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Abstract
We introduce a new kind of expectation transformer for a

mixed classical-quantum programming language. Our seman-

tic approach relies on a new notion of a cost structure, which

we introduce and which can be seen as a specialisation of

the Kegelspitzen of Keimel and Plotkin. We show that our

weakest precondition analysis is both sound and adequate

with respect to the operational semantics of the language. Us-

ing the induced expectation transformer, we provide formal

analysis methods for the expected cost analysis and expected

value analysis of classical-quantum programs. We illustrate

the usefulness of our techniques by computing the expected

cost of several well-known quantum algorithms and proto-

cols, such as coin tossing, repeat until success, entangled

state preparation, and quantum walks.

Keywords: complexity analysis, quantum programming, ex-

pectation transformer, formal semantics

1 Introduction
Quantum computation is a promising and emerging compu-

tational paradigm which can efficiently solve problems con-

sidered to be intractable on classical computers [9, 28]. How-

ever, the unintuitive nature of quantum mechanics poses

interesting and challenging questions for the design and

analysis of quantum programming languages. Indeed, the

quantum program dynamics are considerably more compli-

cated compared to the behaviour of classical probabilistic

programs. Therefore, formal reasoning about quantum pro-

grams requires the development of novel methods and tools.

An important open problem is to compute the expected re-

source usage of quantum programs. For example, this may be

used to determine: (1) the expected runtime; (2) the expected

number of quantum gates; or (3) the amount of quantum

resources (in an application-specific sense) required by quan-

tum programs, etc. The difficulty of this problem, which is

undecidable, requires using elaborate methods to solve it

whenever possible. These methods for estimating resource

usage must be compositional, systematic, and, preferably,

tractable; this excludes de facto any direct use of the opera-

tional semantics.

We address this open problem by establishing a weakest

precondition reasoning in the form of a quantum expectation
transformer, named qet-calculus, that is rich enough to re-

cover earlier wp-calculi in the context of classical programs

as well as denotational semantics for quantum programs.

Further, the calculus appears to be the right foundation for

subsequent automation of the method, which however, is

left for future work. The exact solution of the expected cost

problem can be recovered via this calculus, and furthermore,

our method may also be used to find approximate solutions
by identifying suitable upper bounds. Therefore, our method

provides a basis for attacking and ameliorating this undecid-

able problem in a systematic and compositional way.

1.1 Our Contributions
As a first step towards achieving our main objective, we

introduce a new domain-theoretic notion, called a cost struc-
ture (Section 2). It is based on Kegelspitzen [15], which are

dcpo’s (directed-complete partial orders) equipped with a

suitable convex structure that may be used to reason about

the semantics of probabilistic [12, 26] and quantum program-

ming languages [11]. A cost structure is then a pair (S, +̂) of
a Kegelspitze S together with a cost addition operation +̂ that

allows us to model resource consumption in a coherent way.

We introduce a mixed classical-quantum programming

language on which we formally define the expected cost

and the expected value of programs. Our programming lan-

guage (Section 3) supports conditional branching, while

loops, the usual quantum primitives (including quantum

measurements), classical data, and a special statement for

resource consumption. To seamlessly model the combina-

tion of cost primitives and probabilistic choice — induced

by quantum measurements — we define the operational se-

mantics of our language as a probabilistic abstract reduction

system [4], whose reduction rules are annotated by costs [3].

In Section 4, we introduce the aformentioned qet-calculus,
which can be seen as a generalisation of previous work on
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predicate transformers and probabilistic expectation trans-

formers. For a given cost structure (S, +̂), our quantum ex-

pectation transformer is a semantic function

qet
[
·
] {
·
}
: Program → SState → SState

which maps programs and expectations (functions from quan-

tum program states to a cost structure) to expectations, in

a continuation passing style. We prove that our semantics

enjoys nice algebraic and domain-theoretic properties (§4.2)

and that it is sound and adequate with respect to the opera-

tional semantics (§4.3). As a consequence, we prove that the

expected cost of a program in our mixed classical-quantum

language (as defined via the operational semantics) is pre-

cisely recovered by using our quantum expectation trans-

former (Corollary 4.8). Furthermore, because our semantics

is defined in a suitable level of generality, by choosing an

appropriate cost structure (S, +̂), we show how a strongly

adequate quantum denotational semantics may be defined

as a special case (§4.4), which highlights important connec-

tions between our approach and denotational semantics of

probabilistic and quantum programming languages.

The usefulness of our methods are illustrated through a

running example that performs (unbounded) coin tossing

using quantum resources. More useful and complicated quan-

tum programs are analysed in Section 5, where we show how

we can determine the expected cost of these programs using

our quantum expectation transformer method.

1.2 Related Work
Classical and probabilistic programs. Predicate trans-

former semantics were introduced in the seminal works of [6]

and [16] as a method for reasoning about the semantics of

imperative programs. Predicate transformers map each pro-

gram statement to a function between two predicates on the

state space of the program. Consequently, their semantics

can be viewed as a reformulation of Floyd–Hoare logic [10],

since they transform postconditions (the output predicate)

to preconditions (the input predicate). This methodology has

been extended to probabilistic programs by replacing predi-

cates with expectations, leading to the notion of expectation
transformers (see [19]) and the development of weakest pre-

expectation semantics [8]. Expectation transformers have

been used to reason about expected values [14], but also

runtimes [13], and costs [1, 3, 21].

Quantum programs. The articles [23] and [18] present

two first attempts to adapt expectation transformers to the

runtime analysis of quantum programs. [23] discusses the

interest of adapting the method to the quantum case through

a running example. However, no correctness results (sound-

ness or adequacy) are proved. [18] defines a notion of ex-

pected runtime transformer that is neither compositional,

nor denotational, because its definition depends on the as-

ymptotic (i.e., limiting) behaviour of the operational seman-

tics, which is problematic and undesirable, as we discussed

above. Our paper overcomes all these drawbacks by defin-

ing a compositional and denotational notion of quantum

expectation transformers, that is completely independent of

the operational semantics. Moreover, quantum expectation

transformers are not restricted only to runtimes, and we

also establish the necessary correctness results (soundness

and adequacy) with respect to the operational semantics.

Furthermore, since our language includes classical data (the

other papers do not) and we can easily represent discrete

probabilistic choice, our quantum expectation transformers

can be seen as a proper generalisation of the predicate and

expectation transformers discussed above, which is another

advantage of our approach.

2 Kegelspitzen and Cost Structures
We begin by defining a notion of cost structure based on

the domain-theoretic and convex structure of Kegelspitzen.

This is used in later sections by our quantum expectation

transformers in order to formalise the semantics.

Kegelspitzen [15] are dcpo’s (directed complete partial

orders) that enjoy a convex structure. We define our quan-

tum expectation transformer by making use of Kegelspitzen,

but for simplicity, we define Kegelspitzen using 𝜔-cpo’s (𝜔-

complete partial orders), instead of dcpo’s, because the for-

mer notion is more familiar to most readers.

Definition 2.1. An 𝜔-chain in a partial order (𝑋, ≤) is a
countable increasing sequence of elements of 𝑋, i.e., a se-

quence (𝑥𝑖 )𝑖∈N, such that 𝑥𝑖 ≤ 𝑥 𝑗 for any 𝑖 ≤ 𝑗 . An 𝜔-cpo
(𝜔-complete partial order) is a partial order (𝑋, ≤), such that

every 𝜔-chain in 𝑋 has a supremum (least upper bound)

within 𝑋 . A monotone function 𝑓 : 𝑋 → 𝑌 between two

𝜔-cpos is 𝜔-continuous if it preserves suprema of 𝜔-chains.

Next, we recall barycentric algebras, which allows us to

take convex combinations of elements in a coherent way.

Definition 2.2 ([15]). A barycentric algebra is a set𝐴 equipped

with binary operations 𝑎 +𝑟 𝑏, one for every real number

𝑟 ∈ [0, 1], such that for all 𝑎, 𝑏, 𝑐 ∈ 𝐴 and 𝑟, 𝑝 ∈ [0, 1), the
following equalities hold:

𝑎 +1 𝑏 = 𝑎; 𝑎 +𝑟 𝑏 = 𝑏 +1−𝑟 𝑎;
𝑎 +𝑟 𝑎 = 𝑎; (𝑎 +𝑝 𝑏) +𝑟 𝑐 = 𝑎 +𝑝𝑟 (𝑏 + 𝑟−𝑝𝑟

1−𝑝𝑟
𝑐).

Next we introduce pointed barycentric algebras, which

allow us to also define scalar multiplication in a natural way.

Definition 2.3 ([15]). A pointed barycentric algebra is a

barycentric algebra𝐴 equipped with a distinguished element

⊥. For 𝑎 ∈ 𝐴 and 𝑟 ∈ [0, 1], we define scalar multiplication

as 𝑟 · 𝑎 ≜ 𝑎 +𝑟 ⊥.
We can now define an 𝜔-Kegelspitze as a pointed barycen-

tric algebra that respects the order of an 𝜔-cpo.
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Definition 2.4. An 𝜔-Kegelspitze is a pointed barycentric

algebra 𝐾 equipped with an 𝜔-complete partial order such

that, (1) scalar multiplication (𝑟, 𝑎) ↦→ 𝑟 ·𝑎 : [0, 1] ×𝐾 → 𝐾 is

𝜔-continuous in both arguments, and (2) for every 𝑟 ∈ [0, 1]
the functions (𝑎, 𝑏) ↦→ 𝑎 +𝑟 𝑏 : 𝐾 ×𝐾 → 𝐾 are 𝜔-continuous

in both arguments.

For brevity, we will refer to 𝜔-Kegelspitzen simply as

Kegelspitzen. In fact, all 𝜔-Kegelspitzen we consider in this

paper are also Kegelspitzen in the sense of [15] (i.e., as dcpo’s),

so this should not lead to confusion. We note that, in every

Kegelspitze 𝐾 , scalar multiplication (𝑟, 𝑎) ↦→ 𝑟 · 𝑎 = 𝑎 +𝑟 ⊥ is

𝜔-continuous and therefore monotone in the 𝑟 -component,

which implies ⊥ = ⊥ +1 𝑎 = 𝑎 +0 ⊥ = 0 · 𝑎 ≤ 1 · 𝑎 = 𝑎 for

each 𝑎 ∈ 𝐾 . Therefore, the distinguished element ⊥ is the

least element of 𝐾 .

Example 2.5. The real unit interval [0, 1] is a Kegelspitze
in the usual order when we define 𝑎 +𝑟 𝑏 ≜ 𝑟𝑎 + (1 − 𝑟 )𝑏
and ⊥ ≜ 0. The same assignment can also be used to equip

the extended non-negative reals R+∞ ≜ R+ ∪ {∞} with the

structure of a Kegelspitze. Note that the non-negative reals

R+ is not a Kegelspitze, because it lacks an 𝜔-cpo structure.

Next, we consider some Kegelspitzen which are important

for the semantics of quantum programming languages.

Example 2.6. A density matrix is a positive semi-definite

hermitian matrix𝐴, such that tr(𝐴) = 1. A subdensity matrix
is a positive semi-definite hermitian matrix 𝐴, such that

tr(𝐴) ≤ 1. Let 𝐷𝑛 ⊆ C𝑛×𝑛 be the set of subdensity matrices

of dimension 𝑛. Then 𝐷𝑛 is an 𝜔-cpo when equipped with

the Löwner order: 𝐴 ≤ 𝐵 iff 𝐵 −𝐴 is positive semi-definite

[27]. Moreover, 𝐷𝑛 has the structure of a Kegelspitze under

the assignment ⊥≜ 0 and 𝐴 +𝑟 𝐵 ≜ 𝑟𝐴 + (1 − 𝑟 )𝐵.

Recall that density matrices are used in quantum physics

to represent probabilistic mixtures of pure quantum states. In

quantum programming semantics, we use subdensity matri-

ces in order to account for the probability of non-termination.

Kegelspitzen may also be used to define convex sums.

Definition 2.7. In a Kegelspitze 𝐾 , for 𝑎𝑖 ∈ 𝐾, 𝑟𝑖 ∈ [0, 1]
with

∑𝑛
𝑖=1 𝑟𝑖 ≤ 1, we define the convex sum inductively by:

𝑛∑
𝑖=1

𝑟𝑖𝑎𝑖 ≜


⊥ if 𝑛 = 0,

𝑎𝑛 if 𝑛 > 0 and 𝑟𝑛 = 1,

𝑎𝑛 +𝑟𝑛 (∑𝑛−1
𝑖=1

𝑟𝑖
1−𝑟𝑛 𝑎𝑖 ) otherwise.

In fact, the expression

∑𝑛
𝑖=1 𝑟𝑖𝑎𝑖 is 𝜔-continuous in each 𝑟𝑖

and 𝑎𝑖 and the sum is also invariant under index permutation

(see [12] for more details). Countable convex sums may be

defined as follows: given 𝑎𝑖 ∈ 𝐾 and 𝑟𝑖 ∈ [0, 1], for 𝑖 ∈ N,
with

∑
𝑖∈N 𝑟𝑖 ≤ 1, let

∑
𝑖∈N 𝑟𝑖𝑎𝑖 ≜ sup𝑛∈N

∑𝑛
𝑗=1 𝑟 𝑗𝑎 𝑗 .

We now formalize a notion of cost structure for expectation
transformers in the context of quantum programs. This can

be seen as a Kegelspitze equipped with an operation for

injecting a cost — modeled as a positive real number — into

the Kegelspitze, which satisfies some coherence conditions

with respect to the structure of the Kegelspitze.

Definition 2.8. A cost structure S = (S, +̂) is a Kegelspitze
S equipped with an operation +̂ : R+∞ × S → S that is

𝜔-continuous in both arguments and satisfies the identities

0 +̂ 𝑠 = 𝑠 (1)

𝑐 +̂ (𝑑 +̂ 𝑠) = (𝑐 + 𝑑) +̂ 𝑠 (2)

(𝑐1 +̂ 𝑠1) +𝑟 (𝑐2 +̂ 𝑠2) = (𝑐1 +𝑟 𝑐2) +̂ (𝑠1 +𝑟 𝑠2) (3)

Example 2.9. For any Kegelspitze S, we get a cost structure
(S, +f) with forgetful cost addition defined by 𝑐 +f 𝑟 ≜ 𝑟 . A
more representative example is given by the cost structure

(R+∞, +), where + is the standard addition in R+∞ .

3 Quantum Programming Language
In this section we introduce the syntax and operational se-

mantics of our imperative programming language support-

ing both quantum and classical programming primitives.

3.1 Syntax
Let B, V and Q be three distinct types for Boolean, numer-

ical, and qubit data. We will use variables x, y, z to range

over classical variables of type K ∈ {B,V} and we will

use q, q1, q2, etc., to range over quantum variables of type Q.

The syntax of quantum programs is described in Figure 1,

where 𝑛 is a constant in Z, U is an operator symbol of arity

𝑎𝑟 (U) ∈ N − {0}, q stands for a sequence of qubit variables
q1, . . . , q𝑎𝑟 (U) , and meas(q) represents the standard measure-

ment on qubit q in the computational basis. When needed,

variables and expressions can be annotated by their type as

superscript. If a evaluates to a positive integer 𝑐 , the state-

ment consume(a) consumes 𝑐 resource units but acts as a

no-op otherwise. That is, we permit only non-negative costs.

This restriction is in place to ensure that the notion of ex-

pected cost — to be defined in a moment — is well-defined.

Program variables are global. For a given expression or

statement 𝑡 , let B(𝑡) (respectively V(𝑡), Q(𝑡)) be the set of
Boolean (resp. numerical, qubit) variables in 𝑡 .

Example 3.1. Let H be the operator symbol representing

the Hadamard unitary operation. The program 𝐶𝑇 (q) in
Listing 1 performs coin tossing by repeatedly measuring an

initial qubit q (which may be mapped into a superposition

state via H) until the measurement outcome false occurs.

This program will be our simple running example through-

out the paper. Its probability to terminate within 𝑛 steps

depends on the initial state of the qubit q and the loop con-

sumes 1 resource for each iteration. The overall probability

of termination (in any number of steps) is 1.
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AExp a, a1, a2 ::= xV | 𝑛 | a1 + a2 | a1 − a2 | a1 × a2
BExp b, b1, b2 ::= xB | true | false | a1 = a2 | a1 ≤ a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
Exp e, e1, e2 ::= a | b
Statement stm, stm1, stm2 ::= skip | xK = eK | q ∗= U | xB = meas(q) | consume(a)

| stm1; stm2 | if(b){stm1} else {stm2} | while(b){stm}

Figure 1. Syntax of quantum programs.

𝐶𝑇 (q) ≜ x = true;
while(x){

q ∗= H;
x = meas(q);
consume(1)

}

Listing 1. Coin tossing.

stm0 stm

3.2 Operational Semantics
In what follows, we model the dynamics of our language as a

probabilistic abstract reduction system [4] — a transition sys-

tem where reducts are chosen from a probability distribution.

Reductions can then be defined as stochastic processes [4],

or equivalently, as reduction relations over distributions [2].

We follow the latter approach, unlike the former it permits us

to define a notion of expected cost concisely, without much

technical overhead [3].

Probabilistic Abstract Reduction Systems (PARS). Let
𝐴 be a set of objects. A discrete subdistribution 𝛿 over 𝐴

is a function 𝛿 : 𝐴 → [0, 1] with countable support that

maps an element 𝑎 of 𝐴 to a probability 𝛿 (𝑎) such that∑
𝑎∈supp(𝛿) 𝛿 (𝑎) ≤ 1. If

∑
𝑎∈supp(𝛿) 𝛿 (𝑎) = 1 then𝛿 is a discrete

distribution. We only consider discrete (sub)distributions

and we shall simply refer to them as (sub)distributions from

now on. Any (sub)distribution 𝛿 can be written as {𝛿 (𝑎) :

𝑎}𝑎∈supp(𝛿) . The set of subdistributions over 𝐴 is denoted

by D(𝐴). Note that D(𝐴) is closed under convex combina-

tions

∑
𝑖 𝑝𝑖 · 𝛿𝑖 ≜ _𝑎.

∑
𝑖 𝑝𝑖𝛿𝑖 (𝑎) for countably many prob-

abilities 𝑝𝑖 ∈ [0, 1] such that

∑
𝑖 𝑝𝑖 ≤ 1. The notion of ex-

pectation of a function 𝑓 : 𝐴 → 𝑆 , where 𝑆 is a Kegel-

spitze, is defined for a given subdistribution 𝛿 over 𝐴 by

E𝛿 (𝑓 ) ≜ Σ𝑎∈supp(𝛿)𝛿 (𝑎) · 𝑓 (𝑎) .
A (weighted) Probabilistic Abstract Reduction System (PARS)

on𝐴 is a ternary relation · ·→ · ⊆ 𝐴×R+ ×D(𝐴). For 𝑎 ∈ 𝐴,
a rule 𝑎

𝑐→ {𝛿 (𝑏) : 𝑏}𝑏∈𝐴 indicates that 𝑎 reduces to 𝑏 with

probability 𝛿 (𝑏) and cost 𝑐 ∈ R+. Given two objects 𝑎 and 𝑏,

𝑎
𝑐→ {1 : 𝑏} will be written 𝑎 𝑐→ 𝑏 for brevity. For simplicity,

we consider only deterministic PARSs →, i.e., 𝑎
𝑐1→ 𝛿1 and

𝑎
𝑐2→ 𝛿2 implies 𝑐1 = 𝑐2 and 𝛿1 = 𝛿2. An object 𝑎 ∈ 𝐴 is called

terminal if there is no rule 𝑎
𝑐→ 𝛿 , which we write as 𝑎 ̸→.

Every deterministic PARS → over 𝐴 can be lifted to a

ternary weighted reduction relation · ·
↠ · ⊆ D(𝐴) × R+ ×

D(𝐴) in a natural way, see Figure 2. A reduction step 𝛿
𝑐
↠ 𝜖

𝑎 ̸→
(Term)

{1 : 𝑎} 0

↠ {1 : 𝑎}

𝑎
𝑐→ 𝛿

(Mono)

{1 : 𝑎} 𝑐
↠ 𝛿

𝛿𝑖
𝑐𝑖
↠ 𝜖𝑖

∑
𝑖 𝑝𝑖 ≤ 1

(Muti)∑
𝑖 𝑝𝑖 · 𝛿𝑖

∑
𝑖 𝑝𝑖𝑐𝑖
↠

∑
𝑖 𝑝𝑖 · 𝜖𝑖

Figure 2. Weigthed reduction relation induced by PARS.

indicates that the subdistribution of objects 𝛿 evolves to a

subdistribution of reducts 𝜖 in one step, with an expected

cost of 𝑐 . Note that since → is deterministic, so is the reduc-

tion relation

·
↠. We denote by 𝛿

𝑐
↠𝑛 𝜖 the 𝑛-fold (𝑛 ≥ 0)

composition of

·
↠ with expected cost 𝑐 , defined by 𝛿

𝑐
↠𝑛 𝜖

if 𝛿
𝑐1
↠ · · · 𝑐𝑛

↠ 𝜖 and 𝑐 =
∑𝑛

𝑖=1 𝑐𝑖 . In particular, 𝛿
0

↠0 𝛿 .

Let us illustrate these notions on a small example.

Example 3.2. We fix objects 𝐴 = Z ∪ {geo(𝑛) | 𝑛 ∈ Z}.
Consider the PARS →geo over 𝐴 defined through the rules

geo(𝑛) 1→geo {1/2 : 𝑛 + 1, 1/2 : geo(𝑛 + 1)} (𝑛 ∈ Z),
stating that geo(𝑛) increments its argument and then either

returns or recurs, in each case with probability
1/2 and cost

one. Starting from geo(0), this PARS admits precisely one

infinite reduction sequence

{1 : geo(0)} 1

↠geo {1/2 : 1, 1/2 : geo(1)}
1/2
↠geo {1/2 : 1, 1/4 : 2, 1/4 : geo(2)}
1/4
↠geo {1/2 : 1, 1/4 : 2, 1/8 : 3, 1/8 : geo(3)}
1/8
↠geo · · ·

This sequence approaches the distribution {1/2𝑛 : 𝑛}𝑛>0 of
terminal objects in Z, with an expected cost of

∑∞
𝑖=0

1/2𝑖 = 2.

As indicated in this example, for every 𝛿 ∈ D(𝐴) there
is precisely one infinite sequence 𝛿 = 𝛿0

𝑐0
↠ 𝛿1

𝑐1
↠ 𝛿2

𝑐2
↠ · · ·

gradually approaching a normal form distribution of termi-

nal objects with an expected cost of

∑∞
𝑖=0 𝑐𝑖 .

1
Note that this

1
This infinite sum is always defined, since costs 𝑐𝑖 are non-negative.

4



Quantum Expectation Transformers for Cost Analysis

normal form distribution can be a proper subdistribution —

in which case the PARS is not almost-surely terminating —

and that the cost can be infinite.

Based on these intuitions, for an object 𝑎 ∈ 𝐴, we define
the expected cost function ecost→ : 𝐴 → R+∞ by

ecost→ (𝑎) ≜ sup

𝑛∈N
{𝑐 | {1 : 𝑎} 𝑐

↠𝑛 𝛿},

and the normal form function nf→ : 𝐴 → D(𝐴) by

nf→ (𝑎) ≜ sup

𝑛∈N
{𝛿↾𝑡𝑒𝑟𝑚 | {1 : 𝑎} 𝑐

↠𝑛 𝛿},

where 𝛿↾𝑡𝑒𝑟𝑚 is the restriction of 𝛿 to terminal objects, i.e.,

𝛿↾𝑡𝑒𝑟𝑚 ≜ {𝛿 (𝑎) : 𝑎 | 𝑎 ̸→}𝑎∈supp(𝛿) , and the supremum is

taken w.r.t. the pointwise order of subdistributions. Note that

nf→ (𝑎) is well-defined, which essentially follows from the

fact that (𝛿𝑛↾𝑡𝑒𝑟𝑚)𝑛∈N, for 𝛿𝑛 such that for {1 : 𝑎} 𝑐
↠𝑛 𝛿𝑛 , is

a monotonically increasing sequence, by definition of

𝑐
↠.

Quantum Programs as PARSs. We now endow quan-

tumprogramswith an operational semantics defined through

a PARS, operating on pairs of classical and quantum states.

Let C denote the set of complex numbers. Given a set𝑄 of

𝑛 qubit variables, letH𝑄 be the Hilbert spaceC2
𝑛

of𝑛 qubits2.

We use Dirac notation, |𝜑⟩, to denote a quantum state ofH𝑄 .

Any state |𝜑⟩ can be written as Σ𝑏∈{0,1}𝑛𝛼𝑏 |𝑏⟩, with 𝛼𝑏 ∈ C,
and Σ𝑏∈{0,1}𝑛 |𝛼𝑏 |2 = 1. ⟨𝜑 | is the conjugate transpose of |𝜑⟩,
i.e., ⟨𝜑 | ≜ |𝜑⟩†. ⟨𝜑 |𝜓 ⟩ ≜ ⟨𝜑 | |𝜓 ⟩ and |𝜑⟩⟨𝜓 | denote the inner
product and outer product of |𝜑⟩ and |𝜓 ⟩, respectively. The
norm of a vector is defined by ∥|𝜑⟩∥ ≜

√
⟨𝜑 |𝜑⟩. We define

(linear) operators overH𝑄 as linear maps. Hence an operator

will be represented by a square matrix whose dimension is

equal to the dimension of H𝑄 . Given𝑚 ≥ 1, let 𝐼𝑚 be the

𝑚 × 𝑚 identity matrix and ⊗ be the standard Kronecker

product on matrices.

Assume that 𝑄 = {q1, . . . , q𝑛}. For 𝑘 ∈ {0, 1}, let |𝑘⟩q𝑖 ∈
H𝑄 be defined by |𝑘⟩q𝑖 ≜ 𝐼2𝑖−1 ⊗ |𝑘⟩ ⊗ 𝐼

2
𝑛−𝑖 and let ⟨𝑘 |q𝑖 be its

conjugate transpose. The measurement of a qubit q ∈ 𝑄 of

a state |𝜑⟩ ∈ H𝑄 produces the classical outcome 𝑘 ∈ {0, 1}
with probability 𝑝

q
𝑘
|𝜑⟩, and transforms the quantum state

|𝜑⟩ into Mq
𝑘
|𝜑⟩, where Mq

𝑘
: H𝑄 → H𝑄 is defined as

Mq
𝑘
≜ |𝜑⟩ ↦→

|𝑘⟩q ⟨𝑘 |q |𝜑⟩⟨𝑘 |q |𝜑⟩
and 𝑝

q
𝑘
: H𝑄 → [0, 1] is defined as 𝑝

q
𝑘
≜ |𝜑⟩ ↦→

⟨𝑘 |q |𝜑⟩2.
The classical state is modelled as a (well-typed) store 𝑠 . For

two given sets 𝐵 and𝑉 of Boolean and numerical variables, a

(classical) store 𝑠 is a pair of maps (𝑠𝐵, 𝑠𝑉 ) such that 𝑠𝐵 : 𝐵 →
{0, 1} and 𝑠𝑉 : 𝑉 → Z. The domain of 𝑠 , noted 𝑑𝑜𝑚(𝑠), is
defined by 𝑑𝑜𝑚(𝑠) ≜ 𝐵∪𝑉 . Given a store 𝑠 = (𝑠𝐵, 𝑠𝑉 ), we let
𝑠 [xV := 𝑘] (resp. 𝑠 [xB := 𝑘],𝑘 ∈ {0, 1}) be the store obtained
from 𝑠 by updating the value assigned to x in the map 𝑠𝑉

2
We assume𝑄 to be a totally ordered set so that the smallest element of𝑄

corresponds to the first qubit of H𝑄 and so on.

(resp. 𝑠𝐵) to 𝑘 . Define also 𝑠 (xV) ≜ 𝑠𝑉 (xV) and 𝑠 (xB) ≜
𝑠𝐵 (xB). Given a store 𝑠 , let J−K𝑠 be the map associating to

each expression e (and such that B(e) ∪V(e) ⊆ 𝑑𝑜𝑚(𝑠)) of
type V , a value in Z, and to each expression e of type B a

value in {0, 1}, and defined in a standard way. For example

JxK𝑠 ≜ 𝑠 (x), J𝑛K𝑠 ≜ 𝑛, JtrueK𝑠 ≜ 1, etc.

A state 𝜎 is a pair (𝑠, |𝜑⟩) consisting of a store 𝑠 and a

quantum state |𝜑⟩. A configuration ` for statement stm has
the form (stm, 𝜎), sometimes written as (stm, 𝑠, |𝜑⟩) for 𝜎 =

(𝑠, |𝜑⟩). Let State and Conf be the set of states and the set

of configurations, respectively. A configuration (stm, 𝑠, |𝜑⟩)
is well-formed with respect to the sets of variables 𝐵,𝑉 ,𝑄

if B(stm) ⊆ 𝐵, V(stm) ⊆ 𝑉 , Q(stm) ⊆ 𝑄 , 𝑑𝑜𝑚(𝑠) = 𝐵 ∪𝑉 ,
and |𝜑⟩ ∈ H𝑄 . Throughout the paper, we only consider

configurations that are well-formed with respect to the sets

of variables of the program under consideration.

The operational semantics is described in Figure 3 as a

PARS → over objects in Conf ∪ State, where precisely the

objects in State are terminal. Rule (Cons) evaluates the arith-

metic expression provided as argument to a cost, an integer,

and annotates the reduction with this cost, whenever it is

a positive integer (otherwise the cost is 0). The state of a

configuration can only be updated by the three rules (Exp),

(Op), and (Meas). Rule (Exp) updates the classical store in a

standard way. Rule (Op) updates the quantum state to a new

quantum state Uq |𝜑⟩, where Uq is the map that applies the

unitary operator U to qubits in q = q1, . . . , q𝑎𝑟 (U) and tensor-

ing the map with the identity on all other qubits to match

the dimension of |𝜑⟩. Rule (Meas) performs a measurement

on qubit q. This rule returns a distribution of configurations

corresponding to the two possible outcomes, 𝑘 = 0 and 𝑘 = 1,

with their respective probabilities 𝑝
q
𝑘
|𝜑⟩ and, in each case,

updates the classical store and the quantum state accord-

ingly. Rule (Seq) governs the execution of a sequence of

statements stm1; stm2. The rule accounts for potential prob-
abilistic behavior when stm1 performs a measurement and

it is otherwise standard. All the other rules are standard.

For a statement stm, we overload the notion of expected

cost function and define ecoststm : (R+∞)State by

ecoststm (𝜎) ≜ ecost→ (stm, 𝜎).

Moreover, the function evaluestm : S
State → SState defined

by

evaluestm (𝑓 ) (𝜎) ≜ Enf→ (stm,𝜎) (𝑓 )

gives the expected value of 𝑓 on the subdistribution of termi-

nal states obtained by executing stm on state 𝜎 . Note that this
function is well-defined, as nf→ (stm, 𝜎) is a sub-distribution
over State.

Example 3.3. Consider the program from Example 3.1. Let

stm refer to the while loop. On a state (𝑠, |𝜑⟩) such that

|𝜑⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (with |𝛼 |2 + |𝛽 |2 = 1) and 𝑠 (x) = 1, it holds

that:
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(Skip)

(skip, 𝑠, |𝜑⟩) 0→ (𝑠, |𝜑⟩)
(Exp)

(x = e, 𝑠, |𝜑⟩) 0→ (𝑠 [x := JeK𝑠 ], |𝜑⟩)
(Op)

(q ∗= U, 𝑠, |𝜑⟩) 0→ (𝑠, Uq |𝜑⟩)

(Meas)

(x = meas(q), 𝑠, |𝜑⟩) 0→ {𝑝q
𝑘
|𝜑⟩ : (𝑠 [x := 𝑘], Mq

𝑘
|𝜑⟩)}𝑘∈{0,1}

(Cons)

(consume(a), 𝑠, |𝜑⟩)
max(JaK𝑠 ,0)

→ (𝑠, |𝜑⟩)

(stm1, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : (stm𝑖1, 𝑠𝑖 ,

��𝜑𝑖 〉)}𝑖∈𝐼 ∪ {𝑞 𝑗 : (𝑠 𝑗 ,
��𝜑 𝑗

〉
)}𝑗 ∈𝐽

(Seq)

(stm1; stm2, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : (stm𝑖1; stm2, 𝑠𝑖 ,

��𝜑𝑖 〉)}𝑖∈𝐼 ∪ {𝑞 𝑗 : (stm2, 𝑠 𝑗 ,
��𝜑 𝑗

〉
)}𝑗 ∈𝐽

JbK𝑠 ∈ {0, 1}
(Cond)

(if(b){stm1} else {stm0}, 𝑠, |𝜑⟩)
0→ (stmJbK𝑠 , 𝑠, |𝜑⟩)

JbK𝑠 = 0

(Wh0)

(while(b){stm}, 𝑠, |𝜑⟩) 0→ (𝑠, |𝜑⟩)

JbK𝑠 = 1

(Wh1)

(while(b){stm}, 𝑠, |𝜑⟩) 0→ (stm; while(b){stm}, 𝑠, |𝜑⟩)

Figure 3. Operational semantics in terms of PARS.

𝛿0 ≜ {1 : (stm, 𝑠, |𝜑⟩)}
0

↠ {1 : (q ∗= H; x = meas(q); consume(1); stm, 𝑠, |𝜑⟩)} (4)

0

↠ {1 : (x = meas(q); consume(1); stm, 𝑠, H |𝜑⟩)} (5)

0

↠ {𝑝𝑘 : (consume(1); stm, 𝑠 [x := 𝑘], |𝑘⟩)}𝑘∈{0,1}, (6)

with 𝑝0 =
|𝛼+𝛽 |2

2
, and 𝑝1 =

|𝛼−𝛽 |2
2

. The above reductions are

obtained by applying rules of Figure 3 together with rule

(Mono) of Figure 2: (Wh1) for (4); (Op) and (Seq) for (5);

(Meas) and (Seq) for (6).

Moreover, by rules (Cons), (Seq) , and (Mono), ∀𝑘 ∈ {0, 1},

{1 : (consume(1); stm, 𝑠 [x := 𝑘], |𝑘⟩)} 1

↠ {1 : (stm, 𝑠 [x := 𝑘], |𝑘⟩)}.
(7)

Consequently, using (4)-(7) and rule (Multi) of Figure 2:

{1 : (stm, 𝑠, |𝜑⟩)} 1

↠4 {𝑝𝑘 : (stm, 𝑠 [x := 𝑘], |𝑘⟩)}𝑘∈{0,1},
as 𝑝0 + 𝑝1 = 1. Iterating the above reduction, it holds that

{1 : (stm, 𝑠, |1⟩)} 1

↠4 {1/2 : (stm, 𝑠 [x := 𝑘], |𝑘⟩)}𝑘∈{0,1}
Moreover, as

{1 : (stm, 𝑠 [x := 0], |0⟩)} 0

↠ {1 : (𝑠 [x := 0], |0⟩)},
it holds that

𝛿0
1

↠4 {𝑝0 : (stm, 𝑠 [x := 0], |0⟩), 𝑝1 : (stm, 𝑠, |1⟩)}
𝑝1
↠4 {𝑝0 + 𝑝1/2 : (𝑠 [x := 0], |0⟩), 𝑝1/2 : (stm, 𝑠, |1⟩)}
𝑝
1

2

↠4 {𝑝0 + 𝑝1/2 + 𝑝1/4 : (𝑠 [x := 0], |0⟩), 𝑝1/4 : (stm, 𝑠, |1⟩)}
𝑝
1

4

↠4 . . .

The expected cost and the normal form are obtained as fol-

lows, by reasoning about the asymptotic behaviour.

ecost
𝐶𝑇 (q) (𝑠,

(
𝛼

𝛽

)
) = sup

𝑛∈N

{
1 + 𝑝1

∑𝑛
𝑖=0

1

2
𝑖

}
= 1 + |𝛼 − 𝛽 |2

nf
𝐶𝑇 (q) (𝑠, |𝜑⟩) = sup

𝑛∈N

{
{𝑝0 + 𝑝1

∑𝑛
𝑖=1

1

2
𝑖 : (𝑠 [x := 0], |0⟩)}

}
= {1 : (𝑠 [x := 0], |0⟩)}

Hence, evalue
𝐶𝑇 (q) (𝑓 ) (𝑠, |𝜑⟩), the expected value of 𝑓 after

executing 𝐶𝑇 (q) on (𝑠, |𝜑⟩), is equal to 𝑓 (𝑠 [x := 0], |0⟩).

4 Quantum Expectation Transformers
We now revisit the expectation transformer approach for

the quantum programming language introduced in Section 3.

Expectations will be functions from the set of (classical and

quantum) memory states to cost structures, i.e., functions

in SState, for a given cost structure S. The quantum expec-
tation transformer qet

[
·
] {
·
}
is then defined in terms of a

program semantics mapping expectations to expectations in

a continuation passing style. Specializing the cost structure

yields several quantum expectation transformers such as

the quantum expected value transformer qevS
[
·
] {
·
}
and the

quantum expected cost transformer qect
[
·
] {
·
}
. After exhibit-

ing several laws and properties of these transformers, we

show their soundness and their adequacy.

4.1 Definition
Before defining expectation transformers, we introduce some

preliminary notations in order to lighten the presentation.

Notations. For any expression e, JeK is a shorthand notation

for the function _(𝑠, |𝜑⟩). JeK𝑠 ∈ (R+∞)State and, for any

𝑐 ∈ R+∞, 𝑐 is the function in (R+∞)State defined by 𝑐 ≜ _𝜎.𝑐 .
6



Quantum Expectation Transformers for Cost Analysis

To avoid notational overhead, we frequently use point-wise

extensions of operations on +̂ and R+∞ to functions. E.g., for

𝑝 ∈ [0, 1]State, 𝑓 , 𝑔 ∈ SState, 𝑓 +𝑝 𝑔 denotes the function

_𝜎.𝑓 (𝜎) +𝑝 (𝜎) 𝑔(𝜎).
We will also use 𝑓 [x := e] for the expectation mapping

(𝑠, |𝜑⟩) to 𝑓 (𝑠 [x := JeK𝑠 ], |𝜑⟩), and similarly, for a given

function M : H𝑄 → H𝑄 , 𝑓 [M] maps (𝑠, |𝜑⟩) to 𝑓 (𝑠, M |𝜑⟩).
Finally, 𝑓 [x := e; M] stands for (𝑓 [x := e]) [M].

Definition 4.1. Let (S, +̂) be a cost structure. The quantum
expectation transformer

qet
[
·
] {
·
}
: Program → SState → SState

is defined inductively in Figure 4.

Definition 4.2 (Quantum expectation transformers instances).

1. Taking the cost structure ( [0, 1], +f) yields a weakest

precondition transformer

qwp
[
·
] {
·
}
: Program → [0, 1]State → [0, 1]State,

for probabilistic pre-condition reasoning.

2. Taking the cost structure (S, +f), for any Kegelspitze S,
yields an expected value transformer

qevS
[
·
] {
·
}
: Program → SState → SState .

3. Taking the cost structure (R+∞, +) yields an expected

cost transformer

qect
[
·
] {
·
}
: Program → (R+∞)State → (R+∞)State.

4.2 Properties
The quantum expectation transformer satisfies several useful

laws (Figure 5) and these laws are comparable to those found

in [13].

Theorem 4.3. All universal laws listed in Figure 5 hold.

The (monotonicity) Law permits us to reasonmodulo upper-

bounds: actual costs can be always substituted by upper-

bounds. It is in fact an immediate consequence from the

continuity law, itself essential for the well-definedness of

the transformer on while loops. The (distributivity) Law is a

direct consequence of the laws on cost structures. The (upper
invariant) Law generalises the corresponding law by [13],

itself a generalisation of the notion of invariant stemming

from Hoare calculus from predicates to cost functions. It

constitutes a complete proof rule for finding closed form

upper-bounds for loops, and based on the observation that

any prefix-point — as given with 𝑔 in the pre-condition — is

an upper bound to the least-prefixed point of a functional —

in our case the expected cost of the loop (w.r.t. 𝑓 ).

Example 4.4. Let us search for a cost expectation of the

program of Example 3.1. Recall that stm0 is the body of the

while loop statement and that the considered cost structure

is (R+∞, +). By (upper invariant) Law (see Figure 5), it suffices

to find an expectation 𝑔 satisfying the following inequalities

J¬xK · 0 ≤ 𝑔 (8)

JxK · qect
[
stm0

] {
𝑔
}
≤ 𝑔 (9)

in order to compute an upper bound on the expectation

qect
[
stm

] {
0

}
of the while loop statement stm.

Using rules of Figure 4, the following equalities hold, as

can be verified directly:

𝑔1 ≜ qect
[
consume(1)

] {
𝑔
}
= 1 + 𝑔

𝑔2 ≜ qect
[
x = meas(q)

] {
𝑔1

}
= 𝑔1 [x := 0; Mq

0
] +𝑝q

0

𝑔1 [x := 1; Mq
1
]

= _(𝑠, |𝜑⟩).∑𝑘∈{0,1} 𝑝
q
𝑘
(|𝜑⟩)𝑔1 (𝑠 [x := 𝑘], |𝑘⟩))

𝑔3 ≜ qect
[
q ∗= H

] {
𝑔2

}
= 𝑔2 [H]

= _(𝑠, |𝜑⟩).∑𝑘∈{0,1} 𝑝
q
𝑘
(H |𝜑⟩)(1 + 𝑔) (𝑠 [x := 𝑘], |𝑘⟩).

Now, we set

𝑔(𝑠,
(
𝛼

𝛽

)
) ≜ JxK · (1 + |𝛼 − 𝛽 |2).

It holds that H

(
𝛼

𝛽

)
=

𝛼+𝛽√
2

|0⟩ + 𝛼−𝛽√
2

|1⟩ and that:

qect
[
stm0

] {
𝑔
}
(𝑠,

(
𝛼

𝛽

)
)

= 𝑔3 (𝑠,
(
𝛼

𝛽

)
)

=
|𝛼 + 𝛽 |2

2

(1 + 0) + |𝛼 − 𝛽 |2
2

(1 + 1 + (0 − 1)2)

= 1 + |𝛼 − 𝛽 |2 = 𝑔(𝑠,
(
𝛼

𝛽

)
).

Therefore, (in)equalities (8) and (9) are satisfied by 𝑔. It fol-

lows that

qect
[
𝐶𝑇 (q)

] {
0

}
≤ qect

[
xB = true

] {
𝑔
}

= 𝑔[x := 1] = _(𝑠,
(
𝛼

𝛽

)
).1 + |𝛼 − 𝛽 |2

is the cost expectation of the program. Note that, in this case,

this bound is exact.

4.3 Soundness and Adequacy
We first give a semantic counterpart to the quantum expec-

tation transformer. To this end, for 𝑓 ∈ SState let QET{𝑓 } ∈
SConf∪State be the least function (in the pointwise order in-

herited from S), such that:

QET{𝑓 }(`) =
{
𝑓 (`) if ` ∈ State

𝑐 +̂ E𝛿 (QET{𝑓 }) if ` ∈ Conf and `
𝑐→ 𝛿

(see Appendix B). Finally, we overload notation and set

QET [stm]{𝑓 }(𝜎) ≜ QET{𝑓 }(stm, 𝜎).
The following correspondence is not difficult to establish.
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qet
[
𝜖
] {
𝑓
}
≜ 𝑓 qet

[
x = meas(q)

] {
𝑓
}
≜ 𝑓 [x := 0; Mq

0
] +𝑝q

0

𝑓 [x := 1; Mq
1
]

qet
[
skip

] {
𝑓
}
≜ 𝑓 qet

[
consume(a)

] {
𝑓
}
≜ max(JaK , 0) +̂ 𝑓

qet
[
x = e

] {
𝑓
}
≜ 𝑓 [x := e] qet

[
stm1; stm2

] {
𝑓
}
≜ qet

[
stm1

] {
qet

[
stm2

] {
𝑓
}}

qet
[
q ∗= U

] {
𝑓
}
≜ 𝑓 [Uq] qet

[
if(b){stm1} else {stm2}

] {
𝑓
}
≜ qet

[
stm1

] {
𝑓
}
+JbK qet

[
stm2

] {
𝑓
}

qet
[
while(b){stm}

] {
𝑓
}
≜ lfp

(
_𝐹 .qet

[
stm

] {
𝐹
}
+JbK 𝑓

)
Figure 4. Quantum Expectation Transformer qet

[
·
] {
·
}
: Program → SState → SState.

continuity qet
[
stm

] {
sup𝑖 𝑓𝑖

}
= sup𝑖 qet

[
stm

] {
𝑓𝑖
}
for any 𝜔-chain (𝑓𝑖 )𝑖

monotonicity 𝑓 ≤ 𝑔 =⇒ qet
[
stm

] {
𝑓
}
≤ qet

[
stm

] {
𝑔
}

distributivity 𝑝 ∈ [0, 1] =⇒ qet
[
stm

] {
𝑓 +𝑝 𝑔

}
= qet

[
stm

] {
𝑓
}
+𝑝 qet

[
stm

] {
𝑔
}

upper invariant (J¬bK · 𝑓 ≤ 𝑔 ∧ JbK · qet
[
stm

] {
𝑔
}
≤ 𝑔) =⇒ qet

[
while(b){stm}

] {
𝑓
}
≤ 𝑔

Figure 5. Universal laws derivable for the quantum expectation transformer.

Lemma 4.5. For all stm ∈ Statement and 𝑓 ∈ SState,
QET [stm]{𝑓 } = ecoststm +̂ evaluestm (𝑓 ).

We now show that the quantum expectation transformer

coincides with its semantic counterpart. Via this correspon-

dence, the above lemma allows us to relate the quantum

expectation transformer — and its derivates from Defini-

tion 4.2 — to the cost and the semantics of the considered

programs. To establish the link, we make use of the following

two identities.

Lemma 4.6. The following identities hold.
1. QET [stm1; stm2]{𝑓 } = QET [stm1]{QET [stm2]{𝑓 }}; and
2. QET [while(b){stm}]{𝑓 } = lfp(_𝐹 .QET [stm]{𝐹 } +JbK 𝑓 ).
Theorem 4.7 (Soundness). For all stm ∈ Statement, 𝜎 ∈
State and 𝑓 ∈ SState, qet

[
stm

] {
𝑓
}
(𝜎) = QET [stm]{𝑓 }(𝜎).

Proof. The theorem is proven by induction on stm. Almost

all cases follow by definition. The only two non-trivial cases,

those of command composition and loops, follow from the

induction hypothesis by using Lemma 4.6. □

This theorem and Lemma 4.5 immediately show how to

recover the expected cost and expected value of programs.

Corollary 4.8 (Adequacy). The following identities hold, for
all stm ∈ Statement, 𝜎 ∈ State and 𝑓 ∈ SState.

1. qect
[
stm

] {
0

}
(𝜎) = ecoststm (𝜎); and

2. qevS
[
stm

] {
𝑓
}
(𝜎) = evaluestm (𝑓 ) (𝜎).

Example 4.9. We illustrate the soundness theorem on our

simple leading example (Example 3.3). As calculated in Ex-

ample 3.3 and Example 4.4, we have

ecost
𝐶𝑇 (q) = _(𝑠,

(
𝛼

𝛽

)
).1 + |𝛼 − 𝛽 |2 = qect

[
𝐶𝑇 (q)

] {
0

}
.

4.4 Relationship to Denotational Semantics
As a special case of our quantum expectation transformer,

we can define a quantum denotational semantics for our

language. Recall that the formation conditions for config-

urations are defined with respect to three sets 𝐵,𝑉 ,𝑄 of

Boolean, numerical and quantum variables, respectively. Let

𝐵 = {𝑏1, . . . , 𝑏𝑛}, 𝑉 = {𝑣1, . . . 𝑣𝑚} and 𝑄 = {𝑞1, . . . 𝑞𝑘 }. We

can define a Kegelspitze K which serves as the semantic do-

main for our programs by setting K ≜ {0, 1}𝑛 × Z𝑚 → 𝐷
2
𝑘 ,

where the order and convex structure of K is inherited point-

wise from 𝐷
2
𝑘 (see Example 2.6). A cost structure K is now

obtained by equipping K with the forgetful cost addition

K = (K, +f). With this choice of cost structure, our quan-

tum expectation transformer qet from Definition 4.1 yields

a quantum denotational semantics transformer

qevK
[
·
] {
·
}
: Program → KState → KState .

Recall that a quantum denotational semantics consists in

giving a mathematical interpretation of program configu-

rations which is invariant under the operational semantics

(in a probabilistic sense). This can be obtained from qevK by
making a suitable choice for the continuation. In particular,

if we choose

ℎ : State → K

ℎ(𝑠𝐵, 𝑠𝑉 , |𝜑⟩) = _((𝑡1, . . . , 𝑡𝑛), (𝑢1, . . . , 𝑢𝑚)) .
|𝜑⟩⟨𝜑 | if 𝑡𝑖 = 𝑠

𝐵 (𝑏𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 and

𝑢 𝑗 = 𝑠
𝑉 (𝑣 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑚

0 otherwise

8
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then, a quantum denotational semantics

L−M : Conf ∪ State → K

can be defined by L(stm, 𝜎)M ≜ qevK
[
stm

] {
ℎ
}
(𝜎) for config-

urations and L𝜎M ≜ ℎ(𝜎) for program states (which are our

notion of terminal objects). Then, by Corollary 4.8, for any

well-formed configuration ` = (stm, 𝜎) we have that
L`M = qevK

[
stm

] {
ℎ
}
(𝜎) = evaluestm (ℎ) (𝜎) = Enf→ (`) (L−M) .

This shows that the denotational interpretation L`M is equal
to the (countable) convex sum of the interpretations of final

states (i.e., terminal objects) that ` can reduce to. In this equa-

tion, each probability weight associated to a final state 𝜏 is

given by the reduction probability of ` to 𝜏 as determined by

the operational semantics. This is precisely the statement of

strong adequacy in the denotational semantics of probabilis-

tic [12, 17] and quantum programming languages [11, 25].

5 Illustrating Examples
In this section we present more intricate examples illustrat-

ing how cost analysis can be performed for quantum algo-

rithms. The analysis has a focuss on expected costs. Hence,

the cost structure is fixed to be (R+∞, +). Consequently, cost
expectations will be functions in the set (R+∞)State.

Notations. Throughout the following, we denote by^ a classi-
cal expectation, i.e., an expectation which satisfies ^ (𝑠, |𝜑⟩) =
^ (𝑠, |𝜓 ⟩) for all 𝑠, |𝜑⟩, and |𝜓 ⟩. A classical expectation ^ thus

only depends on the classical state.

We also define the following syntactic sugar:

• q = |0⟩ for xB = meas(q); if(x){ q ∗= X} else {skip},
where X is the unitary operator for negation (Pauli-𝑋

gate), defined by X |0⟩ = |1⟩ and X |1⟩ = |0⟩.
• q = |+⟩ for q = |0⟩ ; q ∗= H.

5.1 Repeat until success
In this example, we consider a program that implements a

Repeat-until-success algorithm and we show that our analy-

sis can be used to infer upper bounds on the expected T-count,
i.e., the expected number of times the so-called T gate is used.

Repeat-until-success [24] can be used to implement quan-

tum unitary operators by using repeated measurements. An

advantage of this approach is that this often allows us to im-

plement quantum unitary operators by using fewer 𝑇 gates,

which are costly to implement fault-tolerantly [5, 7].

Consider the example in Listing 2. This quantum algorithm

will repeatedly execute the quantum operations described by

the quantum circuit in Figure 6, as specified in [24, Figure 8],

where the operators T and CNOT correspond to the following

quantum gates:

𝑇 =

(
1 0

0 𝑒𝑖
𝜋
4

)
𝐶𝑁𝑂𝑇 =

©«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬ .

𝑅𝑈𝑆 (q′) ≜ xB = true;
while(x){
q = |+⟩ ;
q ∗= T;
consume(1);
q, q′ ∗= CNOT;
q ∗= H;
q, q′ ∗= CNOT;
q ∗= T;
consume(1);
q ∗= H;
x = meas(q)

}

Listing 2. Repeat until success.

stm0
stm

|0⟩

|𝜑⟩

𝐻 𝑇 𝐻 𝑇 𝐻 (
𝐼+𝑖

√
2𝑋√
3

)
1−𝑏

|𝜑⟩

𝑏meas

Figure 6. A quantum circuit illustrating a repeat-unitl-

success pattern.

After measuring the first (ancilla) qubit q, there are two

possibilities. With probability 1/4 , we measure 1 and then

the state of the second qubit q′ is again |𝜑⟩ and we repeat the
algorithm. With probability 3/4, we measure 0 and then the

algorithm terminates and the second qubit is now in state

𝐼+𝑖
√
2𝑋√
3

|𝜑⟩.

Analysis. Let stm ≜ stm0; x = meas(q) be the body of the
while loop statement in the above program. For any classical

(cost) expectation ^ ∈ (R+∞)State, by rules of Figure 4, it

holds that

qect
[
stm0

] {
^
}
= ^ + 2.

Indeed, one can check easily that each qubit operation in

stm0 leaves the expectation ^ unchanged. For example, we

have that qect
[
q ∗= H

] {
^
}
= ^ [H] = ^. Therefore, we just

have to take into account the two consume(1) statements.

As the probability of measuring 0 is constant for each

iteration (
3

4
, see [24]), for any cost expectation ^, it holds

that:

qect
[
x = meas(q)

] {
^
}
= ^ [x := 0; Mq

0
] + 3

4

^ [x := 1; Mq
1
]

= 3/4 · ^ [x := 0] + 1/4 · ^ [x := 1]

Putting this all together, the expectation of stm is:

qect
[
stm

] {
^
}
= qect

[
stm0

] {
qect

[
x = meas(q)

] {
^
}}

= qect
[
x = meas(q)

] {
^
}
+ 2

= 3/4 · ^ [x := 0] + 1/4 · ^ [x := 1] + 2.

9
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By Law (upper invariant) of Figure 5, it suffices to find an

expectation ^ satisfying the following inequalities

J¬xK · 0 ≤ ^ (10)

JxK · qect
[
stm

] {
^
}
≤ ^ (11)

in order to compute (an upper bound on) the cost expecta-

tion qect
[
while(x){stm}

] {
0

}
. Inequalities (10) and (11) are

satisfied by setting ^ ≜ JxK · 8

3
.

We conclude by computing the expectation of the whole

program

qect
[
𝑅𝑈𝑆 (q′)

] {
0

}
≤ qect

[
xB = true

] {
^
}

= ^ [x := 1] = 8/3.
The expected cost (the expected number of 𝑇 gates used) of

this algorithm is bounded by
8

3
. Note that this bound is tight.

5.2 Chain of 𝑘 entangled qubits
The following example illustrates that the presented cost

analysis can also deal with nested while loops on a non-

trivial example using classical data. We consider a simple

algorithm attempting to prepare a large entangled state,

namely a graph state represented by a path on 𝑘 qubits,

i.e. |𝜙𝑘⟩ =
∏𝑘−2

𝑖=0 𝐶𝑍𝑖,𝑖+1 ⊗𝑘−1
𝑗=0 |+⟩ where 𝐶𝑍 is the following

2-qubit unitary transformation:

𝐶𝑍 =

©«
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

ª®®®¬ .
One can prepare the desired state by initializing 𝑘 qubits in

a row in the state |+⟩ and then applying the 𝐶𝑍 gate 𝑘 − 1

times, one for each pair of consecutive qubits. Notice that the

order in which the CZ are applied is irrelevant (as they are

commuting). However, in some settings, like linear optical

quantum computing, CZ cannot be implemented determinis-

tically. Nielsen [22] showed that CZ can be implemented in

linear optics with probability of success 1/4. The case of a
failure corresponds to a measurement of the corresponding

two qubits.

Notations. In this example, we use 𝐹 (q, x) as a shorthand

notation for a (non-recursive) call to program 𝐹 with parame-

ters q, x. A call to 𝐹 (q, x) consists in unfolding the statement

of 𝐹 after a careful variable renaming, avoiding name clashes.

We also assume that, for a given sequence of qubits q1, . . . , q𝑛 ,
we can access the 𝑖-th qubit through a call qx, provided that

variable x holds the value 𝑖 in the store.

The program 𝐹𝑈𝑆𝐸 (q, q′, x) in Listing 3 models the entan-

glement of two input qubits q and q′ in state |+⟩ with proba-

bility
1/4. The Boolean variable x records whether this oper-

ation succeeded. The 𝐶𝐻𝐴𝐼𝑁4(q1, q2, q3, q4) from Listing 5

entangles four given qubits, by iterating 𝐹𝑈𝑆𝐸 until eventu-

ally all links have been established sucessfully. The general

algorithm in Listing 5 then makes use of this procedure by

𝐹𝑈𝑆𝐸 (q, q′, x) ≜
consume(1);
aQ = |+⟩ ;
bQ = |+⟩ ;
x = meas(a);
y = meas(b);
if(x ∧ y){ // with probability 1/4
q, q′ ∗= CZ;
x = true // Flag set to success

} else { // with probability 3/4
x = meas(q);
x = meas(q′);
x = false // Flag set to failure

}

Listing 3. Applying a 𝐶𝑍 gate to q, q′ with probability
1/4.

𝐶𝐻𝐴𝐼𝑁4(q1, q2, q3, q4) ≜
xB = false;
while(¬x){
xB
1

= false; // Left pair
while(¬x1){

q1 = |+⟩ ;
q2 = |+⟩ ;
𝐹𝑈𝑆𝐸 (q1, q2, x1)

};
xB
2

= false; // Right pair
while(¬x2){

q3 = |+⟩ ;
q4 = |+⟩ ;
𝐹𝑈𝑆𝐸 (q3, q4, x2)

};
𝐹𝑈𝑆𝐸 (q2, q3, x) // Fusion of pairs

}

Listing 4. Chaining four qubits.

𝐶𝐻𝐴𝐼𝑁 (𝑘, q0, . . . , q𝑘+3) ≜
tV = 0;

q0 = |+⟩ ;
xB = false;
while(0 ≤ t ∧ t < 𝑘){
𝐶𝐻𝐴𝐼𝑁 4(qt+1, qt+2, qt+3, qt+4);
𝐹𝑈𝑆𝐸 (qt, qt+1, x);
if(x){t = t + 4} else {t = t − 1};
if(t = −1){t = 0; q0 = |+⟩} else {skip}

}

Listing 5. Create a chain of 𝑘 entangled qubits.

stm1

stm2

stm

iteratively appending 4-entangled-qubits chains to the main

chain, resulting eventually in a chain of 𝑘 ≤ 𝑡 ≤ 𝑘 + 3

entangled qubits.

10
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Analysis. Let us first consider the sub-program 𝐹𝑈𝑆𝐸

from Listing 3. Using laws of Figure 4, it is not difficult to

see, that for any classical expectation ^,

qect
[
𝐹𝑈𝑆𝐸 (q, q′, x)

] {
^
}
=

1 + 1/4 · ^ [x := true] + 3/4 · ^ [x := false] .
This can be formally verified by unfolding definitions, ex-

ploiting that ^ does not depend on the quantum state. Let us

turn our attention to 𝐶𝐻𝐴𝐼𝑁4 from Listing 4, and observe

qect
[
stm2

] {
^
}
≤ 4 + ^,

when ^ is independent of x2 assigned in stm2, i.e., ^ [x2 :=
𝑏] = ^. To see this, take 𝑔 ≜ J¬x2K · 4 + ^, and hence

qect

[
q3 = |+⟩ ; q4 = |+⟩ ;
𝐹𝑈𝑆𝐸 (q3, q4, x1)

] {
𝑔
}

= qect
[
q3 = |+⟩ ; q4 = |+⟩

] {1 + 1/4 · 𝑔[x2 := true]
+ 3/4 · 𝑔[x2 := false]

}
= 4 + ^.

Now it is clear that, since J¬x2K · 4+^ ≤ J¬x2K · 4+^ holds

trivially, 𝑔 constitutes an upper-invariant of the while loop

in stm2, see Law (upper invariant). Substituting false for x2
gives the bound for stm2. The same argument shows that

qect
[
stm1

] {
^
}
≤ 4 + ^,

for any ^ independent of x1.
Concerning the outer loop, let ^ now refer to a classical

cost function independent of the Boolean variables x1 and
x2. Putting things together,

qect
[
stm1; stm2; 𝐹𝑈𝑆𝐸 (q2, q3, x)

] {
J¬xK · 36 + ^

}
≤ 4 + 4 + 28 + ^ = 36 + ^,

and finally

qect
[
𝐶𝐻𝐴𝐼𝑁4(q1, q2, q3, q4)

] {
^
}
≤ 36 + ^,

via Law (upper invariant). Concerning the overall code from

Listing 5, let us now define the classical expectation

𝑓 ≜ J0 ≤ t ∧ 𝑡 < 𝑘 + 4K · 148 · (𝑘 − JtK + 4).
We obtain

qect
[
stm

] {
𝑓
}

= 36 + 1 + 1/4 · Jt ≠ −1K · 𝑓 [t := t + 4]
+ 3/4 · (Jt = −1K · 𝑓 [t := 0] + Jt ≠ −1K · 𝑓 [t := t − 1])

= 37 + J0 ≤ t ∧ t < 𝑘 + 4K · (1/4 · (148 · (𝑘 − JtK))
+ 3/4 · 148 · (𝑘 − JtK + 5)) .

Exploiting the loop-guard 0 ≤ t < 𝑘 , we finally establish

that 𝑓 is an upper-bound to the expected runtime of the loop,

where the required inequality is in particular encompassed

by the inequality

J0 ≤ t ∧ t < 𝑘K · 37 + 37 · (𝑘 − JtK) + 111 · (𝑘 − JtK + 5)
≤ 148 · (𝑘 − JtK + 4),

xB = true;
while(x){
x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)

}

Listing 6. Quantum walk.

which can be easily seen to hold. Substituting 0 for JtK in
this expectation, we conclude that the overall expected cost

is bounded by 148 × (𝑘 + 4).

5.3 Quantum walk
In this last example, we consider the Hadamard quantum

walk on an 𝑛-circle as defined in [18, Section 6.2]. Our goal

is to illustrate on a non-trivial example that the cost analysis

may depend directly on the program quantum state, as in

Example 3.1.

Let q be a quantum bit of the 2-dimensional state space

Hq, whose basis states |𝐿⟩ and |𝑅⟩ indicate directions Left
and Right, respectively. Let Hp be an 𝑛-dimensional Hilbert

space with orthonormal basis |0⟩ , |1⟩ , . . . , |𝑛 − 1⟩ for the po-
sitions. The state spaceH for the quantum walk is defined

by H ≜ Hq ⊗ Hp. The program itself is given in Listing 6.

The operator S shifts the position depending of the direction

state and is defined by the following standard unitary oper-

ator: 𝑆 = Σ𝑛−1𝑖=0 |𝐿⟩ ⟨𝐿 | ⊗ |𝑖 ⊖ 1⟩ ⟨𝑖 | + Σ𝑛−1𝑖=0 |𝑅⟩ ⟨𝑅 | ⊗ |𝑖 ⊕ 1⟩ ⟨𝑖 |,
where ⊕ and ⊖ denote addition and substraction modulo 𝑛.

Adaptation. We need to adapt slightly the operational

semantics and expected cost transformer to this particular

setting. Any quantum state |𝜑⟩ can be written as

|𝜑⟩ ≜
𝑛−1∑
𝑖=0

𝑎𝑖 |𝐿⟩ |𝑖⟩ +
2𝑛−1∑
𝑖=𝑛

𝑎𝑖 |𝑅⟩ |𝑖 − 𝑛⟩ =
©«
𝑎0
...

𝑎2𝑛−1

ª®®¬ ,
for𝑛 ≥ 1 and for 𝑎𝑖 ∈ C such that Σ𝑖 |𝑎𝑖 |2 = 1. The probability

that the quantum state |𝜑⟩ is at position 0 is given by 𝑝p
0
|𝜑⟩ ≜

⟨𝜑 | (𝐼2 ⊗ |0⟩ ⟨0|) |𝜑⟩. The probability that the quantum state

|𝜑⟩ is at a position distinct from 0 is given by 𝑝
p
≠0

|𝜑⟩ ≜
⟨𝜑 | (𝐼2𝑛 − 𝐼2 ⊗ |0⟩ ⟨0|) |𝜑⟩. These two probabilities trivially

satisfy 𝑝
p
0
+ 𝑝p

≠0
= 1 and it holds that 𝑝≠0 |𝜑⟩ = 1 − (|𝑎0 |2 +

|𝑎𝑛 |2) =
∑

𝑖≠0,𝑖≠𝑛 |𝑎𝑖 |2.
We adapt in a direct and obvious way the result of the

calculation of a measurement to the 𝑛-dimensional case: the

result of measuring the outcome 0 (false), Mp
0
, and the result

of measuring an outcome distinct from 0 (true), Mp
≠0
, are

defined by Mp
0
≜ 1√

𝑝
p
0

𝐼2 ⊗ |0⟩ ⟨0| and Mp
≠0
≜ 1√

𝑝
p
≠0

(𝐼2𝑛 − 𝐼2 ⊗
|0⟩ ⟨0|), respectively.
The operational semantics of Figure 3 and the expected

cost transformer of Figure 4 can be adapted straightforwardly

11
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to this new setting. E.g., the rule of Figure 4 for measurement

on qubit p is rewritten as follows:

qet
[
x = meas(p)

] {
𝑓
}
= 𝑓 [x := 0; Mq

0
] +𝑝q

0

𝑓 [x := 1; Mq
≠0
] .

All the other rules remain unchanged. Our soundness re-

sults still hold in this context. In particular, Theorem 4.3 and

Corollary 4.8 are still valid.

Analysis. In order to analyse the expected cost of the

above program, we search for an expectation 𝑔 satisfying

the prerequisite for applying Law (upper invariant):

JxK · qect


x = meas(p);
q ∗= H;
q, p ∗= S;
consume(1)


{
𝑔
}
≤ 𝑔. (12)

Using the (adapted) laws of Figure 4, the following equali-

ties can be derived:

qect
[
consume(1)

] {
𝑔
}
= 1 + 𝑔 ≜ 𝑔1

qect
[
q, p ∗= Sq,p

] {
𝑔1

}
= (1 + 𝑔) [Sq,p] ≜ 𝑔2

qect
[
q ∗= Hq

] {
𝑔2

}
= 𝑔2 [Hq] = (1 + 𝑔) [Sq,pHq] ≜ 𝑔3

qect
[
x = meas(p)

] {
𝑔3

}
= 𝑔3 [x := 0; Mp

0
] +𝑝p

0

𝑔3 [x := 1; Mp
≠0
]

where the matrices corresponding to the operators Sq,p and
Hq are equal to 𝐻 ⊗ 𝐼𝑛 and 𝑆 , respectively.

In a nutshell, qect
[
x = meas(p)

] {
𝑔3

}
can be written as:

qect
[
x = meas(p)

] {
𝑔3

}
= 𝑝

p
0
· (1 + 𝑔) [Sq,pHq] [x := 0; Mp

0
]

+ 𝑝p
≠0

· (1 + 𝑔) [Sq,pHq] [x := 1; Mp
≠0
]

and Equation (12) can be simplified as follows:

𝑝
p
≠0
(1 + 𝑔) [x := 1; Sq,pHqM

p
≠0
] ≤ 𝑔. (13)

Equation (13) holds if for any store 𝑠 and any quantum

state |𝜑⟩, we have:

𝑝
p
≠0

|𝜑⟩ (1 + 𝑔(𝑠 [x := 1], Sq,pHqMp≠0 |𝜑⟩)) ≤ 𝑔(𝑠, |𝜑⟩).

Notice that |𝜓 ⟩ ≜ Sq,pHqM
p
≠0

|𝜑⟩ will be the quantum state

entering the loop in the next iteration.

For any complex number 𝑧 ∈ C, 𝑧∗ will denote the complex

conjugate of 𝑧 and the real part of 𝑧 will be denoted by ℜ(𝑧).
Consider the expectation 𝑔𝑛 defined below.

𝑔𝑛
©«
𝑎0
...

𝑎2𝑛−1

ª®®¬ ≜
2𝑛−1∑
𝑖=0

𝑓𝑛 (𝑖) |𝑎𝑖 |2 + 2

2𝑛−1∑
𝑗=0

2𝑛−1∑
𝑘=0

ℎ𝑛 ( 𝑗, 𝑘)ℜ(𝑎 𝑗𝑎∗𝑘 )

with 𝑓𝑛 (𝑖) ≜
{
𝑖 (𝑛 − 𝑖) + 1 if 0 ≤ 𝑖 ≤ 𝑛 − 1

(𝑖 − 𝑛) (2𝑛 − 𝑖) + 1 if 𝑛 ≤ 𝑖 ≤ 2𝑛 − 1

and with ℎ𝑛 ( 𝑗, 𝑘) ≜

(−1)
𝑗−𝑘
2 𝑘 (𝑛 − 1 − 𝑗) if


𝑘, 𝑗 ∈ [0, 𝑛 − 1],
𝑘 < 𝑗,

( 𝑗 − 𝑘) % 2 = 0

(−1)
𝑗−𝑘
2 (2𝑛 − 𝑗) (𝑘 − 𝑛 − 1) if


𝑘, 𝑗 ∈ [𝑛, 2𝑛 − 1],
𝑘 < 𝑗,

( 𝑗 − 𝑘) % 2 = 0

(−1)
𝑘−𝑗−𝑛

2 ( 𝑗 + 𝑘 − 2𝑛) if


𝑗 + 𝑛, 𝑘 ∈ [𝑛 + 1, 2𝑛 − 1],
𝑗 + 𝑛 ≤ 𝑘,
(𝑘 − ( 𝑗 + 𝑛)) % 2 = 0

0 otherwise.

𝑔𝑛 is a solution of the inequality in Equation (13). This can

be shown by symbolically computing the substraction of the

left-hand side and the right-hand side of the inequality.

Now we consider the simple case where 𝑛 = 2. For 𝑠 such

that JxK𝑠 = 1, Equation (13) can be rewritten as:

( |𝑎1 |2+|𝑎3 |2) (1+𝑔(𝑠,
1√

2( |𝑎1 |2 + |𝑎3 |2)

©«
𝑎1 + 𝑎3

0

𝑎1 − 𝑎3
0

ª®®®¬)) ≤ 𝑔(𝑠,
©«
𝑎0
𝑎1
𝑎2
𝑎3

ª®®®¬).
The above inequality is satisfied for 𝑔2 (𝑠, |𝜑⟩) ≜ 1+ |𝑎1 |2 +

|𝑎3 |2. Hence, starting in position |1⟩ (i.e., 𝑎1 |𝐿⟩ |1⟩+𝑎3 |𝑅⟩ |1⟩,
with |𝑎1 |2+ |𝑎3 |2 = 1), the expected cost is 2, whereas starting

in position |0⟩, the expected cost is 1 (as 𝑎1 = 𝑎3 = 0).

In the case, where 𝑛 = 3, the expectation 𝑔3 (𝑠, |𝜑⟩) ≜ 2 −
|𝑎0 |2−|𝑎3 |2+|𝑎2+𝑎5 |2+|𝑎1−𝑎4 |2 is a solution to Equation (13).
Note that our expectations 𝑔𝑛 can be recovered from the

matrices𝑄𝑛 in thework of [18, Section 6.2] as follows:𝑔𝑛 (𝑠, |𝜑⟩) ≜
⟨𝜑 |𝑄𝑛 |𝜑⟩.

6 Conclusion and Future Work
We presented an adequate notion of quantum expectation

transformer and showed through practical examples that it

can be used to infer upper bounds on the expected cost of

quantum programs.

As already indicated, our qet-calculus provides a princi-
pled foundation for automation.While this problem is clearly

undecidable in general, a restriction to a well-defined func-

tion space for expectations may allow for an effective solu-

tion, at the price of incompleteness. Existing work in the

literature on automation of expected cost transfomers or

related work for classical programs cf. [3, 20, 21, 29] should

provide ample guidance in this respect.
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A Background Material
We state some intermediate properties that follow from the

Kegelspitze structure [15].

Proposition A.1. In any Kegelspitze 𝐾 , any continuous map
𝜒 : 𝐾 → 𝐾 has a least fixed-point given by

lfp𝜒 = sup

𝑛∈N
𝜒𝑛 (⊥) .

This operator lfp : (𝐾 → 𝐾) → (𝐾 → 𝐾) is itself continuous.
Lemma A.2. Let 𝑓 , 𝑔 : 𝐴 → 𝐾 for Kegelspitze 𝐾 and 𝑝 ∈
[0, 1]. Then

E𝛿 (𝑓 +𝑝 𝑔) = E𝛿 (𝑓 ) +𝑝 E𝛿 (𝑔).
Lemma A.3. Let 𝑓 : 𝐴 → 𝐾 for Kegelspitze 𝐾 . Then

E∑
𝑖∈𝐼 𝑝𝑖 ·𝛿𝑖 (𝑓 ) =

∑
𝑖∈𝐼

𝑝𝑖 · E𝛿𝑖 (𝑓 ).

Lemma A.4. Let 𝑓 : 𝐴 → 𝐾 for Kegelspitze 𝐾 . For every
𝜔-chain (𝑑𝑖 )𝑖 of sub-distributions,

sup

𝑖

E𝛿𝑖 (𝑓 ) = Esup𝑖 𝛿𝑖 (𝑓 ).

Lemma A.5. For any PARS → over 𝐴 and 𝛿, 𝜖 ∈ D(𝐴), if

𝛿
𝑐
↠𝑛 𝜖

then (i) 𝛿 = {𝑝𝑖 : 𝑎𝑖 }𝑖∈𝐼 , (ii) 𝜖 =
∑

𝑖∈𝐼 𝑝𝑖 ·𝜖𝑖 , (iii) {1 : 𝑎𝑖 }
𝑐𝑖
↠𝑛 𝜖𝑖 ,

and (iv) 𝑐 =
∑

𝑖∈𝐼 𝑐𝑖 .

Proof. One first shows the lemma for the one-step reduction

relation

·
↠, by induction on the derivation of 𝛿

𝑐
↠ 𝜖 . This

then generalises to

·
↠𝑛 by induction on 𝑛. □

B Proof of Lemma 4.5
Recall that, for stm ∈ Statement, 𝑓 ∈ SState and 𝜎 ∈ State,
QET [stm]{𝑓 }(𝜎) = QET{𝑓 }(stm, 𝜎), where QET{𝑓 } ≜ lfp(b 𝑓 )
for

b 𝑓 (𝐹 ) ≜ _𝜏 .
{
𝑓 (𝜏) if 𝜏 ∈ State,

𝑐 +̂ E𝛿 (𝐹 ) if 𝜏 ∈ Conf and 𝜏
𝑐→ 𝛿 .

We first prove continuity, thus in particular well-definedness

of the QET [−]{−} function:
LemmaB.1 (Continuity andMonotonicity). For any𝜔-chain
(𝑓𝑛)𝑛∈N and any functions 𝑓 , 𝑔 s.t. 𝑓 ≤ 𝑔 the following hold:
1. sup𝑛 QET [stm]{𝑓𝑛} = QET [stm]{sup𝑛 𝑓𝑛} ; and
2. QET [stm]{𝑓 } ≤ QET [stm]{𝑔}.
Proof. Note that b 𝑓 as defined just above is continuous, since
in particular +̂ is continuous in both its arguments, andE𝛿 (−)
is continuous. Concerning the latter, it is actually sufficient to

restrict to cases of distributions 𝛿 with `
𝑐→ 𝛿 for configura-

tion `. Then, by definition, either 𝛿 = {1 : a} orE𝛿 (𝑓 ) = 𝑓 (a)
or 𝛿 = {𝑝 : a1, 1 − 𝑝 : a2} and E𝛿 (𝑓 ) = 𝑓 (a1) +𝑝 𝑓 (a2). In
either case, continuity of E𝛿 (𝑓 ) follows from continuity of

+𝑝 . Thus (1) is a consequence of Proposition A.1, from which

then also (1) follows. □

To prove Lemma 4.5, we will reason via approximations of

the involved functions. To this end, for 𝑛 ∈ N and 𝑓 ∈ SState

let us define QET𝑛{𝑓 } : State → S as the 𝑛-th approximant

b𝑛
𝑓
(⊥), thus, by Proposition A.1,

QET [stm]{𝑓 }(𝜎) =
(
sup

𝑛∈N
QET𝑛{𝑓 }

)
(stm, 𝜎)

= sup

𝑛∈N
QET𝑛{𝑓 }(stm, 𝜎).

For cost structure (S, +̂), we define, for 𝑛 ∈ N, ecost𝑛→ (−) :
Conf → R+∞ and nf𝑛→ (−) : Conf → D(State) inductively
by setting

ecost0→ (`) = 0

ecost𝑛+1→ (`) =
{
0 if ` ∈ State,

𝑐 +̂ ∑
𝑖∈𝐼 𝑝𝑖 · ecost𝑛→ (a𝑖 ) if `

𝑐→ {𝑝𝑖 : a𝑖 }𝑖∈𝐼 ;

nf0→ (`) = ∅

nf𝑛+1→ (`) =
{
{1 : `} if ` ∈ State,∑

𝑖∈𝐼 𝑝𝑖 · nf𝑛→ (a𝑖 ) if `
𝑐→ {𝑝𝑖 : a𝑖 }𝑖∈𝐼 .

These approximate ecost→ and nf→ defined in Section 3.2,

respectively, in the following sense:

Lemma B.2. Let ` ∈ Conf ∪ State. Then
1. ecost→ (`) = sup𝑛∈N ecost

𝑛
→ (`), and

2. Enfstm (`) (𝑓 ) = sup𝑛∈N Enf𝑛→ (`) (𝑓 ).

Proof. Concerning Property (1), we show that

{1 : `} 𝑐
↠𝑛 𝜖,

iff ecost𝑛→ (`) = 𝑐 , from which the property follows then by

definition of ecost→. The proof is by induction on 𝑛. The

base case is trivial, let us consider the inductive step where

{1 : `} 𝑐
↠ 𝛿

𝑑
↠𝑛 𝜖

where we have to show ecost𝑛+1 (`) = 𝑐 + 𝑑 . Applying
Lemma A.5, for 𝛿 = {𝑝𝑖 : a𝑖 }𝑖∈𝐼 we see that 𝑑 =

∑
𝑖∈𝐼 𝑑𝑖

where for all 𝑖 ∈ 𝐼 , {1 : a𝑖 }
𝑑𝑖
↠𝑛 𝜖𝑖 for some 𝜖𝑖 . Summing up

ecost𝑛+1→ (`) = 𝑐 +
∑
𝑖

𝑝𝑖 · ecost𝑛→ (a𝑖 )

(induction hypothesis)

= 𝑐 +
∑
𝑖

𝑝𝑖 · 𝑑𝑖 = 𝑐 + 𝑑.

Concerning Property (2), we show first that

{1 : `} 𝑐
↠𝑛 𝜖,

iff nf𝑛+1→ (`) = 𝜖↾𝑡𝑒𝑟𝑚 . Again the proof is by induction on

𝑛. In the base case 𝑛 = 0, we consider {1 : `} 0

↠0 {1 : `}.
If ` ∈ State then nf1→ (`) = {1 : `} = {1 : `}↾𝑡𝑒𝑟𝑚 as

desired, in the case ` ∈ Conf with `
𝑐→ {𝑝𝑖 : a𝑖 }𝑖∈𝐼 we have

nf1→ (`) = ∑
𝑖∈𝐼 𝑝𝑖 · nf0→ (a𝑖 ) =

∑
𝑖∈𝐼 𝑝𝑖 · ∅ = ∅ = {1 : `}↾𝑡𝑒𝑟𝑚 .
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This concludes the base case, we move to the inductive case,

where

{1 : `} 𝑐
↠ 𝛿

𝑑
↠𝑛 𝜖.

Applying Lemma A.5, for 𝛿 = {𝑝𝑖 : a𝑖 }𝑖∈𝐼 we see that 𝜖 =∑
𝑖∈𝐼 𝑝𝑖 · 𝜖𝑖 with {1 : a𝑖 }

𝑑𝑖
↠𝑛 𝜖𝑖 for all 𝑖 ∈ 𝐼 . Then

nf𝑛+2→ (`) =
∑
𝑖

𝑝𝑖 · nf𝑛+1→ (a𝑖 )

(induction hypothesis)

=
∑

𝑖 𝑝𝑖 · (𝜖𝑖↾𝑡𝑒𝑟𝑚)
= (∑𝑖 𝑝𝑖 · 𝜖𝑖 ) ↾𝑡𝑒𝑟𝑚 = 𝜖↾𝑡𝑒𝑟𝑚 .

From this, we finally conclude as Property (2)

nf→ (`) = sup

𝑛∈N
{𝛿↾𝑡𝑒𝑟𝑚 | {1 : 𝑎} 𝑐

↠𝑛 𝛿}

= sup

𝑛∈N
nf𝑛+1→ (`) = sup

𝑛∈N
nf𝑛→ (`). □

Lemma 4.5. For all stm ∈ Statement and 𝑓 ∈ SState,
QET [stm]{𝑓 } = ecoststm +̂ evaluestm (𝑓 ).

Proof. We show

QET𝑛{𝑓 }(`) = ecost𝑛→ (`) +̂ Enf𝑛→ (`) (𝑓 ),
for any ` ∈ Conf ∪ State, since then we have

QET [stm]{𝑓 }(𝜎)
= sup

𝑛∈N
QET𝑛{𝑓 }(stm, 𝜎)

= sup

𝑛∈N
(ecost𝑛→ (stm, 𝜎) +̂ Enf𝑛→ (stm,𝜎) (𝑓 ))

(continuity of +̂)
= sup

𝑛∈N
ecost𝑛→ (stm, 𝜎) +̂ sup

𝑛∈N
Enf𝑛→ (stm,𝜎) (𝑓 )

(Lemma A.4)

= sup

𝑛∈N
ecost𝑛→ (stm, 𝜎) +̂ E

sup𝑛∈N nf
𝑛
→ (stm,𝜎) (𝑓 )

(Lemma B.2)

= ecost→ (stm, 𝜎) +̂ Enf→ (stm,𝜎) (𝑓 )
(by definitions)

= ecoststm (𝜎) +̂ Enfstm (𝜎) (𝑓 ).
Let us now prove the above inequality on approximants. The

proof is by induction on 𝑛. Let ` ∈ Conf ∪ State.
- Case n = 0. Trivially,

QET0{𝑓 }(`) = ⊥ = 0 +̂ ⊥
= ecost0→ (`) + E∅ (𝑓 )
= ecost0→ (`) + Enf0→ (`) (𝑓 ).

- Case 𝑛 + 1. Consider the step case. If ` ∈ State, then

QET𝑛+1{𝑓 }(`) = ⊥ = 0 +̂ 𝑓 (`)
= ecost𝑛+1→ (`) + E{1:` } (𝑓 )
= ecost𝑛+1→ (`) + Enf𝑛+1→ (`) (𝑓 ).

Otherwise, if ` ∈ Conf then `
𝑐→ {𝑝𝑖 : a𝑖 }𝑖∈𝐼 and we have

QET𝑛+1{𝑓 }(`)

= 𝑐 +̂
∑
𝑖∈𝐼

𝑝𝑖 · QET𝑛{𝑓 }(a𝑖 )

(induction hypothesis)

= 𝑐 +̂
∑
𝑖∈𝐼

𝑝𝑖 · (ecost𝑛→ (a𝑖 ) +̂ Enf𝑛→ (a𝑖 ) (𝑓 ))

(Definition 2.8(3))

= 𝑐 +̂
(∑
𝑖∈𝐼

𝑝𝑖 · ecost𝑛→ (a𝑖 ) +̂
∑
𝑖∈𝐼

𝑝𝑖 · Enf𝑛→ (a𝑖 ) (𝑓 )
)

(Definition 2.8(2))

=

(
𝑐 +̂

∑
𝑖∈𝐼

𝑝𝑖 · ecost𝑛→ (a𝑖 )
)
+̂

∑
𝑖∈𝐼

𝑝𝑖 · Enf𝑛→ (a𝑖 ) (𝑓 )

(Lemma A.3)

=

(
𝑐 +̂

∑
𝑖∈𝐼

𝑝𝑖 · ecost𝑛→ (a𝑖 )
)
+̂ E∑

𝑖∈𝐼 𝑝𝑖 ·nf𝑛→ (a𝑖 ) (𝑓 )

(by definitions)

= ecost𝑛+1→ (`) +̂ Enf𝑛+1→ (`) (𝑓 ). □

C Proof of Lemma 4.6
Lemma 4.6. The following identities hold.
1. QET [stm1; stm2]{𝑓 } = QET [stm1]{QET [stm2]{𝑓 }}; and
2. QET [while(b){stm}]{𝑓 } = lfp(_𝐹 .QET [stm]{𝐹 } +JbK 𝑓 ).

Proof. We start with the proof of the first identity. For ` ∈
Conf ∪ State and stm ∈ Statement, let us define ` ;; stm ∈
Conf by case analysis on ` as follows:

(stm1, 𝜎) ;; stm2 ≜ (stm1; stm2;𝜎)
𝜎 ;; stm2 ≜ (stm2;𝜎)

By this notation, Rule (Seq) from Figure 3 instantiated to

stm1; stm2, can be written as

(stm1, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 }𝑖∈𝐼

(Seq)

(stm1; stm2, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 ;; stm2}𝑖∈𝐼

Let 𝑙ℎ𝑠 and 𝑟ℎ𝑠 be the left- and right-hand side of the Identity

(1). We show 𝑙ℎ𝑠 ≤ 𝑟ℎ𝑠 and 𝑟ℎ𝑠 ≤ 𝑙ℎ𝑠 separately.
- Case 𝑙ℎ𝑠 ≤ 𝑟ℎ𝑠 . We prove

QET𝑛{𝑓 }(stm1; stm2, 𝜎)
≤ QET𝑛{_𝜏 .QET𝑛{𝑓 }(stm2, 𝜏)}(stm1, 𝜎), (14)

for all 𝑛 ∈ N and 𝜎 ∈ State. From this, the case follows as

QET [stm]{ℎ} = sup𝑛 QET
𝑛{ℎ}(stm,−), using continuity

and monotonicity of the transformer (Lemma B.1). The

proof is by induction on 𝑛. The case 𝑛 = 0 is trivial, as

then 𝑙ℎ𝑠 = 0 = 𝑟ℎ𝑠 .
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Concerning the inductive step, fix 𝜎 ∈ State. Note

QET𝑛{𝑓 }(` ;; stm) ≤ QET𝑛{_𝜏 .QET𝑛{𝑓 }(stm, 𝜏)}(`), (15)

holds for any ` ∈ Conf ∪ State and stm ∈ Statement.
This follows by case analysis on `, using induction hy-

pothesis in the case ` ∈ Conf. Now suppose

(stm1; stm2, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 ;; stm2}𝑖∈𝐼 ,

since

(stm1, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 }𝑖∈𝐼 .

We can thus conclude as

QET𝑛+1{𝑓 }(stm1; stm2, 𝜎)
(unfolding definition)

= 𝑐 +̂
∑
𝑖

𝑝𝑖 · QET𝑛{𝑓 }(`𝑖 ;; stm2)

(Eq. (15) & monotonicity of barycentric operations)

≤ 𝑐 +̂
∑
𝑖

𝑝𝑖 · QET𝑛{_𝜏 .QET𝑛{𝑓 }(stm2, 𝜏)}(`𝑖 )

(folding definition)

= QET𝑛+1{_𝜏 .QET𝑛{𝑓 }(stm2, 𝜏)}(stm1, 𝜎)
(QET𝑛{𝑓 } is monotone in 𝑓 and 𝑛)

= QET𝑛+1{_𝜏 .QET𝑛+1{𝑓 }(stm2, 𝜏)}(stm1, 𝜎).
- Case 𝑟ℎ𝑠 ≤ 𝑙ℎ𝑠 . It is sufficient to show

QET𝑛{_𝜏 .QET{𝑓 }(stm2, 𝜏)}(stm1, 𝜎)
≤ QET{𝑓 }(stm1; stm2, 𝜎), (16)

for all 𝑛 ∈ N. Suppose

(stm1, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 }𝑖∈𝐼 ,

and thus

(stm1; stm2, 𝑠, |𝜑⟩)
𝑐→ {𝑝𝑖 : `𝑖 ;; stm2}𝑖∈𝐼 .

The proof is by induction on 𝑛, as before, it is sufficient to

consider the inductive step. Using induction hypothesis,

we obtain

QET𝑛{_𝜏 .QET{𝑓 }(stm, 𝜏)}(`) ≤ QET{𝑓 }(` ;; stm), (17)

for any ` ∈ Conf ∪ State and stm ∈ Statement. We

conclude then (16) as

QET𝑛+1{_𝜏 .QET{𝑓 }(stm2, 𝜏)}(stm1, 𝜎)
(unfolding definition)

= 𝑐 +̂
∑
𝑖

𝑝𝑖 · QET𝑛{_𝜏 .QET{𝑓 }(stm2, 𝜏)}(`𝑖 )

(Eq. (17) & monotonicity of barycentric operations)

= 𝑐 +̂
∑
𝑖

𝑝𝑖 · QET{𝑓 }(`𝑖 ;; stm2)

(folding definition)

= QET{𝑓 }(stm1; stm2, 𝜎) .
This concludes the proof of the first identity.

We now come to the second identity. Let

𝜒𝑓 ,b (𝐹 ) ≜ QET [stm]{𝐹 } +JbK 𝑓

Again, we perform case analysis.

- Case 𝑙ℎ𝑠 ≤ 𝑟ℎ𝑠 . We prove the stronger statement

QET𝑛{𝑓 }(while(b){stm}, 𝜎) ≤ 𝜒𝑛
𝑓 ,b (⊥)(𝜎),

for all 𝑛 ∈ N and 𝜎 ∈ State. It is sufficient to consider the

inductive step. Fix 𝜎 = (𝑠, |𝜑⟩) ∈ State. Then

QET𝑛+1{𝑓 }(while(b){stm}, 𝜎)

=

{
QET𝑛{𝑓 }(stm; while(b){stm}, 𝜎) if JbK𝑠

𝑓 (𝜎) if J¬bK𝑠 ;
= QET𝑛{𝑓 }(stm; while(b){stm}, 𝜎) +JbK𝑠 𝑓 (𝜎)
(Equation (14))

≤ QET𝑛{_𝜏 .QET𝑛{𝑓 }(while(b){stm}, 𝜏)}(stm, 𝜎) +JbK𝑠 𝑓 (𝜎)
(induction hypothesis, monotonicity of QET𝑛{−})

≤ QET𝑛{𝜒𝑛
𝑓 ,b (⊥)}(stm, 𝜎) +JbK𝑠 𝑓 (𝜎)

≤ 𝜒𝑛+1
𝑓 ,b (⊥)(𝜎).

- Case 𝑟ℎ𝑠 ≤ 𝑙ℎ𝑠 . We prove the stronger statement

𝜒𝑛
𝑓 ,b (⊥)(𝜎) ≤ QET{𝑓 }(while(b){stm}, 𝜎),

for all 𝑛 ∈ N and 𝜎 ∈ State. The proof is by induction on

𝑛, where it is sufficient to consider the inductive step. Let

𝜎 = (𝑠, |𝜑⟩) ∈ State. Then

𝜒𝑛+1
𝑓 ,b (⊥)(𝜎)
= (QET{𝜒𝑛

𝑓 ,b (⊥)}(stm, 𝜎) +JbK𝑠 𝑓 (𝜎))
(induction hypothesis, monotonicity of QET{−})

≤ QET{_𝜏 .QET{𝑓 }(while(b){stm}, 𝜏)}(stm, 𝜎) +JbK𝑠 𝑓 (𝜎)
(equation (16), monotonicity of QET{−})

≤ QET{𝑓 }(stm; while(b){stm}, 𝜎) +JbK𝑠 𝑓 (𝜎)
(reasoning as in the previous case)

= QET{𝑓 }(while(b){stm}, 𝜎). □

D Proofs of Theorem 4.3
Lemma D.1. For every 𝜔-chain (𝑓𝑛)𝑛∈N,

qet
[
stm

] {
sup𝑛∈N 𝑓𝑛

}
= sup

𝑛∈N
qet

[
stm

] {
𝑓𝑛

}
.

Proof. The proof is by induction on the command stm.
- Case skip. Trivially,

qet
[
skip

] {
sup𝑛∈N 𝑓𝑛

}
= sup

𝑛∈N
𝑓𝑛 = sup

𝑛∈N
qet

[
skip

] {
𝑓𝑛

}
.

16



Quantum Expectation Transformers for Cost Analysis

- Case x = e. Then

qet
[
x = e

] {
sup𝑛∈N 𝑓𝑛

}
= _(𝑠, |𝜑⟩).

(
sup

𝑛∈N
𝑓𝑛

)
(𝑠 [x := JeK𝑠 ], |𝜑⟩)

= _(𝑠, |𝜑⟩). sup
𝑛∈N

𝑓𝑛 (𝑠 [x := JeK𝑠 ], |𝜑⟩)

= sup

𝑛∈N
_(𝑠, |𝜑⟩).𝑓𝑛 (𝑠 [x := JeK𝑠 ], |𝜑⟩)

= sup

𝑛∈N
qet

[
x = e

] {
𝑓𝑛

}
.

- Case x = meas(q). Then, similar as above,

qet
[
x = meas(q)

] {
sup𝑛∈N 𝑓𝑛

}
= _(𝑠, |𝜑⟩).

(
sup

𝑛∈N
𝑓𝑛

)
(𝑠 [x := 0], Mq

0
|𝜑⟩)

+𝑝q
0
|𝜑 ⟩

(
sup

𝑛∈N
𝑓𝑛

)
(𝑠 [x := 1], Mq

1
|𝜑⟩)

= _(𝑠, |𝜑⟩). sup
𝑛∈N

𝑓𝑛 (𝑠 [x := 0], Mq
0
|𝜑⟩)

+𝑝q
0
|𝜑 ⟩ sup

𝑛∈N
𝑓𝑛 (𝑠 [x := 1], Mq

1
|𝜑⟩)

(continuity of barycentric sum)

= _(𝑠, |𝜑⟩). sup
𝑛∈N

(
𝑓𝑛 (𝑠 [x := 0], Mq

0
|𝜑⟩)

+𝑝q
0
|𝜑 ⟩ 𝑓𝑛 (𝑠 [x := 1], Mq

1
|𝜑⟩)

)
= sup

𝑛∈N
_(𝑠, |𝜑⟩).

(
𝑓𝑛 (𝑠 [x := 0], Mq

0
|𝜑⟩)

+𝑝q
0
|𝜑 ⟩ 𝑓𝑛 (𝑠 [x := 1], Mq

1
|𝜑⟩)

)
= sup

𝑛∈N
qet

[
x = meas(q)

] {
𝑓𝑛

}
.

- Case consume(a).

qet
[
consume(a)

] {
sup𝑛∈N 𝑓𝑛

}
= _(𝑠, |𝜑⟩).max(JaK𝑠 , 0) +̂ sup

𝑛∈N
𝑓𝑛

(continuity of +̂)
= _(𝑠, |𝜑⟩). sup

𝑛∈N
(max(JaK𝑠 , 0) +̂ 𝑓𝑛)

= sup

𝑛∈N
_(𝑠, |𝜑⟩) .(max(JaK𝑠 , 0) +̂ 𝑓𝑛)

= sup

𝑛∈N
qet

[
consume(a)

] {
𝑓𝑛

}
.

- Case stm1; stm2.

qet
[
stm1; stm2

] {
sup𝑛∈N 𝑓𝑛

}
= qet

[
stm1

] {
qet

[
stm2

] {
sup𝑛∈N 𝑓𝑛

}}
(induction hypothesis on stm2)

= qet
[
stm1

] {
sup𝑛∈N qet

[
stm2

] {
𝑓𝑛

}}
(induction hypothesis on stm1)

= sup

𝑛∈N
qet

[
stm1

] {
qet

[
stm2

] {
𝑓𝑛

}}
= sup

𝑛∈N
qet

[
stm1; stm2

] {
𝑓𝑛

}
.

- Case if(b){stm1} else {stm2}.

qet
[
if(b){stm1} else {stm2}

] {
sup𝑛∈N 𝑓𝑛

}
= qet

[
stm1

] {
sup𝑛∈N 𝑓𝑛

}
+JbK qet

[
stm2

] {
sup𝑛∈N 𝑓𝑛

}
(induction hypotheses)

= sup

𝑛∈N
qet

[
stm1

] {
𝑓𝑛

}
+JbK sup

𝑛∈N
qet

[
stm2

] {
𝑓𝑛

}
(continuity of barycentric sum)

= sup

𝑛∈N

(
qet

[
stm1

] {
𝑓𝑛

}
+JbK qet

[
stm2

] {
𝑓𝑛

})
= sup

𝑛∈N
qet

[
if(b){stm1} else {stm2}

] {
𝑓𝑛

}
.

- Case while(b){stm}. We conclude this final case as,

qet
[
while(b){stm}

] {
sup𝑛∈N 𝑓𝑛

}
= lfp

(
_𝐹 .qet

[
stm

] {
𝐹
}
+JbK sup

𝑛∈N
𝑓𝑛

)
(continuity of barycentric sum)

= lfp
(
_𝐹 . sup

𝑛∈N

(
qet

[
stm

] {
𝐹
}
+JbK 𝑓𝑛

))
= lfp

(
sup

𝑛∈N
_𝐹 .

(
qet

[
stm

] {
𝐹
}
+JbK 𝑓𝑛

))
(★)

= sup

𝑛∈N
lfp

(
_𝐹 .qet

[
stm

] {
𝐹
}
+JbK 𝑓𝑛

)
= sup

𝑛∈N
qet

[
while(b){stm}

] {
𝑓𝑛

}
.

Concerning (★) we use that lfp itself is continuous (Propo-
sition A.1) on continuous functionals, the latter being a

consequence of the induction hypothesis.

□

Lemma D.2 (Monotonicity Law).

𝑓 ≤ 𝑔 =⇒ qet
[
stm

] {
𝑓
}
≤ qet

[
stm

] {
𝑔
}
.

Proof. This is an immediate consequence of Lemma D.1. □

Lemma D.3 (Distributivity Law). For all 𝑝 ∈ [0, 1],

qet
[
stm

] {
𝑓 +𝑝 𝑔

}
= qet

[
stm

] {
𝑓
}
+𝑝 qet

[
stm

] {
𝑔
}
.
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Proof. We reason semantically. Let 𝑝 ∈ [0, 1] be a constant.
Fix 𝜎 ∈ State. We have

qet
[
stm

] {
𝑓 +𝑝 𝑔

}
(𝜎)

(Theorem 4.7 and Lemma 4.5)

= ecoststm (𝑠, |𝜑⟩) +̂ evaluestm (𝑓 +𝑝 𝑔) (𝜎)
(Lemma A.2, unfolding evaluestm)

= (𝑝 · ecoststm (𝜎) + (1 − 𝑝) · ecoststm (𝜎))
+̂ (evaluestm (𝑓 ) (𝜎) +𝑝 evaluestm (𝑔) (𝜎))

(Definition 2.8(3))

= (ecoststm (𝜎) +̂ (evaluestm (𝑓 ) (𝜎))
+𝑝 (ecoststm (𝜎) +̂ evaluestm (𝑔) (𝜎))

(Theorem 4.7 and Lemma 4.5)

= qet
[
stm

] {
𝑓
}
(𝜎) +𝑝 qet

[
stm

] {
𝑔
}
(𝜎). □

Lemma D.4 (Upper Invariants). If J¬bK · 𝑓 ≤ 𝑔 ∧ JbK ·
qet

[
stm

] {
𝑔
}
≤ 𝑔 then

qet
[
while(b){stm}

] {
𝑓
}
≤ 𝑔.

Proof. Let 𝜒𝑓 = _𝐹 .qet
[
stm

] {
𝐹
}
+JbK 𝑓 , hence

qet
[
while(b){stm}

] {
𝑓
}
= lfp(𝜒𝑓 ).

The hypothesis yields 𝜒𝑓 (𝑔) ≤ 𝑔. As the least-fixed point

of any functional is bounded by any such prefix-point, in

particular 𝑔, the lemma follows. □

E Cost transformer laws
In Figure 7, we exhibit cost transformer laws that that make

reasoning about quantum cost expectations easier.

The (separation) law allows one to reason independently

about the cost, qect
[
stm

] {
0

}
, and expectation of 𝑓 , qevR+∞

[
stm

] {
𝑓
}
.

It enables a form of modular reasoning, e.g., when reasoning

about the expected cost

qect
[
stm1; stm2

] {
0

}
= qect

[
stm1

] {
qect

[
stm2

] {
0

}}
,

of sequentially executed commands, the law states that it is

sufficient bind the cost of stm1 and stm2 separately, and then
investigate how stm1 changes the latter in expectation. This

can then be also combined with upper-invariants to reason

about the cost of loops inductively (see [3]). The (linearity)
Law is derived from “linearity of expectations”. Concerning

the cost transformer, it is in general an inequality because

the cost is accounted twice in the right-hand side.

The (constancy) Law is inspired by the simple but useful,

equally named rule in Hoare logic (for classical programs),

stating that additional assumptions 𝑃 on initial states can be

pushed to final states, as long as 𝑃 is independent on themem-

ory modified by the program fragment stm under considera-

tion, in notation 𝑃 ⊥ stm. In the case of weakest precondition
calculi, this reads as 𝑤𝑝 [stm]{𝑃 ∧ 𝑄} = 𝑃 ∧ 𝑤𝑝 [stm]{𝑄},

provided 𝑃 ⊥ stm. Moving from predicates 𝑃 to cost func-

tions 𝑓 , where conjunction is naturally interpreted as mul-

tiplication, gives then rise to our law of constancy. The

notation 𝑓 ⊥ stm means that the value of 𝑓 remains un-

changed during evaluation of stm. Syntactically, this prop-
erty can be ensured by requiring that the expectation 𝑓

is constant in the variables in B(stm) ∪ V(stm) assigned
by stm, and in the qubits in Q(stm) measured within stm.
E.g., for 𝑓 = _(𝑠, _), 𝑓 ⊥ y = x + 3 but 𝑓 ⊥ x = x + 3.

More precisely, 𝑓 ⊥ stm holds if for all (𝑠, |𝜑⟩) ∈ State,
(i) 𝑓 (𝑠 [xK := 𝑎], |𝜑⟩) = 𝑓 for all x ∈ 𝑉𝑎𝑟 and 𝑎 ∈ JKK,
and (ii) 𝑓 (𝑠 [x := 0], 𝑡q

0
|𝜑⟩) = 𝑓 = 𝑓 (𝑠 [x := 1], 𝑡q

1
|𝜑⟩) for all

q ∈ 𝑄𝑢𝑏𝑖𝑡 . Note that 𝑓 ⊥ stm holds in particular when 𝑓 is

constant.

(constant propagation) Law falls in the same line of rea-

soning, and generalises an equally named law from [13].

Here, the factor qevR+∞
[
stm

] {
1

}
to 𝑓 gives the termina-

tion probability of stm — Hence, qect
[
stm

] {
𝑓 + 𝑔

}
= 𝑓 +

qect
[
stm

] {
𝑔
}
holds for 𝑓 ⊥ stm, when stm is almost-surely

terminating.

We can show a result similar to Theorem 4.3.

Theorem E.1. All cost transformer laws listed in Figure 5
hold.

We prove this result in the remainder of this appendix.

Lemma E.2 (Separation).

qect
[
stm

] {
𝑓
}
= qect

[
stm

] {
0

}
+ qevR+∞

[
stm

] {
𝑓
}

Proof. By Theorem 4.7 and Lemma 4.5,

qect
[
stm

] {
𝑓
}
= ecoststm + evaluestm (𝑓 ),

the lemma then follows from Corollary 4.8. □

Lemma E.3 (Linearity).

qect
[
stm

] {
𝑓 + 𝑔

}
= qect

[
stm

] {
𝑓
}
+ qevR+∞

[
stm

] {
𝑔
}

≤ qect
[
stm

] {
𝑓
}
+ qect

[
stm

] {
𝑔
}
.

Proof. An immediate consequence of Theorem 4.7 and Lemma 4.5

is that qevR+∞
[
stm

] {
𝑔
}
≤ qevR+∞

[
stm

] {
𝑓
}
. It is thus suffi-

cient to verify only the equality. We again proceed semanti-

cally:

qect
[
stm

] {
𝑓 + 𝑔

}
(𝜎)

(Theorem 4.7 and Lemma 4.5)

= ecoststm (𝜎) + evaluestm (𝑓 + 𝑔) (𝜎)
(linearity of expectations)

= ecoststm (𝜎) + evaluestm (𝑓 ) (𝜎) + evaluestm (𝑔) (𝜎)
(Theorem 4.7 and Lemma 4.5)

= qect
[
stm

] {
𝑓
}
(𝜎) + evaluestm (𝑔) (𝜎)

(Corollary 4.8)

= qect
[
stm

] {
𝑓
}
(𝜎) + qevR+∞

[
stm

] {
𝑔
}
. □

Lemma E.4 (Constancy). Suppose 𝑓 ⊥ stm. Then
18
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qevR+∞
[
·
] {
·
}
: Program → (R+∞)State → (R+∞)State

qect
[
·
] {
·
}
: Program → (R+∞)State → (R+∞)State

separation qect
[
stm

] {
𝑓
}
= qect

[
stm

] {
0

}
+ qevR+∞

[
stm

] {
𝑓
}

linearity qect
[
stm

] {
𝑓 + 𝑔

}
= qect

[
stm

] {
𝑓
}
+ qevR+∞

[
stm

] {
𝑔
}
≤ qect

[
stm

] {
𝑓
}
+ qect

[
stm

] {
𝑔
}

constancy 𝑓 ⊥ stm =⇒ qect
[
stm

] {
𝑓 · 𝑔

}
= qect

[
stm

] {
0

}
+ 𝑓 · qevR+∞

[
stm

] {
𝑔
}
≤ min(1, 𝑓 ) · qect

[
stm

] {
𝑔
}

constant propagation 𝑓 ⊥ stm =⇒ qect
[
stm

] {
𝑓 + 𝑔

}
= qevR+∞

[
stm

] {
1

}
· 𝑓 + qect

[
stm

] {
𝑔
}
≤ 𝑓 + qect

[
stm

] {
𝑔
}

Figure 7. Cost transformer laws.

1. qevR+∞
[
stm

] {
𝑓 · 𝑔

}
= 𝑓 · qevR+∞

[
stm

] {
𝑓 · 𝑔

}
;

2. qect
[
stm

] {
𝑓 · 𝑔

}
= qect

[
stm

] {
0

}
+ 𝑓 · qevR+∞

[
stm

] {
𝑔
}

≤ min(1, 𝑓 ) · qect
[
stm

] {
𝑔
}
.

Proof. Suppose 𝑓 ⊥ stm. Note that (2) is a consequence of
(1):

qect
[
stm

] {
𝑓 · 𝑔

}
(Lemma E.2)

= qect
[
stm

] {
0

}
+ qevR+∞

[
stm

] {
𝑓 · 𝑔

}
(identity (1))

= qect
[
stm

] {
0

}
+ 𝑓 · qevR+∞

[
stm

] {
𝑔
}

≤ min(1, 𝑓 ) · (qect
[
stm

] {
0

}
+ qevR+∞

[
stm

] {
𝑔
}
)

(Lemma E.2)

= min(1, 𝑓 ) · qect
[
stm

] {
𝑔
}

It is thus sufficient to prove (1), which we do by induction

on stm. For 𝑓 , 𝑔, ℎ : (R+∞)State and 𝑝 : [0, 1]State, we will
employ the identity

𝑓 · 𝑔 +𝑝 𝑓 · ℎ = 𝑝 · 𝑓 · 𝑔 + (1 − 𝑝) · 𝑓 · ℎ
= 𝑓 · (𝑝 · 𝑔 + (1 − 𝑝) · ℎ)
= 𝑓 · (𝑔 +𝑝 ℎ),

in several cases.

- Case skip. The case is trivial.
- Case x = e. As 𝑓 ⊥ (x = e) we have 𝑓 [x := e] = 𝑓 . Thus

qevR+∞
[
x = e

] {
𝑓 · 𝑔

}
= (𝑓 · 𝑔) [x := e]
= 𝑓 · 𝑔[x := e]
= 𝑓 · qevR+∞

[
x = e

] {
𝑔
}
.

- Case x = meas(q). In this case we have 𝑓 [x := 0; Mq
0
] =

𝑓 = 𝑓 [x := 1; Mq
1
]. We conclude then as

qevR+∞
[
x = meas(q)

] {
𝑓 · 𝑔

}
= (𝑓 · 𝑔) [x := 0; Mq

0
] +𝑝q

0

(𝑓 · 𝑔) [x := 1; Mq
1
]

= 𝑓 · 𝑔[x := 0; Mq
0
] +𝑝q

0

𝑓 · 𝑔[x := 1; Mq
1
]

= 𝑓 · (𝑔[x := 0; Mq
0
] +𝑝q

0

𝑔[x := 1; Mq
1
])

= 𝑓 · qevR+∞
[
x = meas(q)

] {
𝑔
}

.

- Case consume(a). Then

qevR+∞
[
consume(a)

] {
𝑓 · 𝑔

}
= max(J𝑎K , 0) +f 𝑓 · 𝑔
= 𝑓 · 𝑔
= 𝑓 · qevR+∞

[
consume(a)

] {
𝑔
}
.

- Case stm1; stm2. Note that also 𝑓 ⊥ stm1 and 𝑓 ⊥ stm2,
by assumption. Thus we can conclude via induction hy-

pothesis:

qevR+∞
[
stm1; stm2

] {
𝑓 · 𝑔

}
= qevR+∞

[
stm1

] {
qevR+∞

[
stm2

] {
𝑓 · 𝑔

}}
(induction hypothesis on stm2)

= qevR+∞
[
stm1

] {
𝑓 · qevR+∞

[
stm2

] {
𝑔
}}

(induction hypothesis on stm1)

= 𝑓 · qevR+∞
[
stm1

] {
qevR+∞

[
stm2

] {
𝑔
}}
.

- Case if(b){stm1} else {stm2}. Again, 𝑓 ⊥ stm1 and 𝑓 ⊥
stm2, by assumption, and hence via induction hypothesis:

qevR+∞
[
if(b){stm1} else {stm2}

] {
𝑓 · 𝑔

}
= qevR+∞

[
stm1

] {
𝑓 · 𝑔

}
+JbK qevR+∞

[
stm2

] {
𝑓 · 𝑔

}
(induction hypotheses)

= 𝑓 · qevR+∞
[
stm1

] {
𝑔
}
+JbK 𝑓 · qevR+∞

[
stm2

] {
𝑔
}

= 𝑓 · (qevR+∞
[
stm1

] {
𝑔
}
+JbK qevR+∞

[
stm2

] {
𝑔
}
)

= 𝑓 · qevR+∞
[
if(b){stm1} else {stm2}

] {
𝑔
}
.

- Case while(b){stm}. Let 𝜒ℎ = _𝐹 .qet
[
stm

] {
𝐹
}
+JbK ℎ,

hence for any ℎ,

qet
[
while(b){stm}

] {
ℎ
}
= lfp(𝜒ℎ) = sup

𝑛

𝜒𝑛
ℎ
(⊥).

It is thus sufficient to prove

∀𝑛 ∈ N.𝜒𝑛
𝑓 +𝑔 (⊥) = 𝑓 · 𝜒𝑛𝑔 (⊥).

The proof is by induction on 𝑛. In the base case 𝑛 = 0,

notice ⊥ = 0 and trivially 0 = 𝑓 · 0. Hence consider the
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inductive step. By assumption also 𝑓 ⊥ stm holds. Thus

𝜒𝑛+1
𝑓 +𝑔 (⊥) = qet

[
stm

] {
𝜒𝑛
𝑓 +𝑔 (⊥)

}
+JbK 𝑓 · 𝑔

(side induction hypothesis)

= qet
[
stm

] {
𝑓 · 𝜒𝑛𝑔 (⊥)

}
+JbK 𝑓 · 𝑔

(induction hypothesis on stm)

= 𝑓 · qet
[
stm

] {
𝜒𝑛𝑔 (⊥)

}
+JbK 𝑓 · 𝑔

= 𝑓 · (qet
[
stm

] {
𝜒𝑛𝑔 (⊥)

}
+JbK 𝑔)

= 𝑓 · 𝜒𝑛+1𝑔 (⊥). □

LemmaE.5 (Constant Propagation). Suppose 𝑓 ⊥ stm. Then

qect
[
stm

] {
𝑓 + 𝑔

}
= qevR+∞

[
stm

] {
1

}
· 𝑓 + qect

[
stm

] {
𝑔
}

≤ 𝑓 + qect
[
stm

] {
𝑔
}
.

Proof. Note qevR+∞
[
stm

] {
1

}
≤ 1 for the termination prob-

ability qevR+∞
[
stm

] {
1

}
. It is thus sufficient to prove the

equality:

qect
[
stm

] {
𝑓 + 𝑔

}
(Lemma E.2)

= qevR+∞
[
stm

] {
𝑓
}
+ qect

[
stm

] {
𝑔
}

= qevR+∞
[
stm

] {
𝑓 · 1

}
+ qect

[
stm

] {
𝑔
}

(Lemma E.4)

= 𝑓 · qevR+∞
[
stm

] {
1

}
+ qect

[
stm

] {
𝑔
}
. □

20


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Kegelspitzen and Cost Structures
	3 Quantum Programming Language
	3.1 Syntax
	3.2 Operational Semantics

	4 Quantum Expectation Transformers
	4.1 Definition
	4.2 Properties
	4.3 Soundness and Adequacy
	4.4 Relationship to Denotational Semantics

	5 Illustrating Examples
	5.1 Repeat until success
	5.2 Chain of k entangled qubits
	5.3 Quantum walk

	6 Conclusion and Future Work
	References
	A Background Material
	B Proof of l:QET
	C Proof of l:QET:main-props
	D Proofs of thm:idents
	E Cost transformer laws

