom-
mender score. The interesting and surprising lessons learned from the application of the
approach on a real-world large scale dataset is that the transport cost and the transport
regularization (used to enforce the OT scalability [8]) interact in subtle ways. Chiefly,
a strong regularization (expectedly yielding a uniform transport plan) significantly de-
grades the recall while it does not improve the congestion to the desired extent.

This work opens two main perspectives. On the algorithmic side, future work will
investigate the end-to-end learning of the recommendation plan, taking into account
both the recall and the coverage. An intermediate goal is to learn the function g used to
derive the transport costs from the scoring function.

More fundamentally, building a "fair job recommender system" should be viewed
as learning a prescriptive model (follow this policy to achieve the intended goals), as
opposed to a predictive model (follow this policy as it accurately estimates the users
preferences) [12,19,22]. The merits and limits of such a prescriptive model will require
experiments along the randomized controlled trials (RCT) methodology [18].
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Supplementary material

Appendix A: results on a public matrimonial dataset

Dataset description A public benchmark in the domain of the matrimonial market
(noted MAR), first introduced by [15], is used for the sake of comparison with the
state of art. The data include 2,475 men (respectively women), partitioned in 50 clus-
ters. Each individual is described with 11 mostly ordinal features. The 1-to-1 matching
is described at the individual level and the data also include the Mc,c′ collaborative
matrix, reporting the fraction of matches between men from cluster c and women from
cluster c′.

Benchmarks The baseline results on MAR are those of RIOT [15], an SVD-based de-
composition, and itemKNN [7]. At the cluster level, the performance indicators include
the RMSE and the MAE between the collaborative matrixM at the cluster level and the
estimated recommendation matrix, measured using a 5-cross fold validation. CAROT
is also assessed at the individual level, using the performance indicators in section 4.

Results on MAR On the matrimonial benchmark, tables 2 and 3 respectively display the
comparative results obtained at the cluster4 and the individual level.

At the cluster level, γXGB slightly but statistically significantly improves on RIOT
w.r.t. both RMSE (8.89± 0.11 as compared to 8.98± 0.17) and MAE (5.80± 0.13 in con-
trast to 5.79± 0.12). γNN also slightly improves on RIOT. Other benchmarks (random,
PMF, SVD and itemKNN) are outperformed.

At the individual level, XGBOOST significantly outperforms NN in both terms of
recall and congestion for all values of k.

γXGB is found to only improve the congestion at the expense of the recall: improv-
ing the congestion (from -.84 to -.98) is obtained by decreasing the recall@10 (from
28.4% to 23.7% at best, for g = Id, ε = 10−2).

For γNN , the congestion can be significantly improved (from -.84 to -.98, for g =
Id, ε = 10−2) while preserving the recall@10 (circa 15.4%).

It is suggested however that the recall and the congestion indicators are actually not
antagonistic in the MAR problem: by construction, the sought collaborative matrix is
a permutation. The main difficulty for this recommendation problem thus seemingly
comes from the small size of the dataset and the poor description of the individuals.

4 The difference with [15] is explained as a bug was found (and corrected) in the publicly avail-
able code for RIOT and other baselines, dividing the error by the number of folds in each
iteration. The performance order is not modified by (correcting) the bug.
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Table 2: Comparative results on MAR at the cluster level; average and standard deviation of the
RMSE and MAE w.r.t. the cluster matrix M , over 5-fold CV. Results for CAROT correspond to
g = Id+,ε = 1.

Random PMF SVD itemKNN RIOT γNN γXGB

RMSE 10.71± 0.13 446.6± 9.86 441.4± 11.2 9.36± 0.12 9.12± 0.12 8.98± 0.17 8.89± 0.11
MAE 7.22± 0.06 251.3± 6.00 249.2± 5.71 6.30± 0.03 5.98± 0.10 5.80± 0.13 5.79± 0.12

Table 3: Comparative Results on MAR at the individual level: Recall, Coverage and Congestion.

Algorithm Recall (%) Coverage (%) Congestion
@1 @10 @1 @10 @1 @10

φ Random 0.16 2.27 63.32 100 -0.90 -0.98

φ XGBoost 7.93 27.88 48.55 98.69 -0.84 -0.94

C
A

R
O

T
-X

G
B γXGB ,g = Id+,ε = 1.0 8.05 28.41 49.77 99.18 -0.85 -0.95

γXGB ,g = Id+,ε = 0.1 8.01 27.02 72.73 100 -0.93 -0.95
γXGB ,g = Id+,ε = 0.01 6.47 23.77 96.05 100 -0.98 -0.84
γXGB ,g = ndcg,ε = 1.0 7.93 28.2 48.55 99.02 -0.84 -0.95
γXGB ,g = ndcg,ε = 0.1 8.10 25.72 59.42 100 -0.89 -0.93
γXGB ,g = ndcg,ε = 0.01 6.06 19.49 94.26 100 -0.98 -0.73

φ NN 3.82 15.50 46.27 98.00 -0.83 -0.93

C
A

R
O

T
-N

N

γNN ,g = Id+,ε = 1.0 2.84 14.32 38.86 92.47 -0.80 -0.90
γNN ,g = Id+,ε = 0.1 3.94 15.46 70.12 100 -0.92 -0.98
γNN ,g = Id+,ε = 0.01 3.78 15.46 93.48 100 -0.98 -0.95
γNN ,g = ndcg,ε = 1.0 3.82 15.63 46.27 98.73 -0.83 -0.94
γNN ,g = ndcg,ε = 0.1 4.23 13.87 57.99 99.91 -0.88 -0.93
γNN ,g = ndcg,ε = 0.01 2.89 11.60 93.44 100 -0.98 -0.72
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Appendix B: Higher entropic regularization may not reduce
congestion

After [20] (prop. 4.1), when the weight ε of the entropic regularization term goes to∞,
the solution γ of the regularized optimal transport problem tends to a uniform coupling.
When ε→ 0 instead the solution converges to the optimal transport plan with maximal
entropy. Informally, increasing ε leads to solutions γ that are less sparse.

Unexpectedly however, the exploitation of γ through the sorting recommendation
process is such that a more uniform γ does not necessarily lead to less congestion.

This phenomenon is investigated in simulation. 1,000 cost matrices C of size n =
30,m = 10 are independently generated, withCij ∼ U( jm ,

j
m+1) (items being ordered

by increasing attractivity). Transport plans γ with uniform marginals w.r.t. users and
items are then computed using Sinkhorn algorithm with entropic regularization weight
ε = 100 and ε = 0.01. The average and standard deviation over the 1,000 runs of the
congestion obtained after sorting these plans indicate that the congestion is significantly
higher for the higher value of ε:

ε Mean congestion@1 Std.
100 -0.940521 0.029445
0.01 -0.996059 0.003586

Figures 1, 2, 3 and 4 illustrate this phenomenon on a single representative run. γij
are more uniform when ε = 100 than when ε = 0.01, sorting each line leads to a more
unequal distribution of recommendations towards the different offers.

Altogether, higher entropic regularization has an indeterminate impact on conges-
tion, and may increase it in practice. The choice of the ε should thus be chosen based
on a validation set, as well as on numerical criteria for the convergence of Sinkhorn’s
algorithm. One may note that taking extremely small values of ε using a naive im-
plementation of Sinkhorn’s algorithm may have adverse consequences on numerical
stability as well as convergence speed, although alternatives have been developed, for
instance in [21].

Appendix C: Hyperparameters

This appendix details the hyperparameters used to train XGBOOST and NN on both
benchmarks.

XGBOOST

On MAR, XGBOOST is used with its default parameters, except for the number of
boosting rounds, set to 200. A logistic loss is used and the negative sampling ratio is set
to 50 (Table 4).

On JOB, XGBOOST is used with the hyper-parameters reported in Table 5. Other
hyper-parameters are set to their default value.
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Fig. 1: Raw costs

Fig. 2: ε = 100
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Fig. 3: ε = 0.1

Fig. 4: ε = 0.01
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Table 4: XGBOOST Hyperparameters on MAR
num_boost_round 200
Loss Logistic
Negative sampling ratio 50

Table 5: XGBOOST Hyperparameters on JOB
col_sample_bytree 0.6
eta 0.075
gamma 0.85
max_depth 12
min_child_weight 1
subsample 0.9
num_boost_round 400
Loss Logistic
Negative sampling ratio 50

NN

The margin parameter η in the triplet loss is set to 1 in all experiments.
On MAR, NN is used with the hyper-parameters reported in Table 6. In each batch,

10 negative pairs are uniformly selected for each positive one.

Table 6: NN Hyperparameters on MAR
Layer 1 tanh, size = 300
Embedding tanh, size = 300
Optimizer Adam
Learning rate 0.001
Epochs 300
Batch size 64
Negative sampling ratio (per epoch) 10

On JOB, the neural architecture is adapted to account for the domain knowledge,
involving four modules:

A "geographic" 2-100-100-50 module takes as input the (standard-scaled) latitude
and longitude, with 2 hidden layers of size 100 and outputs a representation of the
user/item location in dimension 50. All activation functions are tanh. This module is
trained for 100 epochs (batch size 32) with Adam optimizer and base learning rate
10−4. Negative sampling selects items farther than the actual positive one.

A "skill" 14,000-200-100 module takes as input the (standard-scaled) skills, with
1 hidden layer of size 200 (activation RELU) and outputs a representation of size 100
(activation function tanh). The module is trained for 100 epochs (batch size 32) with
Adam optimizer and base learning rate 10−4. The similarity matrix is diagonal.
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An "other" d-500-200 module takes as input the other descriptive features, with
d = 448 for users and d = 582 for items, with a hidden layer of size 500 (activation
RELU) and outputs a representation of size 200 (activation function tanh). The module
is trained for 100 epochs (batch size 32) with Adam optimizer and base learning rate
10−4.

The overall architecture is warm-started using the preliminary training of the above
three modules. The similarity matrix A is constrained to be block-wise diagonal. The
module is trained for 35 epochs (batch size 256) with Adam optimizer and base learning
rate 10−4.

Except for the "geography" module, negative examples are sampled uniformly anew
in each epoch, with a negative ratio of 50.

Other hyper-parameters are detailed in Table 5.

Table 7: Hyperparameters - NN (JOB)
Geography module
Layer 1 tanh, size = 100
Layer 2 tanh, size = 100
Embedding tanh, size = 50
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 32
Skills module
Layer 1 ReLu, size = 200
Embedding tanh, size = 100
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 32
Other module
Layer 1 ReLu, size = 500
Embedding tanh, size = 200
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 256
Training from warm start
Block-diagonal Structure True
Epochs 10 / 25
Optimizer Adam
Learning rates 0.0001 / 0.00001
Batch size 256
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Appendix D: Full results

Table 8 give the full results obtained on the MAR dataset, including cluster-level eval-
uations.

Table 9 give the full results obtained on the JOB dataset. Figure 5 displays all
method results in the 2D recall@10, congestion@10 plan. This display illustrates the
trade-off between both indicators and shows the Pareto front of the non-dominated ap-
proaches.

Figure 6 displays so-called Lorenz curves plotting the percentage of overall job ads
included in the top-t recommended items versus t (akin a Gini index).

Finally, table 10 displays computational costs. It shows a limited training time of
respectively XGBOOST (circa 2 hours) and NN (circa 30 mn). The cost of optimal
transport increases as ε decreases, up to circa 10mn for ε = .01 (see also [21]). The
highest part of the cost comes from computing the recommendations with XGBOOST
and γXGB , due to the fact that it requires to compute joint adequacy features for all
(user, item) pairs.

Fig. 5: Pareto front Congestion (-Congestion@10) - Recommendation accuracy (Recall@10)
tradeoff, JOB Dataset
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Table 8: Results - MAR Matrimonial dataset

Algorithm Recall Coverage Congestion Ind-Cluster Cluster-Cluster
@1 @10 @1 @10 @1 @10 RSME MAE RSME MAE

φ Random 0.16 2.27 63.32 100 -0.90 -0.98 12.68 6.186 nc nc
φ XGBoost 7.93 27.88 48.55 98.69 -0.84 -0.94 12.60 5.619 nc nc
φ NN 3.82 15.5 46.27 98 -0.83 -0.93 12.99 5.905 nc nc

CAROT - XGBoost
γXGB ,g = exp+,ε = 100.0 8.01 28.16 48.51 99.14 -0.84 -0.95 12.64 5.629 9.044 5.944
γXGB ,g = exp+,ε = 10.0 7.97 28.16 48.59 99.14 -0.84 -0.95 12.64 5.629 9.016 5.928
γXGB ,g = exp+,ε = 1.0 8.09 28.08 49.57 99.22 -0.85 -0.95 12.57 5.616 8.856 5.756
γXGB ,g = exp+,ε = 0.1 8.14 28.37 73.82 100 -0.93 -0.98 12.06 5.427 16.41 6.376
γXGB ,g = exp+,ε = 0.01 6.63 26.98 95.44 100 -0.98 -0.95 11.87 5.341 24.30 7.221
γXGB ,g = Id+,ε = 100.0 8.1 28.41 49.2 99.06 -0.84 -0.95 12.56 5.603 9.044 5.944
γXGB ,g = Id+,ε = 10.0 8.1 28.41 49.2 99.1 -0.84 -0.95 12.56 5.603 9.022 5.931
γXGB ,g = Id+,ε = 1.0 8.05 28.41 49.77 99.18 -0.85 -0.95 12.55 5.596 8.887 5.786
γXGB ,g = Id+,ε = 0.1 8.01 27.02 72.73 100 -0.93 -0.95 12.13 5.440 19.51 6.704
γXGB ,g = Id+,ε = 0.01 6.47 23.77 96.05 100 -0.98 -0.84 11.99 5.391 24.49 7.257
γXGB ,g = ndcg,ε = 100.0 7.93 28.2 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 10.0 7.93 28.24 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 1.0 7.93 28.2 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 0.1 8.1 25.72 59.42 100 -0.89 -0.93 12.34 5.512 nc nc
γXGB ,g = ndcg,ε = 0.01 6.06 19.49 94.26 100 -0.98 -0.73 12.02 5.433 nc nc
γXGB ,g = rank − based,ε = 100.0 7.93 27.63 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 10.0 7.93 27.63 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 1.0 7.93 27.63 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 0.1 7.53 25.76 62.43 99.95 -0.90 -0.93 12.25 5.473 nc nc
γXGB ,g = rank − based,ε = 0.01 6.02 21.41 84.08 100 -0.96 -0.79 11.87 5.352 nc nc

CAROT NN
γNN ,g = exp+,ε = 100.0 1.5 9.32 13.75 51.4 -0.56 -0.65 16.10 6.824 9.045 5.945
γNN ,g = exp+,ε = 10.0 1.54 9.48 14.56 53.07 -0.58 -0.66 15.96 6.795 9.030 5.935
γNN ,g = exp+,ε = 1.0 1.95 11.35 20.38 65.76 -0.65 -0.75 15.17 6.655 8.976 5.839
γNN ,g = exp+,ε = 0.1 3.74 15.5 54.94 99.06 -0.87 -0.97 12.77 5.896 12.32 5.940
γNN ,g = exp+,ε = 0.01 3.78 15.67 88.15 100 -0.97 -0.97 12.03 5.543 23.14 7.164
γNN ,g = Id+,ε = 100.0 2.76 14 35 88.88 -0.77 -0.87 13.68 6.196 9.045 5.944
γNN ,g = Id+,ε = 10.0 2.72 14 35.4 89.58 -0.78 -0.88 13.64 6.179 9.024 5.931
γNN ,g = Id+,ε = 1.0 2.84 14.32 38.86 92.47 -0.80 -0.90 13.40 6.085 8.980 5.798
γNN ,g = Id+,ε = 0.1 3.94 15.46 70.12 100 -0.92 -0.98 12.36 5.668 17.08 6.512
γNN ,g = Id+,ε = 0.01 3.78 15.46 93.48 100 -0.98 -0.95 12.02 5.576 24.37 7.264
γNN ,g = ndcg,ε = 100.0 3.82 15.67 46.27 98.53 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 10.0 3.82 15.67 46.27 98.53 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 1.0 3.82 15.63 46.27 98.73 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 0.1 4.23 13.87 57.99 99.91 -0.88 -0.93 12.51 5.716 nc nc
γNN ,g = ndcg,ε = 0.01 2.89 11.6 93.44 100 -0.98 -0.72 11.94 5.504 nc nc
γNN ,g = rank − based,ε = 100.0 3.82 15.14 46.27 99.26 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 10.0 3.82 15.14 46.27 99.26 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 1.0 3.82 15.18 46.27 99.3 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 0.1 3.7 14.28 65.81 100 -0.91 -0.94 12.29 5.674 nc nc
γNN ,g = rank − based,ε = 0.01 2.76 12.29 83.84 100 -0.96 -0.84 12.16 5.612 nc nc
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Table 9: Results - JOB Employment dataset

Algorithm Recall Coverage Congestion OT Comp. Time
@1 @10 @100 @1 @10 @1 @10 sec.
(1) (2) (3) (4) (5) (6) (7) (8)

φ Random 0 0.21 0.65 99.95 100 -0.99 -0.99
φ XGB 9.62 31.4 61.59 12.94 25.16 -0.62 -0.64
φ NN 5.68 28.66 57.98 6.02 17.78 -0.46 -0.49

CAROT - XGBoost
γXGB ,g = exp+,ε = 1000.0 3.93 16.3 52.18 20.98 34.25 -0.73 -0.75 35.93
γXGB ,g = exp+,ε = 100.0 3.93 16.3 52.18 21 34.26 -0.73 -0.75 40.04
γXGB ,g = exp+,ε = 10.0 3.93 15.86 52.18 21.03 34.33 -0.73 -0.75 49.91
γXGB ,g = exp+,ε = 1.0 3.71 14.98 50.76 20.93 34.8 -0.73 -0.75 45.84
γXGB ,g = exp+,ε = 0.1 1.53 11.59 49.67 27.23 44.7 -0.78 -0.80 55.20
γXGB ,g = exp+,ε = 0.01 3.06 15.97 52.29 48.88 59.05 -0.86 -0.83 514.1
γXGB ,g = Id+,ε = 1000.0 5.03 22.42 59.73 21.19 31.01 -0.74 -0.74 36.03
γXGB ,g = Id+,ε = 100.0 5.03 22.42 59.4 21.18 31.01 -0.74 -0.74 40.03
γXGB ,g = Id+,ε = 10.0 5.03 22.42 58.97 21.24 31.09 -0.74 -0.74 49.60
γXGB ,g = Id+,ε = 1.0 4.81 21.99 57.87 21.61 31.76 -0.74 -0.75 48.27
γXGB ,g = Id+,ε = 0.1 2.18 15.31 56.01 27.54 41.24 -0.78 -0.81 67.69
γXGB ,g = Id+,ε = 0.01 4.37 20.45 43.21 46.75 57.61 -0.85 -0.79 448.8
γXGB ,g = ndcg,ε = 1000.0 9.62 31.83 62.36 12.96 26.05 -0.62 -0.67 40.69
γXGB ,g = ndcg,ε = 100.0 9.62 31.83 62.36 12.96 26.05 -0.62 -0.67 37.50
γXGB ,g = ndcg,ε = 10.0 9.62 31.83 62.36 12.96 26.06 -0.62 -0.67 36.34
γXGB ,g = ndcg,ε = 1.0 9.62 31.61 62.36 12.96 26.14 -0.62 -0.67 42.03
γXGB ,g = ndcg,ε = 0.1 8.97 25.38 46.06 14.69 30.84 -0.67 -0.74 45.99
γXGB ,g = ndcg,ε = 0.01 5.03 14 18.81 36.81 57.52 -0.82 -0.81 478.0
γXGB ,g = rank − based,ε = 1000.0 9.4 27.13 60.5 15.82 37.2 -0.69 -0.73 36.36
γXGB ,g = rank − based,ε = 100.0 9.4 27.13 60.5 15.82 37.2 -0.69 -0.73 36.28
γXGB ,g = rank − based,ε = 10.0 9.4 27.13 60.28 15.85 37.2 -0.69 -0.73 39.69
γXGB ,g = rank − based,ε = 1.0 9.4 26.91 59.19 16.09 37.28 -0.69 -0.73 45.54
γXGB ,g = rank − based,ε = 0.1 7 22.53 44.42 24.06 38.74 -0.76 -0.79 49.69
γXGB ,g = rank − based,ε = 0.01 2.18 11.59 21 56.69 68.13 -0.87 -0.85 312.7

CAROT - NN
γNN ,g = exp+,ε = 1000.0 5.25 20.35 51.2 19.7 32.96 -0.69 -0.71 36.46
γNN ,g = exp+,ε = 100.0 5.25 20.35 51.2 19.73 32.96 -0.69 -0.71 39.29
γNN ,g = exp+,ε = 10.0 5.25 20.13 50.98 19.83 33.1 -0.69 -0.71 49.46
γNN ,g = exp+,ε = 1.0 4.15 20.24 50 21.37 34.41 -0.71 -0.72 49.30
γNN ,g = exp+,ε = 0.1 0.65 6.89 42.23 35.04 50.43 -0.82 -0.83 58.90
γNN ,g = exp+,ε = 0.01 2.62 17.39 37.85 58.32 65.97 -0.87 -0.80 490.8
γNN ,g = Id+,ε = 1000.0 6.78 26.8 59.19 11.03 25.21 -0.60 -0.64 36.07
γNN ,g = Id+,ε = 100.0 6.78 26.8 59.19 11.05 25.21 -0.60 -0.64 36.08
γNN ,g = Id+,ε = 10.0 6.78 26.8 59.19 11.14 25.3 -0.60 -0.64 46.01
γNN ,g = Id+,ε = 1.0 6.78 26.14 60.39 11.99 26.3 -0.62 -0.65 49.23
γNN ,g = Id+,ε = 0.1 2.4 19.03 50.43 28.23 40.16 -0.80 -0.79 54.80
γNN ,g = Id+,ε = 0.01 3.93 16.3 27.89 53.38 62.35 -0.83 -0.70 518.9
γNN ,g = ndcg,ε = 1000.0 5.68 28.11 59.73 6.02 19.51 -0.46 -0.54 36.80
γNN ,g = ndcg,ε = 100.0 5.68 28.11 59.73 6.02 19.51 -0.46 -0.54 37.60
γNN ,g = ndcg,ε = 10.0 5.68 28.11 59.51 6.02 19.53 -0.46 -0.54 40.72
γNN ,g = ndcg,ε = 1.0 5.68 27.46 59.08 6.02 19.75 -0.46 -0.55 45.86
γNN ,g = ndcg,ε = 0.1 5.25 23.3 49.01 8.85 26.4 -0.53 -0.65 46.89
γNN ,g = ndcg,ε = 0.01 1.53 12.36 24.28 35.41 51.56 -0.81 -0.81 517.8
γNN ,g = rank − based,ε = 1000.0 5.68 25.27 52.95 10.74 38.47 -0.58 -0.67 37.20
γNN ,g = rank − based,ε = 100.0 5.68 25.27 52.95 10.76 38.47 -0.58 -0.67 36.78
γNN ,g = rank − based,ε = 10.0 5.68 25.27 52.95 10.79 38.5 -0.58 -0.67 40.34
γNN ,g = rank − based,ε = 1.0 5.68 25.27 52.29 11.24 38.71 -0.59 -0.67 46.50
γNN ,g = rank − based,ε = 0.1 3.06 12.58 40.7 26.55 42.65 -0.74 -0.77 49.85
γNN ,g = rank − based,ε = 0.01 0.65 4.81 25.6 61.91 73.03 -0.89 -0.88 502.9
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Fig. 6: Lorenz curves computed on Top10 recommendations

(a) XGB on JOB dataset (b) NN on JOB dataset

Table 10: Computational runtime in seconds on JOB (averaged over all g options). NN is trained
on a server with 2 Intel Xeon Silver 4214 2,2GHz CPUs, 192Go RAM, and a Tesla T4 GPU.
XGBOOST is trained on a DELL PowerEdge R640 server with 2X Intel Xeon Gold 6130 2.10GHz
CPUs (2 × 16 cores) and 384Go RAM. The optimal transport plan is computed on the DELL
with same resources as for XGBOOST.
Comp. Time φ γXGB γNN

XGBoost NN ε = 0.01 ε = 0.1 ε = 1 ε = 0.01 ε = 0.1 ε = 1

Total 104,340 4,104 104,778 104,394 104,385 4,611 4,156 4,148
(inc. Learning/OT) (7,454/−) (2,039/−) (7,454/438) (7,454/54) (7,454/45) (2,039/507) (2,039/52) (2,039/44)
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