
HAL Id: tel-03543746
https://hal.inria.fr/tel-03543746

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Process Instance Clustering Based on Conformance
Checking Artefacts

Mathilde Boltenhagen

To cite this version:
Mathilde Boltenhagen. Process Instance Clustering Based on Conformance Checking Artefacts. Com-
puter Science [cs]. Université Paris-Saclay, 2021. English. �NNT : �. �tel-03543746�

https://hal.inria.fr/tel-03543746
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
G
0
6
0

Process Instance Clustering
Based on Conformance Checking

Artefacts

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 Sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF,

Inria
Référent: : ENS Paris-Saclay

Thèse présentée et soutenue à Gif-sur-Yvette, le 21 octobre
2021, par

Mathilde BOLTENHAGEN

Composition du jury:

Pascal Poizat Président
Professor, Université Paris Nanterre, LIP6
Jochen De Weerdt Rapporteur
Associate Professor, KU Leuven
Marlon Dumas Rapporteur
Professor, University of Tartu
Fatiha Zaïdi Examinateur
Associate Professor, Université Paris Saclay
Marco Montali Examinateur
Professor, Free University of Bozen-Bolzano

Thomas Chatain Directeur
Associate Professor, ENS Paris-Saclay
Josep Carmona Codirecteur
Associate Professor, Universitat Politècnica de Catalunya





“
La chance, tu la provoques. [...] Tu peux choisir de marcher
au bord de la falaise ou tu peux choisir de marcher loin de
la falaise. Moi, j’ai décidé que je veux vivre sur la falaise
car j’ai une vue extraordinaire [...] Est-ce que j’ai peur de

mourir ? Non. J’ai peur plutôt de ne pas vivre.

”
Mike Horn

II





Abstract
As event data becomes an ubiquitous source of information, data science techniques rep-
resent an unprecedented opportunity to analyze and react to the processes that generate
this data. Process Mining is an emerging field that bridges the gap between traditional
data analysis techniques, like Data Mining, and Business Process Management. One core
value of Process Mining is the discovery of formal process models like Petri nets or BPMN
models which attempt to make sense of the events recorded in logs. Due to the complexity
of event data, automated process discovery algorithms tend to create dense process models
which are hard to interpret by humans. Fortunately, Conformance Checking, a sub-field of
Process Mining, enables relating observed and modeled behavior, so that humans can map
these two pieces of process information. Conformance checking is possible through align-
ment artefacts which associate process models and event logs. Different types of alignment
artefacts exist, namely alignments, multi-alignments and anti-alignments.

Currently, only alignment artefacts are deeply addressed in the literature. It allows to
relate the process model to a given process instance. However, because many behaviors
exist in logs, identifying an alignment per process instance hinders the readability of the
log-to-model relationships.

The present thesis proposes to exploit the conformance checking artefacts for cluster-
ing the process executions recorded in event logs, thereby extracting a restrictive number
of modeled representatives. Data clustering is a common method for extracting infor-
mation from dense and complex data. By grouping objects by similarities into clusters,
data clustering enables to mine simpler datasets which embrace the similarities and the
differences contained in data. Using the conformance checking artefacts in a clustering
approach allows to consider a reliable process model as a baseline for grouping the process
instances. Hence, the discovered clusters are associated with modeled artefacts, that we
call model-based trace variants, which provides opportune log-to-model explanations.

From this motivation, we have elaborated a set of methods for computing conformance
checking artefacts. The first contribution is the computation of a unique modeled behavior
that represents of a set of process instances, namely multi-alignment. Then, we propose
several alignment-based clustering approaches which provide clusters of process instances
associated to a modeled artefact. Finally, we highlight the interest of anti-alignment for
extracting deviations of process models with respect to the log. This latter artefact enables
to estimate model precision, and we show its impact in model-based clustering. We provide
SAT encoding for all the proposed techniques. Heuristic algorithms are then added to deal
with computing capacity of today’s computers, at the expense of loosing optimality.

IV





To the memory of my late grand-father, Pépé, René Guillon,
(Sept.1927- Sept.2021)

VI



Acknowledgement

Les grand-parents renferment un coffre fort de connaissances et de souvenirs qui, en étant
transmis aux nouvelles générations, font mûrir les plus jeunes, leur donnant l’ambition de
continuer à valoriser les trésors offerts par la vie. Le fruit de mon travail de recherche est,
sans aucun doute, l’effet papillon de leur travail et persévérance. Je les remercie du fond
du coeur.

This thesis would not have been possible without the supervision of Thomas Chatain
and Josep Carmona. I would like to express my deepest thanks for their extraordinary
presence, advice and kindness. I am very grateful for the three years of work we spent
together. I will remember their management and scientific skills that allowed us to obtain
a set of papers done in a very short time. I will also remember the good times we shared.

I thank Jochen De Weerdt and Marlon Dumas for their careful reviews and encouraging
reports. I thank Fatiha Zaïdi, Pascal Poizat and Marco Montali for the honour they give
me by participating in my jury. Moreover, I would like to thank the Process Mining
community for its warm welcome.

I thank the colleagues of the lab and especially Igor for his meaningful care during the
three years. I thank Philippe for the enriching coffee breaks, and Hugues, Patricia and
Marie-France for their efficient administrative support. I also would like to thank Corbin
and Da-Jung for the time spent together.

This PhD contract has existed thanks to Marc Plantevit that trusted me and shared
my profile to his network. I would like to thank him too.

En outre, j’ai la chance d’être entourée de personnes extra-ordinaires, à savoir, ma
famille, mes amis, mes amours. Je les remercie tout d’abord d’être les merveilleuses per-
sonnes qu’ils sont.

Certains ont joué un rôle majeur dans l’accomplissement de ma thèse. Je remercie
d’abord Mickaël avec qui j’ai pleinement partagé cette expérience d’étudiant-chercheur.
De même, je remercie Benjamin et Laurine pour les multiples discussions scientifiques et
philosophiques. Ce fût une joie immense d’avoir abouti un papier scientifique avec des
amis dans le cadre de ma thèse. Je les remercie pour leur implication et intérêt.

A l’image d’une thèse ordinaire, mes trois années de doctorat ont été parsemées de
joie, doute et déception, émotions apaisées par l’écoute attentive de ma complice Laurine.
Je la remercie infiniment d’avoir été plus que jamais présente à mes côtés sans quoi cette

VII



thèse n’aurait vu le jour. Je la remercie aussi pour tous nos fous rires à l’autre bout de la
France, nos discussions littéralement sans fin, nos projets ambitieux, et tous les merveilleux
moments passés ensemble. Je me souviendrai longtemps de cette école de recherche à Riga.

Je remercie ma mère pour l’éducation exemplaire, alliant santé, simplicité et sociabilité,
qu’elle a donné à mon frère et moi. Une éducation qui nous a permis de nous épanouir et
de nous projeter avec ambition.

Je remercie mon frère, Elie, avec qui je peux débattre et rire des projets les plus fous
comme ce doctorat.

Je remercie Patrice d’être entré dans nos vies récemment. Je le remercie pour son intérêt
à passer du temps avec Elie et moi. Je n’oublie pas sa patience à m’écouter répéter des
présentations techniques pendant la préparation du repas, et ce, en anglais. Je le remercie
aussi pour son adaptation si naturelle à nos côtés. Qu’il soit assuré de ma gratitude de sa
présence parmi nous.

Je n’oublie évidemment pas mon compagnon de vie, Arthur, qui m’a soutenue, sup-
portée, longuement écoutée et encouragée, durant cette période de thèse, mais aussi de
télétravail. Je le remercie particulièrement pour sa patience dans les moments durs, ses
discours réconfortants et nos tranches de rigolade. Qu’il soit assuré de la gratitude que
j’éprouve de l’avoir à mes côtés quotidiennement.

Dans mes amis de longue date, je remercie Aline et Marie, qui, malgré les années,
m’apportent toujours autant de soutien et d’énergies positives. Je remercie bien sûr Ro-
mane pour tous les moments exceptionnels que nous avons vécus ensemble qui m’ont fait
voir grand et loin. J’ai tant hâte de la revoir. Je remercie Guillaume pour sa joie de vivre
et ses décisions exemplaires, Igor pour ses reflexions profondes, Olivier pour son recul ex-
agéré, Théo pour sa bonne humeur toujours présente, Pauline pour sa douceur et son sens
de la discrétion, Lubin pour son humour décalé et Maïwenn pour sa gratitude infinie. Des
qualités admirables qui me stimulent lorsque nous nous voyons.

Je remercie aussi, et encore, Manu, Lucien, Benjamin, Laurine, Thomas, Brice, Car-
los, Mehdi, Robin, Vincent, Arnaud, Antoine, Mickaël, Théophile, Thomas, Thomas,
Axel, Nathan, Titouan, Tangui, Loïc, Charles et Naama sans qui mes années d’études
et n’auraient pas été les mêmes. Plus particulièrement, je remercie Manu pour sa spon-
tanéité délirante, Benjamin pour son impressionnante ambition, Charles pour son intérêt
sans limite, Loïc et Tangui pour leur côté fêtard, Naama pour son ouverture d’esprit exem-
plaire et Thomas pour son caractère décisif. Tous me rappelant la complexité intrigante
de notre monde. Je remercie aussi Clara pour sa motivation à créer et son émerveillement
si encourageant à chaque projet. Enfin, je remercie Michaël et Cédric qui ont éveillé en
moi une passion, l’informatique.

Merci à tous, merci la vie.

VIII



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Data Analysis of Business Processes . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Process Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Conformance Checking . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Trace Variants and Process Instance Clustering . . . . . . . . . . . 6

1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Research Challenges and Methodology . . . . . . . . . . . . . . . . 9
1.4.3 List of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Synchronous Product . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Alignment-based Fitness . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Petri Nets and Complexity . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 SAT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Multi-Alignments: Conformance Checking Artefacts for Model-based
Representations of Logs and Sub-Logs . . . . . . . . . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Multiple Sequence Alignment in Bioinformatics . . . . . . . . . . . 28

IX



3.2.2 Computation of Alignments . . . . . . . . . . . . . . . . . . . . . . 28
3.3 MinSAT Encoding for Computing Multi-alignments . . . . . . . . . . . . . 29

3.3.1 SAT Encoding of Edit Distance . . . . . . . . . . . . . . . . . . . . 30
3.3.2 SAT Encoding of Alignments . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Application for Multi-Alignments . . . . . . . . . . . . . . . . . . . 32
3.3.4 Formula Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Heuristics for the SAT Encoding . . . . . . . . . . . . . . . . . . . 36
3.3.6 Theoretical and Experimental Complexity . . . . . . . . . . . . . . 37
3.3.7 Conclusion and Limit of the MinSAT Algorithm . . . . . . . . . . . 38

3.4 An A* Algorithm for Computing Discounted Multi-Alignments . . . . . . 38
3.4.1 The Discounted Edit Distance . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Using the Discounted Edit Distance for Alignments . . . . . . . . . 40
3.4.3 A* Algorithm for Computing Discounted Alignments . . . . . . . . 41
3.4.4 Comparison to Classical Alignments . . . . . . . . . . . . . . . . . 43
3.4.5 Heuristic for Reducing the Search Space of Alignment Computation 44
3.4.6 Adaptation of the A* Algorithm for Multi-alignment . . . . . . . . 44
3.4.7 Heuristic for Reducing the Search Space of the A*-based Algorithm

for Computing Multi-alignment . . . . . . . . . . . . . . . . . . . . 46
3.4.8 Conclusion of the A*-based Algorithm . . . . . . . . . . . . . . . . 46

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Comparing our Discounted Alignments with the State-of-the-art Metholds 47
3.5.2 Computing Multi-alignment . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 Multi-alignments as model-based trace variants: a Case Study . . . 57

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Model-based Clustering of Log Traces through Alignments . . . . . . . 60
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Log Traces Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Model-based Variants of Log Traces . . . . . . . . . . . . . . . . . 65
4.2.3 ATC: Alignment-based Clustering . . . . . . . . . . . . . . . . . . . 66

4.3 Fitting Centroids to Concurrency and Loop Behavior . . . . . . . . . . . . 67
4.3.1 APOTC : Alignment and Partial Order based Trace Clustering . . 67
4.3.2 AMSTC: Alignment and Model Subnet-based Trace Clustering . . 69

4.4 Quality Criteria of Clusterings . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 General Criteria Definition . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Relating APOTC to ATC . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Relating AMSTC to APOTC . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 When AMSTCs meet APOTCs. . . . . . . . . . . . . . . . . . . . . 76

4.5 Complexity of Alignment-based Trace Clusterings . . . . . . . . . . . . . . 76
4.6 AMSTC SAT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 SAT Encoding of Log Traces . . . . . . . . . . . . . . . . . . . . . 79
4.6.2 SAT encoding of Model Runs . . . . . . . . . . . . . . . . . . . . . 80

X



4.6.3 SAT Encoding of Variants . . . . . . . . . . . . . . . . . . . . . . 80
4.6.4 Optimization Criteria for AMSTC . . . . . . . . . . . . . . . . . . 82

4.7 Sampling Algorithm to Deal with Large Logs . . . . . . . . . . . . . . . . 83
4.7.1 Main Sampling Idea . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.2 Reducing Alignment Use with Casual Edit Distance between Traces 84
4.7.3 Memoization of Alignment Costs . . . . . . . . . . . . . . . . . . . 85
4.7.4 Statistical Confidence for Sampling . . . . . . . . . . . . . . . . . . 85

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.1 Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.2 Qualitative Experiments . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8.3 Quantitative Experiments . . . . . . . . . . . . . . . . . . . . . . . 90
4.8.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Anti-alignments for Measuring Precision and its Interest in Model-
based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Precision of Process Models . . . . . . . . . . . . . . . . . . . . . . 97
5.1.2 Introduction of Anti-alignments . . . . . . . . . . . . . . . . . . . . 99

5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Anti-alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Anti-alignment-based Precision of Process Models . . . . . . . . . . 100
5.2.3 Complexity of Precision Computation . . . . . . . . . . . . . . . . 102

5.3 Algorithms for Computing Anti-alignments . . . . . . . . . . . . . . . . . 104
5.3.1 MinSAT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 An A* Algorithm based on the Discounted Edit Distance for Ap-

proximating Anti-Alignments . . . . . . . . . . . . . . . . . . . . . 108
5.4 Anti-alignment and Precision Experiments . . . . . . . . . . . . . . . . . . 111

5.4.1 Comparison of the Results Obtained with Different Settings . . . . 111
5.4.2 Anti-alignment based Precision Compared to the State-of-the-art

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Impact of Precise Process Models on Clustering Results . . . . . . . . . . . 120
5.6 Opening: An Agile Framework for Model Repair with Anti-alignments . . 122

5.6.1 Model Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.6.2 Agile Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6.3 Anti-alignment, a Key for Repairing Process Model . . . . . . . . . 124
5.6.4 Case study: Anti-alignment Study of a Reactive Discrete Event System125

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1 General Conclusion of the Contributions . . . . . . . . . . . . . . . . . . . 129
6.2 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

XI



7 French Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.1 Process mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.1.2 Vérification de conformité . . . . . . . . . . . . . . . . . . . . . . . 138
7.1.3 Variantes de traces et méthodes de partitionnement . . . . . . . . . 138
7.1.4 Problématique et motivation . . . . . . . . . . . . . . . . . . . . . 139
7.1.5 Contributions et plan du résumé en langue française . . . . . . . . 139

7.2 Les artefacts de vérification de conformité . . . . . . . . . . . . . . . . . . 141
7.2.1 Les alignements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.2 Les multi-alignements . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2.3 Les anti-alignements . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Variantes modélisées de traces . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.1 Les multi-alignements comme variantes modélisées de traces et ses

limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.2 Méthodes de partitionnement de traces basées sur les alignements . 143
7.3.3 Impact de la qualité des modèles . . . . . . . . . . . . . . . . . . . 144

7.4 Implémentation des méthodes . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.1 Encodage SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.2 Distance escomptée . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.5 Expériences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B Experiment Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

XII



List of Figures

1.1 Example of Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Schematic Sequential View of Event Data . . . . . . . . . . . . . . . . . . 2
1.3 XES Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Positioning of the Three Main Types of Process Mining: Process Discovery,

Conformance Checking, and Enhancement . . . . . . . . . . . . . . . . . . 4
1.5 Spaghetti Process Describing the Diagnosis and Treatment of 2765 Patients

in a Dutch Hospital, Example from [120] . . . . . . . . . . . . . . . . . . . 5
1.6 Schematization of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Schematization of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Schematization of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Log L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 A Model N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 A Synchronous Product SN of Process Model N Given in Fig. 7.3 and the

Log Trace σ = ⟨open, write, close⟩. Transitions in purple correspond to
the model moves, green transitions are the synchronous moves and yellow
transitions the log moves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Drawing Example for Multi-alignments. . . . . . . . . . . . . . . . . . . . 26
3.2 Drawing the Role of Length in the States of the A* Algorithm. . . . . . . 42
3.3 Input Description for Alignment and Multi-alignment Experiments . . . . 48
3.4 Comparison of Quality and Runtime of Different Methods for Computing

Alignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Particular Alignments that Draws Advantages and Disadvantages of our

Method. Run on a MacBook air 2017 model with a 1.8 GHz Intel ® CoreTM

i5 CPU and 8G RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Comparison of Number of CNF Clauses of Produced Formulas for a Model

of 10 Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Small Artificial Log La for Experiments. . . . . . . . . . . . . . . . . . . . 53
3.8 Generative model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Model with G and H in parallel. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10 The flower model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.11 All traces separate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.12 Model with D in a self-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.13 Model with all transitions in parallel. . . . . . . . . . . . . . . . . . . . . . 54

XIII



3.14 Process Model of the Loan Application Discovered with the Inductive Miner 57

4.1 Process Model of Motivation Example for Model-based Clustering . . . . . 62
4.2 Artificial Log associated to Model of Fig. 4.1 . . . . . . . . . . . . . . . . . 63
4.3 Generic Framework for Trace Clustering in Process Mining presented by [144] 64
4.4 Example of a Process of the Process Model in Fig. 4.1 . . . . . . . . . . . 67
4.5 A Subnet of the Process Model in Fig. 4.1. . . . . . . . . . . . . . . . . . 70
4.6 The net ((Nσ)

≫m) Used to Produce the Words σ≫m for a Log Trace σ =
⟨s, g, c⟩. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Schematization of the AMSTC Samping Algorithm . . . . . . . . . . . . . 85
4.8 Log L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Representatives of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Drawing Example for Anti-alignments. . . . . . . . . . . . . . . . . . . . . 100
5.2 Drawing Example with Loop for Anti-alignments. . . . . . . . . . . . . . 102
5.3 Single. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Model with G and H as self-loops. . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 A model where C and F are in a Loop, but Need to Be Executed Equally

Often to Reach the Final Marking. . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Round-robin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Agile Framework for Repairing Process Model with Anti-alignments . . . . 124
5.8 Bosh Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9 Third Station of the Bosch Engine . . . . . . . . . . . . . . . . . . . . . . 126

7.1 Exemple de log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Schématique vue séquentielle de données d’évènements . . . . . . . . . . . 136
7.3 Un model N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Extraction de multi-alignements . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Partitionnement des traces en utilisant les alignements . . . . . . . . . . . 140
7.6 Calcul de la précision avec les anti-alignements . . . . . . . . . . . . . . . . 141

XIV



List of Tables

3.1 Runtime Comparison (in seconds) for Computing Discounted Alignments
and the Token Replay Method Given in [14], Run on an on a MacBook air
2017 Model with a 1.8 GHz Intel ® CoreTM i5 CPU and 8G RAM. . . . . 51

3.2 Comparison of Multi-alignments for the Small Artificial Log of Fig. 3.7 and
Models of Fig. 3.8 to 3.13 Where the SAT-based Algorithm Can Be Fully
Executed, Obtained on a Virtual Machine with 12 CPU Intel Xeon 2.67GHz
and 50GB RAM. A*-algorithm is Set With µ = 200. . . . . . . . . . . . . 55

3.3 Multi-alignment Approximation for the Logs and Models given in Fig. 3.3 by
using the SAT Algorithm Implemented in da4py with Parameters size_of_run =
10 and maxd = 20 and the A* Algorithm Implemented in pm4py with Pa-
rameters θ = 1.5 and µ = 200, run on a virtual machine with 12 CPU Intel
Xeon 2.67GHz and 50GB RAM. . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Loan Application Log Description . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Experimenting Multi-alignments for Different Sets of Log Sequences . . . . 58

4.1 Example of Alignment-based Trace Clustering (ATC) of Log Traces Con-
tained in Log of Fig. 4.2 for a Maximum Allowed Distance to 2. . . . . . . 66

4.2 Example of APOTC of Traces Contained in the Log of Fig. 4.2. Maximum
Allowed Distance Between Clustered Traces and their Centroids is 2. . . . 69

4.3 Example of Alignment and Model Subnet-based Trace Clustering (AMSTC)
of Traces Contained in Log of Fig. 4.2 for a Maximum Allowed Distance to 2. 70

4.4 Event Logs Statistics and Used Discovered Models . . . . . . . . . . . . . . 88
4.5 Comparison of AMSTC Results for Different Parameters on Log L2 of [19]. 89
4.6 Examples of AMSTC Outputs on a Set of 7 Logs . . . . . . . . . . . . . . 91
4.7 Frequency of Traces and Classical Variants Containing the Different Activities 92
4.8 AMSTC on BPIC 2013cp Log and Different Models. Sample size is set to

15 and run size to 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.9 Cluster Comparison between AMSTC and [39] Results for the Same Traces

and Number of Clusters. All the rows of this table have been produced
based on the rows of Tab.4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Anti-alignment Prefixes of size 5, 10 and 15 for the Artificial Models of [129]
and Log La . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

XV



5.2 Consequences of the Threshold on Number of Edits of Leventshein Distance
for log La of Fig. 3.7, model of Fig. 5.4 and a prefix of run to 10. The last
line is forced to reach the final marking. . . . . . . . . . . . . . . . . . . . 114

5.3 Computation for Different Values of the Discounted Parameter θ and ϵ = 0.01115
5.4 Reducing the Search Space with Parameter µ for Different ϵ Values and

θ = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Comparison of Anti-alignments and Precision on Artificial Log La and its

Associated Models. The A*-based Algorithm defined on the discounted
distance is set with θ = 1.5, ϵ = 0.01 and µ = 10. Optimal Precision for
ϵ = 0.01 (lines SAT ) is given by Alg. 5 where we stop the search after 10
equal results in a row. SAT/n runs the SAT heuristic with a size of run to
11 and optimal number of edits for this size. . . . . . . . . . . . . . . . . 116

5.6 Precision Measures of Artificial Models . . . . . . . . . . . . . . . . . . . . 118
5.7 Real-life Logs and Models Precision where the Anti-alignment Precision P ϵ

aa

is found with Discounting Anti-alignments and θ = 2, ϵ = 0.01, µ = 5 . . . 119
5.8 Comparison of Clustering Results along with Precision and Fitness Metrics

for Different Real-life Inputs. Precision is the approximated anti-alignment
based precision with θ = 1.1, µ = 20 and ϵ = 0.01. The size of the run and
the number of transitions per clusters is set with the size of an alignment. The
distance between the traces and the centroids is 2. . . . . . . . . . . . . . . . 121

5.9 Comparison of Clustering Results of the 1000 First Traces of Log BPI2020cp
for Different Process Models Learned with the Same Algorithms but Differ-
ent Settings. Column ”Threshold” gives the noise threshold for the inductive
miner and the dependency threshold for the heuristic miner. Precision has been
computed with the A* approximation method with θ = 1.1, µ = 20 and ϵ = 0.01.
The size of the run and the number of transitions per clusters is set with the size
of an alignment. The distance between the traces and the centroids is 2. . . . . 122

XVI



List of Algorithms

1 Computation of Discounted Alignments . . . . . . . . . . . . . . . . . . . . 41
2 Computation of Multi-Alignment by using the Discounted Distance . . . . . 45

3 AMSTC Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Reducing Alignment Use of Algorithm 3 (lines 13 to 19) . . . . . . . . . . . 86

5 Algorithm for Computing P ϵ
aa(N,L) . . . . . . . . . . . . . . . . . . . . . . 103

6 Algorithm for Estimating P ϵ
aa(N,L) using a Threshold 0 < m ≤ 1 as Input . 104

7 Computation of Anti-Alignment by using the Discounted Distance . . . . . 109

XVII



Chapter 1

Introduction

Chapter Overview

This chapter gives an introduction to this doctoral thesis. The first section presents the
general context of today’s event data situation. The following section defines Process
Mining. We zoom on conformance checking and log trace clustering which draws the
context of the thesis. In Section. 1.3 we present the motivation of the research and,
finally, Section 1.4.1 presents the content of the thesis from the research challenges to
the contributions and tools.

1.1 Data Analysis of Business Processes
Nowadays, digitalization has become an indispensable part of everyday life of people and
companies such that the amount of produced, captured, copied, and consumed data would
have reached 59 zettabytes by the end of 2020 according to the International Data Corpora-
tion (IDC) [1]. The forecast for year 2025 raises to 165 zettabytes and has been accelerated
by the COVID-19 pandemic which contributes in data creation and consumption.

The interest in data analysis rapidly grew in organizations as the quality of data impacts
decision making and business strategy [66]. In 2016, a IBM study reports that poor data
quality leads a US cost of $3 trillion per year [98]. A real wish to mitigate this loss is
illustrated by the number of data scientist positions on the top emerging jobs since several
years [2]. Data analysis plays an important role in various organizations from public health
care to industries and even for pandemic crisis in order to assess, optimize and warrant
decision making [106].

In this thesis, we tackle event data recorded in logs. Structured as a collection of events,
those data describe the processes that appear in organizations. The particularity of those
data is the scoped dimensions. Fig. 7.1 presents an artificial example of event data. Every
line represents an event. Classical data mining techniques assess those data by working on

1



1.1. DATA ANALYSIS OF BUSINESS PROCESSES

Case Identifier Timestamp Activity Resource 1 Resource 2
239U 16-03-2020:11.02 open Proc.1 Silent
187V 16-03-2020:11.07 open Proc.2 Silent
187V 16-03-2020:11.09 write Proc.2 Silent
239U 16-03-2020:11.31 read Proc.1 Silent
239U 16-03-2020:12.20 write Proc.2 Silent
239U 16-03-2020:12.20 close Proc.2 Console
... ... ... ... ...

982R 17-03-2021:12.20 close Proc.2 Console

Figure 1.1: Example of Event Data

Case Identifier Sequence of Activities
239U ⟨open, read, write, close⟩
187V ⟨open, write, close⟩
... ...

982R ⟨open, write, close⟩

Figure 1.2: Schematic Sequential View of Event Data

features which are usually the dimensions, i.e., the columns, of the dataset. Then, events
can be grouped, predicted and more generally mined. However the order of the activities
is a key information in process analysis and this aspect is not given by the events them-
self. By grouping events by case identifier and ordering them by timestamp we obtain the
behavioral information as schematized in Fig. 7.2

Example 1.1.1 (Event Data). The first event of Fig. 7.1 belongs to case 239U . It
describes the activity ”open” and is associated to resource 1 of type ”Proc.1” and
resource 2 set as ”silent”. In fact, the case 239U contains several events. We can
concat its sequence of activities: ⟨open, read, write, close⟩ as shown in Fig. 7.2.

Technical Details

Event logs are commonly stored in XES files a XML type of files which allows to group
the events according the case ordered by timestamp, thus by keeping all the resource
attributes. An example is given in Fig. 1.3.

Then, from the sequences of events, the aim is to discover causality, concurrency, choice
and loop behavior. A causal dependency is simply the pattern of having an ordering
between activities. Concurrency draws the notion of parallelism between activities, where
a group of activities can appear in different orders. Choices allow to differentiate several
possible behaviors. Finally, loops is the repetition of operations in processes. Discovering
these patterns apace becomes a complex task due to the amount of different behaviors

2



CHAPTER 1. INTRODUCTION

<?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
<log>

<s t r i n g key=” concept:name ” va lue=” logjam ”/>
<t r a c e>

<s t r i n g key=” id ” va lue=”982R”/>
<event>

<s t r i n g key=” concept:name ” va lue=”open ”/>
<date key=” t ime:t imestamp ” va lue=”2020−16−03T15 :07 :00 ”/>
<s t r i n g key=” o r g : r e s o u r c e 1 ” va lue=”Proc . 1 ”/>
<s t r i n g key=” o r g : r e s o u r c e 2 ” va lue=” S i l e n t ”/>

</ event>
<event>

<s t r i n g key=” concept:name ” va lue=” wr i t e ”/>
<date key=” t ime:t imestamp ” va lue=”2020−16−03T23 :34 :00 ”/>
<s t r i n g key=” o r g : r e s o u r c e 1 ” va lue=”Proc . 1 ”/>
<s t r i n g key=” o r g : r e s o u r c e 2 ” va lue=” S i l e n t ”/>

</ event>
<event>

<s t r i n g key=” concept:name ” va lue=” c l o s e ”/>
<date key=” t ime:t imestamp ” va lue=”2021−17−03T12 :20 :00 ”/>
<s t r i n g key=” o r g : r e s o u r c e 1 ” va lue=”Proc . 2 ”/>
<s t r i n g key=” o r g : r e s o u r c e 2 ” va lue=”Console ”/>

</ event>
</ t r a c e>

</ log>

Figure 1.3: XES Format

contained in logs [76].
In addition, event data bring three fundamental difficulties: the lack of negative infor-

mation, the presence of history-dependent behavior and the presence of noise, i.e., errors,
in logs [139]. Indeed, recorded data contained in log are only positive information that
we want to learn. There is no false recorded behavior that would help to understand the
limitations of system. Moreover, business processes are inscribed in time and describe
a specific moment which makes it hard to generalize. Last but not least, quality of the
recorded logs is an important barrier in log analysis because one has to determine if some
events are missing or wrong before proceeding with process analysis.

In the literature, some fields like Sequences Pattern Mining focus on particular be-
haviors in sequential data [59]. Similarly, Deep Learning approaches have shown huge
improvements in sequence analysis like in Natural Language processing, where sentences
are sequences of words [94]. The context and order of items in sequences are of great
interest in research. However the aforementioned fields do not provide start-to-end un-
derstandable models which is core source of explainability required in Business Process
Management where decision makings must be reliable. Process models proved to be a
key element for describing, analyzing, monitoring and optimizing the execution of the pro-
cesses [100]. Thanks to Process Mining that bridges the gap between Business Process
Management and Data Science by providing a bunch of techniques to discover and verify

3



1.2. PROCESS MINING

process models [124].

1.2 Process Mining
Process Mining is a recent field that emerged in the last decades to extract information
from event logs by producing process models-centric analytics. Fig. 1.4 depicts the matters
of the field [119].

Figure 1.4: Positioning of the Three Main Types of Process Mining: Process Discovery,
Conformance Checking, and Enhancement

Real process instances are supported by systems which collect the event data. Thanks
to Process Discovery algorithms, data analysts can mine process models representing the
operations that structure their organizations [118]. These automated process discovery
methods take as input an event log, and produce a business process model that captures
the control-flow relations between tasks that are observed in the log. The produced models
are usually Petri nets or BPMN (Business Process Management Notation) models because
they allow to formally describe causality, concurrency, choice and loop behavior [9]. We
formally present Petri net models in the next chapter.

As business decisions rely on these discovered models, it is crucial to ensure the con-
formance of them with respect to the recorded process executions. This model-to-log
comparison is known as Conformance Checking [25]. Finally, Enhancement is the ability
to modify and correct the models to better assess the behaviors contained in organizations.

1.2.1 Conformance Checking
In this thesis we zoom on Conformance Checking methods and assume an existing process
model representing a corresponding event log. This assumption is realistic as a set of

4



CHAPTER 1. INTRODUCTION

Figure 1.5: Spaghetti Process Describing the Diagnosis and Treatment of 2765 Patients in
a Dutch Hospital, Example from [120]

algorithms exist to discover a process model from a log [121, 140, 125, 75, 10, 81]. Precisely,
a recent review by Augusto et al. identifies 35 groups of discovery algorithms in the
literature [9]. Furthermore, in many contexts, e.g. in Process-Aware Information Systems,
process models are often available [49].

Once a process model is discovered or given, the matter is to check the relevance of it
with respect to the real behaviors. Conformance checking aims at relating modeled and
observed behavior. The main objective is to measure the differences between the obtained
modelization and the recorded processes. As of today, there are four quality criteria for
good process models:

• Fitness (a.k.a. recall): indicates how much of the observed behavior in data is
described by the process model.

• Precision: measures how much modeled behavior exists in the event log.

• Generalization: represents the ability of a model to correctly capturing parts of
the system that have not been recorded

• Simplicity: measures the understandability of a process model by limiting the size
and complex structures of the resulting model.

A trade-off between the quality criteria is one big dilemma of the field because of the
high complexity of the involved data and the corresponding produced models [120]. For
instance, a known analogy of the problem is the spaghetti-like models. Fig. 1.5 show an
example given by [120] where the diagnosis and treatment of 2765 patients in a Dutch
hospital are described. Despite representing all or most of the behaviors of the log, this
kind of product is so dense that it is difficult to comprehend. Moreover, those models
usually contain many behaviors that are not present in the log as a result of the many
possible paths that they design. We say that the model is fitting, i.e., its fitness is high

5



1.2. PROCESS MINING

since the recorded processes are represented by the model, but imprecise because it models
many unobserved behaviors, and has a low simplicity as the structure is very dense. This
example triggers the challenge of finding a good compromise between the conformance
checking criteria.

Moreover, the metrics associated to the criteria are still discussed by the process min-
ing community [109]. The fitness metric is the only unanimously accepted one. It used
alignments, a conformance checking artefact that relates a log sequence to a run of the
corresponding process model [6]. The key interest of such artefacts is the explainability of
the results.

To deal with the conformance criteria, some studies propose to reduce the problem
to local parts of the processes [83, 110]. Instead of getting a global model of the all the
recorded operations, the approach aims at learning local process models representing sub-
processes contained in logs. Then, the produced process models are less complex and the
trade-off between the conformance checking criteria is more achievable.

Another method to reduce the complexity of event data and obtain more accurate
models is to analyze subsets of log instances separately.

1.2.2 Trace Variants and Process Instance Clustering
In Process Mining, the notion of trace variants refers to the unique behaviors in logs omit-
ting the resource attributes [114]. They are extracted to explore the different processes that
appear in organizations. However, in practice, the number of different process instances is
large and not interpretable by decision makers.

Example 1.2.1 (Trace Variants). Fig. 7.2 shows the sequences of activities. We
observe that cases 187V and 982R execute the same behavior. When extracting the
variants, only one version of this sequence of activities is kept.

In another hand, a main task for grouping objects in Exploratory Data Analysis is data
clustering. Data clustering is the task of partitioning objects in different groups known as
clusters, in which the objects are similar. Process instance clustering is then the partition
of log instances in sublogs such that the clusters group similar processes. This topic of
research has shown a large interest in process mining in the two last decades with 103
relevant works [144]. Thus, the similarity of process instances has been approached from
several perspectives:

• On the first hand, the study of the control-flow given by the log sequences allows
grouping process instances according to the behavior they describe. In other words,
the activities that appear in the system are assessed. These clustering methods range
from the study of the frequency of the activities [108] to the study of patterns [63,
39, 21, 78].

6



CHAPTER 1. INTRODUCTION

• On the other hand, context perspective approaches provide clustering based on
the data attributes like ”Resource 1” and ”Resource 2” of Fig. 7.1. These techniques
get closer to classical data mining [133].

• Some works deal with the two approaches [108, 79].

The outputs of those works show a real interest of process instance clustering in process
discovery. Instead of learning a model representing the entire log, the idea is to mine a
process model per cluster. Then, the produced models give a better compromise between
the quality criteria thanks to the homogeneity of the clusters.

A perspective missing of the last few paragraphs is the existence of a process model.
There, trace variants and clusters of process instances are learned and extracted from the
event log only.

1.3 Research Motivation
Once a process model has been validated by its process owner, the practitioner can benefit
from the knowledge of this model by using it as a baseline for log analysis. Hence, trace
variant extraction and process instance clustering can use this reliable process model as
input. This idea is in contrast to the aforementioned situation where the motivation
is to learn simpler models from sublogs. Here, the process model can be complex and
the objective is to extract simpler artefacts from it. This perspective is motivated by
the complexity of the process models produced by the discovery algorithms that mainly
prioritize fitness [120]. Since the learned model contains the behavioral information and
a visualization of it which known by the process owner, a log analysis based on it gives a
novel view for decision making.

In this thesis, we propose to fill this gap and present approaches that use conformance
checking techniques to represent sublogs based on a reliable process model. Thus, we
allow partitioning event log and extract modeled artefacts that we use as model-based trace
variants.

1.4 Thesis Overview
This thesis gives definitions, algorithms and applications of conformance checking artefacts
for finding good model-based trace variants, i.e., process instance representatives based on a
reliable process model, through clustering approach. In this section, we outline the content
of this thesis that reveals the main contributions. Then, we present the research challenges
and methodology that we have identified to develop our research. In Section. 1.4.3 we pro-
vide a summary of all the research pieces that have been previously published in interna-
tional peer-reviewed workshops, conferences and journals. All contributions are supported
by implementation and experiments. Thus, we conclude the introductory chapter with a
presentation of the tools.

7



1.4. THESIS OVERVIEW

1.4.1 Thesis Structure
The present thesis contains 6 chapters including the current one. Chapter 2 gives the
necessary background. Then Chapters 3 to 5 give the main contributions and Chapter 6
concludes the thesis. For each contribution of the main chapters, illustrated in Fig.1.6,
Fig.1.7 and Fig.1.8, we developed an optimal algorithm such that desired outputs can be
computed for demonstration. Those algorithms allow us to present proofs of concept of the
methods. Then, we propose heuristics to handle large inputs as they appear in industry.
We experimented every work with both artificial and real-life data.

The first contribution, schematized in Fig.1.6, is the development of two algorithms
for computing multi-alignments. Multi-alignment is a conformance checking artefact that
relates many log sequences to a unique modeled sequence. This artefact can help one
to get an overview of a log or a sub-log and then, stands as model-based trace variant.
The proposed algorithms for computing multi-alignments extend to classical alignments.
Consequently, this chapter provides an novel optimal encoding and several heuristics for
computing both alignments and multi-alignments.

Figure 1.6: Schematization of Chapter 3

The disadvantage of multi-alignment is that it is a single artefact that represents all
the sequences given as input. Thus, multi-alignment extraction fits well when the log is
homogeneous but becomes less appropriate when the log contains several types of behaviors.
In the latter situation, one want to separate the behaviors in different groups such that
the modeled variant is accurate to each group. Chapter 4 solves this problem by proposing
a set of 3 clustering methods based on alignments. Then, from a model and a log, the
algorithms partition the log sequences into clusters and provide a variant per cluster.

Figure 1.7: Schematization of Chapter 4

8



CHAPTER 1. INTRODUCTION

Both previous methods assume a process model and extract model-based trace variants
of a set of log sequences based on this model. However, the quality of the input model
makes varying the results of the methods. For this purpose, we present in Chapter 5
another conformance checking artefact entitled anti-alignment which aims at measuring
precision of process models. As shown in Fig. 1.8, the algorithm takes a model and a log
as input and extracts one of the most deviant modeled sequence with respect to the log.
This latter can then be used to compute the precision of the model.

Figure 1.8: Schematization of Chapter 5

In a nutshell, this thesis focuses on three conformance checking artefacts in the context
of log trace clustering. We now show how those works are positioned in the literature.

1.4.2 Research Challenges and Methodology

In 2012, Van der Aalst W. presented in [117] an overview of the challenges in Process
Mining. As our motivation is to get model-based trace variants though clustering approach,
we tackle Challenge 9 that highlights the interest in bridging the gap between process
mining and other techniques like data mining and optimization:

Combining Process Mining With Other Types of Analysis: The challenge is
to combine automated process mining techniques with other analysis approaches (optimiza-
tion techniques, data mining, simulation, visual analytics, etc.) to extract more insights
from event data.

Our proposed methods are based on conformance checking artefacts that rely on quality
of process models. Moreover, we work on anti-alignment which is a conformance checking
artefact used in a precision metric. Thus, the thesis also contributes to Challenge 6:

Balancing Between Quality Criteria such as Fitness, Simplicity, Preci-
sion, and Generalization: There are four competing quality dimensions: (a) fitness,
(b) simplicity, (c) precision, and (d) generalization. The challenge is to find models that
score good in all four dimensions.

Now, to define valuable methods for extracting model-based trace variants, we identify
the following research goals:

9



1.4. THESIS OVERVIEW

G1 (Definitions): formally defining the model-based trace variants
and the conformance checking artefacts

G2 (Settings): obtaining a restrictive number of model-based trace
variants for human analysis such that differences and similitudes
are well highlighted and interpretable for decision making, i.e.,
defining clustering parameters,

G3 (Proof of Concept): producing algorithms that get the model-
based trace variants and developing proofs of concept through a
set of experiments,

G4 (Analysis): checking the accuracy of the results in accordance to
the process executions contained in logs and the state-of-the-art
methods

These steps have been tackled in both the different contributions and this thesis.

1.4.3 List of Papers
Our contributions vary from theoretical definitions to algorithm optimization and experi-
ments. They have been published in peer-review papers that we list below. For each paper,
we give the tackled research goals and detail the propose piece of solution.

C1: Mathilde Boltenhagen, Thomas Chatain, and Josep CarmonaGeneralized Alignment-Based
Trace Clustering of Process Behavior, International Conference on Applications and
Theory of Petri Nets and Concurrency (June 2019)

This paper tackles G1 to G3 despite that the notion of model-based trace vari-
ants was not yet set and the algorithm worked only for artificial logs. The paper
presents different process instance clustering methods based on an existing pro-
cess model. The content is formally defined and associated to a SAT encoding.
We give an adaptation of the usual definitions of inter- and intra-cluster distance
for Petri net and set a list of quality criteria for finding good clustering.

C2: Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona Encoding Conformance
Checking Artefacts in SAT, Business Process Intelligence Workshop, in conjunction
with BPM’ 2019 (September 2019)

This paper brings a novel implementation of conformance checking artefacts
which fits G3 perfectly. Two of the three artefacts presented in this paper were
not computable before this contribution.

C3: Mathilde Boltenhagen, Thomas Chatain, and Josep CarmonaOptimized SAT encoding
of conformance checking artefacts, Computing, Springer-Verlag GmbH Austria, part
of Springer Nature

10



CHAPTER 1. INTRODUCTION

This paper is the journal extension of the previous paper noted C2. It tackles
the same goal but bring much faster and reliable implementation.

C4: Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona Model-based trace
variant analysis of event logs, Information Systems, Elsevier B.V.

Similarly to the previous contribution, this paper is the journal extension of con-
tribution C1. In this paper, the notion of model-based trace variants emerges.
We give large experiments and a comparison to another method of the state-of-
the-art which completes G3 of C1.

C5: Thomas Chatain, Mathilde Boltenhagen, and Josep CarmonaAnti-alignments—Measuring
the precision of process models and event logs, Information Systems, Elsevier B.V.

This contribution is a journal paper that presents anti-alignment and its use
for measuring precision of process model. In the context of this thesis, we will
see how anti-alignment helps in reaching good clustering results, i.e., it tackles
G4.

C6: Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona A Discounted Cost
Function for Fast Alignments of Business Processes , Business Process Management
Conference (September 2021)

The clustering methods presented in this thesis uses the conformance check-
ing entitled alignment as a key element for grouping the process instances.
Naturally, the efficiency to compute those artefacts influences the clustering
efficiency. This is why, we decided to work on alignment heuristics. This con-
tribution aims at penalizing prefix of the input sequences. This contribution
tackles G3.

At the time of the thesis writing, a paper is still under review. We mark it with
symbol *:

C7*: Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona An A*-Algorithm for
Computing Discounted Anti-Alignments in Process Mining, under revision for ICPM’2021

Observing the previous contributionC6*, we projected the idea to anti-alignment
thus making the algorithm working for real-life logs which was not possible be-
fore in C5. Then we classify this contribution to the G3.

Finally, some papers (workshops) are out of the scope of the present thesis despite
being in part of Process Mining contributions.

C8: Mohammadreza Fani Sani, Mathilde Boltenhagen, and Wil M.P. van der Aalst
Prototype Selection using Clustering and Conformance Metrics for Process Discovery,
Business Process Intelligence Workshop, in conjunction with BPM’ 2020

11



1.4. THESIS OVERVIEW

This paper gives a preprocessing method for process model discovery. In general
process models are very dense and complex which gives low precision. In this
paper, we incrementally use some process instance variants, entitled prototypes,
to learn a simpler model still accurate to the log. We use the F-measure to
obtain a good balance between fitness and precision.

C9: Mathilde Boltenhagen, Benjamin Chetioui, and Laurine Huber AnAlignment Cost-Based
Classification of Log Traces Using Machine-Learning, First International Workshop
on Leveraging Machine Learning in Process Mining, in conjunction with ICPM’2020

Not to confuse with data clustering, data classification is the task of predicting
label of objects. In this paper, we present an overall idea of conformance check-
ing classification in order to reduce the computation of alignments. By learning
which log instances are observed in the process model, we aims at predicting,
with a threshold, the binary class of them, i.e., are these behaviors modeled?
As of today, this work is still in progress.

1.4.4 Tools
The approaches and methods defined in this thesis are all implemented in open source
projects available on github 1. In some case, two implementations are even available for
the same work which reaches more the community.

DarkSider: DarkSider is the first prototype tool that implemented the opti-
mal encoding conformance checking methods for model-based trace
variants. Started by Thomas Chatain in 2016, the software is im-
plemented in Ocaml, a functional language that allows a good ty-
pography useful for SAT encoding. The tool is a command line
software which requires a terminal only. Contributions C1 and
C2 are implemented in this tool.

da4py: due to the abundance of interest in Python in the Data Science
community, da4py is the traduction of DarkSider in Python 3. Then,
we hope to motivate the community to contribute in our work.
Moreover, it is more convenient for users when a unique script
is used, for instance a Jupiter notebook. In the implementation
view, optimal encoding of the methods performs much better in
Python than in Ocaml thanks to the pysat library that bridges
the gap between Python and all the different outputs of the SAT
solvers [68]. Contributions C3, C4 and C5 belong to this library.

pm4py: finally contributions C6 and C7* are implemented in a copy of
pm4py Python library.

1https://github.com/BoltMaud

12



Chapter 2

Background

Chapter Overview

This chapter provides the notations and background needed to understand the remain-
der of the thesis. In Section 2.1, we present the process mining structures. Then, in
Section 2.2 the notion of alignment is detailed. Finally, Section 2.3 gives some formal
concepts like SAT encoding and complexity.

2.1 Structures

Process Mining brings a set of different process models including, but not limited to, process
trees, Petri nets, FlowCharts, and BPMN models. Similarly, event data can be exploited
in several ways. We precise the formal data structures used in this thesis in the followings.

2.1.1 Event Logs

Event data, as presented in the introduction section, contain various meta-data. The
present work focuses on the sequences of activities entitled log traces.

Definition 1 (Log Traces). Let Σ be a set of activities. We define a log L as a finite
multiset of sequences σ ∈ Σ∗, which we refer to as log traces.

A log trace σ corresponds to a behavior contained in the event log. It can be extracted
by grouping events by identifier, ordered by timestamp and noted by the name of the
activity of the events.

13



2.1. STRUCTURES

Technical Details

In XES files, the traces are already extracted in trace nodes. The timestamp are given
in date nodes with key time:timestamp and activity names are of type string, tagged
by a key entitled concept:name. An example is given in Fig. 1.3.

⟨open, read, write, close⟩
⟨open, read, write, close⟩
⟨open, read, write, close⟩
⟨open, write, close⟩

⟨open, wait, write, close⟩
⟨open, write, read, wait, wait, close⟩
⟨open, wait, write, read, close⟩
⟨write, wait, wait, close⟩

Figure 2.1: Log L

Example 2.1.1 (Log trace). An example of log traces is given in Fig. 2.1. The first
sequence σ = ⟨open, read, write, close⟩ correspond to the behavior of identifier 239U
of Fig. 7.2.

Classically, some log traces appear many times in the log: this simply means that they
correspond to frequent behavior. For this reason, one usually groups equivalent log traces
together and considers them as several instances of the same trace variant [114].

Definition 2 (Trace Variants). Given a log L, the trace variants are the unique sequences
contained in L.

Example 2.1.2 (Trace Variants). The trace variant ⟨open, read, write, close⟩ repre-
sents the three first log traces.

In another hand, as presented in the introduction, one can use clustering methods that
aim at partitioning data by similarity in order to allow slight differences in groups. We
give a general definition of trace clustering.

Definition 3 (Trace Clustering). Given a log L, a trace clustering over L is a partition
over a (possibly proper) subset of the traces in L.

2.1.2 Process Models
We use labeled Petri nets as process models. Those models formally define causality,
concurrency, choice and loop behaviors.

14



CHAPTER 2. BACKGROUND

Definition 4 (Process Model (Labeled Petri Net System) [87]). A Process Model defined by
a labeled Petri net system (or simply Petri net) is a tuple N = ⟨P, T, F,m0,mf ,Σ,Λ⟩, where
P is the set of places, T is the set of transitions (with P ∩ T = ∅), F ⊆ (P ×T )∪ (T ×P )
is the flow relation, m0 is the initial marking, mf is the final marking, Σ is an alphabet of
actions and Λ : T → Σ ∪ {τ} labels every transition by an action or as silent.

Semantics. A marking is the set of places that contain tokens for a given instant.
A transition x can fire if all the places before x, noted •x

def
= {y ∈ P | (y, x) ∈ F}, are

marked. When a transition fires, all the tokens in •x are removed and all the places in
x•

def
= {y ∈ P | (y, x) ∈ F} become marked. A marking m′ is reachable from m if there is

a sequence of firings ⟨t1 . . . tn⟩ that transforms m into m′, noted m[t1 . . . tn⟩m′. The set of
reachable markings from m in N is denoted by RS(N,m).

Labels of transitions are the activity names and the places correspond to state in
the processes. Black transitions refer to silence transition meaning that no activity is
represented. They are used for the consistence of Petri nets.

p1
t1

open
p2

p3

t2

read

t3

write

p4

p5

t4

τ

p6
t6

close
t5

wait

p7

Figure 2.2: A Model N

Example 2.1.3 (Process model, marking, firing sequence). Fig. 7.3 shows a process
model N of activities in Σ of log L. The initial marking is m0 = {p1 : 1}. When
firing transition t1, the token is removed from p1 and places p2 and p3 both receive
a token.
Transitions t1 and t4 form a concurrency pattern where activities read and write
can appear in parallel. The firing sequence ⟨t1, t2, t3, t4⟩ represents the sequence of
activities ⟨open, read, write, τ⟩ and reaches marking m′ = {p6 : 1}.

Definition 5. (Boundedness, Safeness) A Petri net N = ⟨P, T, F,m0,mf ,Σ,Λ⟩ is k-
bounded if no marking reachable from m0 assigns more than k tokens to any place. A
Petri net is safe if it is 1-bounded.

In this thesis, we tackle process model in the class of sate nets.

Definition 6. (Easy Soundness) Let N = ⟨P, T, F,m0,mf ,Σ,Λ⟩ be a Petri net over ac-
tivities in Σ. N is an easy sound Petri net if and only if mf ∈ RS(N,m0) .

15



2.2. ALIGNMENTS

Technical Details

In Process Mining, Petri nets are often reduced to Workflow Petri nets which are easy
sound and safe Petri nets whom initial and final marking are restricted to one place each.
As our methods work for a larger class of Petri nets, they can be applied to any workflow
Petri net.

Modeled behaviors of a process model N are the full runs of N defined below.

Definition 7 (Full runs). A full run of a model N is a firing sequence ⟨t1 . . . tn⟩ of tran-
sitions that can transform the initial marking m0 of N to the final marking mf of N . We
note Runs(N) the full runs of N .

Example 2.1.4 (Full runs). The run ⟨t1, t2, t3, t4, t6⟩ is a full run of the model of
Fig. 7.3.

To alleviate reading, we write the modeled sequences directly with the labels of the
transitions in the rest of the thesis.

2.2 Alignments
In the previous section, we presented an example of a log and a process model. But
the log traces are not all represented by the model. For instance, the recorded sequence
⟨write, wait, wait, close⟩ is not described by the model. Then, to relate these traces to the
model, Aray et al. presented alignments which is today the main conformance checking
artefact [4].

2.2.1 Definition
In this thesis, we present the definition of alignments as runs of the process model.

Definition 8 (Alignment). Given a log trace σ of L and a model N , an (optimal) alignment
of σ to N is a full run u ∈ Runs(N) which minimizes the distance dist(σ, u) between u
and σ, where dist is a distance between sequences.

Observe that, in the literature, the definition of alignments is usually merged to the
sequences of moves that encode a specific edit distance function.

Definition 9 (Sequence of Moves, Alignment Cost). Given a log trace σ = ⟨σ1, . . . , σm⟩ ∈
L, and a process model N , alignments of σ with N are given as sequences of moves
⟨(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)⟩ with p ≤ m + n such that, for a given index i and a given run

u = ⟨u1, . . . , un⟩ ∈ Runs(N):

16



CHAPTER 2. BACKGROUND

• each move (σ′
i, u

′
i) is either: a synchronous move (σj, uk) with σj = uk, a log move

(σj,≫), which represents the deletion of σj in σ, or a model move (≫, uk), which
represents the insertion of uk in σ, where j ∈ {1, . . . ,m} and k ∈ {1, . . . , n};

• the left projection ⟨σ′
1, . . . , σ

′
p⟩ of the alignment to A∗ (which drops the occurrences

of ≫), yields σ;

• the right projection ⟨u′1, . . . , u′p⟩ of the alignment to A∗(which drops the occurrences
of ≫), yields u.

The alignment cost or distance is the count of non-synchronous moves, expect for silent
transitions. Optimal sequences of moves are the ones that minimize the alignment cost
given σ and N .

Example 2.2.1 (Alignment, Sequence of Moves). For the log trace σ =
⟨open, wait, write, close⟩ and the process model N of Figure 7.3, u =
⟨open, write, τ, read, close⟩ is a run of N optimizing the alignment cost, i.e., u is
an alignment of σ to N . The table below shows the sequences of moves between σ
and u.

σ open wait write ≫ ≫ close
u open ≫ write τ read close

Since the sequence of moves contains three non-synchronous moves but one is a silent
label, the alignment cost is 2.

We separate this structured form of alignment in order to refer to the known distances
and allow the conformance artefacts to be delineated with other distance functions.

2.2.2 Distances
Def. 9 of the sequence of moves and alignment cost is a structured form of the Levenshtein
edit distance where the synchronization is not allowed. Moves correspond to the edits in
the distance.
Definition 10 (Levenshtein Edit distance). The Levenshtein Edit Distance L(u, v) between
two sequences u and v ∈ Σ∗ is the minimal number of edits needed to transform u to v.

L(u, v) def
=



L(⟨⟩, ⟨⟩) = 0

L(u, ⟨⟩) = |u|
L(⟨⟩, v) = |v|
L(a.u′, b.v′) = L(u′, v′) if (a = b)

L(a.u′, b.v′) = min
{
L(a.u′, v) + 1,

L(u, b.v′) + 1 otherwise.

(2.1)

Edits can be deletions or additions of an activity in sequence.

17



2.2. ALIGNMENTS

Insertions and deletions correspond to the log and model moves.

Example 2.2.2 (Edit Distance). Considering σ = ⟨open, wait, write, close⟩ and
u = ⟨open, write, read, τ, close⟩ the number of edits to transform σ to u is 2, where
τ has a free edit. The activity wait has to be removed and the activity read inserted.
Then the two sequences are at distance 2.

Other distances have been tackled in the literature but their definition is less appropri-
ate to process alignments. We illustrate it with the Hamming distance given below.

Definition 11 (Hamming distance). The Hamming Distance H(u, v) between two se-
quences u and v ∈ Σ∗ is the is the number of positions at which the content are different
in u and v. 

H(⟨⟩, ⟨⟩) = 0

H(u, ⟨⟩) = |u|
H(⟨⟩, v) = |v|

H(a.u′, b.v′) =

{
H(u′, v′), if (a = b)

H(u′, v′) + 1 otherwise.

(2.2)

Example 2.2.3 (Hamming Distance). Considering sequences σ′ =
⟨write, read, close⟩ and u = ⟨open, write, read, τ, close⟩, the Hamming distance is 4
as activities are different in all positions but τ offers a free edit. The Levenshtein
distance between σ′ and u is 1 because it removes activity open which allow to align
all the other activities. The Hamming distance disabled the correspondences between
σ and u which is not much appropriate for comparing process executions.

2.2.3 Synchronous Product
The main methods of the literature to compute optimal alignments are Dijkstra-based
algorithms which often implies the construction of the Synchronous Product between the
given process model and a sequential Petri net representing the log trace [4].

Definition 12 (Synchronous Product for Alignments). For a process model N =
⟨P, T, F,m0,mf ,Σ, λ⟩ and a log trace σ = ⟨σ1, . . . , σm⟩ ∈ Σ∗, the Synchronous Product used
for computing alignments is the Petri net SN = ⟨PSN , TSN , FSN ,
mSN0 ,mSNf

, (Σ ∪ {≫})2, λSN⟩ defined as:

• Nσ = ⟨Pσ, Tσ, Fσ,mσ0,mσf ,Σ, λσ⟩ is a translation of σ to a sequential Petri net with:
Pσ = {Pσ0 , . . . Pσm}, Tσ = {tσi

= λσ(σi) | i ∈ {1, . . . ,m}}, Fσ = {(Pσi−1
, tσi

), (tσi
, Pσi

) | i ∈
{1, . . . ,m}}, mσ0 = {Pσ0 : 1}, mσf = {Pσm : 1},

18



CHAPTER 2. BACKGROUND

• PSN = P ∪ Pσ

• TSN = T≫ ∪ T≫
σ ∪ TS, where T≫ = {(≫, t) | t ∈ T} represents the model moves,

T≫
σ = {(t,≫) | t ∈ Tσ} represents the log moves, TS = {(t1, t2) | t1 ∈ T, t2 ∈ Tσ and
λ(t1) = λσ(t2)} represents the synchronous moves,

• FSN = F ∪ Fσ ∪ {(Pi, ti) | ti = (t1, t2) ∈ TSN , t1 ̸= ≫, t2 ̸= ≫, Pi ∈ •t1 ∩ •t2}
∪ {(ti, Pi) | ti = (t1, t2) ∈ TSN , t1 ̸=≫, t2 ̸=≫, Pi ∈ t1• ∩ t2•}

• mSN0 = m0 ∪mσ0,

• mSNf
= mf ∪mσf

,

• λSN maps every t ∈ TSN to its move.

p1
(≫, open)

p2

p3

(≫, read)

(≫, write)

p4

p5

(≫, τ)
p6

(≫, close)

(≫, wait)

p7

(open,open) (write,write)

pα2

(open,≫)
pα1

(write,≫)
pα3

(close,≫)
pα4

(close,close)

Figure 2.3: A Synchronous Product SN of Process Model N Given in Fig. 7.3 and the
Log Trace σ = ⟨open, write, close⟩. Transitions in purple correspond to the model moves,
green transitions are the synchronous moves and yellow transitions the log moves.

Example 2.2.4 (Synchronous product). Fig 2.3 shows an example of synchronous
product. Transitions labeled with (open, open), (write, write) and (close, close) cor-
respond to synchronous moves and do not cost. Other transitions cost 1 (except
(≫, τ)).

The Dijkstra-based algorithm for finding optimal alignments, explores the reachability
graph of the synchronous product. Weights are given by the transitions fired to reach the
markings, according to the type of move that they represent. The best firing sequences
found for reaching a marking is the less costly one.

As we are using easy-sound Petri nets as process models, the Synchronous Products for
Alignments are easy-sound which implies termination of the Dijkstra algorithm with the
condition to reach the final marking mSNf

[142].

19



2.3. FORMAL METHODS

2.2.4 Alignment-based Fitness
Alignment is commonly used for measuring the fitness of a process model with regards
to the log traces. Every log trace is aligned to the process model in order to obtain the
alignment cost, or distance, between the trace and one of its optimal alignment of the
model.

We compute the fitness of a process model with regards to a trace as follows:

fitness(σ,N) = 1− minu∈N dist(σ, u)
|σ|+ min

u′∈Runs(N)
|u′|

(2.3)

where minu∈M dist(σ, u) gives the optimal cost of aligning σ with M using a run u. Then,
the fitness of the model is the average of the fitness of the traces for this model.

A trace is said to be fitting when its fitness is 1, i.e. when its optimal alignment has
a cost of 0. We define the fitness of a process model M with regards to a log L to be the
average of the fitness of M with regards to each log trace of L.

Example 2.2.5 (Fitness). The trace fitness of model N shown in Fig. 7.3 and
σ = ⟨open, wait, write, close⟩ is given by:

fitness(σ,N) = 1− 2

4 + 5
= 0.77

2.3 Formal Methods
The present thesis claims to belong to the subfield of conformance checking which implies
interest in complexity and optimality. In this section we recall complexity of a knonw Petri
net problem and the SAT definition of Petri nets.

2.3.1 Petri Nets and Complexity
The ability of Petri nets to offer modeling for concurrency, choice and repetitions contained
in a language enrolls an interest in decidability and complexity of the verification problems
involved in these nets. A impressive collection of questions have been explored from late
seventies to early eighties, engaging different classes of Petri nets [69]. Today most of them
are resolved [54, 53]. We present below the reachability problem, a baseline of complexity
problems in Petri nets, that we also use to identify the complexity of our methods.

Definition 13 (Reachability in Petri nets). The reachability problem for Petri nets con-
sists of deciding, given a Petri net N = ⟨P, T, F,m0,mf ,Σ,Λ⟩ and a marking ω of N ,
if ω can be reached from m0, i.e., if there exist a firing sequence ⟨t1 . . . tn⟩ such that
m0[t1 . . . tn⟩ω.

20



CHAPTER 2. BACKGROUND

The problem is known to be decidable, but non-elementary [37], and still PSPACE-
complete for safe Petri nets. But the complexity trivially drops to NP-complete if a bound
l is given (with l an integer coded in unary) on the length of u. NP-hardness can be
obtained by reduction from the problem of reachability in a safe acyclic Petri net, known
to be NP-complete [34].

The decidability of alignments is reducted to the problem of reachability of Petri nets
by using the synchronous product and its final marking. Alignment computation is then
also NP-complete when a bounded size of runs is given as input in unary [31, 19].

2.3.2 SAT Encoding
The Boolean satisfiability (or SAT) problem, is the problem of determining, for a given
Boolean formula, if there exists a combination of assignments to the variables that satisfies
it. For instance, in the case of marking reachability, a SAT formula would encode the
following question: Is the marking m of N reachable ? In other words, for this example,
we are looking for a Conjunctive Normal Formula (CNF) that encodes the token game of
the process model N . As SAT formulas encode problems as they are, solving them gives
optimality.

Petri Nets as SAT Instances

The SAT encoding of Petri net is not a novelty of the literature. We recall the formulas
given in [31].

For a Petri net N = ⟨P, T, F,m0,mf ,Σ,Λ⟩ and n the size of the full runs, the boolean
variables mi,p, with i ∈ {0..n} and p ∈ P , represent the marking at instant i. Then,
the variables µi,t encode a firing transition t ∈ T at instant i ∈ {0..n}: The following
constraints encode the semantics of the Petri net.

• Initial marking:
(
∧

p∈m0
m0,p) ∧ (

∧
p∈P\m0

¬m0,p) (2.4)

• Final marking:
(
∧

p∈mf
Mn,p) ∧ (

∧
p∈P\mf

¬mn,p) (2.5)

• One and only one ti for each i:∧n
i=1

∨
t∈T (µi,t ∧

∧
t′∈T\{t} ¬µi,t′) (2.6)

• The transitions are enabled when they fire:∧n
i=1

∧
t∈T (µi,t =⇒

∧
p∈•tmi−1,p) (2.7)

21



2.3. FORMAL METHODS

• Token game (for safe Petri nets):∧n
i=1

∧
t∈T

∧
p∈t•(µi,t =⇒ mi,p) (2.8)∧n

i=1

∧
t∈T

∧
p∈•t\t•(µi,t =⇒ ¬mi,p) (2.9)∧n

i=1

∧
t∈T

∧
p∈P,p ̸∈•t,p ̸∈t•(µi,t =⇒ (mi,p ⇐⇒ mi−1,p)) (2.10)

Example 2.3.1 (SAT encoding). Consider the model of Fig. 7.3. At the initializa-
tion, place p1 has a token. This information is encoded by m0,p1 = true. All the other
places do not have a token at this instant, this is described by axiom (2.4). At the
first instant, only transition t1 labeled by open can fire. We then have µ1,t1 = true.
All the others transitions do not fire at this instant. For instance µ1,t2 is false, i.e.,
transition t2 for activity read does not fire at instant 1. This behavior is defined by
axiom (2.6). The last axioms define the token game.

The presented clauses are then grouped in a conjunction and the entire formula is
transformed to a Conjunctive Normal Form (CNF) to be handled by the solvers of the
literature. Henceforth, process model’ semantics can be solved by a SAT formula.

MinSAT/MaxSAT Instances and Weigthed Clauses

MinSAT problem is the problem of finding boolean assignments that minimizes the number
of truth clauses in a CNF formula. In opposite, MaxSAT problems look for a solution that
maximizes the number of truth clauses. They are generalizations of SAT problems, which
ask whether there exists a truth assignment that makes clauses true.

Example 2.3.2 (MaxSAT). Consider the following CNF formula:

(x0 ∧ x1) ∨ (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1) ∨ (¬x0 ∧ ¬x1)

The formula is not satisfiable. However, we can get the minimal number of truth
clauses (one) and the maximal number of truth clauses (three).

Weigthed MinSAT and weighted MaxSAT problems generalize the idea which non-
negative weights assigned to the clauses of the formula. Two types of clauses can then be
distinguished: hard clauses and soft clauses. Hard clauses have to be satisfied whether soft
clauses are tackled by the minimization or maximization of the truth assignments.

Technical Details

Nicely, the recent library Pysat in Python provides a great access to MinSAT/MaxSAT
solvers.

The uses of SAT encodings aims at finding optimal solutions. Recent studies focus on
SAT implementation for Data Mining algorithms, in order to satisfy all the constrains and

22



CHAPTER 2. BACKGROUND

get optima [82, 38]. In this thesis, all the methods are first presented and implemented
as SAT, MinSAT or MaxSAT problems in order to push a new family of algorithmic
methods for conformance checking in the line of [31, 19]. However, these aforementioned
works mostly consider Hamming distance between log traces and process models, which is
usually considered less appropriate than edit distance (see example 2.2.3).

23





Chapter 3

Multi-Alignments: ConformanceCheckingArte-
facts forModel-basedRepresentationsof Logs
and Sub-Logs

Chapter Overview

The first contribution of this thesis is the computation of multi-alignments, i.e., a confor-
mance checking artefact that represents a set of log sequences. The artefact is introduced
in Section 3.1. Section 3.2 gives the related work. Sections 3.3 and 3.4 provide respec-
tively a MinSAT-based algorithm and an A*-based algorithm for computing the artefact.
Firstly elaborated for alignment computation, those algorithms are flexible to the dif-
ferent conformance checking artefacts. The first algorithm allows to compute optimal
multi-alignment for the first time. However, due to the complexity of the obtained Min-
SAT formula, this algorithm is restricted to artificial or small instances. We elaborated
an A*-based algorithm to approximate multi-alignments. This later algorithm uses a
novel distance function entitled the discounted edit distance. In Section 3.5, we show
several experiments of the two algorithms along with comparisons to the state-of-the-art
methods for alignments. We also present a case study where multi-alignments suit well
for model-based variants. We conclude the chapter by giving the limits and bridge to
the clustering methods for finding good representatives.

3.1 Introduction
Multi-alignments were introduced in [32] as a generalization of alignments. Instead of
aligning a trace to a run of a process model, multi-alignments allow to align a set of log
traces to a joint run of the model. The aim of this concept is to get an overview of several
traces with respect to a process model, i.e., a model-based trace variant.

25



3.1. INTRODUCTION

s

f

c

g

b

a

τ

d

(a) Process Model N1

{⟨s, f, b, a⟩,
⟨s, b, f⟩,
⟨s, c, b, a⟩,
⟨s, g, c, a, d⟩,
⟨s, d, d⟩}
(b) Log L1

Figure 3.1: Drawing Example for Multi-alignments.

Definition 14 (Multi-alignment). Given a finite collection L of log traces and a model N ,
an (optimal) multi-alignment of L to N is a full run u ∈ Runs(N) which minimizes the
quantity maxσ∈L dist(σ, u) that represents the maximal distance to any log trace, i.e.,

min
u∈Runs(N)

max
σ∈L

dist(σ, u) (3.1)

where dist is a distance between sequences.
The preferred distance dist for multi-alignment is, like for alignments, the Levenshtein

edit distance. The collection L aforementioned in the definition can be the entire log.
However, in practice, the use of multi-alignment fits well when the selected log sequences
are already related and the process owner looks for their model-based representation.

Example 3.1.1 (Multi-alignments). For the process model N1 and the log L1 a
multi-alignment is ⟨s, c, b, τ⟩ of maximal distance 4 to a log trace, i.e., there is no
run of N1 such that the maximal distance to any log trace is lower than 4.

Multi-Alignment Trace Distance

⟨s, c, b, τ⟩

⟨s, f, b, a⟩ 3
⟨s, b, f⟩ 2
⟨s, c, b, a⟩ 1
⟨s, g, c, a, d⟩ 4
⟨s, d, d⟩ 4

As for comparison, we show classical alignments of the log traces.

Alignment Trace Distance
⟨s, f, b, a⟩ ⟨s, f, b, a⟩ 0
⟨s, b, f, τ⟩ ⟨s, b, f⟩ 0
⟨s, c, b, a⟩ ⟨s, c, b, a⟩ 0

⟨s, g, c, d, d, τ⟩ ⟨s, g, c, a, d⟩ 1
⟨s, b, c, d, d, τ⟩ ⟨s, d, d⟩ 2

26



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Despite being less accurate to the classical alignments, which provide a result per trace,
multi-alignments give a modeled ”median” view of the log traces. When the maximal
distance is low, multi-alignments suit well for model-based trace variant.

Example 3.1.2 (Multi-alignments as Model-based Variants). For instance, for
L1′ = {⟨s, f, b, a⟩, ⟨s, c, b, a⟩, ⟨s, c, b⟩}, we find the multi-alignment ⟨s, c, b, a⟩ of max-
imal distance 1 which represents well all the log traces.

As it happens for alignments, there is not only one optimal multi-alignment for a given
log and model.

Example 3.1.3 (Several Optimal Multi-alignments). The modeled sequence
⟨s, b, c, d, a⟩ is also at maximal distance 4 to any log trace of L1.

Given the observation developed in Section 2.2 about the definition of alignments in
the literature, multi-alignments can also be enriched with the sequences of moves. The
discovered run that holds for multi-alignment is aligned to each log trace separately. Thus,
for each trace, one can build the sequences of moves with the found multi-alignment. The
number of non-free moves per sequence is then bounded by the distance of the multi-
alignment to the log.

Example 3.1.4 (Sequences of Moves in the case of Mutli-alignments). For
u = ⟨s, c, b, τ⟩ a multi-alignment of N1 for L1, we give an example of sequences of
moves for this multi-alignment u and every log trace of L1:

⟨s, f, b, a⟩ s f ≫ b ≫ a
u s ≫ c b τ ≫

⟨s, b, f⟩ s ≫ b ≫ f
u s c b τ ≫

⟨s, c, b, a⟩ s c b ≫ a
u s c b τ ≫

⟨s, g, c, a, d⟩ s g c ≫ a d ≫
u s ≫ c b ≫ ≫ τ

⟨s, d, d⟩ s ≫ ≫ ≫ d d
u s c b τ ≫ ≫

These sequences of moves for multi-alignment is not in the scope of interest of this
thesis, and we favor the distance notation between process model runs and log traces.

An algorithm for computing multi-alignments with Hamming distance is proposed in
[32]. However, this distance is less appropriate than edit distance in Process Mining (see
Example 2.2.3). In this chapter, we fill the gap by providing two algorithms for computing
multi-alignments by using some edit distances:

• a MinSAT-based algorithm which encodes the definition as it is to get optima

27



3.2. RELATED WORK

• an A*-based algorithm which contains several heuristics to get fast multi-alignment
approximations for real-life instances

Each multi-alignment algorithm is preceded by the alignment-based version that we can
compare with the state-of-the-art methods.

3.2 Related Work
In this related work section, the differences and similarities of sequence alignment in bioin-
formatics, where no process model is involved, are presented. Dealing with a process model
is a big challenge of Process Mining already when it comes to aligning a single trace only.
The second part of this section then focuses on alignment computation and approximation
which is core interest of this chapter. Indeed, multi-alignments are a generalization of align-
ments and our algorithms can be applied for aligning a single log trace to a process model.
Moreover, there is no other methods in the literature for computing multi-alignment apart
from the ones presented in this thesis.

3.2.1 Multiple Sequence Alignment in Bioinformatics
The notion of multi-alignments in Process Mining appears in 2017 in [32] and is not to
confuse with Multiple Sequence Alignment (MSA), one of the most important challenges in
bioinformatics [26, 29]. Despite its common interest in relating a set of sequences through a
unique alignment,MSA does not involve a process model whom language is not necessarily
bounded. Moreover, the maximization problem of MSA focuses on the sum of common
pairs between all the sequences while multi-alignments aims at finding a unique modeled
sequence close to all the log traces separately, i.e., there is no sequence-to-sequence relation.
However, the two fields stay close and we can observe works inMSA interested in ”median
sequence” [64], and partial order and markov chain representations [72, 51].

About implementation, Prestwich et al. present in [95] a work close to our where a
graph, representing the symbol alignment between sequences, is encoded in SAT. This
graph reminds the synchronous product between Petri nets because its aim is also to
align symbols with weighted edges where, in the synchronous product, we use weighted
transitions.

3.2.2 Computation of Alignments
The seminal work in [4] proposed the notion of alignment in Process Mining and devel-
oped a technique based on A∗ to compute optimal alignments for a particular class of
process models. Improvements of this approach have been presented recently in different
papers [126, 128]. The approach represents the state-of-the-art technique for computing
alignments, and can be adapted (at the expense of increasing significantly the memory

28



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

footprint) to provide all optimal alignments. Alternatives to A∗ have appeared in recent
years: in the approach presented in [43], the alignment problem is mapped as an auto-
mated planning instance. Automata-based techniques have also appeared [101, 74]. The
techniques in [101] (recently extended in [102]) rely on state-space exploration and determi-
nation of the automata corresponding to both the event log and the process model, whilst
the technique in [74] is based on computing several subsets of activities and projecting the
alignment instances accordingly.

The work in [111] presented the notion of approximate alignment to alleviate the com-
putational demands by proposing a recursive paradigm on the basis of the structural theory
of Petri nets. In spite of resource efficiency, the solution is not guaranteed to be executable.
A similar approach which can always guarantee a solution and heavily uses the resolution of
Integer Linear Programming (ILP) and marking equation in combination with a bounded
backtracking is presented in [126].

Decomposition techniques have been presented in [122, 85, 136] that, instead of com-
puting optimal alignments, they focus on the crucial problem of whether a given trace fits
or not a process model. These techniques vertically decompose the process model into
pieces satisfying certain conditions (so only valid decomposition [122], which satisfy re-
strictive conditions on the labels and connections forming a decomposition, guarantee the
derivation of a real alignment). Later on, the notion of recomposition has been proposed on
top of decomposition techniques, in order to obtain optimal alignments whenever possible
by iterating the decomposition methods when the required conditions do not hold [73].
Decomposition techniques brings us to the recent work of [131] which presents an online
alignment technique with a window-based backwards exploration.

Alternatively, the technique in [112] presents a framework to reduce a process model
and the event log accordingly, with the goal of alleviating the computation of alignments.
The obtained alignment, called macro-alignment since some of the positions are high-level
elements, is expanded based on the information gathered during the initial reduction.
Techniques using local search have recently been also proposed very recently [113].

In [20], the authors propose to disable the computation of alignments after a learning
stage. The idea is to use machine learning techniques to predict if a given trace is fitting
to a process model.

Finally, work of [15] proposes a slightly different goal for alignment. The aim of their
algorithm is to maximize the number of synchronous moves in the alignment where align-
ment usually minimizes the number of asynchronous moves.

3.3 MinSATEncoding forComputingMulti-alignments
The optimal method to compute multi-alignment with the Levenshtein edit distance is the
MinSAT encoding of the problem which is first set as a SAT problem as follows: Does a
multi-alignment exist between the log traces L and the model N for a maximal distance d?

To encode this problem, we first introduce our SAT encoding of the edit distance
between two sequences. This building block serves for alignments in general. We provide

29



3.3. MINSAT ENCODING FOR COMPUTING MULTI-ALIGNMENTS

the details to relate process models and traces for alignments and extend it to multi-
alignments.

3.3.1 SAT Encoding of Edit Distance

Our encoding of the Levenshtein edit distance is based on the same relations that are used
by the classical dynamic programming recursive algorithm for computing the distance
between two sequences u = ⟨u1, . . . , un⟩ and v = ⟨v1, . . . , vm⟩:

dist(⟨u1, . . . , ui⟩, ϵ) = i
dist(ϵ, ⟨v1, . . . , vj⟩) = j
dist(⟨u1, . . . , ui+1⟩, ⟨v1, . . . , vj+1⟩) =

dist(⟨u1, . . . , ui⟩, ⟨v1, . . . , vj⟩) if ui+1 = vj+1

1 +min(dist(⟨u1, . . . , ui+1⟩, ⟨v1, . . . , vj⟩),
dist(⟨u1, . . . , ui⟩, ⟨v1, . . . , vj+1⟩))

if ui+1 ̸= vj+1

(3.2)

We encode this computation in a SAT formula ϕ over variables δi,j,d, for i = 0, . . . , n,
j = 0, . . . ,m and d = 0, . . . , n+m. The formula ϕ has exactly one solution, in which each
variable δi,j,d is true iff dist(⟨u1 . . . ui⟩, ⟨v1 . . . vj⟩) ≥ d.

In order to test equality between the ui+1 and vj+1, we use variables λi+1,a and λ′j+1,a,
for i = 0, . . . , n, j = 0, . . . ,m and a ∈ Σ, which holds for having activity a at instant i
translated by λi+1,a is true iff ui+1 = a, and λ′j+1,a is true iff vj+1 = a. Hence, the test
ui+1 = vj+1 becomes: ∨

a∈Σ

(λi+1,a ∧ λ′j+1,a) (3.3)

For readability of the formulas, we refer to this coding by [ui+1 = vj+1]. Similarly, we write
[ui+1 ̸= vj+1].

In the following, we describe the different clauses of the formula ϕ of our SAT encoding
of the edit distance.

δ0,0,0 ∧
∧

d>0 ¬δ0,0,d (3.4)∧
d

∧n
i=0 (δi+1,0,d+1 ⇔ δi,0,d) (3.5)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇔ δ0,j,d) (3.6)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇔ δi,j,d) (3.7)

∧
d

n∧
i=0

n∧
j=0

[ui+1 ̸= vj+1]⇒ (δi+1,j+1,d+1 ⇔ (δi+1,j,d ∧ δi,j+1,d)) (3.8)

The conjunction of all the constraints get us a SAT formula of the Leventshein distance.

30



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Example 3.3.1 (SAT encoding of the Levenshtein edit distance). At instants i = 1
and j = 1 of sequences u = ⟨s, g, c⟩ and v = ⟨s, b, c, a⟩, the activities are the same (s),
then, by Eq. (3.4), the distance is only higher or equal to 0: (u1 = v1) ⇒ (δ1,1,0 ⇔
δ0,0,0).
However at instants i = 2 and j = 2, the letters u2 and v2 are different. A step
before, δ1,2,1 and δ2,1,1 are true because of the length of the sub-sequences. Then, by
(5), the distance at instants i = 2 and j = 2 is higher or equal to 2: δ2,2,2. The result
is correct because the edit distance costs the deletion of g and the addition of b to
transform u to v.

3.3.2 SAT Encoding of Alignments
The above clauses are considered in the SAT implementation of alignments. A log trace σ
is a sequence of activities and is encoded as presented in the previous section with boolean
variables λi,a where i ∈ {1, . . . , n} and a ∈ Σ. SAT encoding of process models has been
recalled in Background’s section. The fired transition at instant i and label a is given by
µi,a.

The last series of constraints that is needed to be appended is the relation of the fired
transitions to the activities of the log trace:

n∧
i=1

m∧
j=1

∨
a∈Σ

(λi,a ⇐⇒ µj,a) (3.9)

Example 3.3.2 (SAT variables explanation for alignment). All the full runs of the
process model of Fig. 3.1a contain a ”s” at the first instant. So the variable µ1,s is
true. If the log trace is σ = ⟨s, f, b, a⟩ then, λ1,s is true which implies δ1,1,0 by (3.4).

Technical Details

In order to consider different sizes of traces and different sizes of runs, we added a loop
on a wait activity on the final marking of the model. The SAT encoding of the edit
distance is adjusted so that skipping a wait activity does not increment the distance
between sequences.

Minimization of the Distance for Optimal Alignment

The conjunction of the previous clauses for the full runs of the model and the edit distance
to a given log trace σ, gives a formula which has one solution per full run of the model. With
each solution, the values of the δn,m,d determine the edit distance between the corresponding

31



3.3. MINSAT ENCODING FOR COMPUTING MULTI-ALIGNMENTS

modeled sequence and σ. Our goal for optimal alignment is to minimize this distance, which
corresponds to the number of variables assigned to true among the δn,m,d. This problem
is then a MinSAT instance where the minimization objective is the sum

∑
d 1× δn,m,d.

We associated clauses of δn,m,d boolean variables to a weight of 1 while all the other
clauses are hard clauses. Then, while resolving the SAT formula, the minimization of the
weights of the variables δn,m,d forces to assign those variables to false. Only the required
δn,m,d will be kept and the minimization of the distance can be found, i.e the cost of an
optimal alignment.

3.3.3 Application for Multi-Alignments
The SAT implementation of multi-alignment requires us to duplicate the variables λi,a,
now noted λσi,a, that represent actions in the log traces σ ∈ L and the variables δσi,j,d that
measure the edit distance to the run for each trace σ ∈ L.

Multi-alignment considers the run of the model that minimizes its maximal distance to
the log traces. To produce the general distance of the run and all the traces, we introduce
novel variables ∆d and the following axiom:∨

d

(∧
σ

δσn,|σ|,d ⇔ ∆d

)
(3.10)

where n is the size of the run. The ∆d variables define the distances d for which all
the traces verify this distance to the run of the model. The minimization objective for
multi-alignment is then :

∑
d 1×∆d.

Example 3.3.3 (Delta Boolean Variables). We computed the multi-alignment of the
model and the full log of Fig. 3.1a. The optimal multi-alignment is the full run
⟨s, c, b, τ⟩ which is at distance d ≤ 4 to all the log traces. Then the maximal d such
that a δσn,m,d is true is d = 4.

Technical Details

Observe that Section 5.3.1, which tackles anti-alignments, benefits of the same algorithm
thanks to a modification on weights.

Minimization of Maximal Distance versus Sum of Distances

In [18], it was presented a variant of multi-alignment that aims at optimizing the sum of
the distances between the run and the traces instead of the maximal distance between the
run and the traces.

Although in a way, optimizing the sum of distances tends to obtain in general reasonable
witness of multi-alignments, in some situations they can fail in representing a good solution.

32



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

The SAT formula does not require variables∆d introduced in the previous minimization.
Similarly to alignments, the optimal multi-alignment is found by minimizing objective:∑

d

∑
σ∈L 1× δσn,|σ|,d.

The two minimizations presented in this section give different definitions, that may not
be used in the same context. To convince readers, we propose the following comparison.

Example 3.3.4 (Comparison of multi-alignments minimization types). The follow-
ing table shows the two multi-alignment types for model N1 and log L1 of Fig. 3.1.

Method Multi-
Alignment

Maximal
Distance

Sum of
Distances

Maximizing Minimal
Distance

⟨s, c, b, τ⟩ 4 14

Minimizing Sum of
Distances

⟨s, c, b, a⟩ 5 13

We observe that the minimization of the sum returns the multi-alignment ⟨s, c, b, a⟩
which is a behavior that appears in the log. Then, for this trace, the distance is
null which helps for minimizing the sum of distances. However, the multi-alignment
⟨s, c, b, τ⟩ gives a better ”median” view of the log sequences.

3.3.4 Formula Reduction

For multi-alignment, the SAT edit distance formula is duplicated by the number of log
traces, which generates thousands of variables (see graphs of Fig. 3.6). In this section
we present a reduction of the formula. The main idea is to keep only one direction of
the double implications of the SAT encoding of the Levenshtein edit distance. As double
implications create clauses in the SAT formula, we improve the size of the formula and its
resolution.

As seen in Section 3.3.1, the edit distance between two sequences corresponds to the
number of variables assigned to true among the δn,m,d in the (unique) solution s of the
formula ϕ. Let us denote this value val(s). Now, when searching for an alignment to a log
trace (consider only alignment to one trace for simplicity), we combine the formula ϕ with
a formula ψ which encodes a set of runs of the model, and look for the solution s of the
combined formula Φ ≡ ϕ∧ψ which minimizes val(s). This minimization amounts to filter
the set of solutions of Φ. Here, we show that, relying on this filtering by the minimization,
we can reduce the formula Φ (that we now denote Φ⇔) constructed from the formula ϕ
of Section 3.3.1 (now denoted ϕ⇔) into a simpler formula Φ⇐ constructed from a reduced
version of ϕ⇔, denoted ϕ⇐ and defined as:

33



3.3. MINSAT ENCODING FOR COMPUTING MULTI-ALIGNMENTS

δ0,0,0 ∧
∧

d>0 ¬δ0,0,d (3.11)∧
d

∧n
i=0 (δi+1,0,d+1 ⇐ δi,0,d) (3.12)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇐ δ0,j,d) (3.13)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇐ δi,j,d) (3.14)

∧
d

n∧
i=0

n∧
j=0

[ui+1 ̸= vj+1]⇒ (δi+1,j+1,d+1 ⇐ (δi+1,j,d ∧ δi,j+1,d)) (3.15)

Lemma 1. The minimal value obtained by minimizing val(s) over the solutions of Φ⇐
is equal to the minimal multi-alignment distance obtained using Φ⇔. Formally, denote
sol(Φ⇔) (respectively sol(Φ⇐)) the set of solutions of Φ⇔ (respectively Φ⇐):

min
s∈sol(Φ⇐)

val(s) = min
s′∈sol(Φ⇔)

val(s′) . (3.16)

Proof. We represent every solution of a SAT formula as an application s : V ars →
{true, false} where V ars is the set of variables of the formula, so that s(v) denotes
the value assigned to variable v in s.

1. mins∈sol(Φ⇐) val(s) ≥ mins′∈sol(Φ⇔) val(s
′) : As Φ⇐ is defined like Φ⇔ with less con-

strains, we have Φ⇔ ⇒ Φ⇐, then sol(Φ⇔) ⊆ sol(Φ⇐) which implies mins∈sol(Φ⇐) val(s) ≥
mins′∈sol(Φ⇔) val(s

′).

2. mins∈sol(Φ⇐) val(s) ≤ mins′∈sol(Φ⇔) val(s
′) : Let s ∈ sol(Φ⇐). We will show how to

create s′ ∈ sol(Φ⇔) such that val(s′) ≥ val(s). We define s′ as follows :

• ∀i∈{0...n}, p∈P s′(mi,p) := s(mi,p)

• ∀i∈{1...n}, a∈Σ s′(µi,a) := s(µi,a)

• ∀σ∈L, i∈{1...|σ|}, a∈Σ s′(λσi,a) := s(λσi,a)

and

• ∀σ∈L, i∈{1...n},j∈{1...|σ|}, d∈{0...(n+|σ|)}
s′(δσi,j,d) := (dist(⟨u1, .., ui⟩, ⟨σ1, .., σj⟩) ≥ d) where dist is the edit distance. i.e.,
s′ assigns the values for the variables δσi,j,d according to the exact edit distance
while solution s represents under-approximation of the distances.

We then demonstrate that s′ is indeed a solution of Φ⇔ :

• variables mi,p, µi,a and λσi,a are assigned like in s which is a solution of Φ⇐ and
those variables are not affected by the reduction.

• variables δσi,j,d are defined using the edit distance which verifies axioms (3.4) to
(3.8) of Φ⇔.

34



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Finally, we show that val(s) ≤ val(s′) : As, for multi-alignment, we minimize the
distances, let’s demonstrate that s′(δσi,j,d) ⇒ s(δσi,j,d) for σ ∈ L, i ∈ {0, .., n}, j ∈
{0, .., |σ|} and d ∈ {0, .., (n+ |σ|)}.

Let σ ∈ L. We prove by induction on n that:

∀i,j,i+j≤n ∀d (dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) ≥ d)⇒ s(δσi,j,d).

• Initialization : for n = 0, which implies i = 0 and j = 0, we have:
– d = 0 dist(ϵ, ϵ) = 0 and δσ0,0,d = true.

Then it verifies (dist(ϵ, ϵ) ≥ 0)⇒ s(δσ0,0,0)

– ∀d>0, dist(ϵ, ϵ) < d and δσ0,0,d = false.
Then it verifies (dist(ϵ, ϵ) ≥ d)⇒ s(δσ0,0,d).

• Induction step: Assuming that (dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) ≥ d) ⇒ s(δσi,j,d)
holds for all i, j, d such that i+ j ≤ n, we show that the implication still holds
when i+ j = n+ 1:
– for i = 0 (i.e. u = ϵ): assume (dist(ϵ, ⟨σ1, . . . , σj⟩) ≥ d) is true. By defi-

nition of the edit distance, dist(ϵ, ⟨σ1, . . . , σj⟩) = 1 + dist(ϵ, ⟨σ1, . . . , σj−1⟩,
which implies dist(ϵ, ⟨σ1, . . . , σj−1⟩) ≥ d − 1. By the induction we know
that (dist(ϵ, ⟨σ1, . . . , σj−1⟩) ≥ d − 1) ⇒ s(δσ0,j−1,d−1). And finally, since s
satisfies axiom (3.12), we have s(δσ0,j,d).

– for j = 0 (i.e. σ = ϵ): the proof is similar to the previous case (with
axiom (3.13).

– for ui = σj : assume dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) ≥ d. By the induction
hypothesis, (dist(⟨u1, . . . , ui−1⟩, ⟨σ1, . . . , σj−1⟩) ≥ d) ⇒ s(δσi−1,j−1,d). Here,
dist(⟨u1, . . . , ui−1⟩, ⟨σ1, . . . , σj−1⟩) = dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) by def-
inition of the edit distance. Then s(δσi−1,j−1,d) holds, and, since s satisfies
axiom (3.15), we have s(δσi,j,d).

– for ui ̸= σj : if (dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) ≥ d) is true, then, by
definition of the edit distance, (dist(⟨u1, . . . , ui−1⟩, ⟨σ1, . . . , σj⟩) ≥ d − 1)
and (dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj−1⟩) ≥ d − 1). As i − 1 + j = n and
i+ j− 1 = n, we use the induction hypothesis to get s(δσi−1,j,d) = true and
s(δσi,j−1,d) = true. From axiom (3.15), we obtain s(δσi1,j,d) = true.

Technical Details

In Section.3.5.2, we show the reduction of the formula in term of CNF clauses for different
sizes of the run and log sizes.

35



3.3. MINSAT ENCODING FOR COMPUTING MULTI-ALIGNMENTS

3.3.5 Heuristics for the SAT Encoding
Due to the complexity of the problem, we present two heuristics to approximate the con-
formance checking artefacts by using the MinSAT-based method.

Prefix Limitation

Alignment and multi-alignments are runs of the process model that minimize the maximal
distance to the log traces. A first approximation is then to compute only a prefix of them.

Definition 15 (Prefixes of Petri net). A Prefix of size n for a Petri netN = ⟨P, T, F,M0,Mf ,Σ, λ⟩
is a firing sequence M0[u1⟩ . . .Mn−1[un⟩Mn, starting from the initial marking M0 and of
maximal length n.

Example 3.3.5 (Prefixes of Runs). The prefixes of size 2 for the model of Fig. 3.1a
are ⟨s, b⟩, ⟨s, f⟩, ⟨s, g⟩, and ⟨s, c⟩.

Similarly, the log traces are truncated.

Maximal Number of Edits

The SAT encoding of the Levenshtein distance between two words u and v, presented
in Section 3.3.1, uses boolean variables δi,j,d for i = 0, . . . , |u| , j = 0, . . . , |v| and d =
0, . . . , |u| + |v|. The maximal number of edits max_d heuristic is an approximation of
the SAT formula that aims at reducing the size of the formula by removing some clauses.
Optimal formula of Levenshtein distance between words u and v requires boolean variables
for |u| + |v| edits (parameter d of δi,j,d). The maximal number of edits heuristic uses
variables δi,j,d only with d smaller than some bounds max_d < |u| + |v|. This way, it
reduces also the size of the formula and the computation time to solve it.

The heuristic precisely encodes the computation of the following value distmax _d(u, v)
defined by slightly modifying the definition of Levenshtein’s distance (compare with the
definition of dist(u, v) in Section 3.3.1):

distmax_d(⟨u1, . . . , ui⟩, ϵ) = min(d, i)
distmax_d(ϵ, ⟨v1, . . . , vj⟩) = min(d, j)
distmax_d(⟨u1, . . . , ui+1⟩, ⟨v1, . . . , vj+1⟩) =

distmax_d(⟨u1, . . . , ui⟩, ⟨v1, . . . , vj⟩) if ui+1 = vj+1

min(d, 1 +min(distmax_d(⟨u1, . . . , ui+1⟩, ⟨v1, . . . , vj⟩),
distmax_d(⟨u1, . . . , ui⟩, ⟨v1, . . . , vj+1⟩)))

if ui+1 ̸= vj+1

(3.17)

Lemma 2. For every u and v, distmax_d(u, v) ≤ dist(u, v). Moreover, if dist(u, v) ≤ d
then distmax_d(u, v) = dist(u, v).

Proof. Both parts come naturally by strong induction on i+ j.

36



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Hence, the maximal number of edits heuristic gives a lower bound of the Levenshtein
distance.

3.3.6 Theoretical and Experimental Complexity
Like alignments, deciding the existence of multi-alignments is NP-complete for a size of
runs bounded by an integer n given as input in unary (Section. 2.3.1). In this paper we
propose to encode them as SAT instances and rely on efficient SAT solvers to compute the
artefacts. The dominating factor in the time complexity of our technique is to solve the
formulas, i.e. the call to the SAT solver dominates the complexity. The size of our formulas
(and the computation time to construct them) are polynomial in the input.

More precisely, the formula that encodes the edit distance between two words of lengths
n and m, has size O((n + m) × n × m). The formula for runs of length n of a model
N = ⟨P, T, F,m0,mf ,Σ,Λ⟩ has size O(|P | + n × (|T |2 + |F |)). The n × |T |2 comes from
the SAT formula (2.6) which enumerates pairs of transitions; it is immediate to encode the
same constraint as a pseudo-SAT formula of size O(n×|T |) using the ability of pseudo-SAT
to express directly constraints on the number of variables assigned to true among a set of
variables. Hence, the encoding of the model runs has size O(n× |F |).

For multi-alignments, we need to repeat the encoding of the edit distance for each log
trace. The size of the final formula sums to O((n +m) × n ×m × |L| + n × |F |), where
m is the maximum length of log traces. The (n +m) factor can be reduced significantly
by setting a limit threshold to the value of d in the computation of edit distances when
the distances of interest are expected to be sufficiently small. With this threshold, our
formulas are essentially:

• linear in the size of the model

• linear in the size of the log

• quadratic in the length n of the considered anti- or multi-alignments. Actually, going
further with the heuristic using threshold lim for edit distance, one could eliminate
all the variables δi,j,d with |j− i| ≥ lim and then make our formulas linear also in n.
We have not implemented this optimization.

The optimizations presented in Section 3.3.4 have a very significant impact in practice but
do not change the theoretical complexity.

Technical Details

In practice, what limits our approach is mainly memory used by the solver. While in
theory, solving a SAT formula requires only linear space, in practice, solvers tend to
store information in order to improve their time complexity. On the other hand, the
time required to solve our formulas in practice, does not grow as fast as the exponential
than one could expect from the theoretical complexity.

37



3.4. AN A* ALGORITHM FOR COMPUTING DISCOUNTED MULTI-ALIGNMENTS

3.3.7 Conclusion and Limit of the MinSAT Algorithm

In this subsection, we presented the first algorithm to compute multi-alignment with edit
distance. Due to the complexity of the SAT formula that encodes the entire log sequences
and the process model, the algorithm takes time and memory for getting the CNF form
required by the solvers. Indeed, the translation of the SAT formulas to CNF creates a
large number of variables [96]. In practice, the algorithm blows up for real-life instances.
Moreover the SAT formula quickly appears as a black box which is hard to optimize and
modify for non-experts. This is why we present in Section. 3.4 another algorithm that gets
multi-alignments based on a very known base of algorithm, i.e., an A*-based algorithm.

3.4 AnA*Algorithm forComputingDiscountedMulti-
Alignments

The A* algorithm is a very known search path algorithm for graph widely used for its
completeness and optimality [65]. Like other works of the literature [4], we employ the
reachability graphs of Petri nets to transverse process models with this algorithm. The
novelty of our approach is the introduction of the discounted edit distance that prioritizes
prefixes of alignments thus enabling the computation of more complex problems like multi-
alignments.

The idea behind the discounted edit distance is motivated by the following use case: for
certain processes, the costs associated to deviations at early stages of the process’ execution
are more important than the ones at the end. For instance, consider a loan application
process that has two decisions: one at the beginning, assessing the type of customer (gold,
silver, normal), and one at the end, determining whereas the loan was received in a labor
day or not. It is normal that the stage in which these decisions are made in any possible
execution of the process reveal their importance. For instance, if for the company it is
very important to know the type of the customer because further information needs to be
gathered depending on the customer’s type, then it is likely that the corresponding process
has the type of customer decision close to the start of any possible execution. On the
contrary, if the day when the loan was received is not so important, then it is likely that
the corresponding events will be pushed to the end of the traces.

The aforementioned situation holds for knock-out processes [123], representing processes
where two outcomes are possible: OK or NOK. In these processes, ordering checks are
usually observed, because it allows faster process executions. Indeed, as many tasks of
those processes aim at determining the final output, the knock-out decisions should be
taken at the beginning of the process, in growing order [99].

38



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

3.4.1 The Discounted Edit Distance
The idea of the discounted edit distance is to penalize more insertions and deletions when
they occur at the beginning of the sequences, and less when they occur later.
Definition 16 (Discounted Edit Distance). We define the Discounted Edit Distance be-
tween two sequences u and v with discount parameter θ ≥ 1 by Dθ(u, v)

def
= D0

θ(u, v) where:

Dk
θ (u, v) =



Dk
θ (⟨⟩, ⟨⟩) = 0

Dk
θ (⟨⟩, b.v′) = Dk+1

θ (⟨⟩, v′) + θ−k

Dk
θ (a.u

′, ⟨⟩) = Dk+1
θ (u′, ⟨⟩) + θ−k

Dk
θ (a.u

′, b.v′) = Dk+2
θ (u′, v′) if (a == b)

Dk
θ (a.u

′, b.v′) = min
{
Dk+1

θ (u′, v) + θ−k

Dk+1
θ (u, v′) + θ−k otherwise.

(3.18)

Hence, insertions and deletions cost θ−k where k refers to the position where they occur.
Lemma 3. For θ = 1, the discounted edit distance corresponds to the Levenshtein distance.
Proof. With θ = 1, we have θ−k = 1 for any k and we obtain Def. 30 from Def. 34.

Example 3.4.1 (Discounted Edit Distance). Let u = ⟨x, a, b⟩ and v = ⟨a, y, b⟩. The
discounted edit distance between u and v is Du,v

θ = θ−1 + θ−4. If θ = 1, the distance
equals to 2 and is the Levenshtein edit distance where deleting x costs 1 and adding
y costs 1.

Technical Details

The Discounted Edit Distance is implemented in pm4py, in the boltmaud/pm4py branch,
with a dynamic programming.

In practice, relevant values for the discount parameter θ are slightly larger than 1. For
θ = 2, the discount is already very severe since an edit at position k costs more than the
sum of all the following edits.
Lemma 4. With the Discounted Edit Distance, for θ ≥ 2, an edit at position k costs more
than the sum of all the following edits.
Proof. For u and v, two words, let k be the position of a non-free cost in Dθ(u, v). We
note its cost c(k) = θ−k.

The next edits can occur at positions j ∈ {k + 1, . . . , n} where, in the worst case,
n = |u| + |v|. We write S(j, n) the sum of costs. The maximal value of this sum appears
when only non-free edits are used by the discounted edit distance:

S(k, n) =
n∑

j=k+1

c(j) = θ−(k+1) + θ−(k+2) + · · ·+ θ−n =
θ−k − θ−n

θ − 1
(3.19)

39



3.4. AN A* ALGORITHM FOR COMPUTING DISCOUNTED MULTI-ALIGNMENTS

Hence, c(k) = θ−k > S(k, n) for θ ∈ [2,∞[. Otherwise, in the best case, there is no edit
after position k and the cost of the edit at position k is higher than a null sum.

Observe that the discounted edit distance is not a proper distance metric because it
does not have the triangle inequality property recalled below:

dist(u,w) ≤ dist(u, v) + dist(v, w) (3.20)
However, in this thesis, we abuse of the term distance for its resemblance to the classical
edit distance. Indeed, by introducing this novel similarity metric, we aim at proposing
a variant of the Levenshtein edit distance to approximate alignments. Other distances,
like the cosine distance, also abuse of this term for similar reasons [97]. The discounted
edit distance is a semimetric because it verifies the first axioms for a metric: d(x, y)�0,
d(x, y) = 0 if and only if x = y and d(x, y) = d(y, x). We give below a counter example
of the triangle inequality property for the discounted edit distance.

Example 3.4.2 (Discounted Edit Distance does not verify the triangle inequal-
ity property). Let u = ⟨b, b, a⟩, v = ⟨a, b⟩ and w = ⟨a, a⟩. For θ =
2.000000000000001, we have Dθ(u,w) = 1.5624999999999996 and Dθ(u,w) +
Dθ(u,w) = 1.5624999999999991 which does not verify the triangle inequality prop-
erty.

3.4.2 Using the Discounted Edit Distance for Alignments
Similarly to the Levenshtein edit distance, the discounted edit distance can be applied to
alignments. For θ = 1, alignments based on the discounted edit distance is equivalent
to classical alignment. However when θ > 1, the costs are dynamic and depend on the
number of previous edits.
Lemma 5. For θ > 1, an edit ω of position j, any move of position k > j costs less than
ω.
Proof. Any function f : k −→ θ−k where θ > 1 is strictly decreasing. Then for j < k, we
have θ−j > θ−k.

As a consequence, algorithms for computing optimal discounted alignments will tend
to align in priority the prefixes of the log traces. Suffixes are less costly. From Lemma 4,
when the discount parameter is θ = 2, an edit of position j is more costly than the sum of
all the next costs.

Example 3.4.3 (Prefixes First). Let σ = ⟨s, f, a, g, d, d⟩ a log sequence and the
process model N2 of Fig. 3.1a. The best classical alignment is ⟨s, f, g, d, d⟩ with a
cost of 1 for the deletion of activity a in σ. When using the discounted edit distance
with θ = 2, the optimal alignment is ⟨s, f, a, τ⟩ in order to align activity a and
disabling an edit of cost θ−5.

40



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

3.4.3 A* Algorithm for Computing Discounted Alignments
To compute alignments by using the discounted cost function, we present an A*-based
algorithm which assigns weights to the explored states according to the discounted cost
function for alignment. To a state reached by a move ω occurring in position i, will be
assigned the weight of its predecessor, increased by the cost

h(ω, i, θ)
def
= (0 if ω is a synchronous move, θ−i otherwise). (3.21)

As a result of Lemma 5, this heuristic aims at aligning prefix first more than suffixes.
The function h, based on the discounted cost function, is easily incorporated in the

state-of-the-art algorithms for computing alignments.

Synchronous Product Exploration

Our algorithm Alg. 1, noted A∗SPD=θ, is inspired from [25]. It proceeds by exploring the
state space of the synchronous product of the process model and the sequential Petri net
representing the log trace as defined in Def. 12. An alignment corresponds to the shortest
path between the initial marking to the final marking of the synchronous product. For this
purpose, our A* algorithm maintains a priority queue Q of prefixes of runs, implemented
as a heap of tuples ⟨γ,m, d⟩, for a prefix γ reaching marking m at cost d, such that the
tuple with minimal cost d pops first. Line 1 initializes the heap with the empty prefix
reaching the initial marking at cost 0, i.e. ⟨⟨⟩,m0, 0⟩.

Algorithm 1: Computation of Discounted Alignments
Input : SP = ((P, T, F,m0,mf , (Σ ∪ {≫})2, λ)): synchronous product,

θ: discount parameter
1 Q← {⟨⟨⟩,m0, 0⟩} // Heap of open states ordered by distance
2 A← ∅ // Initialize closed set
3 while Q ̸= ∅ // While not all reachable states visited
4 do
5 ⟨γ,m, d⟩ ← Q.pop() // Get next state minimizing d
6 if m = mf then

Return: ⟨d, γ⟩
7 A← A ∪ {⟨m, |γ|⟩} // Add state to closed set
8 for t ∈ T with m[t⟩m′ do
9 γ′ ← γ • t // Get new prefix

10 if ⟨m′, |γ′|⟩ ̸∈ A // Reaching a not yet visited state
11 then
12 d′ ← d+ h(t, |γ′|, θ) // Compute cost of γ′

13 Q← Q.insert(⟨γ′,m′, d′⟩) // Insert new prefix in heap

Raise : mf is not reachable

41



3.4. AN A* ALGORITHM FOR COMPUTING DISCOUNTED MULTI-ALIGNMENTS

a

b

(a) Process Model N2

⟨a, b⟩
(b) Log trace σ2

p1

(≫,τ)
p2

(≫,a)

(≫,b)

(≫,τ)

p3

(≫,τ)
p4

(b,b)(a,a)
pα2

(b,≫)(a,≫)
pα1 pα3

(c) Synchronous Product between N2 and σ2.

Figure 3.2: Drawing the Role of Length in the States of the A* Algorithm.

Line 3 starts a while loop that ends only when the final marking is reached (line 6) or
when the priority queue is empty (line 3). Line 9 gets the next firing transitions of the
synchronous product. Some transitions correspond to the log and model moves and are
costly. The other transitions are the synchronous moves and are free, like in the original
algorithm.

Our discounted cost function h appears on line 12 and determines the cost of the new
prefix. Line 13 adds the new discovered state in the priority queue with its prefix γ′ and
it cost d′ for reaching m′.

When the algorithm reaches the final marking, line 6, the while loop is broken and the
algorithm returns the sequence of firing transitions to reach the final marking. In fact, this
sequence of transitions gives the sequence of moves of the alignment.

Role of Length in States

In the classical version of alignment computation, the state contains the markings only.
However, the length of the current alignment plays an important role in the discounted
cost function. Indeed, the first visit of a marking might not be the optimal one, as it is the
case in the classical version of alignments. A same marking ω can be reached with different
firing sequences of moves of different lengths. The first path that gives the first visit of the
marking ω is the shortest one. Let’s call this short path γshort, and γlong a longer path from
the initial marking to this marking ω. We have |γlong| > |γshort|. However, γshort might
contain future edits to reach the final marking. If those edits are of position lower than
|γlong|, it questions the optimality of γshort. We give an example of this situation below.

42



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Example 3.4.4 (Role of Length in the Algorithm). Let’s consider the simple process
model N2 on the left and the log sequence σ2 = ⟨a, b⟩ of Fig. 3.2. Fig. 3.2c shows
the synchronous product of N2 and σ2. Let’s suppose that silent transition labeled by
τ costs for this example. For the marking ω = {p3 : 1, pα3 : 1} of the synchronous
product, two firing sequences compete for the minimization of the cost. Indeed,
both γ = ⟨(≫, τ), (a, a), (≫, τ)⟩ and γ′ = ⟨(≫, τ), (a, a), (≫, τ), (b, b)⟩ have a cost of
θ−1 + θ−3 and reach ω. However we notice that γ′ has a synchronization at position
4, but we do not know yet what appear at position 4 for γ′. Then both paths should
be kept.

Notice that we tackled the problem of optimality of the alignment with the discounted
cost function. For θ > 1, this optimality does not correspond to the optimal classical
alignment.

Process Model Exploration Along with Trace Exploration

In order to speed up the exploration, the alignment algorithm can simulate the synchronous
product without explicitly constructing it. The synchronous product allows to easily play
the moves of alignment. However, those moves can be found by exploring the process model
and the trace separately. By comparing the next activity of the process model, given by
the semantic of the net, and the next activity of the trace, we obtain the type of move. For
instance, at the initialization, one possible next activity of N2 of Fig. 3.2c is a and the first
activity in σ is also a. Then, we can move forward with a synchronous move, like in the
synchronous product but without constructing the corresponding transition of the move.
Then the m in the algorithm (for the marking of the synchronous product) is replaced by
a pair ⟨m, p⟩ where m is the marking of the process model and p the position in the trace.
Any marking of A∗SPD=θ can be given into a couple ⟨m, p⟩ in this proposed simulation
that we note A∗PTD=θ. For instance, marking {p4 : 1, pα2 : 1} of the synchronous product
given in Fig. 3.2 corresponds to ⟨{p2 : 1}, 1⟩ where {p2 : 1} is the marking in N and 1 the
position in σ. The final marking becomes ⟨mf , |σ|⟩ where the trace has been read and the
process model reaches its final places.

Technical Details

Both algorithms are implemented in a branch of pm4py. Parameter SYNCHRONOUS
of pm4py.algo.conformance.alignments.variants.dijkstra_exponential_heuristic class al-
lows choosing between the two versions.

3.4.4 Comparison to Classical Alignments
Due to the discount parameter θ in the discounted cost function, our heuristic prioritizes
the alignment of the beginning of the log trace. In the algorithm, this difference with the

43



3.4. AN A* ALGORITHM FOR COMPUTING DISCOUNTED MULTI-ALIGNMENTS

classical alignment algorithm appears line 5 of Alg. 1 where the markings that minimize the
cost are much more different with the discounted cost function than by using the classical
cost function for alignments. Indeed, when costs are all equivalent, many paths compete
in the search for the optimal alignment. However, with very different costs, the number of
paths with similar costs is low, thus reducing the search space. This characteristic is well
observed in practice with a reduction of runtime.

Example 3.4.5 (Reducing the Search Space with the Discounted Parameter). For
the example of Fig. 3.1a, there is a first choice between f , c, b and g. For large θ,
the decision is quickly given thus disabling testing the depth of the other paths. Let
σ′
2 = ⟨s, f, b, a⟩ the first trace of L2. With θ = 2, ⟨s, f⟩ is already the optimal prefix

because f allows a synchronizations where the other paths give a cost of θ−3 for a
model move.

3.4.5 Heuristic for Reducing theSearchSpaceofAlignmentCom-
putation

The search space of A∗SPD=θ is large and even larger than the Dijsktra-based algorithm
for alignments due to the incorporation of the lengths of the runs that reach the same
marking. To reduce it, we come back to the classical closed set that contain the markings
only. Every ⟨m, |γ|⟩ of the closed set A is reduced to m (like in [25]).

With this reduction, only the first paths that reaches the marking are used. When
several concurrent firing sequences of equal cost exist, line 5 picks one as the optimal path
and line 8 classifies the marking in A. Then the other firing sequences of equal cost for
this marking are not considered anymore (line 10).

In practice, the loss of quality is very limited: we observed that the alignments found
by the modified algorithm have very similar discounted cost than without this heuristic.

3.4.6 Adaptation of the A* Algorithm for Multi-alignment
Multi-alignment computation involves the entire log. Thus the previous algorithm which
uses the construction of the synchronous product or its simulation does not work for multi-
alignments. However, we present in Alg. 2 an adaptation of the algorithm where we
transverse the reachability graph of the process model only. Each state is still a tuple
⟨γ,m, d⟩ where m is a marking and γ the prefix of run that reaches it for a distance d.
Now, weights of states are given by the heuristic:

h(γ, L, θ)
def
= max

σ∈L

(
Dθ,(γ, σ)−

θ−|γ|+1 − θ−(|σ|+|γ|)

θ − 1

)
(3.22)

which depicts the maximal distance of the prefix γ to the log traces by using the discounted
edit distance and prevents, with − θ−|γ|+1−θ−(|σ|+|γ|)

θ−1
, the best alignment suffix of u for each

44



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

σ ∈ L. The minimization of this maximal distance to the log traces is found by the search
of the shortest path. Once the final marking is reached, the exact maximal discounted edit
distance maxσ∈LDθ,(γ, σ) of the found u to the log is computed (line 8). The algorithm
checks that no other run beats this best multi-alignment before stopping.

This algorithm involves the computation of the distance for each trace at each step
which is the weakness of the methods. However, the algorithm is able to deal with large
instances as the memory space of the algorithm is polynomial.

Algorithm 2: Computation of Multi-Alignment by using the Discounted Distance
Input : N = (P, T, F, λ,m0,mf ): process model,

L: log,
θ: discount parameter

1 Q← {⟨⟨⟩,m0, h(⟨⟩, L)⟩} // Heap of open states ordered by distance
2 Bγ ← undefined // Current best multi-alignment
3 Bδ ← −∞ // Current best distance to reach mf

4 while Q ̸= ∅ // While not all states visited
5 do
6 ⟨γ,m, d⟩ ← Q.pop() // Next state maximizing d
7 if m == mf then
8 δ ← maxσ∈LDθ(γ, σ) // Exact distance δ
9 if Bδ > δ then

10 Bγ ← γ // New best multi-alignment
11 Bδ ← δ // Update distance

12 for t ∈ T with m[t⟩m′ do
13 γ′ ← γ · t // Get new prefix
14 d′ ← h(γ′, L) // Get possible distance of γ′ to L
15 Q← Q.insert(⟨γ′,m′, d′⟩) // Place new state

Output: Bγ: best multi-alignment,
Bδ: minimal distance of Bγ to L

Preempting the Best Suffix

Here, we explain the need of the fraction − θ−|γ|+1−θ−|σ|+|γ|

θ−1
of the heuristic function.

The heuristic preempts an approximation of the best suffix γ′ for γ. In the best case,
where maxσ∈LDθ(γ•γ′, σ) = 0, either γ′ = ⟨⟩ and maxσ∈LDθ(γ, σ) = 0, either edits
between γ and σ are log moves and synchronizations with γ′ appear after position |γ|
and, in the worst case, for all activities in σ. The sum of costs S(|γ| + 1, |sigma| +
|γ|) = − θ−|γ|+1−θ−(|σ|+|γ|)

θ−1
(c.f. Proof of Lemma. 5 on page 40) preempts such situation by

supposing that every activity of σ aligns with γ′ from position |γ|. The worst case is when
maxσ∈LDθ(γ•γ′, σ) = |γ|+ |γ′|+ |σ|. Fortunately the fraction − θ−|γ|+1−θ−(|σ|+|γ|)

θ−1
alleviates

45



3.5. EXPERIMENTS

potential future alignments of every activity contained in σ.
The priority queue stores the prefixes of multi-alignments. Like for alignments, this

queue gives an approximation because the discounted edit distance does not verify the
triangle inequality. Equivalently, we observe good results in practice.

Example 3.4.6 (Suffix Multi-alignment). Let consider model N1 of Fig. 3.1a, log
L1′ = {⟨s, f, b, a⟩, ⟨s, c, b, a⟩, ⟨s, c, b⟩} and θ = 2. For the prefix multi-alignments
γ = ⟨s, c, b⟩, the heuristic function h is h(γ, L1′, 2) = 2−3 + 2−4 + 2−7 − 2−4−2−7

1
=

0.14 where the further log trace is σ = ⟨s, f, b, a⟩. The fraction preempts potential
future synchronizations which can appear on position 4 in the best case. The prefix
γ′ = ⟨s, g, d⟩ costs h(γ, L1′, 2) = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8− 2−4−2−7

1
= 0.19.

For models with loops, the while loop continues infinitely. To break it, we use a limit
of reaching the final marking. We also applied this same heuristic to any marking which
brings us the next nice heuristic.

3.4.7 Heuristic for Reducing the Search Space of the A*-based
Algorithm for Computing Multi-alignment

When models are dense in choices, concurrency and loops, some markings are visited a large
number of times. For instance, all possibles combinations of a concurrent part finally reach
the same marking. Because best prefixes are prioritized, a simple but efficient heuristic is
to limit the number of times a marking can be reached. We propose a parameter µ for this
purpose and observe good results in practice.

3.4.8 Conclusion of the A*-based Algorithm
Thanks to our discounted edit distance, we developed an A*-based algorithm which reduces
the search space for alignment by disabling runs that do not align well at the beginning
of the sequences. The algorithm is adapted to multi-alignment computation which allows
to obtain model-based trace variants for real-life logs which was not possible with the
SAT-based algorithm. We present concrete experiments in the next section.

3.5 Experiments
The algorithms presented in this chapter have been implemented in the three tool presented
in Section.1.4.4 : Darksider, da4py and pm4py. The MinSAT-based method is given in both
Darksider and da4py. The former is out-of-date for multi-alignments because it contains
only the minimization of the sum of distances while the preferred goal is the minimization
of the maximal distance. Moreover, the latter gives the fastest results because it provides
the optimized version of the SAT encoding and allows setting state-of-the-art SAT solvers.

46



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

The A*-based algorithms are developed in a branch of pm4py in the aim of providing a large
range of access to multi-alignment computation. This algorithm gives fast approximations
that allows to obtain the artefact for real-life instances. Some tutorials for launching
alignments and multi-alignments by using the three tools are given in Appendices. A.1
and A.2.

This section presents a set of experiments of the different algorithms for both align-
ment and multi-alignment computation. Indeed, despite this chapter focuses on multi-
alignments, the contribution brings some novel algorithms for computing alignments too.
We compare their quality and runtime to the state-of-the-art methods. About multi-
alignments, we first show the improvement in term of CNF clauses, obtained with our
formula optimization. Then we give a comparison between our SAT algorithm and the
A*-based approach. We provide some runtimes to position the search of this artefact. Fi-
nally, we give a case study where we figure how interesting multi-alignments can represent
a collection of log sequences.

For some experiments, we give the associated scripts and outputs in Annexe. B.

3.5.1 Comparing our Discounted Alignments with the State-of-
the-art Metholds

This section aims at showing a comparison of quality and runtimes between the proposed
versions of alignments and existing ones. In this section we only tackle the A*-based
algorithms because the SAT-based version does not handle large inputs. We first present
general comparisons of the alignments methods and stress on the impacts of the discounted
parameter. Then, we zoom on particular cases and add other methods similar to our.

Comparisonwith respect to baselines and Influence of the Discounted Param-
eter θ

We experimented the algorithms for both artificial and real-life logs and the corresponding
models. Artificial set is taken from [112] and contains large models. For real-life logs, we
used data given in the Business Process Intelligence Challenges from 2012 to 2020. We
mined the process models of those logs with methods of the literature1. First, we applied
a preprocessing method2 introduced by [57] to extract good prototypes of the logs. This
preprossessing step allows us to obtain precise but not perfectly fitting models when using
miners, interesting for alignment comparison. Then, we launched two discovery algorithms
on the found prototypes: the inductive miner [75] and the split miner 2.0 [10]. As the latter
tool gives BPMN models, we transform them into Petri nets with ProM software [130].

We computed the alignments on variants only, i.e., unique sequences of activities. This
choice of using variants only allows to correctly compare the method’s runtimes in case

1available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-
Business-Processes-Sources

2Prototype Selection plugin of Prom software with default settings

47



3.5. EXPERIMENTS

Log #variants |Σ| max
σ∈Log

len(σ) Model|T | |P | |F |

L1 453 36 37 M1 39 40 92

L2 500 32 52 M2 34 34 80

L3 462 109 217 M3 123 108 276

L4 496 44 176 M4 52 36 106

L5 500 32 71 M5 33 35 78

(a) Artificial Logs and Models

Log #variants |Σ| max
σ∈Log

len(σ) Model |T | |P | |F |
Miner

BPI2012 4366 24 175 IM 34 24 68
SM 30 23 60

BPI2018pa 3832 24 100 IM 22 24 60
SM 20 15 40

BPI2019 11973 42 990 IM 18 13 38
SM 13 10 26

BPI2020dd 99 17 24 IM 15 11 32
SM 14 9 28

BPI2020rp 89 19 20 IM 31 26 74
SM 23 12 46

(b) Real-life Logs and Models

Figure 3.3: Input Description for Alignment and Multi-alignment Experiments

that one reduce the log to variants and not another one. Appendix. B.1 provides the script
of those experiments and Tab. 3.3 gives an overview of the inputs.

We compare our alignment results to the four current methods of the state-of-the-art
implemented in pm4py which are: -the Dijkstra search on the Synchronous Product without
heuristic (DSP )[4], -a Disjkstra that consumes less memory by using a similar idea of our
second algorithm (DLM), -an A*-based algorithm on the state-space of the synchronous
product that incorporates an heuristic on reaching the final marking (A∗SPmf ) [132] and
-its less-memory version (A∗LMmf ). We recall notation of our methods A∗SPD=θ, for the
version that uses the synchronous product, and A∗PTD=θ, for the second one that explores
only the process model and the trace.

Results. The quality of an alignment found by a heuristic method, is defined as the ratio
(in %) between the classical cost (number of model or log moves) of the optimal alignment
(given by the DSP method) and the classical cost of the alignment found by the method.
In Fig.3.4a we give the quality of each method.

Similarly, in Fig.3.4b, each line shows the sum of the runtimes of alignment compu-
tations by a method, expressed in percentage of the runtime of the DSP method. The
runtime reflects the space of search. The box charts have wide range because they sum-
marize the results of all the alignments which are very different (depending on both the
model and the log involved). We see that the runtime of the DLM algorithm is 20% of
the runtime of the DSP method. For our heuristic A∗PTD = 2, the average runtime is
around 10% of the reference method DSP (which corresponds to a gain of 90% of runtime,
the result of a large reduction of the search space), for an average quality between 90 and
85% of the optimal alignments.

We did not represent in the charts the runtimes for methods A∗SPmf and A∗LMmf

(implemented in pm4py) since they are much higher than the others: A∗SPmf ran up to
30 times longer than the DSP and A∗LMmf up to 7 times longer.

48



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

(a) Quality of the alignments obtained by different methods. Quality is defined as the ratio (in
%) between the classical cost (number of model or log moves) of the optimal alignment and the
classical cost of the alignment found by the method. The first line is the baseline and present the
optimal approach which has no loss in quality, i.e., we observe 100% of quality. In general, one
can see that the loss of quality with our heuristics is rather limited.

(b) Runtime (in % of the runtime of the DSP Algorithm). A percentage lower than 100 corre-
sponds to a gain of runtime compared to the DSP method.

Figure 3.4: Comparison of Quality and Runtime of Different Methods for Computing
Alignments.

Experiment Conclusion

Compared to methods given in the Python library pm4py, we observe that our method
provides a better compromise between runtime and quality of alignments. Moreover,
these experiments aim at showing the influence of the discount parameter θ on quality
and the search of space. The quality decreases when θ raises. However, the gain in term
of search is high for θ > 1.
We observe that the two charts of Fig. 3.4a and 3.4b are correlated. In other words, the
small lost of quality is correlated with the gain of runtime and a compromise between
the two dimensions can be set with the parameter θ.

49



3.5. EXPERIMENTS

Method DSP DLM A∗SPmf A∗LMmf PNR RECilp
A∗SPD A∗PTD

1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2
Async. Moves 14 14 14 14 14 − 14 14 14 15 15 14 14 14 15 15
Runtime (s) 0.14 0.62 0.73 0.02 0.01 − 0.10 0.10 0.04 0.04 0.02 0.13 0.12 0.06 0.04 0.04

(a) BPI2020rp
Method DSP DLM A∗SPmf A∗LMmf PNR RECilp

A∗SPD A∗PTD
1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2

Async. Moves 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Runtime (s) 47.78 628.75 3385.59 1.55 0.06 1.38 13.28 0.02 0.01 0.01 0.01 43.41 0.03 0.02 0.02 0.01

(b) M5
Method DSP DLM A∗SPmf A∗LMmf PNR RECilp

A∗SPD A∗PTD
1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2

Async. Moves 36 38 36 36 36 − 36 886 2137 1898 4265 36 161 146 330 338
Runtime (s) 6.19 2121.98 16011.60 0.76 1.94 − 4.38 0.07 0.14 0.13 0.45 8.24 0.10 0.12 0.07 0.12

(c) M3

Figure 3.5: Particular Alignments that Draws Advantages and Disadvantages of our
Method. Run on a MacBook air 2017 model with a 1.8 GHz Intel ® CoreTM i5 CPU
and 8G RAM.

Zoom on Particular Alignments

The omission of ProM and other tool results in the previous section is due to the dif-
ferences between the output formats which made difficult the comparison of quality and
runtime. However, in this section we zoom in particular cases, i.e., by running a log se-
quence only, thus making human interpretation possible. We add PNR the results given
by the PNetReplayer package of [7] in ProM and RECILP the results given by [111].

We choose 3 models and traces that have particular characteristics. First, we run
the alignment between the first trace of BPI2020rp log and model IM because this couple
(BPI2020rp, IM) gives the least differences between the methods (Fig. 3.5a). The model
has only 2 parallelism patterns and no loop. Then, we run the alignment of the first trace
of L5 and model M5 where our method specifically works well (Fig. 3.5b). This model
contains a concurrent pattern including 28 transitions and one loop. Finally, we present
an alignment of the fifth trace of L3 which is very long (215 activities) and its model which
has many loops and many parallelism patterns (Fig. 3.5c). The latter aims at showing the
weakness of our method.

Results. From the three tables of Fig. 3.5, we observe that the methods usually find exact
alignments. This is not true for the last experiment given in Fig. 3.5c which highlights our
weakness. This due to the size of the trace (215) that, for the high base of logarithm θ,
the algorithms face a situation where all the markings have the same cost (θn where n is
very large borders zero). At this point, we already advise the user to check the length of
the traces to set the discounted parameter θ (or to tackle very small differences between
costs with an implementation where more decimal are allowed).

Observe now that for Tab. 3.5a and 3.5b using high value of θ brings very fast result for
nearly optimal alignment in Tab. 3.5a and optimal alignment in Tab. 3.5b. Moreover, this

50



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

latter result even beats all the other methods including the ProM implementation (noted
PNR). The particularity of model M5 is the large concurrency pattern that creates many
paths of different behaviors. Most methods have to explore the different combinations
created by the concurrency pattern. Our discounted function favors only the path that
align at the beginning of this pattern and does not consider the other combinations of the
activities.

The versions using less memory seem to be much less efficient sometimes even for less
quality (see DLM for M3). The method RECilp worked only for the second model. M3
is too large for the Gurobi open source version and format of model 2020rp is not accepted
by the tool.

Experiment Conclusion

These experiments depict situations where our methods beat the state-of-the-art algo-
rithms for alignments. However, some cases are still to improve when the parameter θ is
high due to the limit of computer’s float numbers which are shortened.

Comparison with the Token Replay Approach

Last but not least, we give a comparison of runtimes between our algorithms for comput-
ing alignment and the token replay approach given in [14] because it also computes an
approximation of conformance (more precisely fitness) of process models for a given log.
For this experiment, we set our method with θ = 2. We observe in Tab. 3.1 that our second
algorithm gives faster results in most times. The token replay is however much faster for
BPI2018pa. We plan to compare fitness approximation in future work.

Method BPI2012 BPI2018pa BPI2019 BPI2020dd BPI2020rp
IM SM IM SM IM SM IM SM IM SM

A∗SP 78.18 69.39 493.96 43.92 143.25 103.99 0.43 0.23 1.08 0.24
A∗PT 25.03 19.71 419.37 11.15 42.14 26.61 0.14 0.09 0.70 0.09

Token replay 35.41 36.86 36.11 31.01 45.99 49.40 0.20 0.19 0.22 0.18

Table 3.1: Runtime Comparison (in seconds) for Computing Discounted Alignments and
the Token Replay Method Given in [14], Run on an on a MacBook air 2017 Model with a
1.8 GHz Intel ® CoreTM i5 CPU and 8G RAM.

3.5.2 Computing Multi-alignment

This section provides multi-alignment experiments in different perspectives. We first show
the impact of the SAT formula optimization.

51



3.5. EXPERIMENTS

(a) Number of clauses per formula for a size of
run to 10 by increasing number of traces

(b) Number of clauses per formula for a log of
10 traces by increasing size of run

Figure 3.6: Comparison of Number of CNF Clauses of Produced Formulas for a Model of
10 Transitions.

SAT Formulas Reduction

In Section 3.3.4, we show a reduction of the SAT encoding. To convince readers, we present
Fig. 3.6 that reports the size of the formulas in term of CNF clauses. The formulas have
been created for a proces model of Fig. 3.1a and some traces of the same alphabet. In
Fig. 3.6a, for 0 traces, the number of clauses of the formula represents the number of clauses
needed to create the SAT encoding of the model, described in Section 2.3.2. This number
is not significant when compared to the size of the edit distance formulas as the number
of traces increases. In Fig. 3.6b, we show the number of clauses when increasing the size
of the run. As expected, the exact formula creates much more clauses than the optimized
variant.

Experiment Conclusion

Thanks to our SAT formula reduction for multi-alignment, we considerably reduce the
number of clauses contained the edit distance encoding which is a great improvement of
this method whose weakness is its large memory use.

Comparison of Algorithms for Multi-alignment Computation

In this section, we give several comparison between the SAT-based implementation and
the A*-based algorithm for computing multi-alignments.

First, we present some experiments for a small log of the literature, given in Fig. 3.7,
and its associated process models where the SAT-based method can fully be computed.
We did not consider all the process model usually treated with this log because some are

52



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

redundant in the search of multi-alignments (like several loops on activities which never
occurs in the log, then one example with loop is sufficient) or not necessary (like the ”Most
Frequent Trace” where there is only one run). The chosen models are shown in Fig. 3.8 to
Fig. 3.13.

The parameter ”size_of_run” of the MinSAT-based algorithm is set to 11 which is
large enough to get optimum multi-alignments to all the proposed models and the maximal
number of edits is set to 22 which is optimal for this size of the run. For lower values, these
parameters would compute the heuristics presented in Section. 3.3.5.

We set the heuristic µ of the A*-algorithm to 200 which limits the number of times we
reach the same markings. We run the experiments for θ = 1.01 and θ = 2 to show the
advantages and disadvantages of the discounted parameters.

[⟨A,B,D,E, I⟩,
⟨A,C,D,G,H, F, I⟩,
⟨A,C,G,D,H, F, I⟩,
⟨A,C,H,D, F, I⟩,
⟨A,C,D,H, F, I⟩]

Figure 3.7: Small Artificial Log La for Experiments.

Figure 3.8: Generative model. Figure 3.9: Model with G and H in paral-
lel.

Figure 3.10: The flower model. Figure 3.11: All traces separate.

53



3.5. EXPERIMENTS

Figure 3.12: Model with D in a self-
loop.

Figure 3.13: Model with all transitions in parallel.

Results. Tab. 3.2 shows the results. Column ”Maximal distance” is the maximal Lev-
enshtein edit distance between the discovered multi-alignments and the log traces. We
observe that for θ = 1.01, we always get an optimal multi-alignment, i.e., the maximal
distance equals the optimum given by the SAT-based algorithm. Sometimes the multi-
alignments are different for the same model but we recall that several optimum can exist
for a given input. The use of the heuristic µ has no impact on the quality of those examples
and gives fast results. For larger values of µ, the runtime considerably raises. For instance
for µ = 2000, the flower model takes 174.27 secs. In practice, this parameter can even be
set to very low value, like 5, and give the optimum solution.

For θ = 2, we do not get optimum multi-alignments for two models, i.e, the flower
model and the all parallel model. However, we observe that the difference of quality is not
bad and the runtime is much improved. This improvement is due to the limitation of the
search space obtained with the parameter θ. As shown in the alignment’s experiments,
this parameter helps one to obtain a compromise between fast and efficient results. For the
other models, the high value of the discounted cost does not affect the results, i.e., aligning
prefixes first work well for those small artificial examples which questions the application
on larger instances.

Experiment Conclusion

For a small and quite homogeneous log and its associated process models, we obtained
very similar multi-alignment by using the SAT-based algorithm and the A* based algo-
rithm. We showed that the discounted parameter helps to reduce in search space with
a gain in runtime for a small lost of quality. Overall, in those experiments, the discov-
ered multi-alignments give model-based representations of the log traces. However, this
artificial inputs are very restrictive.

We extend our experimentation to larger logs and real-life instances. We used the
models previously presented in Section. 3.5.1 for experimenting alignments. Memory issues

54



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Model Algorithm Multi-alignment Maximal Time
Distance (s)

Generative model SAT ⟨A,C,D, tau,H, F, I⟩ 5 17.79
(Fig. 3.8) A* with θ = 1.01 ⟨A,C, τ,D,H, F, I⟩ 5 0.02

A* with θ = 2 ⟨A,C, τ,D,H, F, I⟩ 5 0.01
G and H in parallel SAT ⟨A,C,D, τ, τ, F, I⟩ 4 17.58
(Fig. 3.9) A* with θ = 1.01 ⟨A,C, τ, τ,D, F, I⟩ 4 0.06

A* with θ = 2 ⟨A,C, τ, τ,D, F, I⟩ 4 0.02
Flower model SAT ⟨τ, A,B,C,DF, I, τ⟩ 4 19.59
(Fig. 3.10) A* with θ = 1.01 ⟨τ, A,D, F, I, τ⟩ 4 13.55

A* with θ = 2 ⟨τ, A, τ⟩ 7 5.01
Separate Traces SAT ⟨A,C,D,H, F, I⟩ 5 43.86
(Fig. 3.11) A* with θ = 1.01 ⟨A,C,D,H, F, I⟩ 5 0.01

A* with θ = 2 ⟨A,C,D,H, F, I⟩ 5 0.01
D as self-loop SAT ⟨A,C,D, τ,H, F, I⟩ 5 17.07
(Fig. 3.12) A* with θ = 1.01 ⟨A,C, τ,D,H, F, I⟩ 5 0.53

A* with θ = 2 ⟨A,C, τ,D,H, F, I⟩ 5 0.09
All parallel SAT ⟨τ, A,B,C,D,G,H,E, F, I, τ⟩ 6 21.46
(Fig. 3.13) A* with θ = 1.01 ⟨τ, A, C,B,D,G,H, F,E, I, τ⟩ 6 159.76

A* with θ = 2 ⟨τ, A, C,B,D,E, I, F,H,G, τ⟩ 9 0.7

Table 3.2: Comparison of Multi-alignments for the Small Artificial Log of Fig. 3.7 and Mod-
els of Fig. 3.8 to 3.13 Where the SAT-based Algorithm Can Be Fully Executed, Obtained
on a Virtual Machine with 12 CPU Intel Xeon 2.67GHz and 50GB RAM. A*-algorithm is
Set With µ = 200.

of the MinSAT-based algorithm forced us to reduce the size of the logs. We ran the
experimentation for the 50th first traces of each only. Moreover, we used the heuristics of
the SAT encoding and set the size of the run to 10 and the associated optimal number of
edits to 20. For the A* version, we set the discounted parameter θ to 1.5 which slightly
reduces the search space and we keep µ to 200. The script of those experiments is given
in Appendix. B.2.

Results. The results are given in Tab. 3.3. We observe that the maximal distance of
the multi-alignment to the log traces is high for some inputs. This result is due to the
heterogeneity that exists in real-life event logs. Log BPI2012 and BPI2019 especially have
large maximal distances but those logs are very complex with 4 366 trace variants for
BPI2012 and 11 973 trace variants for BPI2019. Moreover, some lengths of traces have
up to 990 activities. In opposite, multi-alignments of logs BPI2020dd and BPI2020rp are
much closer to the log traces and are much more in the insight of the artefact which is to
represent a collection of log traces.

Overall, the two algorithms find similar maximal distance of multi-alignments. But
we observe that in most cases, the A* algorithm finds a multi-alignment closer to the log
traces than the SAT-based method, i.e., the quality of the multi-alignments found with the
A* algorithm is better than the quality of the ones found with the SAT implementation.

55



3.5. EXPERIMENTS

Log Model
Maximal Time
Distance (s)
SAT A* SAT A*

L1 M1 29 24 347.33 42.81

L2 M2 58 50 298.54 337.18

L3 M3 − − − −

L4 M4 129 128 439.91 8048.28

L5 M5 − − − −

Log Model
Maximal Time
Distance (s)
SAT A* SAT A*

BPI2012 IM 104 130 297.15 14.95
SM 107 103 270.57 2.17

BPI2018pa
IM 42 39 207.86 2785.75
SM 42 34 184.77 58.92

BPI2019 IM 250 239 167.94 256.69
SM 250 225 128.78 89.90

BPI2020dd
IM 9 8 151.72 0.04
SM 9 7 140.38 0.08

BPI2020rp
IM 10 8 283.64 2.43
SM 7 8 216.93 0.08

Table 3.3: Multi-alignment Approximation for the Logs and Models given in Fig. 3.3 by
using the SAT Algorithm Implemented in da4py with Parameters size_of_run = 10 and
maxd = 20 and the A* Algorithm Implemented in pm4py with Parameters θ = 1.5 and
µ = 200, run on a virtual machine with 12 CPU Intel Xeon 2.67GHz and 50GB RAM.

This result is due to the use of the heuristics of the SAT-based algorithm which does
not guarantee the optimum solution while we kept similar setting than in the previous
experiments for the A* algorithm.

In term of runtimes, we observe, in most cases, a large difference between the two
algorithm. The SAT-based algorithm runs slower than the A* algorithm. However, we
note some particularities where the runtime of the A* algorithm is larger than the SAT-
based algorithm. Those models contain much concurrency but we already explained this
weakness of our method for this structure.

Experiment Conclusion

For large inputs, the SAT-based algorithm for computing multi-alignments is limited
due to memory issues. Moreover the gain on runtime by using the A* algorithm is
well highlighted. We observed some consequences on multi-alignment quality with the
SAT approach due to the use of the heuristics, which convinces again the use of the
A*algorithm. However, the more a process model contains concurrent structures the
least the A* algorithm runs fast and in some cases, using the SAT-based algorithm is
even better. Overall the quality of the discovered multi-alignments is similar. We note
that we obtain bad representatives for complex logs.

56



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

3.5.3 Multi-alignments as model-based trace variants: a Case
Study

We observed in Tab. 3.3 that the found multi-alignments are quite far from the log traces
which is in contradiction with the aim of this conformance checking artefact. In this section,
we show how one can discover good quality multi-alignments.

We use the Loan Application log [23] whose brief description is given in Tab. 3.4.
The column ”#variants” gives the number of variants of traces, i.e., unique sequences of
activities. 100 variants is too high for human analysis. By discovering multi-alignment,
we claim to provide a model-based trace variant such that the maximal distance between
them and the log traces is given. However, event log contain many different behaviors and
getting a unique model-based trace variants is not accurate. To convince the reader, we
compare multi-alignments for the entire log and for some sub-logs.

|L| #variants |Σ| maxσ∈L len(σ)
500 100 31 37

Table 3.4: Loan Application Log Description

To do so, we first mine a process model by using the inductive miner. We obtain the
process model of Fig. 3.14. The model contains many choices, a concurrent structure and
a loop.

Figure 3.14: Process Model of the Loan Application Discovered with the Inductive Miner

57



3.5. EXPERIMENTS

Maximal Distance of

Method Multi-alignments to Log
max avg

Entire Log 26 26
Random selection, sets of 10 sequences 26 20.9
Random selection, sets of 20 sequences 26 22.8
Kmean with 3 clusters 10 9.3
Kmean with 6 clusters 8 7

Table 3.5: Experimenting Multi-alignments for Different Sets of Log Sequences

Multi-alignments for the entire Loan Application log and the discovered process model
have a maximal Levenshtein distance to the log sequences of 26. In other words, a multi-
alignment of this model for the entire log sequences is a run such that any log sequences
can be aligned to it for a maximum of 26 edits. However, getting 26 edits is high when the
maximal length of the traces is of 37 activities.

To improve the search of multi-alignments, we propose two methods. First one is to
randomly select some traces and look for a multi-alignment of these selected traces only.
Second we preprocess the event log such that traces that are similar are grouped together.
A very simple preprocessing step is the use of Kmean algorithm on the frequencies of the
activities per trace. Each log sequence is transformed into a vector where the dimensions
represent the activities. Then sequences that have close frequency of the same activities
are grouped together by the Kmeans algorithm. Once the groups are created, we discover
a multi-alignment per cluster. We give in Appendix. B.2 the script of this experiment.

Results. Tab. 3.5 presents the results in term of maximal distance between the found
multi-alignments and the log sequences (the multi-alignments for 3 clusters are given in
Appendix. B.2). Because one multi-alignment is learned per group of traces for the random
selection and Kmean preprocessing methods, we give the maximum and average of the
multi-alignment distances. We observe, from the average column, that randomly selecting
some traces can slightly help to get better model-based trace variants. However the gain of
quality is low. This is due to the high number of trace variants that disables homogeneous
groups of traces.

By using the Kmean method to partition the log sequences, we improve a lot the quality
of the multi-alignments. For 3 clusters, thus providing three multi-alignments, the maximal
distance between the discovered representatives and the log traces is 10. We can reduce
this distance by increasing the number of clusters. Then, for process instances analysis,
these artefacts can stand for model-based trace variants. They are associated to a maximal
distance which can easily be interpreted for decision makings.

58



CHAPTER 3. MULTI-ALIGNMENTS: CONFORMANCE CHECKING ARTEFACTS FOR MODEL-BASED
REPRESENTATIONS OF LOGS AND SUB-LOGS

Experiment Conclusion

By partitioning the log sequences with a basic clustering algorithm, we discovered good
quality multi-alignments. Then, a multi-alignment is learned per cluster and stands
for model-based trace variants. The maximal distances of the multi-alignments to their
corresponding log traces can be used as an explicit key indicator for business decisions.

3.6 Conclusion
The drawn idea of multi-alignments is to obtain a modeled sequence that represents a
set or a subset of log sequences. Used as model-based trace variants, multi-alignments
have the advantages to be included in the existing process model of organizations and
to be associated to the maximal distance of its corresponding log sequences. Thanks to
the formal definitions and the optimal algorithm presented in this chapter, organizations
obtain a reliable and explainable solution for representing several process instances.

We presented two algorithms and several heuristics for computing multi-alignments
which allow different uses. Our SAT algorithm specifically encodes the definitions as it is
and gives optimal solutions. Due to the complexity of the SAT formulas, we developed
an A*-based algorithm to approach optimal results which requires much less memory.
By experimenting the two methods and their heuristics on small and large instances, we
observed a small quality difference and a runtime improvement. The presented algorithms
work for the different conformance checking artefacts which provides a good understanding
of their relationships.

Observing the experimentation, we note that a unique multi-alignment badly represents
the entire log due to the different behaviors that exist in systems. For this purpose, we
recommend the use of a classical clustering method, like Kmean, as a preprocessing step in
order to group the log traces by similarity and thus find better quality multi-alignments.
Then the clusters hold for subsets and one gets a model-based trace variants per cluster.

However, this technique is limited because the proposed preprocessing methods usually
use frequency of the the activities in sequences instead of the sequential information of the
process instances. From this last remark, another idea emerges: clustering the log traces
directly through the known process model of organizations. By doing so, we ensure to
group the traces by behaviors.

59



60



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Chapter 4

Model-basedClusteringof LogTraces through
Alignments

Chapter Overview

In the previous chapter, we presented the multi-alignment artefact that allows one to get
a unique model-based representative of a log. However, the log traces can differ while
being fitting to the process model. A unique model-based variant is then not accurate
in this situation.
Clustering methods are unsupervised methods, i.e., there are no predefined classes, that
aim at grouping objects by similarities. In this chapter, we present model-based clustering
methods of process instances. Thanks to alignments, we can relate log traces to the
associated model and extract parts of it that represent the clusters. We propose three
kinds of model-based variants: full runs, processes and subnets of the initial process
model.
The chapter is organized as follows. First, we present the motivation of the work with
an artificial example. Then, in section 4.2, we trace the state-of-the-art methods for
clustering process instances but also the works on log variant extraction because we pre-
tend that our methods provides model-based trace variants. The first alignment-based
clustering method has been introduced in [33] and is also part of the related work. Sec-
tion 4.3 gives the definitions of the alignment-based clustering methods. In Section 4.4
we proudly present quality criteria of the clustering methods. Furthermore, some the-
oretical properties relate the different types of clustering and are given in Section 4.4.
Then, we present in Section 4.5 the complexity to obtain the clusterings. Section 4.6
details the implementations. We propose a SAT encoding and a sampling approach to
deal with large event logs. The latter is strengthened by statistical confidences. Finally,
the chapter contains an experimentation section with qualitative and quantitative ex-
periments. In the subsection 4.8.4, we give a case study and compare our model-based
trace variants to another method of the literature. Section 4.9 concludes the chapter.

61



4.1. MOTIVATION

4.1 Motivation

y0 a12

a11

a13

a10

z0

a03

a02

a01

a00

. . .

a93

a92

a91

a90

Figure 4.1: Process Model of Motivation Example for Model-based Clustering

Let us illustrate the main message of this section with the process represented by
the model shown in Figure 4.1. This is a synthetic process where, after some common
activity is executed, 10 branches are possible, each one enabling at isolation concurrent
and loop behavior. Once the executed branch terminates, a common activity is executed.
Although this process has a very clear structure, it is very likely that an event log for this
process models has a high number of trace variants. In fact, after simulating the model to
obtain 500 traces, we obtained 411 trace variants in any of the commercial tools available.
However, if subnet centroids are used as a generalized notion of variants, 10 variants are
considered (each for each subnet ai, for 0 ≤ i ≤ 9). Then, the analysis of the process
instances becomes much easier for decision makers. Hence, the motivation of this chapter
is to extract parts of the model that contains choice, concurrency and loops behaviors to
represent the different groups of behaviors contained in logs.

62



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

⟨y0, a00, a01, a02, a03, z0⟩
⟨y0, a01, a00, a02, a03, z0⟩
⟨y0, a12, a10, a13, a11, z0⟩
⟨y0, a13, a11, a12, a10, z0⟩

⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩
⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩

⟨y0, a01, a01, a02, a02, a03, z0⟩

Figure 4.2: Artificial Log associated to Model of Fig. 4.1

4.2 Related Work
The related work is divided in three sections. First, we provide the state-of-the-art clus-
tering methods for log sequences. Then, we give the other works that tackle the notion of
model-based variants of log traces. Finally, an alignment-based clustering has been started
before this thesis project and belongs to the literature.

4.2.1 Log Traces Clustering
In the two last decades, log trace clustering have shown a particular interest in process
mining research. A recent review by Zandkarimi et al. counts 103 relevant research works
on the subject published between 2004 and 2020 [144]. The article wraps the contributions
of the literature in a generic framework given in Fig. 4.3.

The first difference in the works of the literature is the perceptive view of the clustering
approach. Some works focus on the control-flow of the processes [21, 63, 78, 67, 39, 58, 24]
where others address the context perspective that refers to the available data contained
in events like the performance and timestamps [133]. Some works involve both perspec-
tives [108, 79]. We observe that the distribution of works matches with the building blocks
given in the framework where the control-flow perspective, that contains most of the con-
tributions, stands in the Fundamental box.

Control-flow methods handle the sequences of activities. Again, the works can be
partitioned in sub-groups. On the first hand, the sequences are given in vector spaces. A
classical approach is to use bag of words where the activities are the dimensions of the
vectors [108]. However, these methods lack the sequential information contained in log.
To overcome this limit, works like [63, 39, 21, 78] generate features based on patterns that
serve as dimensions of the vector space. The simplest but interesting approach is to use
k-grams, i.e., the sub-sequences of k activities as dimensions [63, 39]. In [78], Lu et al.
use the Frequent Sequence Patterns over the log that they obtained with the CloFAST
algorithm [61]. Likewise, Bose et al. formally define six complex feature sets that allow
tackling patterns that are conserved across the traces [21]. The features are based on
repetition of sub-sequences in log.

63



4.2. RELATED WORK

Figure 4.3: Generic Framework for Trace Clustering in Process Mining presented by [144]

Once the vector spaces are set, many data mining techniques are enabled. The most
used approach is k-mean [80] but there are also the use of a SVM (Support Vector Ma-
chines [89]) approach in [46] and a hierarchical clustering in [133]. In [78], the clustering
borders classification with the definition of scores of the traces to belong to a cluster, based
on the created features.

In the other hand of control-flow approaches, the log sequences are kept as-is. The
techniques involve syntactic distance functions between sequences like the Hamming dis-
tance or more commonly some edit distances like the Levenshtein distance as it is use in
alignment [22, 55].

Finally some works tackle model-based structures for log trace clustering. Inspired from
bioinformatics, Cadez et al. [24], and later Ferreira et al. [58] and Hompes et al. [67],
use Markov chains as a baseline of their approach to partition the log sequences. This
corresponds to the Probability blue box of clustering inputs shown in Fig. 4.3. In some
works, a preliminary matrix of trace similarity is constructed before the clustering approach
[47, 67]. Furthermore, in [138], process models are taken as a baseline in the process of
clustering. Some intermediate models are computed to group the log traces.

The motivations for log trace clustering diverge in the literature. While in most works
the aim is to discover more conform process models in term of fitness or complexity [21,
63, 138], Hompes et al. study deviation detection in log with clustering [67].

In practice, we observe that clustering approaches are welcomed in healthcare [47, 78]
and web services [58, 24]. One main limit of the works that have been highlighted in real-

64



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

life situation is the scalability of the methods. Lu et al. indicate in [78] the need to treat
hundreds of thousands of patients and millions of events per year.

Perhaps the closest clustering work to our is [39] where the results of the clustering
are given with Super-Instances that are representatives of the discovered groups of traces.
The method creates k-grams and use a PCA (Principal Component Analysis [3]) technique
combined with the K-means algorithm, thus using the Euclidean distance. The Super-
Instances are then mean of the input log, and can be used as representative, i.e., variants.
In the experimental evaluation, we provide a detailed comparison with this closest work.

4.2.2 Model-based Variants of Log Traces
A complete and detailed review of trace variant analysis can be found in [115]. The work by
van Beest et al. [116] relies on the product automaton of two event structures to distill all
the behavioral differences between two process variants from the respective event logs, and
render these differences to end users via textual explanations. Cordes et al. [36] discover
two process models and their differences are defined as the minimum number of operations
that transform on model to the other. This work was extended in [11] to compare process
variants using annotated transition systems.

Pini et al. [90] contribute a visualization technique that compares two discovered
process models in terms of performance data. The work in [143] proposes an extension of
this work, by considering a normative process model alongside with event logs as inputs,
and adding more data preparation facilities. This work is the only one in the literature
that like us, considers the process model as input, but it uses the process model merely to
compute alignments with the aim of computing performance information.

The works by Bolt et al. and Nguyen et al. are grounded on statistical significance.
Bolt et al. [16] use an annotated transition system to highlight the differences between
process variants. The highlighted parts only show different dominant behaviors that are
statistically significant with respect to edge frequencies. This work was later extended in
[17], by inducting decision trees for performance data among process variants. Nguyen et
al. [88] encode process variants into Perspective Graphs. The comparison of perspective
graphs results in a Differential Graph, which is a graph that contains common nodes and
edges, and also nodes and edges that appear in one perspective graph only.

The use of an explicit characterization of concurrency has been considered recently in
process discovery: the works in [93, 92] show how to improve the discovery of a process
model by folding the initial unfolding that satisfies the independence relations given as
inputs. In the area of conformance checking, the same phenomena has been observed: the
work in [77] assumes traces are represented as partial order, thus allowing again an explicit
characterization of concurrency in the problem formalization.

Perhaps the works more similar to the one of this chapter are [45, 83], where a transition
system representing the event log is clustered, so that a set of simpler process models is
generated. Tailored state-based properties that guarantee certain Petri net classes are used
to guide the clustering, whereas in this work the computation of subnets is unrestricted.

65



4.2. RELATED WORK

Full Runs Centroids Traces

⟨y0, a00, a01, a02, a03, z0⟩
⟨y0, a00, a01, a02, a03, z0⟩
⟨y0, a01, a00, a02, a03, z0⟩

⟨y0, a12, a10, a13, a11, z0⟩ ⟨y0, a12, a10, a13, a11, z0⟩
⟨y0, a13, a11, a12, a10, z0⟩ ⟨y0, a13, a11, a12, a10, z0⟩

⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩ ⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩

⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩

nc ⟨y0, a01, a01, a02, a02, a03, z0⟩

Table 4.1: Example of Alignment-based Trace Clustering (ATC) of Log Traces Contained
in Log of Fig. 4.2 for a Maximum Allowed Distance to 2.

Last but not least, Tax et al. finds in [110] several local process models that depict
patterns contained in log.

All the aforementioned algorithms consider only the event log as input, in this thesis,
we use an existing process model as a baseline of our variant extraction.

4.2.3 ATC: Alignment-based Clustering

This chapter is the continuity of alignment-based trace clustering introduced in 2017 in
[33]. Alignment-based trace clustering is a particular form of trace clustering that relies on
a model N of the observed system. The model may very well be incomplete or imperfect
but it will however give a guideline for the clustering of the observed traces. The idea of
alignment-based trace clustering is to explicit the relation between log traces and full runs
of N . Concretely, each cluster of log traces will be assigned a full run u of N , presented as
the centroid of the cluster. Hence, traces in the same cluster are not only similar among
them, but they are related to a run of the model, which together validates a part of the
model and explains the observed log traces.

Definition 17 (Alignment-based Trace Clustering (ATC)). For a log L and a Petri net
N = ⟨P, T, F,m0,mf ,Σ, λ⟩, an alignment-based trace clustering of L w.r.t. N is a tuple
C = ⟨{u1 . . . um}, χ⟩ where u1 . . . um (m ∈ N) are full runs of N which serve as centroids
for the clusters and χ : L → {nc, u1 . . . um} maps log traces either to the centroid of its
cluster χ(σ), or to none of the clusters, denoted by nc.

Each set χ−1(ui), for i ∈ {1 . . .m}, defines the cluster whose centroid is ui. The set
χ−1(nc) contains the traces which are left non-clustered.

66



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

y_0 a_9_2

a_9_1

a_9_3

a_9_0

a_9_2

a_9_1

a_9_3

a_9_0

z_0

Figure 4.4: Example of a Process of the Process Model in Fig. 4.1

Example 4.2.1 (Alignment-based Clustering). Tab. 4.1 shows a clustering of the
traces of the log of Fig. 4.2 based on the model of Fig. 4.1. The maximal Levenshtein
distance between the full runs centroids and the traces of the corresponding cluster is
to 2. The centroids can be hold as good variants for representing the log traces, thus
reducing the set of variants to focus on.
The last log trace is associated to nc because it cannot be aligned to a run of N for
a distance lower or equal to 2.

4.3 Fitting Centroids to Concurrency and Loop Be-
havior

As presented above, full runs of process models can be extracted to represent log traces by
using Alignment-based Trace Clustering (ATC). In this section, we want to go further and
allow one to extract model-based trace variants aware of concurrent and loop behaviors
contained in the process model.

4.3.1 APOTC : Alignment and Partial Order based Trace Cluster-
ing

In full runs of a process model, transition occurrences are totally ordered. However tran-
sitions can be handled in different orders for the same process in case of concurrency. In
the model of Fig.4.2 traces ⟨y0, a13, a11, a12, a10, z0⟩ and ⟨y0, a12, a11, a13, a10, z0⟩ follow the
same process but differ by the order of the transitions.

They can however be seen as two linearizations of a common representation based on
partial-order runs which represents a process.

Definition 18 (Partial-Order Representation of Runs: Process [52]). A (non-branching)
process P of a Petri Net N = ⟨P, T, F,m0,mf ,Σ, λ⟩ is a tuple P = ⟨B,E,G,B0, Bf , h⟩
where:

• (B,E,G,B0, Bf ) is a non-branching, finite, acyclic Petri Net, i.e.

67



4.3. FITTING CENTROIDS TO CONCURRENCY AND LOOP BEHAVIOR

– its causality relation G+ is acyclic, and
– it has no forward and no backward branchings:

∀b ∈ B ∃!e ∈ E ∪ {⊥} b ∈ e•
∀b ∈ B ∃!e ∈ E ∪ {⊤} b ∈ •e

where ⊥ and ⊤ are virtual events satisfying ⊥• def
= B0 and •⊤ def

= Bf .

• h : (B ∪ E) → (P ∪ T ) is a function that maps the non-branching process P in the
Petri Net N with the following relations:

– h(B) ⊆ P and h(E) ⊆ T

– ∀e ∈ E, h|•e is a bijection between •e and •h(e), same reasoning for h|e•
– h|B0 is a bijection between B0 and m0, likewise for h|Bf

We write Runs(P) for the set of full runs of the process P . For every full run ⟨e1 . . . en⟩
of a process P of a Petri net N , the sequence u def

= ⟨h(e1) . . . h(en)⟩ ∈ T ∗ is called a
linearization of P . Every linearization of P is a full run of N .

Example 4.3.1 (Processes). Fig. 4.4 shows a process of the Petri net in Fig. 4.1.
This process represents both full runs ⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩ and
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩ which differ only by the order of concurrent
transitions. Similarly, ⟨y0, a13, a11, a12, a10, z0⟩ and ⟨y0, a12, a11, a13, a10, z0⟩ are also
represented by a single process.

By using processes as model-based trace variants, traces that only differ by the order of
concurrent activities can be grouped and represented by the same variant. The process pre-
sented in Fig. 4.4 is then a unique variant for the log traces ⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
and ⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩. Hence, processes appear as a good represen-
tation for trace variants aware of concurrency.

Similarly to ATC, process representatives can be found with a clustering method which
gives process centroids that serve as model-based trace variants.

Definition 19 (Alignment and Partial Order based Trace Clustering (APOTC)). An align-
ment and partial order based trace clustering (APOTC) of a log L w.r.t. a Petri net
N = ⟨P, T, F,m0,mf ,Σ, λ⟩, is a tuple C = ⟨{P1 . . .Pm}, χ⟩ where P1 . . .Pm (m ∈ N) are
processes of N which serve as centroids for the clusters and χ : L→ {nc,P1 . . .Pm} maps
log traces either to the centroid of its cluster χ(σ), or to none of the clusters, denoted by
nc.

Like in the ATC method, the distance between traces and model-based trace vari-
ants, is minimized. The distance between a trace σ and a process P is defined by
distP(σ,P)

def
= minu∈Runs(P) dist(σ, u), where dist is usually the Levenshtein edit distance L.

Then distances of APOTC minimize the following.

68



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Processes as Model-based Trace Variants Traces

y_0 a_0_2

a_0_1

a_0_3

a_0_0

z_0

⟨y0, a00, a01, a02, a03, z0⟩

⟨y0, a01, a00, a02, a03, z0⟩

y_0 a_1_2

a_1_1

a_1_3

a_1_0

z_0

⟨y0, a12, a10, a13, a11, z0⟩

⟨y0, a13, a11, a12, a10, z0⟩

process of Figure 4.4 ⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩

process similar to Figure 4.4, not represented ⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩
nc ⟨y0, a01, a01, a02, a02, a03, z0⟩

Table 4.2: Example of APOTC of Traces Contained in the Log of Fig. 4.2. Maximum
Allowed Distance Between Clustered Traces and their Centroids is 2.

max
σ∈L,χ(σ)̸=nc

distP(σ, χ(σ)) (4.1)

Example 4.3.2 (APOTC). Tab. 4.2 shows an APOTC of log traces of Fig. 4.2 based
on the model of Fig. 4.1.

By using processes as model-based trace variants, one merges clusters which were sep-
arated in the ATC of Tab. 4.1 and identify richer variants.

4.3.2 AMSTC: Alignment and Model Subnet-based Trace Clus-
tering

APOTC separates process arising from traces corresponding to different number of loop it-
erations, e.g., the traces ⟨y0, a01, a00, a02, a03, z0⟩ and ⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩.
The issue is due of the fixed size of runs of processes, which do not represent loops. To
overcome this limitation, we introduce subnets of models.

Definition 20 (Subnet of Petri net). A subnet of a Petri net N = ⟨P, T, F,m0,mf ,Σ, λ⟩
is a Petri net ⟨P, T ′, F|T ′ ,m0,mf ,Σ|T ′ , λ⟩ with T ′ ⊆ T , and FT ′

def
= F ∩ (P × T ′ ∪ T ′ × P ).

Example 4.3.3 (Subnet). Fig. 4.5 presents a subnet of the model of Fig. 4.1.

Observe that our definition of subnets, based on selecting transitions, restricts the
semantics of the net and cannot produce new behaviors. Formally:

69



4.3. FITTING CENTROIDS TO CONCURRENCY AND LOOP BEHAVIOR

y_0 a_0_2

a_0_1

a_0_3

a_0_0

z_0

Figure 4.5: A Subnet of the Process Model in Fig. 4.1.

Subnets as Model-based Trace Variants Traces

y_0 a_0_2

a_0_1

a_0_3

a_0_0

z_0

⟨y0, a00, a01, a02, a03, z0⟩

⟨y0, a01, a00, a02, a03, z0⟩

⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩

y_0 a_1_2

a_1_1

a_1_3

a_1_0

z_0

⟨y0, a12, a10, a13, a11, z0⟩

⟨y0, a13, a11, a12, a10, z0⟩

y_0 a_9_2

a_9_1

a_9_3

a_9_0

z_0

⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩

⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩

nc ⟨y0, a01, a01, a02, a02, a03, z0⟩

Table 4.3: Example of Alignment and Model Subnet-based Trace Clustering (AMSTC) of
Traces Contained in Log of Fig. 4.2 for a Maximum Allowed Distance to 2.

Lemma 6. Every full run (resp. process) of a subnet of a Petri net N , is a full run (resp.
process) of N .

Definition 21 (Alignment and Model Subnet-based Trace Clustering (AMSTC)). For a
log L and a Petri net N = ⟨P, T, F,m0,mf ,Σ, λ⟩, an alignment and model subnet trace
clustering, of L w.r.t. N is a tuple C = ⟨{N1 . . .Nm}, χ⟩ where N1 . . .Nm are subnets of
N which serve as centroids for the clusters and χ : L → {nc,N1 . . .Nm} maps log traces
either to the centroid of its cluster χ(σ), or to none of the clusters, denoted by nc.

Distances between a clustered trace σ and its centroid N , used as model-based trace
variants, is defined as distN (σ,N )

def
= minu∈Runs(N ) dist(σ, u), with dist a distance between

sequences, usually the Levenshtein edit distance in process mining. Computing this dis-
tance corresponds to align traces to model. Alignment criterion of an AMSTC minimizes
equation (4.2).

70



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

max
σ∈L,χ(σ) ̸=nc

distN (σ, χ(σ)) (4.2)

Example 4.3.4 (AMSTC). Tab. 4.3 shows an AMSTC of log traces of
Fig. 4.2 based on the model of Fig. 4.1. Traces ⟨y0, a01, a00, a02, a03, z0⟩ and
⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩ are now clustered together.

The novel variant forms allow traces that only differ on concurrency and loops according
to the model to be grouped together. Business analysis is sometimes too complicated due
to the number of variants. With this approach, we help one to reduce the number of
variants the stakeholder has to understand.

4.4 Quality Criteria of Clusterings
In this section, we provide criteria which contribute in the qualification of a good clustering.
Furthermore, we provide properties that relate presented clustering methods.

4.4.1 General Criteria Definition
First, we present the following list of criteria that we have identified to determine the
quality of clustering:

• d(C), maximum distance between a trace and the centroid of its cluster: this criterion,
defined by maxσ∈L\χ−1(nc) dist(σ, χ(σ)), where dist is a distance function that depends
on the type of clustering, will be minimized to increase the fit of the centroids to
their traces. In case of a log containing noise, a small distance may induce many
non-clustered traces.

• ∆(C), sum of distances : the sum ∆(C) def
=

∑
σ∈L\χ−1(nc) dist(σ, χ(σ)), with dist de-

pends on the type of clustering, can be seen as a variant or a refinement of the
previous criterion d(C). It will also be minimized in order to get the most represen-
tative centroids.

• n(C), number of clusters : The number of clusters provides an interesting perspec-
tive, which is analogous to the number of trace variants of a process model, but in
this case from the log perspective.

• č(C), ratio of clustered traces: this ratio, defined as č(C) def
= |L|−|χ−1(nc)|

|L| , is close
to 1 for a process model that covers most of the behavior of the log. č(C) also
highlights the ratio of distant traces, i.e. traces that deviate from the model, for a
given maximum distance d(C).

71



4.4. QUALITY CRITERIA OF CLUSTERINGS

• Φ(C), inter-cluster distance : the distance between the centroids is also an important
parameter. A larger distance involves distant clusters, this is why this parameter
should be maximized in order to prevent overlay between the clusters.

For an ATC, C = ⟨{u1 . . . un}, χ⟩, the inter-cluster distance is defined between run
centroids as Φ(C) def

= mini ̸=j dist(ui, uj). The criterion slightly varies for APOTC and
AMSTC where centroids are respectively processes and subnets. For an APOTC, C =
⟨{P1 . . .Pn}, χ⟩ we obtain: Φ(C) = mini ̸=j dist(Pi,Pj), where the appropriate notion of
distance between processes is: dist(P ,P ′)

def
= min u∈Runs(P)

u′∈Runs(P′)
dist(u, u′). Similarly, for AM-

STC, C = ⟨{N1 . . .Nn}, χ⟩, we have Φ(C) = mini ̸=j dist(Ni,Nj) where dist(N ,N ′)
def
=

min u∈Runs(N )

u′∈Runs(N′)
dist(u, u′).

The detailed criteria are inspired from the Data Mining domain [62, 13]. Other measures
like the Dunn [50], which compares distances between items that share or not a cluster,
and the Silhouette [103], that computes if items is close enough to their clusters instead
of the others, help the user to analyze its clustering. As usual when multiple parameters
are taken into account, there will not exist in general a unique clustering optimizing all
the criteria together. Instead, every clustering problem should consider a good balance
between the parameters to optimize.

Example 4.4.1 (Quality of clustering). We present the quality results of the three
clustering presented in Tables 4.1, 4.2 and 4.3:

Method d(C) ∆(C) n(C) č(C) Φ(C)
ATC 2 4 5 7/8 4

APOTC 0 0 4 7/8 4
AMSTC 0 0 3 7/8 8

We observe that more general centroids help in fitting the traces with the criterion
d(C) that drops from 2 to 0 when using processes or subnets as centroids. ∆(C) is
highly correlated to d(C) which is well drawn in this example.
The criteria n(C) and Φ(C) are of great interest in this example. First, we observe
that we reduce the number of clusters which implies less variants for analysis. Also,
the clusters present more differences when using subnets as centroid. Indeed all the
concurrent and loop behaviors are grouped in the same cluster. This is highlighted by
the high value of the inter-cluster distance Φ(C) of the AMSTC method.

Moreover, even between the same type of clustering, we can obtain different results
depending on the criteria that are optimized.

72



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Example 4.4.2 (Another example of ATC, not optimizing the same criteria ). The
next table shows another examples of ATC, where no trace is left unclustered, thus
optimizing č(C). However, the quality criteria ∆(C) and d(C) are not as optimized
as in the clustering presented in Tab 4.1. Here d(C) = 3.

Full Runs Centroids Traces

⟨y0, a00, a01, a02, a03, z0⟩
⟨y0, a00, a01, a02, a03, z0⟩
⟨y0, a01, a00, a02, a03, z0⟩
⟨y0, a01, a01, a02, a02, a03, z0⟩

⟨y0, a12, a10, a13, a11, z0⟩ ⟨y0, a12, a10, a13, a11, z0⟩
⟨y0, a13, a11, a12, a10, z0⟩ ⟨y0, a13, a11, a12, a10, z0⟩

⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩ ⟨y0, a01, a00, a02, a03, a01, a00, a02, a03, z0⟩

⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a91, a93, a92, a90, a91, a93, a92, z0⟩
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩

Intra-Cluster Distance for AMSTC

If applied unrestricted, AMSTC can use as centroids, subnets with branchings and loops,
and then cluster together very different log traces. The intra-cluster distance aims at
controlling this aspect. For instance, taking as centroid the complete net of Fig. 4.1 would
not yield a satisfactory AMSTC. Instead, traces in the same cluster should be similar
and represent a generalized notion of trace variant. This criterion is quantified by the
intra-cluster distance Θ(C). Clusterings with low Θ(C) will be preferred.

• Θ(C), the intra-cluster distance: Before defining the intra-cluster distance of a clus-
tering C, we focus on each of its centroids separately: for every centroid Nk, define

Θ′(Nk)
def
= sup

P,P ′∈Proc(Nk)

dist(P ,P ′)

(1 + ϵ)max(|P|,|P ′|) (4.3)

where |P| denotes the number of events in P , and ϵ > 0 is a parameter set by the
user in order to limit (more or less) the influence of long processes. Indeed, when the
subnet Nk has loops, it has infinitely many processes, arbitrary large, which yields
arbitrary large distance to the smaller processes. Yet, such subnets may be relevant,
as illustrated by Example 4.5. This is why our definition penalizes more for distances
between small processes.
Finally, the intra-cluster distance of a clustering C = ⟨{N1 . . .Nn}, χ⟩ is:

Θ(C) def
= max

k
Θ′(Nk) (4.4)

73



4.4. QUALITY CRITERIA OF CLUSTERINGS

Example 4.4.3 (Epsilon Interest in the Intra-cluster Distance). Let consider the
subnet Ns of Fig 4.5. By using the loop we can find novel processes, thus raising the
distance between the processes of the subnet dist(P ,P ′). However, the length of the
processes penalizes the intra-cluster distance. For ϵ high like ϵ = 0.2, we observe that
having a maximal length of 17 transitions (by unfolding once the loop like in Fig 4.4),
we can obtain a maximum dist(P ,P ′) = 8

1.217
= 0.36 where P ,P ′ ∈ Proc(N∫ ). Then,

for smaller maximal length, we do not unfold the loop and we get dist(P ,P ′) = 4
1.210

=
0.36.

4.4.2 Relating APOTC to ATC
Full runs of Petri nets have their process representations:
Definition 22 (Process representation of a full run). Every full run u of a (safe) model
N induces a process of N . This process is unique up to isomorphism [52] and is denoted
by Π(u).

Example 4.4.4 (Π isomorphism). Fig. 4.4 shows the process representation of
⟨y0, a90, a93, a91, a92, a90, a91, a93, a92, z0⟩.

Then any ATC can be casted as an APOTC. All the full runs centroids of an ATC, which
are sequential executions, can be represented as processes using Def. 22. The following
theorem explains how this transformation affects the quality criteria of the clusterings.
Theorem 1. For any ATC Cu = ⟨{u1 . . . un}, χu⟩, we define ∀i ∈ {1 . . . n} Pi

def
= Π(ui) and

χP
def
= Π◦χu (by convention Π(nc) = nc) inducing CP = ⟨{P1 . . .Pn}, χP⟩ its corresponding

APOTC of the same process model N and the same log L. The distances below follow the
properties:

1. d(Cu) ≥ d(CP) and ∆(Cu) ≥ ∆(CP) with equality if the model is sequential

2. Φ(Cu) ≥ Φ(CP) with equality if the model is sequential

3. n(Cu) = n(CP) and č(Cu) = č(CP)

Proof. We first observe that the obtained set {P1 . . .Pn} is by Def. 22 a set of subnets of
N and χP maps every clustered log traces to a subnet and non-clustered log traces to nc.
Then CP = ⟨{P1 . . .Pn}, χP⟩ is indeed an APOTC.

1. Every trace σ of L is either clustered (χu(σ) = ui, i ∈ {1 . . . n}) or non-clustered
(χu(σ) = nc). The maximum distance between traces and centroids d(Cu) depends
only on clustered traces: ∀σ ∈ L\χu

−1(nc) dist(σ, χu(σ)) ≤ d(Cu). By Def. 22 χu(σ) ∈
Runs(χP(σ)). Then for any clustered trace σ, we have d(CP) ≤ dist(σ, χP(σ)) ≤
dist(σ, χu(σ)) ≤ d(Cu) with equality if the model is sequential (no other run in
Runs(χP(σ))). Furthermore, ∆(C) is the sum of the distances: ∆(CP) ≤ ∆(Cu).

74



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

2. Let ui and uj, i, j ∈ {1 . . . n}, be two centroids of the ATC. The corresponding
processes of those centroids are defined by Pi = Π(ui) and Pj = Π(uj) and ui ∈
Runs(Pi) and uj ∈ Runs(Pj). This implies dist(Pi,Pj) ≤ dist(ui, uj) with equality
if the model is sequential (no other run in the processes). Consequently Φ(CP) ≤
mini ̸=j dist(ui, uj) = Φ(Cu) with equality if the model is sequential.

3. This is immediate by definition of χP .

As a summary, casting an ATC to an APOTC improves the distances between traces
and centroids; in contrast, the resulting APOTC may get a lower (i.e. poorer) inter-cluster
distance than the ATC. The number of clusters and ratio of clustered traces are preserved.

This means that clusters that were distant in the ATC may become closer in the
APOTC, which appears negative when seen from the perspective of good clusterings pre-
senting distant clusters. But, in the other hand, clusters that become closer will typically
be those that one precisely wanted to merge because they represent different interleavings
of processes.

This is exactly what happens in the running example. Merging clusters then results in
a lower number of clusters n(C), which also helps to get a human understandable clustering
and facilitates the analysis of the results by decision makers.

4.4.3 Relating AMSTC to APOTC
Similarly to the previous section, we relate processes to subnets.

Definition 23 (Subnet induced by a process). Every process P = (B,E,G,B0, Bf , h) of
a model N = ⟨P, T, F,m0,mf ,Σ, λ⟩, induces a subnet N of N defined by N = Ψ(P) def

=
(P, h(E), G|h(E), h(B0), h(Bf )).

Then, every APOTC CP induces an AMSTC whose subnet centroids are subnets are
defined according to the process centroids of CP .

The following theorem relates APOTC and the induced AMSTC, analogously to The-
orem 1 for ATC and APOTC.

Theorem 2. For any APOTC CP = ⟨{P1 . . .Pn}, χPi
⟩, we define ∀i ∈ {1 . . . n} Ni

def
= Ψ(Pi)

and χNP
def
= Ψ ◦ χP (by convention Ψ(nc) = nc) inducing CNP = ⟨{N1 . . .Nn}, χNP ⟩ its

corresponding AMSTC of the same process model N and the same log L. The distances
below follow the properties:

1. d(CP) ≥ d(CNP ) and ∆(CP) ≥ ∆(CNP ) with equality if the model is acyclic

2. Φ(CP) ≥ Φ(CNP ) with equality if the model is acyclic.

3. n(CP) = n(CNP ) and č(CP) = č(CNP )

75



4.5. COMPLEXITY OF ALIGNMENT-BASED TRACE CLUSTERINGS

Proof. The correspondence APOTC-AMSTC is similar to the correspondence ATC-APOTC
demonstrated in Theorem 1. When properties exactly coincide between ATC and APOTC
for sequential models, same results are found between APOTC and AMSTC for acyclic
models: without loops, every subnet has a single process and the distances are preserved.

4.4.4 When AMSTCs meet APOTCs.
Observe that, in our definition of AMSTC, only the behavior of the subnets is considered.
Hence, nothing penalizes a clustering for having dead transitions in a cluster, i.e., tran-
sitions which do not participate in any full run of the subnet. Intuitively, this situation
is not satisfactory since we expect the subnets to give information about the part of the
net which really participates in the observed traces. By the way, notice that the subnets
induced by processes following Def. 23 never have any dead transition. These subnets also
have another property: they all have at least one full run. Let us call fair an AMSTC in
which every centroid has these two properties. The following theorem establishes a relation
between APOTCs and fair AMSTCs.

Theorem 3. For a log L and an acyclic and trace-deterministic1 model N , the transfor-
mation defined in Theorem 2 establishes a bijection from the set of APOTC to the set of
fair AMSTCs C with intra-cluster distance Θ(C) = 0.

Proof. Since N is acyclic, for every process P of N , the subnet induced by P has no other
process than P itself. This proves that any AMSTC C obtained from an APOTC has
intra-cluster distance Θ(C) = 0. It is also fair as we noticed earlier.

Now, every centroid Ni of a fair AMSTC C with Θ(C) = 0 has a single process (call
it Pi): indeed, since the model is trace-deterministic, every subnet centroid in C having
two different processes would lead to Θ(C) > 0. This establishes a bijection between the
centroids of fair AMSCs with intra-cluster distance 0, and the processes of N , which serve
as centroids in APOTCs. This bijection between centroids induces naturally our bijection
between APOTCs and AMSTCs.

In summary, AMSTC handles both concurrency and repetitive behavior, and under
some situations behaves similarly to APOTC.

4.5 ComplexityofAlignment-basedTraceClusterings
For a log L and a modelN , one is typically interested in computing a trace clustering (ATC,
APOTC or AMSTC) C of L w.r.t. N of sufficient quality, i.e. satisfying some constraints on
the quality criteria d(C), ∆(C), n(C), č(C). We will see that, at least from a theoretical point

1N is trace-deterministic if the mapping u ∈ Runs(N) 7→ λ(u) ∈ Σ∗ is injective.

76



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

of view, the complexity lies already in the existence of a clustering, and the specification
of many quality constraints does not change the complexity.

For a non-empty log L and a model N , there exists an ATC C of L w.r.t. N having
č(C) > 0 (i.e. such that at least one trace is clustered), iff N has a full run. Indeed, when
no constraint is given about the quality criteria d(C), ∆(C), n(C), Φ(C)…, any full run of
N can serve as centroid, and any log trace can be assigned to any cluster. The same holds
for APOTC, where centroids are processes of N , since N has a process iff N has a full
run; it holds again for AMSTC, taking into account the constraint that any subnet used
as centroid should have a full run, or the stronger constraint that the subnet should not
have any dead transition, as discussed in Section 4.4.4.

Now, deciding if a model has a full run u, corresponds to checking reachability of
the final marking which is in PSPACE-complete or even NP-complete in some case (see
Section. 2.3.1).

In practice, relevant clusterings will not use very long full runs (or processes for APOTC)
as centroids. Also for AMSTC, no very long full run will be considered in the computa-
tion of d(C), ∆(C) or Φ(C). Typically, a bound l on the length of the full runs can be
assumed, for instance 2 times the length of the longer log trace. Let us call l-bounded a
trace clustering satisfying this constraint.

Theorem 4. The problem of deciding, for a log L, a model N , an integer bound l, integers
dmax, ∆max, nmax and a rational number čmin, the existence of a l-bounded ATC (respectively
APOTC, AMSTC) C of L w.r.t. N , having d(C) ≤ dmax, ∆(C) ≤ ∆max, n(C) ≤ nmax and
č(C) ≥ čmin, is NP-complete.

Proof. As observed earlier, the problem is NP-hard even with the only constraint that at
least one trace is clustered (i.e. č(C) > 0, or equivalently č(C) ≥ 1

|L|). It remains to show
that it is in NP: indeed, if there exists a (l-bounded) clustering, there exists one with no
more that |L| clusters (forgetting empty clusters cannot weaken the quality criteria); and,
by assumption, the size of centroids (defined as |σ| for ATC, |P| for APOTC, number
of transitions in the subnet for AMSTC) is bounded by l. So, it is possible to guess a
clustering C in polynomial time. For APOTC and AMSTC, one can also guess in P time
the full run u ∈ Runs(χ(σ)), for every clustered trace σ, which will achieve the dist(σ, χ(σ)).
Now, checking that C satisfies the constraints, only requires to compute Levenshtein’s edit
distances and minima over sets of polynomial size. This can be done in P time.

For ATC, the problem remains in NP with an additional constraint on the inter-cluster
distance (Φ(C) ≥ Φmin) because the inter-cluster-distance can be computed in P time.

On the other hand, incorporating new constraints like bounds on Φ(C) for APOTC or
AMSTC, or on the intra-cluster distance Θ(C), may increase the complexity. The principle
of the algorithm remains: guess non-deterministically a clustering, then check if it satisfies
the constraints. Hence, the complexity depends on the complexity of the algorithm used
as an oracle to check, given a log, a model and a clustering C, if C satisfies the constraints.
Precisely, if there exists such an oracle algorithm in some complexity class A, then the

77



4.6. AMSTC SAT ENCODING

l-bounded trace clustering problem is in NPA. For instance, for APOTC, checking if
Φ(C) ≥ Φmin is in NP; in consequence, the trace clustering problem with such constraint is
in NPNP. We get the same result for constraints on the intra-cluster distance (Θ(C) ≥ Θmin)
for AMSTC.

4.6 AMSTC SAT Encoding
In this section we show how we approach AMSTC definition with a SAT encoding to get
model-based trace variants.

We encode the existence of an AMSTC of m clusters, to get m model-based trace
variants, for net N and log L with maximal distance d, as a SAT formula of the equation
(4.5). Formally, we check the existence of C = ⟨{N1 . . .Nm}, χ⟩ such as :∧

σ∈L

χ(σ) ̸= nc⇒ distN (σ, χ(σ)) ≤ d (4.5)

and optimizes several quality criteria like the number of clustered traces. Those optimiza-
tion are detailed in sub-Section 4.6.4.

Distance distN in Eq.(4.5) is the minimal distance between a trace and a model-based
trace variant as subnet. In this thesis, we use the Levenshtein edit distance as presented
in Section 2.2.2. This induces Eq.(4.6).∧

σ∈L

χ(σ) ̸= nc⇒ min
uσ∈Runs(χ(σ))

L(σ, uσ) ≤ d (4.6)

Technical Details

The SAT encoding of the Levenshtein edit distance given in Chapter 2 is computationally
expensive and induces a lot of boolean variables. In this section, we present an alternative
based on a translation of the Levenshtein edit distance to the Hamming edit distance.

We can express Levenshtein distance with Hamming distance (H) and skip actions (≫m

for model moves and ≫l for log moves), as :

L(σ, u) = min
σ≫m ,u

≫l
σ

|σ≫m |=|u≫l
σ |

H(σ≫m , u≫l
σ ) (4.7)

where σ≫m ranges over all the words of (Σ ∪ {≫m})∗ obtained by inserting letters ≫m

in σ and respectively u≫l
σ ranges over all the words of (Σ ∪ {≫l})∗. Letters ≫m and ≫l

represent deletions and insertions.
Technically, we obtain the words σ≫m for a log trace σ as runs of a Petri net ((Nσ)

≫m),
built from σ as illustrated in Fig. 4.6, which contains a transition ≫m for model moves.

78



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

≫m

s g c

Figure 4.6: The net ((Nσ)
≫m) Used to Produce the Words σ≫m for a Log Trace σ = ⟨s, g, c⟩.

Similarly, the words u≫l
σ are obtained as runs of a modified subnet, χ(σ)≫l , which has an

additional transition ≫l for log moves.

Hence, finding C = ⟨{N1 . . .Nm}, χ⟩ satisfying (4.6) amounts to finding the correspond-
ing C = ⟨{N1 . . .Nm}, χ, (σ≫m)σ∈L, (u

≫l
σ )σ∈L⟩ satisfying

∧
σ∈L


σ≫m ∈ Runs((Nσ)

≫m) (Φ1)
u≫l
σ ∈ Runs(χ(σ)≫l) (Φ2)
χ(σ) ̸= nc⇒ H(σ≫m , u≫l

σ ) ≤ d (Φ3)
(4.8)

The SAT encoding of Eq.(4.8) is a conjunction of three building blocks that are detailed
in the next subsections.

4.6.1 SAT Encoding of Log Traces

The SAT encoding of log traces gives Φ1 of Eq.(4.8). Log traces are encoded as sequential
Petri nets noted Nσ to deal with model moves. The nets of traces contain an isolated ≫m

transition that can fire at any instant. Moreover, a ≫w transition, for ”wait”, is added at
the end of the sequential nets to adapt the different sizes of traces. Fig. 4.6 shows the net
of trace ⟨s, g, c⟩.

SAT encoding of Petri nets has been recalled in Section. 2.3.2 and require two kinds of
boolean variables : transition firing and marking representations. We then declare τL and
mL variables for the nets of log traces contained in |L| and defined over alphabet Σ :

• τLσ,i,a, for σ ∈ L, i = 1, . . . , n and a ∈ Σ with n the limited size of run. Those
boolean variables indicate that a transition of net of trace σ labeled by a fires at
instant i. L allows one to differentiate net of log trace and the initial process model
that also have τ variables.

• mL
σ,i,p, for σ ∈ L, i = 0, . . . , n and p ∈ Pσ where Pσ is the set of places of net of trace

σ. Those boolean variables represent the marking of the net of trace at instant i.

Then, any net of trace Nσ = ⟨Pσ, Tσ, Fσ,mσ0 ,mσf
,Σ,Λ⟩ has the SAT clauses presented

in the Background Section (Section 2).

79



4.6. AMSTC SAT ENCODING

4.6.2 SAT encoding of Model Runs

The SAT encoding of model runs is Φ2 of Eq.(4.8). Now that nets of traces are encoded,
we want to encode alignment between them and the process model which is also a Petri
net. Any trace σ is aligned to the model and requires its own run of the model noted uσ.
We then encode in formula (Φ2) |L| times the process model with the following boolean
variables :

• τMσ,i,a, for σ ∈ L, i = 1, . . . , n and a ∈ Σ with n the limited size of run. Those
variables indicate that model run of trace σ fires transition labeled by a at instant i.

• mM
σ,i,p, for σ ∈ L, i = 0, . . . , n and p ∈ P where P is the set of places of the process

model. Those variables represent the required marking of the process model to get
run uσ.

The runs of the model follow the exact same Petri net encoding as the net of traces.
Moreover, similarly to nets of traces, we added an isolated transition ≫l to represent log
moves and a wait transition to deal with different sizes of traces.

Notice that due to the use of the SAT encoding of Petri nets, the model-based trace
variants are forced to be sound and reach the final marking of the initial process model.

4.6.3 SAT Encoding of Variants

The SAT encoding of the variants fills Φ3 of Eq.(4.8). By using AMSTC, model-based
trace variants are subnets N1 . . .Nm (m ∈ N). They are defined by transitions of model
runs uσ used to align clustered traces σ of L. This is defined with the conjunction (Φ3) of
(4.8) that we recall:

(Φ3) :
∧
σ∈L

χ(σ) ̸= nc⇒ H(σ≫m , u≫l
σ ) ≤ d (4.9)

In this subsection, we first present how the distances are encoded. Then, we detail the
implication that incorporate clustered traces.

SAT Encoding of Distances

Aligning nets of traces and runs is obtained by computing the number of differences between
fired transitions. We introduce δMσ,i and δLσ,iwith σ ∈ L and i = 1, . . . , n boolean variables

80



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

that represents model and log moves.

∧
σ∈L

n∧
i=1

∧
a∈Σ
a̸=≫l
a̸=≫m

(τLσ,i,a ∧ ¬τMσ,i,a)⇔ (δMσ,i ∧ δLσ,i) (4.10)

∧
σ∈L

n∧
i=1

τMσ,i,≫l
⇔ δLσ,i (4.11)

∧
σ∈L

n∧
i=1

∧
a∈Σ

τLσ,i,≫m
⇔ δMσ,i (4.12)

Axiom (4.10) forces two δσ,i variables to be true when two different activities are
aligned which implies a distance to 2, this is equivalent of alignment cost. Indeed, in term
of alignment, this situation is represented by a model and a log moves and costs 2.

The maximal distance d given in Equation (4.5) is implemented as at_most_k con-
straints [68], i.e., the number of variables δ to true is limited by d:

∧
σ∈L

at_most_k(
n∑

i=1

∑
∆∈{L,M}

δ∆σ,i, d) (4.13)

SAT Encoding of Clustered Traces

Every trace is either clustered in one of the m clusters and attached to a model-based
trace variants either associated to the group entitled nc, for non-clustered traces. This is
encoded with the following variables.

• InCσ, for σ ∈ L boolean variables that are true where trace σ is clustered.

• χσ,k for σ ∈ L and k = 0, . . . ,m boolean variables that encode which trace is in
which cluster.

We then describe trace-cluster associations with the next SAT constraint :∧
σ∈L

InCσ ⇔
m∨

k1=0

(χσ,k1

m∧
k2=0
k2̸=k1

¬χσ,k2) (4.14)

If a trace is clustered, i.e. InC variable is true, transitions of its corresponding runs
belong to the model-based trace variant of its cluster. We declare boolean variables that
encode which transition belongs to which model-based trace variant.

• ck,t for t ∈ T and k = 0, . . . ,m with m the number of clusters. Those variables are
true if transition t is in model-based trace variant k.

81



4.6. AMSTC SAT ENCODING

Equation 4.15 then describes model-based trace variant-transition associations.

∧
σ∈L

InCσ ⇒ (
n∧

i=0

∧
a∈Σ

τMσ,i,a ⇒
∨
t∈T

Λ(t)=a

m∨
k=0

(χσ,k ⇒ ck,t)) (4.15)

Conjunction of expressions (4.10 to 4.15) forms (Φ3).

4.6.4 Optimization Criteria for AMSTC
The presented SAT formula accepts a large set of solutions. However, to get optimal
model-based trace variants, we add three optimization criteria:

• Number of clustered traces should be maximized, i.e., number of non-clustered traces
should be minimized.

• Inter-cluster distance, i.e., the distance between model-based trace variant, should
be maximized.

• Distances between the traces and the model-based trace variant should be minimized.
This problem of optimization is then a MaxSAT problem that uses the following weighted
clauses.

Minimization of Non-Clustered Traces

First, we optimize the number of clustered traces by maximizing InC variables to true
with the following MaxSAT formula :∑

σ∈L

InCσ ∗W1 where W1 is a positive weight (4.16)

Inter-cluster Distance Maximization

To maximize the inter-cluster distance, we use the heuristic that inter-cluster distance is
optimal when the number of common transitions between two model-based trace variants
is minimized. We then introduce new boolean variables:

• Commonk1,k2,t for k1, k2 ∈ {0, . . . ,m}, k1 ̸= k2 and t ∈ T , are boolean variables
describing common transitions between centroids of two clusters.

The minimization is found with the following MaxSAT problem where the idea is to set as
many as possible Commonk1,k2,t variables to false which reduces the number of common
transitions between model-based trace variants.

m∑
k1=0

m∑
k2=0
k1̸=k2

∑
t∈T

¬Commonk1,k2,t ∗W2 where W2 is a positive weight (4.17)

82



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Minimization of Distances

Finally the minimization of differences can be encoded by the following MaxSAT clauses:
n∑

i=1

∑
σ∈L

∑
∆∈{L,M}

¬δ∆σ,i ∗W3 where W3 is a positive weight (4.18)

Weights and Peculiarities in Implementation

This large MaxSAT formula is implemented in DarkSider and da4py presented in Sec-
tion 1.4.4. The two softwares use SAT solvers to get optimal solutions and return centroids
and their associated traces.

ParametermaxD is the maximal distance allowed between a centroid and a trace which
was given by the at_most_k constraint of Eq.(4.13). Similarly, in the implementation, the
number of transitions per cluster is limited by a parameter, noted maxCSize.

We define the following priorities and the implications on the weights:

1. First, traces should be clustered: W1 = maxD ∗W3 +maxCSize ∗W2

2. Then, number of common transitions should be limited: W2 = maxD ∗W3

3. Finally, distances should be reduced: W3

4.7 Sampling Algorithm to Deal with Large Logs
Like for multi-alignment, the SAT formula of the AMSTC algorithm encodes all the traces
which requires a lot of memory in practice. We propose a sampling algorithm that helps
one to deal with large logs.

4.7.1 Main Sampling Idea
To reduce the formula of the AMSTC algorithm, we propose Alg. 3, a sampling method
that calls the AMSTC algorithm only on samples. The AMSTC returns a set of subnets
which are the model-based trace variants and their list of clustered traces. Then every trace
of the entire log is aligned to each of the discovered variants and added to corresponding
cluster if the alignment is sufficiently good. Then we iterate over the remaining traces to
cluster with new model-based trace variants.

One can limit the number of model-based trace variants per loop, which also reduces
the size of the SAT formula. Alg. 3 takes as input a model N , a log L, a sample size
sampleSize to randomly select a sample of the entire log, a counter to stop the research

83



4.7. SAMPLING ALGORITHM TO DEAL WITH LARGE LOGS

Algorithm 3: AMSTC Sampling Algorithm
Input : N , L, sampleSize, m, maxCSize, maxD, maxTrials

1 Clusters = {}
2 counter = 0
3 while |L| > 0 and counter < maxTrials do
4 sublog = randomSampling(L, sampleSize)
5 clustering = AMSTC(N, sublog,m,maxCSize,maxD)
6 if clustering is ∅ then
7 counter = counter + 1
8 else
9 LogAlignToCluster(clustering, L,maxD,Clusters) ▷ below

10 counter = 0

11 if L > 0 then
12 Clusters[nc] = L ▷ non-clustered traces

Output: Clusters : {modelBasedTraceVariant : clusteredTraces}

13 Function LogAlignToCluster(clustering, L, maxD, Clusters):
14 foreach cluster in clustering do
15 modelBasedTraceV ariant = cluster.getV ariant()
16 foreach l in L do
17 if alignmentCost(l,modelBasedTraceV ariant) < maxD then
18 Clusters[cluster].add(l)
19 L.remove(l)

of model-based trace variants when samples cannot be aligned anymore and parameters
of the AMSTC algorithm, i.e. the number of model-based trace variants m, the maximal
number of transitions per cluster maxCSize and the maximal distance between the traces
and their variants maxD.

We give the schematization of the algorithm for more readability in Fig. 4.7.

4.7.2 ReducingAlignmentUsewithCasual EditDistancebetween
Traces

Alignment is much more expensive than edit distance between words. To limit the use of
alignment, we propose another version that first uses edit distance between the clustered
traces and the rest of the log. This heuristic allows one to considerably reduce the log
before doing alignments.

84



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Figure 4.7: Schematization of the AMSTC Samping Algorithm

As any trace is a maximal distance maxD to its model-based trace variant, novel
clustered trace is then at maximal distance to its centroid to 2 ∗ maxD as the maximal
distance between clustered traces and unclustered traces is also maxD. One can also
consider introducing another input for this purpose, thus raising the number of clustered
traces.

4.7.3 Memoization of Alignment Costs
Typically, in real life logs, traces corresponding to frequent behaviors occur many times
in the log. This suggests an easy way to improve the efficiency of Alg. 3: it suffices to
memoize the calls to the function alignmentCost which takes most of the computation
time. Tab. 4.5e in the experiments section 4.8 shows the spectacular improvement obtained
with this technique.

4.7.4 Statistical Confidence for Sampling
To ensure our random sampling approach, we provide two statistical confidence thresholds.

Probability of Missing Clusterizable Traces

We focus on the situations where Alg. 3 stops before clustering all the log traces which are
sufficiently close to a run of the model (i.e. at distance ≤ maxD), that we call clusterizable
traces.

We quantify this probability as a function of the proportion of unclustered traces which
are clusterizable. Let p be this proportion when the algorithm starts a series of iterations
in order to find a nonempty clustering. As long as the clusterings fail, the unclustered
traces remain the same and the proportion p does not change.

85



4.7. SAMPLING ALGORITHM TO DEAL WITH LARGE LOGS

Algorithm 4: Reducing Alignment Use of Algorithm 3 (lines 13 to 19)
1 Function LogAlignToCluster(clustering, L, maxD, Clusters):
2 foreach cluster in clustering do
3 clusteredTraces = cluster.getClusterTraces()
4 modelBasedTraceV ariant = cluster.getV ariants()
5 foreach l in L do
6 foreach trace in clusteredTraces do
7 if editDistance(l, trace) < maxD then
8 Clusters[cluster].add(l)
9 L.remove(l)

10 if l is still unclustered then
11 if alignmentCost(l,modelBasedTraceV ariant) < maxD then
12 Clusters[cluster].add(l)
13 L.remove(l)

Now, a clustering fails precisely when no clusterizable trace is selected in the sample.
The probability of this is (1 − p)sampleSize (the sampled traces are selected independently
one from the other).

Finally, if the algorithm starts a series of clusterings from a state where the proportion
of unclustered traces which are clusterizable is p, the probability that it fails maxTrials
times to cluster traces (and then stops), is (1− p)sampleSize×maxTrials.

For example, assume 5% of the unclustered traces are clusterizable, the probability that
the algorithm fails to detect them after 2 trials with sampleSize = 10, is 0.952×10 ≈ 0, 36.
Alter 10 trials, the probability drops to 0.9510×10 ≈ 0, 006.

If no clusterizable trace remains, i.e. p = 0, the trials fail (and then the algorithm
terminates) with probability 1.

Wilson score interval

Equivalently to [12], the number of trials in the sampling method can be assessed with a
statistical method. Wilson score interval [141] gives a lower bound Lb and a upper bound
Ub of probability δ to get a probability p of success on a sample of size n with a confidence
α:

p+ z2

2n
− z ∗

√
p∗(1−p)

n
+ z2

4n2

1 + z2

n

≤ δ ≤
p+ z2

2n
+ z ∗

√
p∗(1−p)

n
+ z2

4n2

1 + z2

n

(4.19)

where z is the 1− α
2
quantile of a standard normal distribution corresponding to the target

error rate α.
In our sampling method, we are looking for the number of trials n such as the probability

86



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

p to get success with our AMSTC function, i.e., the sample provide new model-based trace
variants, is bounded by δ with a confidence α. In other words, the probability to get new
model-based trace variants with a maximal bound δ corresponds to the null hypothesis,
i.e., p = 0, of the statistical interval. In our approach, we are looking for the minimal
number of sample Nmin that is sufficient for a given maximal bound δ and a confidence α.
From the right side of Wilson score intervals (4.19), we obtain:

Nmin ≥
z2 ∗ (1− δ)

δ
(4.20)

To illustrate this inequality we give an example inspired from [12]. We want to find the
minimum sample size required to be confident at 0.99 that a novel trial of AMSTC would
not give new model-based trace variants with a lower bound probability of 0.95. Then, we
set the confidence α to 0.01 which implies z = 2.58 from the 1− α

2
one-side quantile of the

standard normal distribution. The lower bound probability that the novel trial of getting
new clusters will fail corresponds to the upper bound to get a success, i.e., to get clusters.
Then δ = 0.05. From equation (4.20), we found that the minimal sample size is 127 with
Wilson score interval.

4.8 Experiments
In this section, we present our different AMSTC implementations and show a set of exper-
iments from small artificial logs to large real-life logs. As usual, some traces corresponding
to frequent behavior occur many times in the log. We write number of classical trace vari-
ants for the number of different log traces in a log, in reference to previous works on trace
variants like [115]. The aim of the present paper is precisely to reduce this number of trace
variants using our richer notion of trace variants obtained as centroids of trace clusters.

Implementation of the AMSTC method exists in two tools : DarkSider and da4py. The
sampling methods and additive heuristics have been developed in da4py only. All the
experiments of this paper have been run with da4py on a virtual machine with 12 CPU
Intel Xeon 2.67GHz and 50GB RAM.

4.8.1 Event Logs
Experiments have been done on a set of 7 different logs shown in Tab. 4.4 from 9 to 41353
traces. First log has been presented in [19] to show how model-based clustering helps one
to group traces and extracts deviated behaviors. Log presented in section 4.1 is also an
artificial log for this purpose. All the other logs have been introduced in other context.
We used 3 real-life logs of BPI challenges.

AMSTC algorithm extracts model-based trace variants that required a model as input.
To show a large variety of different cases, we have done our experiments on models of
literature that have been created in different ways for the respective logs. Tab. 4.4 indicates

87



4.8. EXPERIMENTS

Log |L| Number of
Classical
Trace

Variants

|Σ| ∀σ∈Lmax(|σ|) Model Discovery
Method

|T | |P |

Artificial L1
of [19]

9 9 7 7 Hand written
model 1

8 6

Artificial log
described in

Sec 4.1

500 411 40 36 Hand written
model 1

90 92

Artificial L1
of [112]

500 453 37 36 PLG2 tool 39 40

LoanA of
[135]

500 100 16 37 Hand written
model 2

17 14

BPI ′2013cp 1487 183 7 35 Heuristic Miner 3 25 18
BPI ′2013inc 7554 1511 13 123 Split Miner 3 15 11
BPI ′2014f 41353 14948 9 167 Split Miner 3 24 16

1 Available at https://github.com/BoltMaud/da4py/examples
2 Available at doi:10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c
3 From [8], available at https://doi.org/10.6084/m9.figshare.6376592.v1

Table 4.4: Event Logs Statistics and Used Discovered Models

which design method have been used. Complexity of AMSTC depends on the size of the
event logs and size of the models which are detailed in the table.

Notice that models with choices, loops and concurrency have been preferred than lin-
ear models or mostly concurrent patterns. As our method extracts sound subnets, fully
concurrent models cannot be divided in several subnets.

4.8.2 Qualitative Experiments

⟨s, c, g⟩
⟨s, c, g, d⟩
⟨s, f, b, a⟩
⟨s, f, f, a⟩
⟨s, b, f, a⟩
⟨s, g, f, d, d⟩
⟨s, g, f, d, d, d, d⟩
⟨g, c, f, s, d, d⟩
⟨s, d, d, d⟩

Figure 4.8: Log L2

This section aims at comparing complete AMSTC and the sampling method outputs
with different parameters. We used the log L2 given in [19] and its hand written process

88



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

model which is small enough to be fully computed by the entire algorithm. The log contains
9 traces of maximal length to 7 and the model has 14 nodes (see Fig. 3.1a).

Experiments have been done with a size of run to 7 and a maximal of trials to 2.
Tab. 4.5 gives the results of the experiments. Each sub-table is an improvement of the
previous one except table 4.5f which aims at showing consequence of the number of classical
trace variants. Every line is an experiment of a specific setting and has been run 10 times.
For descriptive results, like the number of clusters and traces, the most returned results
are shown. Runtimes are means for the experiments of the selected results. We now give
an analysis of the tables.

|L| Number
of

Classical
Trace
Vari-
ants

Sample
Size

Maximal
Distance
(Num-
ber of
Moves)

Number
of

Clusters
per

AMSTC

Number
of Clus-
ters

Traces Per Cluster Un-
clustered
Traces

Runtime
(secs)

Alignment
Runtime
(secs)

Min Max Avg
9 9 / 0 3 3 2 2 2 3 1.30 /
9 9 / 0 2 2 2 2 2 5 1.41 /
9 9 / 2 3 2 3 5 4 1 11.63 /

(a) Complete AMSTC on a small log (L2)
90 000 9 10 0 2 3 20 000 20 000 20 000 30 000 1503.98 14095.16
90 000 9 10 2 2 2 30 000 50 000 40 000 10 000 984.90 975.45

(b) Sampling Method on a large Log (L2 ∗ 10 000)
90 000 9 10 0 2 3 2 000 83 000 29 000 3 000 595.37 587.83
90 000 9 10 2 2 2 3 000 86 000 44 500 1 000 473.42 465.52

(c) Clustering Effects on Specific Distribution of Traces of L2 in large log
90 000 9 10 0 2 3 2 000 83 000 29 000 3 000 146.83 133.40
90 000 9 10 2 2 2 3 000 86 000 44 500 1 000 151.51 142.65

(d) Edit Distance Heuristic to reduce Alignment Runtime
90 000 9 10 0 2 3 2 000 83 000 29 000 3 000 7.36 0.16
90 000 9 10 2 2 2 3 000 86 000 44 500 1 000 8.45 0.07

(e) Memoization of Alignment Costs
90 000 255 10 0 2 3 18 495 18 866 18 731 33 805 17.95 8.29
90 000 255 10 2 2 3 9 821 50 510 29 825 525 15.88 4.30
90 000 12 460 10 0 2 4 631 2 874 1 601 83593 962.82 935.65
90 000 12 460 10 2 2 3 15 366 35 964 22 855 21 433 572.87 560.10

(f) Clustering Effects on Noisy Log (Raising the Number of Classical Trace Variants)

Table 4.5: Comparison of AMSTC Results for Different Parameters on Log L2 of [19].

In sub-table 4.5a, we see that, given different distances and number of clusters, results
differ. Raising the distance between the traces and the centroids allows to cluster more
traces. However, a good distance threshold aims at partitioning the traces in more specific

89



4.8. EXPERIMENTS

clusters and then get specific model-based trace variants.
In sub-table 4.5b, sampling method outputs are presented. For the exact same dis-

tribution of the traces, we proportionally get the same results of the complete AMSTC
method. Then the exact same model-based trace variants are extracted.

Sub-table 4.5c aims at showing that our method can deal with strange trace variant
frequency. In this experiment, the second trace of L2 have been duplicated 82000 times
while the other traces appear 1000 times each. We can see that the size of the clusters
are indeed very different. However, notice that the number of clusters corresponds to the
previous experiments. The same model-based trace variants have been extracted.

Sub-tables 4.5d and 4.5e contain heuristic improvements in term of runtimes.
Finally, we have added noise in log to raise the number of trace variants which is used

by the heuristics. The number of clusters is then different which is expected.

Experiment Conclusion

From this experiments, we see that the AMSTC method helps one to extract good
model-based trace variants. The sampling method efficiently works for large logs and
specific distributions of trace variants. For noisy logs, more model-based trace variants
are extracted. To reduce the number of model-based trace variants and un-clustered
traces, one can change the maximal distance between trace and variants.

4.8.3 Quantitative Experiments

In this section, we present experimentation of the set of different logs presented in sec-
tion 4.8.1. Settings presented in the table have been chosen by the author after some tests.
The tests consisted on evaluating the distance between the traces and the models, assess-
ing the minimal size of the run depending on the traces and loop behaviors and counting
an approximate maximal number of transitions per cluster. The sampling size have been
chosen in a way that runtime is optimized. The number of clusters per loop was set to 2
to reduce the formula size. Finally, we set the number of trials of the sampling algorithm
to 5 sequential fails.

Each experiment have been run 10 times except the last one because of long runtimes.
Due to trace variants and the use of causal edit distance between traces, outputs of the
same experiment are different. In Tab. 4.6 we show examples of clustering results that have
returned the least unclustered traces. Notice that the runtimes are much larger because
of the number of activities and trace variants in logs. Moreover, the models are also much
larger than in the previous experiments.

90



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

Log Number
of Clas-
sical
Trace
Vari-
ants

Sample
Size

Size
of
run

Maximal
Number
of Tran-
sition per
Cluster

Maximal
Dis-
tance
(Num-
ber of
Moves)

Number
of

Clus-
ters

Number of Traces
Per Cluster

Unclus-
tered
Traces

Runtime
(secs)

Alignment
Runtime
(secs)

Min Max Avg
Artificial L1 9 5 5 5 0 3 2 2 2 3 4.02 0.13of [19]
Artificial log

411 5 15 9 0 12 22 54 42 0 2135.84 27.96presented in
Sec 4.1

Artificial L1 453 5 15 15 4 4 19 145 62 252 6681.47 666.23of [112]
LoanA of [23] 100 10 20 14 1 10 10 60 25 250 409.32 64.31
BPI ′2013cp 183 10 20 9 1 3 32 1121 451 134 245.29 42.33
BPI ′2013inc 1511 5 20 11 2 2 204 5981 3092 1369 4091.79 3646.47
BPI ′2014f 14948 5 20 15 2 6 257 21909 4344 15289 66709.70 66130.29

Table 4.6: Examples of AMSTC Outputs on a Set of 7 Logs

We can see that our running example presented in Sec 4.1 perfectly associates every
trace of the log to a model-based trace variants. For 500 traces and 411 classical trace
variants, the AMSTC method finds 12 model-based trace variants. Those subnet instances
are then a good way to analyze the log traces separately.

We see that for more noisy logs contained in real-life data and a small distance between
trace and variants, we are able to cluster a good number of traces in a very small number
of clusters. We see from the number of classical trace variants in the second column that
the method is indeed able to group them in our more general model-based trace variants.

Experiment Conclusion

In those experiments, we highlight how our method is able to extract a small number
of model-based trace variants of real-life logs compared to the number of classical trace
variants. We see that still a lot of traces remain unclustered but this is due to the
distance between variants and traces which is intentionally small. The extracted model-
based trace variants are well fitting to the clustered traces (maximal distance is always
lower than 4 in Tab. 4.6).

4.8.4 Case Study

To present the value of our clustering and the discovered model-based trace variants, we
present a case study on a real-life log and different process models. Then, we compare our
work to the Super-instances from [39] which also aims at representing group of traces and
are also found by using a clustering approach.

91



4.8. EXPERIMENTS

Event Log

We employed the real-life log from the Business Process Management Challenge of 2013
about the closed problems of Volvo management system. The event log contains 1487 log
traces, 183 classical trace variants, 7 activity steps (taking in account activity name and
progress) and 4 main activity names. Tab. 4.7 shows the frequency traces containing the
activity names. We see that some activities, like Unmatched, are much less frequent than
other, like Completed. We also notice that activity Queued appears in many classical trace
variants but those trace variants are not very frequent in the log. This simple table will
help to get good intuition in the understanding of the results of the model-based variants
and the super-instances from [39].

Activity
Label

Frequency of Traces Containing
the Activity Label

Frequency of Classical Trace Variants
Containing the Activity Label

Accepted 1.00 0.99
Completed 1.00 1.00
Queued 0.36 0.84

Unmatched 0.01 0.04

Table 4.7: Frequency of Traces and Classical Variants Containing the Different Activities

HowModel Quality Impacts Model-based Trace Variants

By using the classical trace variants, i.e, the number of unique sequences, one obtains
183 instances for BPIC 2013 closed problems event log. For human analysis and business
aspect, this number of instances is too large to be understood. Our AMSTC method helps
one to get more representative variants. However, our method is based on an existing
model. In Tab. 4.8, we show different clustering results for different model qualities.

Model Fitness Maximal
Number of
Transition

per
Cluster

Maximal
Distance
(Number

of
Moves)

Number
of

Clusters

Number of Traces
Per Cluster

Unclus-
tered
Traces

Min Max Avg

Split Miner 0.98 10 0 4 1 917 251 485
2 2 59 1377 718 51

Heuristic Miner 0.94 12 0 2 3 917 460 567
2 2 17 1391 704 79

Inductive Miner 0.82 7 0 1 574 574 574 913
2 1 1367 1367 1367 120

Models from [8], available at https://doi.org/10.6084/m9.figshare.6376592.v1

Table 4.8: AMSTC on BPIC 2013cp Log and Different Models. Sample size is set to 15
and run size to 20.

92



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

We observe that the fitness of the model impacts the number unclustered traces. More-
over, we see that results of the last model of Tab. 4.8 do not give useful information in term
of representatives. In fact, this model, learned with the inductive miner, is very simple and
contains only a choice and a loop, making hard to split the model in model-based trace
variants. Finally, we note that our clusters are very heterogeneous. This aspect can help
one to understand the structure of the model by analyzing the model-based trace variants.

Experiment Conclusion

In this experiment, we show how fitness impacts results of the ASMTC methods, thus
giving different model-based trace variants. For larger distances to the centroids, one gets
less variants but can cluster more traces from the event log. In opposite, for a distance
to zero, the number of model-based variants raises but many traces are left unclustered,
i.e, do not have a representative.

Comparison of Clusters and Representatives

Our method extracts Model-based Trace Variants along with clustered traces. This aspect
motivates us to compare our method to the Super-Instances of [39]. In this work, it
also finds clusters from the log traces, and work with the centroids of them which they call
Super-Instances. We see that both methods claims to get representatives of groups of traces.
Moreover, they also use a clustering method, i.e., the K-means algorithm. The algorithm
is based on the Euclidean distance between vectors of activities occurrence contained in
the traces. The main differences between our approach and [39] are: first, our approach
does not need as input the number of clusters, whilst [39] does. Second, [39] tries to obtain
a balanced clustering, i.e., a clustering where the size of the computed clusters are as much
similar as possible. In contrast, our method only focuses on finding good representatives
of each cluster, regardless of its size. These differences are corroborated in the case study
found below.

We used the Jaccard index [137] to compare two clusterings, C and C ′, defined by:

J (C, C ′) = n11

n11 + n01 + n10

(4.21)

where:
n11 is the number of pairs of items clustered together in C and in C′

n10 is the number of pairs of items clustered together in C but in different clusters in C′

n01 is the number of pairs of items in different cluster in C but in same clusters in C′

In our study, the Jaccard index relates pairs of traces in the two clustering results,
we also report how many pairs of traces have been clustered together in both clusterings
(column n11 in Tab. 4.9), and how many traces were clustered together in a clustering but
not in the other one (columns n01 and n10 in Tab. 4.9). A high value (≤ 1) of the Jaccard
index indicates that the clustering are similar. The main of this study is then to study our
clustering results of Tab.4.8 and the corresponding outputs of [39].

93



4.8. EXPERIMENTS

Cluster Sizes of
AMSTC (see Tab. 4.8)

Jaccard Comparison Cluster Sizes by
using method of [39]

Min Max Median n11 n10 n01 Index Min Max Median
1 917 42 169577 253652 1560 0.399 82 496 212
59 1377 718 550325 398762 32081 0.561 458 978 718
3 917 470 210957 209032 1479 0.501 424 496 460
17 1391 704 562403 404478 7038 0.577 431 977 704
574 574 574 164451 0 0 1.000 574 574 574
1367 1367 1367 933661 0 0 1.000 1367 1367 1367

Table 4.9: Cluster Comparison between AMSTC and [39] Results for the Same Traces and
Number of Clusters. All the rows of this table have been produced based on the rows of
Tab.4.8

.
First, we want to justify about the use of clustered traces only when instructing [39]:

in order to compare the clusterings, which aim at grouping traces for their similarities,
we claim that considering as a cluster the sets traces not clustered by our method would
not give an appropriate comparison, since these unclustered traces are not related. So, to
compare the clusters given by the two methods, we ran method of [39] only on the traces
that have been clustered in Tab. 4.8.

In opposite of AMSTC, method of [39] requires, as input, the number of clusters. For
each ASMTC presented in Tab. 4.8, we launched the method on the clustered traces and
used the same number of clusters. For instance, for the first line, we ran the Super-Instance
method on the 1002 clustered traces and set the number of clusters to 4. We give in Tab.4.9
an overview of the cluster sizes and the Jaccard Index. The two last rows of the table are
not informative as their is only 1 cluster. For the first line, in which 4 clusters have been
discovered, we see that the Jaccard Index is under 0.5, meaning that there are more pairs
of traces clustered in different clusters by the clustering methods. For the other rows, we
see that, the Jaccard index varies from 0.501 to 0.577 which is better than hazard for those
lines which have only 2 clusters (see Tab. 4.8 for the number of clusters). Indeed, for 2
clusters, the probability of n11, a pair of traces to be clustered together by both methods,
is 1/4, while the addition of the probabilities of n10 and n01 is 1/2. We see that the Jaccard
Index tells us that our method have some similarities.

To conclude this section, we present in Fig. 4.9 the model-based trace variants of our
approach and the super-instances of [39] of the first line of Tab.4.9. We remark that two of
our representatives contain activity Queued and Unmatched while the super-instances only
have once the activity Queued. This is due to the fact that method of [39] uses K-means
that tries to get centroids which are means of the occurrences of activities and n-grams of
activities. In our method, the model-based trace variants are subnets which can contain
choices, thus allowing activities that are not used in all the traces of a cluster. The variant
is then more general than a sequence. However, our method can also get sequential net (see
Fig. 4.9). Model-based trace variants are a good balance to represent the traces, especially
when the distance to the traces is zero, i.e., the variants can replay the traces. This last
aspect cannot be induced by using the super-instances.

94



CHAPTER 4. MODEL-BASED CLUSTERING OF LOG TRACES THROUGH ALIGNMENTS

(a) Model-based Trace Variants

⟨Accepted, Completed⟩
⟨Accepted, Accepted, Completed⟩
⟨Accepted,Queued,Accepted, Completed⟩
⟨Accepted, Accepted, Accepted, Accepted, Accepted, Completed⟩

(b) Super-Instances

Figure 4.9: Representatives of Clusters

Experiment Conclusion

In this comparison, we aimed at showing the differences between the super-instances,
which are sequences, and the model-based trace variants. We have seen that the dis-
covered activities slightly differ from a method to another. The AMSTC gives more
complex structures, but the resulted representatives provide more information thanks
to the semantics of Petri nets. In addition to different structures, the two approaches
have completely different underlying search algorithms. Our method tries to get sub-
nets by using alignment between the model and the log traces. In [39], the distance is
the Euclidean distance between vectors of occurrences and n-grams, i.e., sub-sequences
of traces, and a balanced clustering is obtained if possible. Finally, we want to point
out that our method does not require the number of clusters a priori, i.e., our method
searches good representatives.

95



4.9. CONCLUSION

4.9 Conclusion
This chapter enables to cluster log traces by behavior thanks to model-based approach.
As process models contain causality, concurrency, choice and loop behavior and can be
validated with the conformance checking criteria, we motivate their use as a baseline of
clustering approach. By aligning the log traces to the model, we discover the important
parts of the model that represent the traces. In this work, we extend the idea of [33]
where the discovered centoids are now processes or subnets of the initial model such that
concurrency and loops are addressed. All methods use alignment artefact to relate the
model to the traces.

We introduced a set of quality criteria to get good clustering results and presented a
SAT encoding that outputs the desired clusters. As the SAT encoding to align the entire
log requires too much memory, we inaugurated a sampling approach whom we ensure with
statistical confidence.

The alignment-based clustering methods return clusters of the log traces along with
centroids that we propose to use as model-based variants. We presented some experiments
and compared our method to the super-instances defined by [39].

The limit of this work is certainly the sampling approach that dismiss the overall
clustering idea because it proceeds on several iterations. The goal of clustering is to group
traces for their similarities and highlight the differences between groups. However, by using
a sample only, we do not have a overview of all the traces to do the balancing between the
quality criteria for a good clustering.

Moreover, we observed in the experiments that some clustering have left many traces
unclustered. This results can appear when the model is not much fitting the log and the
distance between the centroids and the log traces is too low. One can avoid this by checking
the conformance of its process model before any model-based clustering. This idea bridges
the gap to the next chapter about anti-alignments.

96



Chapter 5

Anti-alignments for Measuring Precision and
its Interest in Model-based Clustering

Chapter Overview

The present chapter focuses on anti-alignments. In opposite to alignments and multi-
alignments, this conformance checking artefact is a run of the process model that is as
far as possible to any trace of the given log. The artefact is used for computing precision
but also for highlighting model deviations with respect to a log.
The chapter is divided as follows. First, we give the related work for model deviations
and precision of process models. In Section 5.2 we give the definitions of anti-alignment
and precision. The sub-Section 5.3 provides algorithms for computing both optimums
and approximations of anti-alignments. Then, in Section 5.5, we show the impact of
using anti-alignment in model-based clustering context. Section 5.6 gives an opening of
anti-alignment use in the context of model repair.

5.1 Related Work
We start this chapter by stating the related work that allows to contextualize anti-alignments
and model precision whom focus differs from the rest of this thesis. We first present the
state-of-the-art methods for precision of process models which is much discussed in the
community. Then we give the introduction of anti-alignments.

5.1.1 Precision of Process Models

The work of [104] is one of the first attempts to evaluate the precision of a process model
with respect to an event log. It is grounded on comparing relation matrices from the model

97



5.1. RELATED WORK

and log. Since it requires the full state-space exploration of the process model, it is only
applicable to small models.

In [86] deviations are estimated by the number of escaping arcs, i.e., runs of process
models that deviate from the log. The state-space exploration of this method is bounded
by the log behaviors. They provide a precision estimation called Escaping Edges Precision
(ETC). However, this work does not consider the size of the deviations, i.e., escaping arcs
might cause large deviant behaviors.

Recently, an effort to consolidate a set of desired properties for precision metrics has
been proposed [109]. Five axioms are described that establish different features of a preci-
sion metric prec(N,L). Summarizing, the proposed axioms are:

• A1 : A precision metric should be a function, i.e. it should be deterministic.

• A2 : If a process model N2 allows for more behaviors not seen in a log L than another
model N1 does, then N2 should have a lower precision than N1 regarding L:

L ⊆ Runs(N1) ⊆ Runs(N2) =⇒ prec(N1, L) ≥ prec(N2, L)

• A3: Let N1 be a model that allows for the behavior seen in a log L, and at the same
time its behavior is properly included in a model N2 whose language is Σ∗1 (called
a flower model). Then the precision of N1 on L should be strictly greater than the
one for N2.

• A4 : The precision of a log on two language equivalent models should be equal:

Runs(N1) = Runs(N2) =⇒ prec(N1, L) = prec(N2, L)

• A5 : Adding fitting traces to a fitting log can only increase the precision of a given
model with respect to the log:

L1 ⊆ L2 ⊆ Runs(N) =⇒ prec(N,L1) ≤ prec(N,L2)

The two works presented above fail at satisfying these important axioms. We now turn
the focus to recent proposals that, as the case for anti-alignment based precision, do satisfy
the reference axioms for precision.

Work of [91] transforms recorded and modeled behaviors into abstraction called directly
follows automaton, and compares their languages. By introducing the notion of language
quotients according to a measure, a precision metric can be defined, which is the ratio of
common sequences between the log and the model to the total model runs. To deal with
infinite languages, they use the topological entropy of languages, detailed in [27]. However
this technique is very strict when any sequence is shared by the log and the model. In [70],
they add skips actions to make the approach more flexible.

1Actually, [109] writes “Runs(N1) ⊂ P(Σ∗)”, with P for power set, but we believe this is a mistake.

98



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Finally, the work of [8] is based on Markovian abstractions. By comparing the k-th
order Markovian abstraction of a process model against the respective one of an event log,
a precision metric can be obtained. Both works above represent an interesting attempt
to estimate precision, but due to being grounded in sometimes aggressive abstractions,
they fail in generating concrete insights pinpointing the real deviations. In contrast, anti-
alignments are not based on abstraction but instead in concrete model runs, that may
serve as a concrete explanation for repairing precision problems in a process model.

5.1.2 Introduction of Anti-alignments
Anti-alignments have been introduced by [31] as the dark side of process models. The
same year, the authors present in [129] how those conformance artefacts can be used for
measuring precision but also generalization, i.e., two fundamental metrics still in elabora-
tion in process mining [118]. Anti-alignments have been proposed for both the Hamming
distance and the Levenshtein distance [30]. Anti-alignment based precision metrics satisfy
the necessary axioms for a precision metric [109]. Levenshtein distance is preferred, since it
provides a more precise characterization of a deviation. Anti-alignments can be seen as the
counterpart of alignments [4]. While many optimizations exist for alignment computation
[73, 101, 113], none of them can be adapted to compute anti-alignments since for the latter,
the whole log and not only one single trace needs to be considered.

5.2 Definitions
This section completes the aforementioned previous works about anti-alignments. In. [30],
which belongs to the set of contributions of this thesis (numerated C5 in Section. 1.4.3),
we formalized and improved anti-alignment computation. Then, the following content
is a consolidation of the state-of-the-art for anti-alignments. Entire novelty starts from
Section. 5.3 where we propose novel algorithms, experiments and applications.

5.2.1 Anti-alignments
We call anti-alignments the most deviant full runs of process models.

Definition 24 (Anti-alignment). Given a log L and a model N , an (optimal) anti-
alignment is a full run u ∈ Runs(N) such that it maximizes the minimal distance
minσ∈L dist(σ, γ) to the log:

max
u∈Runs(N)

min
σ∈L

dist(σ, u) (5.1)

where dist is a distance between sequences.

Like the other conformance checking artefacts, the preferred distance is the Levenshtein
edit distance.

99



5.2. DEFINITIONS

p0

b

a

p1

p2

p3

d

e

b

p4

p5

p6

i

c

p7

(a) Model M3

{⟨b, c⟩,
⟨b, d, f⟩}
(b) Log L3

Figure 5.1: Drawing Example for Anti-alignments.

Example 5.2.1 (Anti-alignments). For the process model and the log of Fig. 5.1,
full run ⟨b, e, d, τ⟩ is an anti-alignment of minimal distance to any log trace of 2.
Observe that run ⟨b, d, e, τ⟩ is also an optimal anti-alignments for this log and model.

Comparison to Multi-alignments

Like multi-alignments, anti-alignments is a run that involve the entire log at once. However,
the complexity of anti-alignments is higher as it implodes to observe all the runs. This
it well depicted when the problems are written as 2QBF instances (Quantified Boolean
Formula with 2 quantifiers).

Multi-alignments are given by:

∃u ∈ Runs(N) ∀σ ∈ L dist(σ, u) ≤ d (5.2)

while anti-alignments are:

∃u ∈ Runs(N) ∀σ ∈ L dist(σ, u) > d (5.3)

which can be transformed into

∀u ∈ Runs(N) ∃σ ∈ L dist(σ, u) ≤ d (5.4)

where the quantifier ∀ appears first and for the runs of the Petri net.

5.2.2 Anti-alignment-based Precision of Process Models
The main motivation of finding anti-alignments is to estimate precision of process models.

Definition 25 (Anti-Alignment based Precision). Let L be an event log and N a model.
We define precision as follows:

100



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Paa(N,L)
def
= 1− max

γ∈Runs(N)
min
σ∈L

∆(γ, σ) (5.5)

where ∆(γ, σ)
def
= dist(γ,σ)

|γ|+|σ| is a normalization of the distance.

Example 5.2.2 (Precision Computation). Precision of model N3 for log L3 of
Fig. 5.1 is then Paa(N3, L3) = 1− 2

7
= 0.71.

Handling Process Models with Loops

Notice that a model with arbitrary long runs (i.e., a process model that contains loops)
may cause the formula in Definition 25 to converge to 0. This is a natural artefact of
comparing a finite language (the event log), with a possibly infinite language (the process
model). Since process models in reality contain loops, an adaptation of the metric is done
in this section, so that it can also handle this type of models without penalizing severely
the loops.

Definition 26 (Precision for Models with Loops). Let L be an event log and N a model.
We define ϵ-precision as follows:

P ϵ
aa(N,L)

def
= 1− sup

γ∈Runs(N)

min
σ∈L

∆(γ, σ)

(1 + ϵ)|γ|
(5.6)

with ∆(γ, σ) = dist(γ,σ)
|γ|+|σ| and ϵ ≥ 0.

Informally, the formula computes the anti-alignment that provides maximal distance
with any trace in the log, and at the same time tries to minimize its length. The penaliza-
tion for the length is parameterized over the ϵ.

Technical Details

Admittedly, ϵ is a parameter that should be decided a priori, in practice one can use a
particular value to this parameter thorough several instances, without impacting signif-
icantly the insights obtained through this metric.

. Observe that P 0
aa(N,L) is precisely the precision Paa(N,L) of Definition 25. By

making Definition 33 not dependant on a predefined length, it deviates from the log-based
precision metrics defined in [31, 129].

101



5.2. DEFINITIONS

a b

c

f

i

d

e

g

h

(a) Model M4 from [5]

{⟨a⟩,
⟨a, b, c, d⟩,
⟨a, f, g, h⟩,
⟨a, b, i, b, c, d⟩}
(b) Log L4

Figure 5.2: Drawing Example with Loop for Anti-alignments.

Example 5.2.3 (Epsilon Influence). Let us now consider the model of Figure 5.2a,
and the log. Assume that ϵ = 0.05. Let γ1 = ⟨a, c, b, e⟩ a full run which is at least at
distance 1

2
to any of the log traces. For γ1 the value of the formula is 1−

1
2

(1.05)4
= 0.589.

Now, consider γ2 = ⟨a, c, b, i, b, i, b, i, b, i, b, e⟩ which is at least at distance 10
18

to any
of the log traces. For γ2 the value of the formula is 1 −

10
18

(1.05)12
= 0.691. Since

the full run that maximizes the second term of the formula is γ1 which stands as
anti-alignment. The precision then is P 0.05

aa (N4, L4) = 0.589. If instead, ϵ is set to
a lower value, e.g., ϵ = 0.02, the corresponding value of the formula for the anti-
alignment ⟨a, c, b, i, b, i, b, i, b, i, b, i, b, i, b, i, b, e⟩ will be the minimal, and therefore it
will be selected as the anti-alignment resulting in P 0.02

aa (N4, L4) = 0.533.

5.2.3 Complexity of Precision Computation

By incorporating the ϵ parameter in the definition of precision, now the metric can deal
with models containing loops without predefining the length of the anti-alignment. In this
section we show that the proposed extension is well-defined and can be computed, and
provide some complexity results of the algorithms involved.

Lemma 7. For every finite model N , log L and ϵ > 0, the supremum in the definition of
P ϵ
aa is reached, i.e. there exists a full run γ ∈ Runs(N) such that P ϵ

aa(N,L) = 1− ∆(γ,L)

(1+ϵ)|γ|

with ∆(γ, σ) = dist(γ,σ)
|γ|+|σ| .

Proof. Two cases have to be distinguished: ifRuns(N) ⊆ L, then the supremum equals 0, is
obviously reached by any γ ∈ Runs(N), and P ϵ

aa(N,L) = 1; otherwise, let γ0 ∈ Runs(N)\L
and let m def

= ∆(γ0,L)

(1+ϵ)|γ0|
; we show that the supremum in the definition of P ϵ

aa becomes now a

102



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

maximum over a finite set of runs, bounded by a given length n that depends on m and ϵ:

sup
γ∈Runs(N)

∆(γ, L)

(1 + ϵ)|γ|
= max

γ∈Runs(N),|γ|≤n

∆(γ, L)

(1 + ϵ)|γ|
, (5.7)

with n def
=

⌊
− logm
log(1+ϵ)

⌋
. Indeed, for every γ strictly longer than n, we have ∆(γ,L)

(1+ϵ)|γ|
≤ 1

(1+ϵ)n+1 =

exp(−(n + 1) · log(1 + ϵ)) ≤ exp(logm) = m, which also shows that |γ0| ≤ n. Hence γ0 is
considered in our max, and then max

γ∈Rus(N),|γ|≤n

∆(γ,L)

(1+ϵ)|γ|
≥ m > sup

γ∈Runs(N),|γ|>n

∆(γ,L)

(1+ϵ)|γ|
.

Lemma 7 gives us the key for an algorithm to compute P ϵ
aa.

Algorithm 5: Algorithm for Computing P ϵ
aa(N,L)

Input : N , L, ϵ
Output: P ϵ

aa(N,L)
1 if Runs(N) ̸⊆ L then
2 select γ0 ∈ Runs(N) \ L
3 m← ∆(γ0,L)

(1+ϵ)|γ0|

4 Explore the reachability graph of N until depth n def
=

⌊
− logm
log(1+ϵ)

⌋
5 return 1−maxγ∈Runs(N),|γ|≤n

∆(γ,L)

(1+ϵ)|γ|
;

6 else
7 return 1 ▷ The model has perfect precision

The correctness of this algorithm follows directly from Lemma 7. Its complexity resides
essentially in the initial test, which corresponds to simply deciding if P ϵ

aa(N,L) < 1, whose
complexity is given by the following lemma:
Lemma 8. The problem of deciding, for a finite model N and a log L, if P ϵ

aa(N,L) < 1,
is equivalent to deciding reachability in Petri nets.
Proof. We simply observe that P ϵ

aa(N,L) < 1 iff Runs(N) ̸⊆ L. Deciding this is equivalent
to deciding reachability in Petri nets.

Technical Details

In practice, one would generally skip the first check and jump directly to the exploration
until some depth n, possibly computed for a given threshold m, like the one given by the
γ0 in Alg. 5.

Notice that the algorithm explores less deep (i.e. n is smaller) when m is large (close to
1), i.e. γ0 is close to the optimal anti-alignment. We can summarize this with the following
variation of Alg. 5:

103



5.3. ALGORITHMS FOR COMPUTING ANTI-ALIGNMENTS

Algorithm 6: Algorithm for Estimating P ϵ
aa(N,L) using a Threshold 0 < m ≤ 1

as Input
Input : N , L, ϵ, m
Output: P ϵ

aa(N,L)

1 Explore the reachability graph of N until depth n def
=

⌊
− logm
log(1+ϵ)

⌋
2 if Exists γ ∈ Runs(N) \ L then
3 return P ϵ

aa(N,L) = 1−maxγ∈Runs(N),|γ|≤n
∆(γ,L)

(1+ϵ)|γ|

4 else
5 return P ϵ

aa(N,L) ≥ 1−m

Lemma 9. For any fixed ϵ > 0, the problem of deciding, for a finite model N , a log L and
a rational constant m > 0, if P ϵ

aa(N,L) < 1−m, is NP-complete.

Proof. The proof is similar to the one of Lemma 7; here, the bound m is given directly,
and we have the same equality

sup
γ∈Runs(N)

∆(γ, L)

(1 + ϵ)|γ|
= max

γ∈Runs(N),|γ|≤n

∆(γ, L)

(1 + ϵ)|γ|
, (5.8)

with n
def
=

⌊
− logm
log(1+ϵ)

⌋
. This means, in order to check that P ϵ

aa(N,L) < 1 − m, it suffices
to guess a full run γ of length |γ| ≤ n, where n depends linearly on the size of the
representation of m (number of bits in the numerator and denominator). Then one can
check in polynomial time that ∆(γ,L)

(1+ϵ)|γ|
> m.

5.3 Algorithms for Computing Anti-alignments

The algorithms for computing anti-alignments are variants of the algorithms presented in
Chapter 3 for computing alignments and multi-alignments. In this section we give the
differences to compute anti-alignments, which also draws the relationships between the
conformance checking artefacts. We recall that the two algorithms are :

• a MinSAT-based algorithm which encodes the definition as it is for getting opti-
mum results

• an A*-based algorithm which uses the discounted edit distance and contains
heuristics to get fast results for real-life application

104



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

5.3.1 MinSAT Encoding
The SAT problem of finding an anti-alignment can be set as follows: Does an anti-alignment
exist between the log traces L and the model N for a minimal distance d? The only differ-
ence to multi-alignments and alignments is the search of maximizing the minimal distance
between the model run and the log traces where the other artefacts aim at minimizing the
maximal distance. Then the building block for relating the process model and the traces
with the edit distance encoding is the same for the three approaches. We encode:

• process models as described in Section 2.3.2,

• the edit distance like in Section 3.3.1,

• and the relation between the model and the traces equals the one of Section. 3.3.2.

Now the optimization goal, that involves a MinSAT encoding, differs. We recall that for
multi-alignments, the minimization of the distance works as follows:

∧
d

(∨
σ

δσn,|σ|,d ⇔ ∆d

)
(5.9)

where δσn,|σ|,d encodes that trace σ is at least at distance d to the chosen run of the model
at instant n, which is the size of the run, and |σ|, which is the length of the trace. The ∆d

variables define the distances d for which at least one of the traces verifies these distances
to the run of the model. The minimization objective for multi-alignment is:

∑
d 1×∆d.

For anti-alignment, Equation (5.10) becomes:

∧
d

(∧
σ

δσn,|σ|,d ⇔ ∆d

)
(5.10)

where ∆d variables encodes that all traces verify a distance d to the run. Then, contrary
to multi-alignments, we want the maximum of these variables to true. For a MinSAT
problem, the goal is to minimize:

∑
d 1 × ¬∆d, i.e., we want the least number of ∆d

variables to false.
We observe that the encoding is very easily adapted from multi-alignment to anti-

alignment which is one strength of the method.

Formula Reduction

In Section. 3.3.4, we have shown how, relying on the minimization of the δ variables, we
can reduce the SAT encoding of the edit distance Φ⇔ for multi-alignments noted Φ⇐.
Similarly, we are able to optimize this encoding for anti-alignments.

The optimization for multi-alignments enables to remove the left side of the equations.
In opposite, for anti-alignments, keeping the right parts only give an optimal reduction of

105



5.3. ALGORITHMS FOR COMPUTING ANTI-ALIGNMENTS

the formula thanks to the maximization of the δ variables to true. We then note Φ⇒ the
reduced formula for anti-alignments given by the following axioms:

δ0,0,0 ∧
∧

d>0 ¬δ0,0,d (5.11)∧
d

∧n
i=0 (δi+1,0,d+1 ⇒ δi,0,d) (5.12)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇒ δ0,j,d) (5.13)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇒ δi,j,d) (5.14)

∧
d

n∧
i=0

n∧
j=0

[ui+1 ̸= vj+1]⇒ (δi+1,j+1,d+1 ⇒ (δi+1,j,d ∧ δi,j+1,d)) (5.15)

Optimal solutions of this reduction give the exact edit distance between two sequences.
We note val(s) the distance returned by a solution s to present the following lemma.

Lemma 10. The maximal value obtained by maximizing val(s) over the solutions of Φ⇒
is equal to the maximal anti-alignment distance obtained using Φ⇔. Formally:

max
s∈sol(Φ⇒)

val(s) = max
s′∈sol(Φ⇔)

val(s′) . (5.16)

Proof. Similarly to the reduction to Φ⇐ in Lemma 1, we show that Φ⇔ and Φ⇒ define the
same anti-alignment distance when we maximize val(s):

1. maxs∈sol(Φ⇒) val(s) ≥ maxs′∈sol(Φ⇔) val(s
′) : The proof is exactly the same as for

multi-alignments (see Lemma 1).

2. maxs∈sol(Φ⇒) val(s) ≤ maxs′∈sol(Φ⇔) val(s
′) : The idea of the proof is similar to Φ⇐ re-

duction. We create s′ ∈ sol(Φ⇔) such as, for s ∈ sol(Φ⇒), val(s) ≤ val(s′). This is
proved by induction with : ∀i,j,i+j≤n ∀d s(δσi,j,d)⇒ (dist(⟨u1, . . . , ui⟩, ⟨σ1, . . . , σj⟩) ≥
d).

Prefix Heuristics and Impact on Precision Measure

Finally the heuristics on prefixes given in Section. 3.3.5 can also be applied for anti-
alignments. Indeed, one can compute prefix anti-alignments only and knows that the
beginning of its model, in term of runs, is precise or not.

Like for multi-alignment, solving the problem of anti-alignment on prefixes dramatically
improves efficiency, and already gives very relevant results in practice.

Furthermore, the optimal prefix based anti-alignment brings a lower bound for model
precision under the assumption that the model is a sound workflow net, i.e., every prefix
can be completed to reach the final marking. The intuition is that the most misaligned
full run that we can expect is the optimal anti-alignment found on the prefixes, completed

106



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

with a sequence of perfectly misaligned actions. Following this intuition, one can deduce
a lower bound on the precision for the full model and full log. This lower bound is quite
tedious to compute in the general case but we illustrate it in a restricted case. We explain
it in a simplified case of a model N and a log L where all log traces and full runs have the
same length 2n.

Proof. Let γ′ be an anti-alignment found for the prefixes of size n, i.e. γ′ is a prefix of size
n for N , maximizing the dist(γ′, L′) where L′ is the truncated log. Let σ′ ∈ L′ achieving
dist(γ′, L′), such that dist(γ′, L′) = dist(γ′, σ′). Consider now any full run γ of N . Let
γ1 and γ2 be the prefix and suffix respectively of size n of γ, such that γ = γ1 · γ2 and
|γ1| = |γ2| = n. By assumption, the distance between γ1 and the truncated log L′ is less
or equal to dist(γ′, L′). This means that there exists a log trace σ ∈ L whose prefix σ1 of
size n satisfies edits(γ1, σ1) ≤ edits(γ′, σ′). From this we deduce that

edits(γ, σ) ≤ edits(γ′, σ′) + 2n (5.17)

Indeed, one way to edit γ to σ is to delete all the suffix γ2 (n deletions), then edit γ1 to σ1
(≤ edits(γ′, σ′) actions), and finally complete σ1 to σ (n insertions). It follows that

dist(γ, L) ≤ edits(γ′, σ′) + 2n

4n
=

1

2

(
edits(γ′, σ′)

2n
+ 1

)
=

1

2
(dist(γ′, σ′) + 1) (5.18)

and

P ϵ
aa(N,L) ≥ 1− dist(γ′, σ′) + 1

2(1 + ϵ)2n
. (5.19)

Notice that we did not compute this lower bound in the experiment part because
the general case (where traces and runs have various lengths) is tedious to obtain. In
Section 3.3.5, we give the prefix-based anti-alignments and the precision of those prefixes
only, i.e., we reduce the problem to the set of prefixes. Definition 33 is then given by

P /n
aa (N,L, n) = 1− sup

γ∈Prefixes(N,n)

dist(γ,Truncate(L, n)) (5.20)

where Prefixes(N,n) denotes the set of prefixes of length n for the process model N , and
Truncate(L, n) denotes the log L with all traces truncated to length n. This precision on
prefixes can already help one to analyze the beginning of a process model. However this
approaches is limited because the end of runs might play a large role in precision of some
process models. In the next section, we present a second algorithm that proposes full run
anti-alignment approximation.

107



5.3. ALGORITHMS FOR COMPUTING ANTI-ALIGNMENTS

5.3.2 An A* Algorithm based on the Discounted Edit Distance
for Approximating Anti-Alignments

The second algorithm to get anti-alignments uses an A* algorithm and the discounted
edit distance. The overall idea is similar to the method presented in Section. 3.4 for
alignments and multi-alignments, however the impact on this computation is higher due
to the complexity of finding anti-alignments.

With the large amount of different behaviors in logs, process models tend to be large
and contain a lot of choice, concurrency and loop behaviors. Naive exploration of the runs
of a model has to consider huge number of candidates for anti-alignments. We reduce this
exploration by using the discounted edit distance which assigns higher cost to edits that
appear at the beginning of the sequences.

We recall that for θ = 1, the discounted edit distance is the Levenshtein distance.
However, for larger values of θ, edits at the beginning of the sequences are more costly
than edits at the end because of the exponent k based on the position of the edits.

By assigning higher cost to edits at the beginning of the sequences, the discounted
parameter θ allows one to select efficiently prefixes of runs which may be continued to
promising anti-alignments. Then revelant values for θ are slightly larger than 1 and close
to 1 if the purpose is to approximate the Levenshtein edit distance.

Example 5.3.1 (Discounted Edit Distance for Anti-alignments). For instance, for
θ = 2, an edit at position k costs more than the sum of all next edits of position
k′ > k. The best anti-alignment for L3 and N3 of Fig. 5.1 is ⟨a, b, c⟩ which is strongly
more deviant in the beginning of the run with activity a. Its minimal distance to the
log is θ−0 = 1 and cannot be topped to another run despite summing edits. However,
for lower values of the discounted parameter θ, like θ = 1.10, the distance finds
modeled behavior ⟨b, e, d, τ⟩ as the further one from the log L3, like when using the
Levenshtein edit distance.

To get anti-alignments of a process model N and a log L using the discounted distance,
we present Alg.7 that plays the firing sequences of the process model in order to find a full
run γ such that :

sup
γ∈Runs(N)

min
σ∈L
Dθ,ϵ(γ, σ) (5.21)

where Dθ,ϵ(γ, σ) =
Dθ(γ,σ)

(1+ϵ)|γ|
to penalize long runs in case of loops in N .

Technical Details

This penalization on long runs is only required to anti-alignments as alignments and
multi-alignments will always converge to approach the log input.

The algorithm maintains a priority queue of prefixes of runs, implemented as a heap of
tuples ⟨γ,m, d⟩, where γ is the prefix, m is the state that it reaches, and d is the priority

108



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

with which it should be treated. This priority d is defined as the quantity:

hθ,ϵ(γ, L)
def
= min

σ∈L

(
Dθ,ϵ(γ, σ) +

θ−|γ|−|σ|

θ − 1

)
(5.22)

that bounds from Eq. 5.21 the value minσ∈LDθ,ϵ(γ
′, σ) that any full run γ′ having γ as

prefix can achieve.
New prefixes are obtained by firing the transitions of the process model (line 14 of

Alg.7) and the algorithm terminates when the queue is empty or no candidate prefix can
improve the best value obtained so far (line 8).

Algorithm 7: Computation of Anti-Alignment by using the Discounted Distance
Input : N = (P, T, F, λ,m0,mf ): process model, L: log,

θ: discount parameter,
ϵ: long run limit parameter

1 Q← {⟨⟨⟩,m0, h(⟨⟩, L)⟩} // Heap of open states ordered by distance,
maximum is placed on top

2 Bγ ← undefined // Current best anti-alignment
3 Bδ ← −∞ // Current best distance to reach mf

4 while Q ̸= ∅ // While not all states visited
5 do
6 ⟨γ,m, d⟩ ← Q.pop() // Next state maximizing d
7 if d ≤ Bδ then
8 break while // No state is going to improve Bδ
9 if m == mf then

10 δ ← minσ∈LDθ,ϵ(γ, σ) // Exact distance δ
11 if Bδ < δ then
12 Bγ ← γ // New best anti-alignment
13 Bδ ← δ // Update distance

14 for t ∈ T with m[t⟩m′ do
15 γ′ ← γ · t // Get new prefix
16 d′ ← h(γ′, L) // Get possible distance of γ′ to L
17 Q← Q.insert(⟨γ′,m′, d′⟩) // Place new state

Output: Bγ: best anti-alignment,
Bδ: minimal distance of Bγ to L

Proof of optimality

Let us first prove the announced fact: for every full run γ′ having γ as prefix, hθ,ϵ(γ, L) ≥
minσ∈LDθ,ϵ(γ

′, σ). Let γ, γ′ = γ.u and σ, we show that Dθ,ϵ(γ, σ) +
θ−|γ|−|σ|

θ−1
≥ Dθ,ϵ(γ

′, σ).

109



5.3. ALGORITHMS FOR COMPUTING ANTI-ALIGNMENTS

This is because, in order to edit γ′ to σ, one can edit its prefix γ to σ (at cost Dθ,ϵ(γ, σ))
and then delete the letters of u one by one. The first deletion costs θ−|γ|−|σ|−1, the second
one θ−|γ|−|σ|−2… and the sum of these costs is bounded by

∑∞
i=1 θ

−|γ|−|σ|−i = θ−|γ|−|σ|

θ−1
.

The algorithm satisfies the following invariant, which holds before and after each itera-
tion of the while loop: either current best value is optimal or every optimal anti-alignment
has a prefix in the queue Q. It is preserved at each iteration for the following reason. Let
⟨γ,m, d⟩ pop from Q and assume γ is the prefix of an optimal full run γ′. Either γ′ = γ
(then minσ∈LDθ,ϵ(γ, σ) is compared with Bδ) or γ′ has a prefix of the form γ.t, which is
queued. The while loop is broken (line 8) only when d ≤ Bδ. As stated before, this implies
that no γ′ having γ as prefix will beat the current best value; and this also holds for all
the other prefixes remaining in the queue since their value is smaller than d.

Termination: once Bδ > 0, any γ longer than
log θ

(θ−1)Bδ

log(1+ϵ)
popping from Q breaks the

while loop. Indeed, this implies (1 + ϵ)|γ| ≥ θ
(θ−1)Bδ

. Moreover, for every σ, Dθ(γ, σ) ≤∑∞
i=0 θ

−i = θ
θ−1

; hence Dθ,ϵ(γ, σ) ≤ Bδ Since only finitely many prefixes are shorter, and no
prefix is queued twice, the termination of the algorithm is guaranteed as soon as Bδ > 0,
i.e. a full run γ ̸∈ L has been found.

Example 5.3.2 (Drawing Example of the A* Heuristic Function). This example
illustrates the use of the fraction θ−|γ|−|σ|

θ−1
in the definition of hθ,ϵ. Let θ = 1.10 and

ϵ = 0 for log L3 and model N3 of Fig.5.1. The open set Q contains, at some point,
states ⟨⟨b⟩, {p1, p2}, db⟩ and ⟨⟨a⟩, {p3}, da⟩ of concurrent prefixes ⟨b⟩ and ⟨a⟩.
Let’s try to consider only their distance to the log, i.e., db = min

σ∈L
D1.10,0(⟨b⟩, σ) = 0.83

and da = min
σ∈L
D1.10,0(⟨a⟩, σ) = 2.73. Prefix ⟨a⟩ is the best current anti-alignment and

the algorithm continues with this prefix (line 6) until the final marking. The final
run is Bγ = ⟨a, b, c⟩ and Bδ = 1. Prefix ⟨b⟩ is then forgotten at line 7 because its
current distance is lower than Bδ. However, for θ = 1.10, the optimal anti-alignment
is indeed ⟨b, e, d, τ⟩. By adding the fraction θ−|γ|−|σ|

θ−1
in db and da given in function

h at line 16 which prevents best suffixes, db = 7.51 and prefix ⟨b⟩ is now handled at
line 7 and becomes the best anti-alignment.

Heuristic to Further Reduce the Search Space

Like for multi-alignments, we use a parameter µ to set a maximal number of times we
reach the same marking. Then this reduces loops and choice explorations.

Technical Details

The A∗-based Algorithm allows one to get non-optimal anti-alignments for large model
and thus allowing computing anti-alignment-based precision for real-life instance which
was not possible before.

110



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Obtaining Precision with Discounted Anti-alignments

The main purpose of finding anti-alignments is to compute precision of process models.
The present algorithm finds fast anti-alignments not necessarily optimal. In return, the
technique is able to work with real instances. Once an anti-alignment is found, one can
use it to compute precision of its model by using the classical Levenshtein based precision
as defined in Section 2.2.2. The expression

sup
γ∈Runs(N)

min
σ∈L

∆ϵ(γ, σ) (5.23)

of Def.33 is approximated by

min
σ∈L

∆ϵ(γ, σ) (5.24)

for the run γ computed by Alg.7. In practice, we observe perfect matching results for some
instances.

5.4 Anti-alignment and Precision Experiments

Before studying anti-alignment use in clustering context, we give some experimentation of
the algorithms to show their efficiency and accuracy. Moreover, we compare our precision
measure to the state-of-the-art methods.

The SAT-based approach is given in both Darksider and da4py. We employed the
latter which implements the formula reduction presented in Section 5.3.1. The A*-based
algorithm is given in a branch of pm4py. The experiments have been done on a MacBook
air 2017 model with a 1.8 GHz Intel ® CoreTM i5 CPU and 8G RAM.

5.4.1 Comparison of the Results Obtained with Different Set-
tings

First, we present a set of experiments for anti-alignment and precision computation for
the two algorithms with different settings. The aim of this section is to show the im-
pact of the parameters such that one can consider it when using our methods. We use
the artificial log La = {⟨A,B,D,E, I⟩, ⟨A,C,D,G,H, F, ⟩, ⟨A,C,G,D,H, F ⟩, ⟨A,C,H,D, F, I⟩,
⟨A,C,D,H, F, I⟩} which was already used in Section. 3.5.2 and its corresponding models.
In this section, we consider all the models presented in [129, 8]. We give in Fig. 5.3 to 5.6
the missing ones.

111



5.4. ANTI-ALIGNMENT AND PRECISION EXPERIMENTS

Figure 5.3: Single.
Figure 5.4: Model with G and H as self-
loops.

Figure 5.5: A model where C and
F are in a Loop, but Need to Be
Executed Equally Often to Reach
the Final Marking.

Figure 5.6: Round-robin.

Heuristics of the SAT Encoding

To deal with large logs, the SAT-based algorithm has a variant of anti-alignments that
works on a fixed size of prefix.

Table 5.1 figures the impact of this heuristic for prefix anti-alignment of a size to 5, 10
and 15 and the corresponding adapted precision P /n

aa given by Equation (5.20). With the
use of prefix only, the method does not require full runs. This can be notified for models
with loops for which anti-alignments do not reach the final marking. As the size of the run
is fixed, parameter ϵ, used to limit the size of the run, is not required and corresponds to
ϵ = 0.

In most cases, results for distance to 10 and 15 are similar. However, we remark two
types of differences. When using a small size of prefix, a model with a loop is qualified as
more precise than when the size of prefix is large, thus alleviating the use of loops. For
well precise model, reducing the size of the prefix can induce a decrease of the metric. For
instance, for the generative model, Fig. 3.8, the transitions F and I are well presented in
the traces and do not raise the distances, thus raising the denominator of the normalization
of the precision.

112



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Model Size of
Prefix

Anti-alignments P
/n
aa Time (s)

Fig. 3.8 Generating model
5 ⟨A,C,G,H,D⟩ 0.800 1.58
10 ⟨A,C,G,H,D, F, I⟩ 0.923 12.73
15 ⟨A,C,G,H,D, F, I⟩ 0.923 37.89

Fig. 5.3 Single
5 ⟨A,B,D,E, I⟩ 1.000 0.68
10 ⟨A,B,D,E, I⟩ 1.000 6.66
15 ⟨A,B,D,E, I⟩ 1.000 21.94

Fig. 3.10 Flower model
5 ⟨τ,G,G,E,B⟩ 0.300 1.45
10 ⟨τ,G,G,G,G,G,G,G,G,G⟩ 0.176 12.59
15 ⟨τ,G,G,G,G,G,G,G,G,G,G,G,G,G,G⟩ 0.136 44.88

Fig. 3.11 Separate traces
5 ⟨A,C,D,G,H, F, I⟩ 1.000 2.76
10 ⟨A,C,D,G,H, F, I⟩ 1.000 26.56
15 ⟨A,C,D,G,H, F, I⟩ 1.000 97.83

Fig. 3.9 G,H in parallel
5 ⟨A,C, τ,D, τ⟩ 0.800 1.07
10 ⟨A,C,D, τ, τ, F, I⟩ 0.923 8.83
15 ⟨A,C, τ,D,G, F, I⟩ 0.929 40.58

Fig. 5.4 G,H as self-loops
5 ⟨A,C,G,G,G⟩ 0.600 0.85
10 ⟨A,C,G,G,G,G,G,G,G,G⟩ 0.353 9.66
15 ⟨A,C,G,G,G,G,G,G,G,G,G,G,G,G,G⟩ 0.272 37.51

Fig. 3.12 D as self-loop
5 ⟨A,B,D,D,D⟩ 0.600 0.93
10 ⟨A,C,D,D,D,D,D,D,D,D⟩ 0.375 11.17
15 ⟨A,C,D,D,D,D,D,D,D,D,D,D,D,D,D⟩ 0.286 48.68

Fig. 3.13 All parallel
5 ⟨τ,G,C,E,B⟩ 0.300 1.06
10 ⟨τ,D, I, F,B,H,A,G,C,E⟩ 0.313 13.82
15 ⟨τ, F,H,G,C, I, E,D,B,A, τ⟩ 0.353 77.59

Fig. 5.5 C,F equal loop 5 ⟨A,C, τ,D, τ⟩ 0.600 1.69
10 ⟨A,C,B,D,E, F, I⟩ 0.833 12.62
15 ⟨A,C,B,D,E, F, I⟩ 0.833 38.66

Fig. 5.6 Round-robin 5 ⟨τ,D,E, F,G⟩ 0.500 3.84
10 ⟨τ, E, F,G,H, I, A,B,C,D⟩ 0.529 28.81
15 ⟨τ,B,C,D,E, F,G,H, I, A,B,C,D,E, F ⟩ 0.500 99.84

Table 5.1: Anti-alignment Prefixes of size 5, 10 and 15 for the Artificial Models of [129]
and Log La

Finally, we invite readers to compare anti-alignment prefix based precision to exact anti-
alignment precision (lines SAT/n and SAT in Table 5.6). We see that for most models,
approximated precision tends to be close to optimal one for a great gain of runtime. Indeed,
while using the optimal algorithm for precision (Alg. 5), many anti-alignments have to be
computed until the metric converges, thus by increasing the size of the run.

Another heuristic of the SAT-based algorithm is the threshold on the number of edits
introduced on page. 36. The idea is to reduce the maximal number of edits max_d of the
Levenshtein distance in order to considerably reduce the size of the SAT formula.

We present in Table 5.2 a concrete example of the consequences of this parameter. For
log La, model of Fig. 5.4 and a prefix of run to 10, the maximal number of edits is 17
(the maximal length in log is 7). The first row of Table 5.2 shows the exact anti-alignment
which is at distance 11 to any log trace. When we reduce the number of edits, the tool
might still find the same anti-alignment. Indeed for next row of the table, max_d to 5, the
tool finds anti-alignment ⟨A,C,G,G,G,G,G,G,G,G⟩ which is indeed at least at distance
5 to any log trace. In fact, this anti-alignment is optimal and it is at distance 11, but has

113



5.4. ANTI-ALIGNMENT AND PRECISION EXPERIMENTS

Parameter
max_d,

Threshold on
the Number
of Edits

Returned Anti-alignment Returned
Threshold

Lower Bound
Distance to Log

Correct
Minimal

Distance to
Log

Precision Time (s)

17 ⟨A,C,G,G,G,G,G,G,G,G⟩ 11 11 0.353 8.95
5 ⟨A,C,G,G,G,G,G,G,G,G⟩ 5 11 0.353 2.65
5 ⟨A,C,D,G,G,G,G,G,H,H⟩ 5 7 0.588 2.48
5 ⟨A,C,D,H,G,H,G,G,G, F ⟩ 5 5 0.706 2.60

Table 5.2: Consequences of the Threshold on Number of Edits of Leventshein Distance for
log La of Fig. 3.7, model of Fig. 5.4 and a prefix of run to 10. The last line is forced to
reach the final marking.

been returned by chance. In fact, for max_d to 5, the tool also returned the two last lines
of the table where the optimal anti-alignment has not been found. For them, the correct
distance to the log is not 11 which implies a difference in precision.

Experiment Conclusion

We motivate users to use the prefix based method and a maximal number of edits which
improves a lot the runtime. A preliminary study of the length of full runs of the models
can help one to set the size of the prefix.

The Discounted Parameter and Heuristic of the A*-based Approach

The A*-based algorithm has three parameters : the discounted parameter θ which, for
high values, brings to a prefix search reduction, parameter ϵ that helps to deal with loops
in models and the threshold µ which limits the number of times the algorithm can reach
the same marking.

We experimented different values of these parameters for the artificial log La and two
of its associated models specifically chosen for showing the impact of the settings: the
generating model and the flower model. The generative model has a finite set of runs
obtained by its several choice structures. In opposition, the flower model represents an
infinite language of its transition labels which are all connected to the same place. We
choose those models to present a normal case versus a complex and imprecise model.

In Tab.5.3, we show how changing the discounted parameter θ can improve the runtime.
For large θ, prefixes cost more than suffixes, thus allowing the algorithm to considerably
reduce the exploration. This aspect appears very clearly for the flower model.

The anti-alignments found for the flower model are not long because of the parameter
ϵ set to 0.01. Then we observe that the found precision is quite high for this model which
is very imprecise. By setting ϵ to larger values, we would get longer anti-alignments, thus
providing more significant value of precision. However, due to the possible combinations
of longer runs, the algorithm would blow up.

114



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Model θ Anti-alignment P ϵ
aa Time (s)

Generating 1.1 ⟨A,C,G,H,D, F, I⟩ 0.928 0.02
model 1.5 ⟨A,C,G,H,D, F, I⟩ 0.928 0.01

2.0 ⟨A,C,G,H,D, F, I⟩ 0.928 0.01
Flower 1.5 ⟨τ, F, F, F,E, τ⟩ 0.400 29.85
model 2.0 ⟨τ, F, F, F, F, τ⟩ 0.372 4.67

Table 5.3: Computation for Different Values of the Discounted Parameter θ and ϵ = 0.01

Model µ ϵ Anti-alignment P ϵ
aa Time (s)

Flower 100 0.01 ⟨τ, F, F,E,H, τ⟩ 0.400 2.50
model 100 0.001 ⟨τ, F, F, F, F, F, F,A,A,H, τ⟩ 0.302 4.61

5 0.01 ⟨τ, F, F, F, F, τ⟩ 0.372 0.07

Table 5.4: Reducing the Search Space with Parameter µ for Different ϵ Values and θ = 1.5

Tab.5.4 aims at showing the benefit of the limit µ on the number of exploration of
prefixes reaching the same marking. We see that for θ = 1.5 and ϵ = 0.01, the runtime of
computing an anti-alignment for the flower model is divided by 10 when setting µ to 100.
The runtime improvement by using µ is prominent and allows to explore longer runs (for
instance Tab.5.4 shows a result where ϵ = 0.001). Finally, the last line of Tab.5.4 presents
an experiment where µ is very small and still provides a relevant anti-alignment (just a bit
shorter).

Experiment Conclusion

Increasing the value of the discounted parameter θ prioritizes the misalignment of pre-
fixes, reducing the search space for a gain in runtime and a loss on the quality of the
anti-alignment, where optimal anti-alignments are based on the Levenshtein distance.
To further improve runtime and reduce the reachibility exploration, parameter µ limits
the number of times every marking is reached. We obverse that very low values of µ give
good outputs. Finally, we advise setting ϵ to equivalent value of the ϵ used in precision.

Side-by-side Comparison

Now that we have presented the approximation impacts, we take advantage of them and
compare the results to the optimal results for all the artificial models associated to the log
La.

In Tab.5.5, column ”Method” precises if anti-alignments have been computed with the
optimal algorithm of the SAT approach (Alg. 5 where we stop the exploration when m of
line 3 stays stable for 10 runs in a row), its approximation version that computes prefixes
of anti-alignments only noted with /n (Equation (5.20)), or the A*-based approach that
uses the discounted distance as heuristic function (Alg. 7). We set the prefix size of the

115



5.4. ANTI-ALIGNMENT AND PRECISION EXPERIMENTS

SAT encoding to 11 and require the algorithm to reach the final marking such that we get
full run anti-alignments. About the A* algorithm, we set the parameter θ to 1.5, ϵ to 0.01
and µ to 10. Lines with − marks were not computable on the selected machine for this
experiments due to memory space.

Observations are significant: the A* algorithm runs much faster and obtains, in most
times, the optimal results. Large runtime of the SAT lines are explained by the fact
that Alg. 5 iteratively computes anti-alignments by increasing the size of the run until
the precision measure converges. Thanks to the fixed size of the run, we observe that the
prefix heuristic of the SAT encoding noted SAT/n gets very good results. This result is
obtained because we set a size of run that allows to reach the final marking by exploring
enough firing sequences of the models. However this information is usually unknown.

Model Method Anti-alignment Paa Time (s)
Generating SAT ⟨A,C,G,H,D, F, I⟩ 0.928 266.09

model SAT/n ⟨A,C,G,H,D, F, I⟩ 0.923 16.51
A* ⟨A,C,G,H,D, F, I⟩ 0.928 0.01

Single SAT ⟨A,B,D,E, I⟩ 1.000 71.39
SAT/n ⟨A,B,D,E, I⟩ 1.000 9.92
A* ⟨A,B,D,E, I⟩ 1.000 0.01

Flower SAT ⟨τ,G23, τ⟩ 0.295 2244.97
model SAT/n ⟨τ,G,G,G,G,G,G,G,G,G, τ⟩ 0.222 19.89

A* ⟨τ, F, F, F,E, τ⟩ 0.400 0.03
Separate SAT ⟨A,C,G,D,H, F, I⟩ 1.000 288.137

traces SAT/n ⟨A,C,G,D,H, F, I⟩ 1.000 42.26
A* ⟨A,B,D,E, I⟩ 1.000 0.01

G,H in SAT ⟨A,C,G,H,D, F, I⟩ 0.928 290.95
parallel SAT/n ⟨A,C,D,G, τ, F, I⟩ 0.923 20.00

A* ⟨A,C,G,H,D, F, I⟩ 0.928 0.04
G,H as SAT − 0.496 −

self-loops SAT/n ⟨A,C,G,D,G,G,G,G,G, F, I⟩ 0.667 14.95
A* ⟨A,C,G9,H,D, F, I⟩ 0.631 0.15

D as SAT − 0.496 −
self-loops SAT/n ⟨A,B,D7, E, I⟩ 0.625 19.99

A* ⟨A,B,D10, E, I⟩ 0.588 0.17
All SAT ⟨τ, I,G, F,E,H,D,B,C,A, τ⟩ 0.420 2006.66

parallel SAT/n ⟨τ, I, E, F,D,H,C,B,A,G, τ⟩ 0.353 24.03
A* ⟨τ, I, F,E,H,C,A,G,B,D, τ⟩ 0.525 4.08

C,F equal SAT ⟨A,C,B,D,E, F, I⟩ 0.845 292.81
loop SAT/n ⟨A,C,B,D,E, F, I⟩ 0.833 18.01

A* ⟨A,C7, B,D,E, F 7, I⟩ 0.502 0.67
Round- SAT ⟨τ,D,E, F,G,H, I,A,B,C, τ⟩ 0.300 178.20
robin SAT/n ⟨τ, E, F,G,H, I, A,B,C,D, τ⟩ 0.444 45.01

A* ⟨τ, E, F,G,H, I, A,B,C,D, τ⟩ 0.502 0.01

Table 5.5: Comparison of Anti-alignments and Precision on Artificial Log La and its As-
sociated Models. The A*-based Algorithm defined on the discounted distance is set with
θ = 1.5, ϵ = 0.01 and µ = 10. Optimal Precision for ϵ = 0.01 (lines SAT ) is given by Alg. 5
where we stop the search after 10 equal results in a row. SAT/n runs the SAT heuristic
with a size of run to 11 and optimal number of edits for this size.

116



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Differences between the found anti-alignments can be explained by the parameters.
For instance, by using the flower model, the A* algorithm returns a shorter run due to
parameter µ which strictly reduces the number of times the algorithm can reach a marking.

The big difference observed for the model entitled C,F equal loop, for which our algo-
rithm finds a much worse anti-alignment, is due to the fact that this model is not safe, i.e.,
transitions labeled with C and F output a token in their input place, thus allowing running
the transitions again. But, the SAT implementation does not consider unsafe Petri nets (it
restricts their behavior to runs visiting only safe markings), and hence, cannot guarantee
optimality for this model. The precision obtained with the discounted anti-alignment is
then more accurate than the SAT-based version.

We note that the SAT/n sometimes returns lower value of precision than the optimal
one SAT which is due to the normalization that works with the size of the run only for this
prefix-based version while the optimal version incorporates the parameter ϵ in precision
measure.

Experiment Conclusion

The A* algorithm that uses the discounted distance gives very fast anti-alignments which
are close the optimal for measuring precision of models. The main differences appear
when models have looped because the parameter µ of the A*-algorithm stops the explo-
ration search when same markings are reached many times. Then, we advise to consider
this parameter for getting precise precision measures.

5.4.2 Anti-alignmentbasedPrecisionCompared to theState-of-
the-art Methods

One motivation for computing anti-alignments is to measure precision of process models
which is much discussed in the process mining community. In this section, we compare our
precision measure and runtime, for optimum and approximation, with the state-of-the-art
methods.

Optimum Precision Comparison

In Table 5.6, we give our optimal precision for the artificial inputs, already shown in the
previous section, next to the state-of-the-art methods. We take the opportunity to present
results for another value of epsilon, i.e, ϵ = 0.05 and the Hamming-based anti-alignment
precision previously developed [31]

Column Pa gives the precision values as defined in [4]. The PET and PETC metrics are
from work of [5]. Pne denotes the precision metric of [134]. The EMP measure is of [70].
The values MAP 3 and MAP 7 are defined in [8]2. All metrics are presented in the related

2Notice that the metrics MAP 3 and MAP 7 are not applicable for one of the benchmarks of this paper,

117



5.4. ANTI-ALIGNMENT AND PRECISION EXPERIMENTS

Model PET PETC Pa Pne EMP MAP 3 MAP 7 PH,.05
aa PL,.05

aa PL,.01
aa

Fig. 3.8 Generating model 0.992 0.994 0.982 0.995 0.902 0.880 0.852 0.797 0.945 0.928
Fig. 5.3 Single trace 1.000 1.000 1.000 0.893 1.000 1.000 1.000 1.000 1.000 1.000
Fig. 3.10 Flower model 0.136 0.119 0.142 0.117 0.000 0.003 0.000 0.408 0.352 0.295
Fig. 3.11 Separate traces 1.000 0.359 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000
Fig. 3.9 G,H in parallel 0.894 0.936 0.947 0.950 0.785 0.564 0.535 0.797 0.945 0.928
Fig. 5.4 G,H as self-loops 0.884 0.889 0.947 0.874 0.568 0.185 0.006 0.570 0.780 0.496
Fig. 3.12 D as self-loop 0.763 0.760 0.797 0.720 0.694 0.349 0.069 0.506 0.759 0.469
Fig. 3.13 All parallel 0.273 0.170 0.336 0.158 0.000 0.006 0.000 0.468 0.468 0.420
Fig. 5.5 C,F equal loop 0.820 0.589 0.839 0.600 – – – 0.751 0.881 0.845
Fig. 5.6 Round-robin 0.579 0.185 0.889 0.194 0.000 0.496 0.274 0.456 0.352 0.300

Table 5.6: Precision Measures of Artificial Models

work section.
Finally column PH,ϵ

aa and PL,ϵ
aa represent the anti-alignment based precision for the Ham-

ming and Levenshtein distance computed with the SAT encoding and the optimal algorithm
given in [30].

Clearly, the existing precision metrics do not agree on all models and do not always
agree with the intuition for precision. While all methods rank the All-parallel model just
after the Flower model, our AA-based precisions position the Round-Robin model in second
place instead. This is due to the fact that our method found the anti-alignment ⟨τ, τ⟩ which
is far from the log traces. In fact, this run does not exist in the first version of this model
in [129] for which the situation would not occur.

Figure 3.11, which consists of all the traces in separate paths, is considered to have
a low precision by the PETC metric while all the other methods describe this model as
perfectly precise.

We observe that our methods give higher precisions than the rest for the flower model.
This is due to the requirement of the τ transitions in order to get a full run of the model,
thus alleviating the distance to the traces. A similar situation, with the same antidote,
happens with the parallel model.

More generally, we note that our method, due to the parameter ϵ, gives a good balance
for models with loops. The precision of those models are very mixed. We see on one
side PET , PETC , Pa and Pne are from 0.947 to 0.720 and on the other side, MAP gives
a precision close to zero. However, all the methods agree on the ranking of the loops
compared to the parallel model.

Now, notice that model 3.8 and 3.9 are considered to be equally precise with the
anti-alignment precision, which is not the case for the other metrics. Model 3.9 contains
the behaviors of model 3.8 plus some permutation and skip activities between G and H,
thus adding runs in the models. The fact that our method finds the same precision is
a consequence of the input log. Model precision is defined in accordance to the log. In
this case, there is no anti-alignment of Fig. 3.9 that is further to the log traces than the
anti-alignment of Fig. 3.8, despite their are more anti-alignments.

due to the existence of unbounded constructs.

118



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Finally, we would like to point out the practical aspect of the parameter ϵ. See precisions
of Figure 5.4 for ϵ = 0.05 and ϵ = 0.01. The score considerably drops from PL,0.05

aa = 0.780
to PL,0.01

aa = 0.496. For large ϵ values, traces with a thousand G’s is possible in the model
and our anti-alignment can penalize it a lot by allowing long runs.

Experiment Conclusion

The anti-alignment-based precision shows some weaknesses due to the parameter ϵ that
helps to deal with loops in models but reduces theoretical accuracy of the measure as
loops allow infinite language. However, this aspect might be well accepted in practice
because loops in model are sometimes required.

Precision Approximation for Real-life Models

In this section, we present, for the first time, anti-alignment based precision on real-life
models whose description can be found in Tab. 3.3. We recall that the SAT implementation
of anti-alignment cannot deal with entire large logs due to the complexity of the encoding
which confronts memory issues.

We show both computation time and precision measure in Tab. 5.7 and compare our
work to the ETC [6], the MAP 3 [8] and the EMP [70] measures.

Log Model Precision Runtime (s)
ETC MAP 3 EMP P ϵ

aa ETC MAP 3 EMP P ϵ
aa

BPI2012 IM 0.561 0.492 0.602 0.761 513.28 6.94 44.84 79.73
SM 0.915 0.196 0.538 0.753 438.65 6.98 27.50 176.69

BPI2019 IM − 1.000 0.468 0.934 − 42.26 421.42 727.86
SM − 0.780 0.903 0.950 − 33.11 331.84 219.74

BPI2020dd
IM 0.636 0.472 0.804 0.868 0.83 3.63 7.03 0.38
SM 0.953 0.040 0.861 0.894 0.76 4.17 3.90 1.04

BPI2020rp
IM 0.346 0.074 0.319 − 1.64 3.58 13.88 −
SM 0.815 0.017 0.780 0.604 0.64 4.39 9.22 0.59

Table 5.7: Real-life Logs and Models Precision where the Anti-alignment Precision P ϵ
aa is

found with Discounting Anti-alignments and θ = 2, ϵ = 0.01, µ = 5

We remark than any precision measure agrees for all the inputs which strengthens
the interest of research about this metric in process mining. The MAP 3 measure finds
a perfectly precise model, i.e., the IM model of BPI2019 log. Our method has a similar
precision, 0.934, but found an anti-alignment for this model which can figure the language
difference between the log and model. The EMP measure is stricter with a precision of
0.468. For this log, ETC precision of [7] lasts more than several hours, so we stopped the
process. This method uses alignments whose complexity is related to the log complexity.
As we can see in Tab.3.3, the BPI2019 log is the more complex log with 251 734 cases and
42 different type of activities.

119



5.5. IMPACT OF PRECISE PROCESS MODELS ON CLUSTERING RESULTS

Our method also has to deal with log complexity. More than 75% of our runtime
presented in Tab.5.7 is used to compute the discounted distances. For the IM model
of BPI2020rp, our method also takes several hours. This model contains two parallel
structures of 10 and 2 transitions that explode the space of search. But in several cases,
our method even gives the fastest runtime.

Experiment Conclusion

Besides runtimes, it is not obvious to conclude which precision metric is more valuable.
However, as a conclusion of this section, we want to point out that, in order to under-
stand the precision of process models, a human requires more than a numerical value.
We believe that anti-alignment is the added value of our approach because it provides
explanation for the imprecision of models.

5.5 Impact of Precise Process Models on Clustering
Results

In the previous chapter, we presented our clustering algorithms which are the main contri-
bution and the focus of this thesis. As our approach relies on process models, the quality
of these models are in the scope of our approaches. In this section we provide a set of
experiments to draw the relation between conformance of process models and clustering
outputs.

The clustering method presented in this thesis works with alignments. A first intuition
is that good fitting models provide good clustering.

To check these hypotheses, we launched two experiments. First, we give in Tab. 5.8
a study of the model-based clustering results of three logs for each three different process
models. The models have been learned with different algorithms or preprocessing methods.
We note with Prototypes the models that have used the process model discovery framework
presented in [57] where only some median traces are used to learn a model. Lines noted
with Filtering show process models given by [8] which are learned with the preprocessing
method of [35]. We computed the anti-alignment based precision and the alignment based
fitness implemented in pm4py.

The clustering algorithms require a set of parameters. We use the size of an alignment
to set the size of the run and the number of transition per cluster which is a generic way
to ensure that we will find a full run. We set the maximal distance between the traces
and the centroids to 2. The clustering algorithm stops when no cluster is found after 5
iterations in a row. We give the script in Appendix. B.3.

The results, which are given in Tab. 5.8, are not clear for BPI2012. However, we
note that for BPI2013cp the two most fitting process models give the least non-clustered
traces. We also notice that the most fitting model for this log is also the least precise.
For BPI2020dd, model P+HM has a lower precision and a lower fitness than model P+IM.

120



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Log Model Information Precision Fitness Nomber of
Clusters

nc

BPI2012
Prototypes + Inductive Miner (P+IM) 0.76 0.78 2 8443
Filtering + Inductive Miner (F+IM) − 0.98 1 9658
Prototypes + Split Miner (P+SM) 0.75 0.78 1 9658

BPI2013cp
Filtering + Heuristic Miner (F+HM) 0.91 0.94 2 80
Filtering + Split Miner (F+SM) 0.88 0.99 1 96
Filtering + Inductive Miner (F+IM) 0.91 0.82 2 105

BPI2020dd
Prototypes + Inductive Miner (P+IM) 0.87 0.96 6 117
Prototypes + Split Miner (P+SM) 0.89 0.86 5 350
Prototypes + Heurisitc Miner (P+HM) 0.30 0.91 0 10500

Table 5.8: Comparison of Clustering Results along with Precision and Fitness Metrics for
Different Real-life Inputs. Precision is the approximated anti-alignment based precision with
θ = 1.1, µ = 20 and ϵ = 0.01. The size of the run and the number of transitions per clusters is
set with the size of an alignment. The distance between the traces and the centroids is 2.

Then this model is less conform in general which can explain the clustering result which is
null. Finally, we observe that the correlation of the metrics for P+IM and P+SM follows
the hypothesis of the trade-off between fitness and precision, for these models, they are
inversely correlated. The most fitting model again allows clustering more traces.

Nonetheless, the conclusion of these experiments about the clustering outputs, like the
number of clusters, is not clear because the addressed models are learned with different
methods. This questions if the conformance of the models is the clue or the discovery
method makes the clustering outputs varying. To answer this question, we decided to go
further in the exploration and compare comparable models, i.e., models discovered with
the same method but different parameters. Furthermore, we give these experiments for
two different algorithms with no preprocessing methods to compare the discovery methods.

Tab. 5.9 shows the clustering of the 1000 first log traces of BPI2013cp. The use of a
sublog in this study only aims at reducing the runtime of the experiment process and do not
have impact on the interpretation of the results. We launched two algorithms implemented
in pm4py that come with a threshold parameter. For the inductive miner, one can select
the noise threshold to add in the log. The heuristic miner has a dependency threshold which
allows more or less relations in the learning stage.

First, we observe that adding noise with inductive miner discovery algorithm implies
a increase in precision. The fitness of the models for this algorithm stays the same for
different values of the threshold. As the fitness is low, we obtain bad clustering outputs.

The results of the heuristic miner are more interesting. It clearly shows that when pre-
cision decreases fitness raises. The number of non-clustered traces also fills our expectation:
the more precise is the model, the least there are non-clustered traces.

Now the number of clusters varies without correlation with the other information. This
aspect is due to the fact that the clusters are found with a sampling method. Some large
centroids can be found and cluster many traces while small and precise centroids can only

121



5.6. OPENING: AN AGILE FRAMEWORK FOR MODEL REPAIR WITH ANTI-ALIGNMENTS

Algorithm Threshold Precision Fitness Nomber of
Clusters

nc

Inductive Miner 0.1 0.91 0.46 0 1000
0.2 0.91 0.46 1 984
0.5 0.91 0.46 0 1000
0.8 0.93 0.46 0 1000
0.9 0.93 0.46 0 1000

Heuristic Miner 0.9000 0.96 0.62 3 80
0.9900 0.96 0.70 2 43
0.9990 0.57 0.98 5 9
0.9999 0.54 0.98 3 10

Table 5.9: Comparison of Clustering Results of the 1000 First Traces of Log BPI2020cp for
Different Process Models Learned with the Same Algorithms but Different Settings. Column
”Threshold” gives the noise threshold for the inductive miner and the dependency threshold for
the heuristic miner. Precision has been computed with the A* approximation method with
θ = 1.1, µ = 20 and ϵ = 0.01. The size of the run and the number of transitions per clusters is
set with the size of an alignment. The distance between the traces and the centroids is 2.

cluster a limited number of traces thus allowing to cluster the left traces in another group.
These clusters are found from the selection of the traces randomly given by the sampling
at each iteration (see Fig. 4.7 for a quick recall of the algorithm).

Experiment Conclusion

The conclusion of these experiments is not obvious. Nevertheless, we note that too poorly
fitting process model does not allow getting model-based clustering.

5.6 Opening: An Agile Framework for Model Repair
with Anti-alignments

We close this thesis by presenting a framework that exploits anti-alignment for model repair
in process mining by using the principles of agile method. We present this section as an
opening because no repairing actions will be presented in this section but anti-alignments
give the keys for future work in this direction.

5.6.1 Model Repair
Introduced in [56], Model Repair sits in between model discovery and conformance check-
ing [28]. While model discovery brings an entire artefact to reflect the behaviors contained
in log, it does not consider an existing process model as a baseline. In opposite, confor-

122



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

mance checking gives a model-to-log analysis and a process model is required as input.
However no modification is made in the given model, even if the analysis depicts very bad
modelization, because it is not the focus of conformance checking. Model repair stands for
this purpose with the aim of finding a novel process model N ′, close to a reference model
N , such that the conformance to the associated log L is improved from N to N ′.

The main objective of searching for a model close to the existing one is to keep the
knowledge of the process owner. Once a model is known and trusted by a company, many
changes, as it appears when a novel model is discovering from scratch, involve further
studies in the understanding of the novel result. In opposite, when only light changes are
made in the reference model, the owner is quickly able to understand the novel artefact.
Comparison between the two models can also highlight business indicators.

The task of repairing a process model can appear in various situations. Organizations
change over time and create or remove their behaviors. Moreover, a process study can
start with a hand-written process model which can then be improved with a study of the
log. The Business Challenge of year 2015 tackled this situation where five cities followed a
given process and resulted in different logs [127]. Then, the optimal repaired model of every
cities is different but comparable to the original one. In any of the previous situations,
we note that model repair can be seen as a tuning phase where the initial process model
shows some weaknesses to represent the recorded behaviors.

Furthermore, model repair is a step that involves both the business and the scientific
sides of process analysis. In a way the model should be improved to better reflect the
recorded log but in another way we want to ensure that we do not decrease quality of the
existing model because of errors in log. Thus, decisions of the business team are welcomed
in the process of model repair. Study of [28] presents an incremental and interactive repair
where the changes in the model are chosen by the user from a list of possibilities. We
stand close to this work and propose an agile method for repairing a model thanks to the
discovered anti-alignment of process models.

5.6.2 Agile Method
Incremental and interactive production emerges in the middle of the 19th century with the
works of Walter Shewhart and William Edwards Deming [107, 48]. The foundation of agile
method came later, in 2001, when 17 researchers put the ground in a manifesto to define
the fundamental principles [60]. The agile method puts forward the interactions between
the individuals involved in the project with the aim to give a working software at any stage.
We list the fundamental principles of agile method as it is given in the manifesto [60] :

• Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

• Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

123



5.6. OPENING: AN AGILE FRAMEWORK FOR MODEL REPAIR WITH ANTI-ALIGNMENTS

Figure 5.7: Agile Framework for Repairing Process Model with Anti-alignments

• Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Business people and developers work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of progress. Agile processes promote sus-
tainable development.

• The sponsors, developers and users should be able to maintain a constant pace indef-
initely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity - the art of maximizing the amount of work not done- is essential.

• The best architectures, requirements and designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Those criteria have shown a great improvement in project development [84]. In process
mining, some works have tackled agile methods but in the perspective of designing the
agile method it-self [105]. Here, we want to use the agile method in the development of
repairing the process model.

5.6.3 Anti-alignment, a Key for Repairing Process Model
We present in Fig. 5.7 the architecture of our proposal for repairing a process model with
the use of anti-alignments. As anti-alignments are runs of the model that deviate from
the recorded log, getting this modeled behaviors is a key for understanding both the real
process and the modelization.

124



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

Figure 5.8: Bosh Engine

The process owner presents the log and the current model that may require to be
repaired. By finding anti-alignments, we enable to check if the extra behavior of the
process model is a misbehavior or not with respect to the real process. This knowledge is
given by the process owner himself. This is where a discussion between the process mining
expert and the process owner about the discovered anti-alignments of the current process
model comes in. Thus, repairing steps can incorporate the knowledge to modify the model.
This process presented in Fig. 5.7 loops until all the anti-alignments are either removed
either accepted by the process owner. However, other terminations are also possible. For
instance, one can use a threshold on the anti-alignment based precision to stop repairing
the model, in accordance to the process owner agreement.

5.6.4 Case study: Anti-alignment Study of a Reactive Discrete
Event System

Despite that we did not implement repairing actions, we have played the first step of the
agile framework with another research team and discuss the value of anti-alignments. In
this section, we develop our approach in the aim to present a real application of the use of
anti-alignments.

The work entitled Process Mining and System Identification in Automatic Control is
the result of a collaboration between Gregory Faraut from LURPA (Laboratoire Univer-
sitaire de Recherche en Production Automatisée) and our team from LSV (Laboratoire
Spécification et Vérification). LURPA is a laboratory specialized in Automatic Production
that designs and tests various engines.

In this work, we studied the behaviors of a reactive discrete event system given by
the Bosch engine shown in Fig. 5.8. The machine aims at sorting out wheels of different
materials. Any step of the process is recorded thanks to captors positioned on the machine.

One objective of LURPA research team is to find a precise model that capture all the
behaviors of the machine and check the conformance of it in order to prove the accuracy
of the discovered model. We focus on a station of the machine that especially has a lot of
concurrent activities. A zoom on the station is given in Fig. 5.9. The station detects if the
wheel has a plastic dowel and removes it if so. Otherwise, a dowel is added in the wheel.
The station contains many steps. For instance, a check is done to verify that no wheel is
already positioned in the dowel change area.

125



5.7. CONCLUSION

Figure 5.9: Third Station of the Bosch Engine

The log of this machine is recorded in term of captor changes given in bits. A change
of a bit indicates the activation of an event in the machine. We extracted the sequences of
events and generated a process model thanks to Apromore software [71].

Once that we have obtained a process model of the system, we launched the search of
anti-alignments with respect to the event log. The expert of the Bosch engine appreciates
the conformance checking artefacts that quickly help him to note the weaknesses of the
discovered process model. Moreover, some anti-alignments were in fact possible by the
system but did not appear in the log (yet). Then, this knowledge should be taken into
account when repairing the process model.

Experiment Conclusion

This real-life example shows the interest of anti-alignments in the study of process model
deviations. The knowledge of possible and non possible extra behaviors given by the
process owner is a key interest for model repair.

5.7 Conclusion
In this chapter, anti-alignment was presented and compared to multi-alignment. While
multi-alignment is a modeled sequence that is as close as possible to the log traces, anti-
alignment plays the opposite role. The search of one of the most deviant run of a process
model with respect to a log involves to check all the modeled behaviors which is an in-
finite set when process models contain loops. To deal with this limitation, we propose a
penalization of very long runs.

The conformance checking artefacts are related and shared the two presented algo-
rithms with slight differences. First, a MinSAT-based encoding allows moving from multi-
alignments to anti-alignments with a change in the minimization problem. The negative
of the optimization problem for multi-alignment gives anti-alignments. Second, an A*-
algorithm explores the process model and prioritizes runs that optimize a specific distance
to the log traces. For anti-alignment, the runs that maximize the minimal distance to

126



CHAPTER 5. ANTI-ALIGNMENTS FOR MEASURING PRECISION AND ITS INTEREST IN
MODEL-BASED CLUSTERING

the log traces are prioritized. This latter algorithm allows computing approximated anti-
alignment for real-life inputs for the first time.

Apart from algorithms, anti-alignment is a key conformance checking artefact that helps
one to measure precision of process models. In this chapter, we show several experiments
of this metric and compared it to the state-of-the-art methods. However the experiments
that relate clustering and precision of process models did not lead to conclusive results.

Finally, we presented an agile framework for model repair with the use of anti-alignments.
We experimented the first step and the conclusion was promising because the expert ap-
proved the approach and wanted to see repaired models that disable the deviant runs that
we have identified. This encourages us to go in this direction for future work.

127





Chapter 6

Conclusion

Chapter Overview

This chapter summarizes the contributions of the thesis and lists the open issues and
future works.

6.1 General Conclusion of the Contributions
This thesis gives a study of conformance checking artefacts in the context of model-based
clustering of log traces. The main theme is the relationships between process models
and event data given by the artefacts. We explored alignment, multi-alignment and anti-
alignment to extract good representatives of process instances that we callmodel-based trace
variants. The thesis provides formal definitions of our approaches associated to optimal
algorithms which allows presenting proofs of concept of the methods. The algorithms are
encoded as SAT instances which contributes to a recent family of algorithmic methods for
conformance checking in the line of [31, 19]. In addition, heuristics of these algorithms and
A*-based approximating algorithms are developed. They enable to work on large real-life
inputs for a small lost of quality. All methods have been experimented and compared to
several state-of-the-art approaches for artificial and real-life logs.

In summary, the following conformance checking artefacts have been developed:

Multi-alignment: presented in Chapter 3, multi-alignment artefact is a unique mod-
eled sequence that represents a set of log traces. This modeled
sequence is extracted from an input process model of the corre-
sponding log. Its maximal distance to any log trace is minimized
and the found artefact gives a median modeled view of the log.
Multi-alignment showed relevant results when the log is homoge-
neous. However, for a varied set of traces, the artefact fails to
represent the recorded behaviors because it gives a median model-
ing whom distance is far from all the traces.

129



6.1. GENERAL CONCLUSION OF THE CONTRIBUTIONS

Alignment: alignment artefact is not a novelty of conformance checking. In
this thesis, we used alignment as a baseline of our clustering meth-
ods. The artefact allows to relate the traces to the model-based
centroids. When a log contains different behaviors, the presented
clustering methods enable to separate them in clusters based on
the given process model. Each cluster is associated to a modeled
centroid that draws the log-to-model relationships. This work is
detailed in Chapter 4.

Anti-alignment: Chapter 5 tackles anti-alignment for measuring the precision of
process model. Anti-alignments are the most deviant runs of pro-
cess model with respect to the log traces. This artefact focuses on
another direction of conformance checking, the idea is to get the
extra modeled behaviors.

We motivated the use of those conformance checking artefacts for log trace clustering
in order to extract relevant model-based trace variants. Thanks to process discovery and
the quality criteria of conformance checking, a process owner can learn and validate a
process model that designs its process. Once a model is accepted, it can be used as
a reliable baseline for partitioning the recorded behaviors contained in log. The use of
formal techniques in our clustering algorithms allow to preserve the conformance of the
input process model. Therefore, our model-based clustering methods extract well-defined
modeled centroids with the discovered clusters such that the relationships between them
have been formally specified. The centroids are either full runs, processes or subnets of
the initial model which enables representing respectively causality, choice and concurrency,
and loop behaviors. Thus, if the input process model is complex, which is usually the case
for good fitting process models, our approach extracts smaller parts of it. The discovered
clusters can then be presented for decision making with the centroids, a.k.a., model-based
trace variants, as an explainable output.

Furthermore, this thesis contains several case studies that draw examples of application
of the methods. About multi-alignment, we retain that this artefact fits well when the set
of log traces are similar. Otherwise, the clustering approaches allow to separate the groups
of different behaviors in clusters. Experimentation on clustering reveals the importance of
the quality of the process model. Finally, we experimented anti-alignment for measuring
precision of process models but also for getting an explainable artefact of model deviations.

The important contributions of this thesis is the computation of multi-alignment and
anti-alignment which was a gap in the literature, and the development of the model-based
clustering of log traces which incorporates choice, concurrency and loops. The techniques
developed in those works involve the computation of edit distance between many sequences
and the given process model. It places the methods in NP-complete problems.

130



CHAPTER 6. CONCLUSION

6.2 Open Issues
The general focus of this thesis is to provide formal definitions and applicable algorithms
to the conformance checking artefacts in the context of log trace clustering in process min-
ing. However, despite the proofs of concept of the methods though several experiments,
we believe that more experimental studies should be addressed to present statistical results.

Moreover, we identified the following open issues:

• SAT optimization: we believe that some engineering of the SAT formulas can
reduce or partition their memory need, thus allowing to compute it on most of today’s
computers. This improvement would enable to get the clustering of the log traces
without using the sampling algorithm which disables the centric notion necessary to
obtain good clustering.

• Grouping of optimizations: the implementation of the A*-based algorithms can
be optimized in association with other techniques of the literature like [101, 74].
For instance, the framework of [74] is a divide-and-conquer approach that focus
on a certain set of activities to relate the log and model. Thus, an association of
our method in their framework is promising for a gain in computation time. More
generally, the main idea behind our approximating approach is the notion of prefix
first order in processes. This can be applied to windows of the input sequences like
in [73, 131].

• Process model fitness with discounted alignment: we presented a technique
for computing approximation of alignment. Because this artefact is usually used in
fitness measure, an open issue of this work is to evaluate process model fitness with
these alignment approximations. This addition would enable to compare the quality
of the fitness obtained with this contribution and the one given by token replay
approach of Berti et al. in [14].

• Precising quality criteria implementation of model-based clustering: in
this thesis, we elaborated formal definitions of good criteria for getting model-based
clustering like the inter-cluster distance and the intra-cluster distance. In practice,
we reduced some problems to simple heuristics. For instance, for the intra-cluster
distance, we assume that limiting the number of transitions in centroid gives less
runs in them. Because the intra-cluster distance is used to minimize the maximal
distance between runs of a centroid in order to obtain more precise representatives,
limiting the number of runs in centroids reduces this distance and promises better
results. Properly, this metric should be incorporating by computing the distance
between all runs in all centroids which involves a huge use of edit distance.

• Data perspective: event logs contain many information about processes which
are not limited to the sequences of activities. Incorporating this knowledge in the

131



6.3. FUTURE WORKS

approaches can enriched the result and its explainability. This idea has already been
presented in [44] where resource attributes are used to discover process models. By
adding data perspective to our works we can enable data explanation of our model-
based trace variants.

This list of open issues is not exhaustive and we welcome any improvement of our
approaches. Implementation of all the presented methods are available online.

6.3 Future Works
As future works, we have many avenues in view for extending the different approaches
presented in this thesis. We first present our proposals for developing and exploring the
main topic of this thesis, the model-based clustering approaches:

• Centroid analysis: the analysis of the centroids obtained by our model-based clus-
tering can be developed in order to explain the clustering of the log traces in the line
of [46, 40]. All along the thesis, we motivated the use of a process model as a reliable
baseline in order to explain the processes. Now that we have a set of methods for
extracting artefacts from the model, an analysis step should be involved to extract
the knowledge from them. The obtained centroids can be aligned to their associated
set of log traces and bring several business keys about the clustered processes.

• Metrics for model-based clustering: quality criteria given for good model-based
clustering have been introduced in this thesis. They open many perspectives for
analyzing and improving the output modeled centroids. The latter is a novelty in
process mining and it can be followed by a set of metrics like it appeared in classical
data clustering for measuring the quality of the discovered clusters [50, 103]. For
instance, the Dunn index given in [50] computes a specific ration between the intra-
cluster distance and the inter-cluster distance to draw the compactness of the clusters.
Similar metrics can be developed by incorporating the model-based centroids. These
future works would enable to compare different clusterings of a same log.

• Process owner knowledge: involving process owners in the clustering methods
can bring novel directions of research behind the same idea of [41, 42] where the
expert knowledge is directly incorporated in the algorithm. In those works, a set of
must-link and cannot-link constraints is given. The same idea can be easily added
to our SAT encoding.

About anti-alignments, we see potential for derivative notions of this artefact:

• Anti-alignment between nets: anti-alignments can be generalized between two
nets to find behavior of the former that cannot be found in the latter. The found
difference is then a run of one of the input models and can be used to compare process
models.

132



CHAPTER 6. CONCLUSION

• Anti-alignment extension: like for the clustering approaches introduced in this
thesis, anti-alignment can be extended to processes or subnets in order to find larger
part of the model that is deviating with respect to the log.

These two ideas can also be applied for multi-alignment in the opposite perspectives.
For instance, multi-alignment between two nets can highlight similarities between process
models. Getting many multi-alignments can then draw a certain closeness between these
models.

We end this conclusion chapter with another direction of process mining by bouncing
back to model repair. Investigation on anti-alignments for removing deviation of process
models is certainly the future work of this thesis. Indeed, anti-alignment computation
enables a good interpretation of imprecision of process models such that the practitioner
can work hand-in-hand with the process owner. We presented a framework for this purpose
where the process owner validates or not anti-alignments in a iterative work with the
practitioner. Then the latter can repair the process model with the knowledge of correct
deviating runs. However, the repairing steps required for applying the framework are still
an open issue of this idea.

133





Chapter 7

French Summary

7.1 Introduction
La quantité d’informations produites, copiées et consommées croît chaque année due à
l’expansion des avancées technologiques. On estime un total de 59 zettabytes de données
consommées à la fin de l’année 2020 qui continuerait d’augmenter pour atteindre 165
zettabytes en 2025 [1]. La croissance s’est accelérée avec la pandémie du SARS-CoV-2 qui
pousse à l’utilisation des moyens de communications digitalisés.

L’analyse des données s’est alors rapidement développée au sein des entreprises qui
souhaitent améliorer leur fonctionnement. De nombreux études montrent qu’une mauvaise
analyse de données entraîne des coûts décisionnels très importants et cela pour la plupart
des domaines [66, 98, 2]. Nous pouvons citer par exemple les hopitaux et les industries qui
regroupent un grand nombre d’acteurs et d’actions [106].

Dans cette thèse, nous étudions les données d’évènements enregistrées dans les logs.
Structurées comme une collection d’événements, ces données décrivent les processus qui
apparaissent dans les organisations. La Fig. 7.1 présente un exemple artificiel d’un journal
d’évènements, aussi appelé log. Chaque ligne représente un événement. Les techniques clas-
siques d’exploration de données évaluent ces données en travaillant sur les caractéristiques

Case Identifier Timestamp Activity Resource 1 Resource 2
239U 16-03-2020:11.02 start (s) Proc.1 Silent
187V 16-03-2020:11.07 start (s) Proc.2 Silent
187V 16-03-2020:11.09 open file (f) Proc.2 Silent
239U 16-03-2020:11.31 open file (f) Proc.1 Silent
239U 16-03-2020:12.20 activation (a) Proc.2 Silent
187V 16-03-2020:12.20 activation (a) Proc.2 Console
... ... ... ... ...

982R 17-03-2021:12.20 bad request (b) Proc.2 Console

Figure 7.1: Exemple de log

135



7.1. INTRODUCTION

Case Identifier Sequence of Activities
239U ⟨s, f, a⟩
187V ⟨s, f, a⟩
... ...

982R ⟨s, c, b⟩

Figure 7.2: Schématique vue séquentielle de données d’évènements

données généralement par les dimensions des données, c’est-à-dire les colonnes. Ces car-
actéristiques sont ensuite utilisées pour regrouper et exploiter les événements. Cependant,
l’ordre des activités dans le temps est une information clé dans l’analyse des processus et
cet aspect n’est pas donné par les événements eux-mêmes. En regroupant les événements
par identifiant et en les ordonnant par leur timestamp, nous obtenons les informations
comportementales comme le montre la Fig. 7.2.

L’objectif suivant est alors de découvrir des comportements dans ces séquences d’activités.
On cherche notemment des relations de causalité entre les actions, de la concurrence, les
choix possibles et les boucles. Cette analyse s’avère rapidement complexe en raison de la
quantité de comportements différents contenus dans les logs [76].

Dans la littérature scientifique, il existe différents domaines qui traitent les données
séquentielles. Par exemple, le Sequences Pattern Mining se concentre sur les schémas par-
ticuliers [59]. Les approches de Deep Learning ont montré d’énormes améliorations dans
l’analyse des séquences comme on peut le voir dans le Traitement du Langage Naturel,
où les phrases sont des séquences de mots [94]. Le contexte et l’ordre des éléments dans
les séquences sont d’un grand intérêt pour la recherche. Cependant, les domaines sus-
mentionnés ne fournissent pas de modèles compréhensibles de bout en bout des séquences
étudiées, ce qui est la source principale de l’explicabilité requise dans la gestion des proces-
sus d’entreprise, où les prises de décision doivent être fiables. Les modèles de processus se
sont avérés être un élément clé pour décrire, analyser et optimiser l’exécution des proces-
sus [100]. C’est le Process Mining qui comble le fossé entre le Business Process Management
et la Data Science en fournissant un ensemble de techniques pour découvrir et vérifier les
modèles de processus [124].

7.1.1 Process mining
Process Mining est un domaine récent qui permet d’extraire des informations des journaux
d’événements, communément appelés logs, en produisant des analyses centrées sur les
modèles de processus.

Comme vu précedemment, les logs peuvent être réduits à des séquences d’activités en
omettant les caractéristiques des évènements comme l’attribut Resource 1 dans la Fig. 7.1.
On définit alors les traces des journaux comme telles:

Definition 27 (Log, Traces). Soit Σ un ensemble d’activités. On définit un log est un
multiset fini de sequences σ ∈ Σ∗ qui sont appelées des traces. log traces.

136



CHAPTER 7. FRENCH SUMMARY

Le Process Mining apporte un ensemble d’algorithmes qui permettent aux experts des
données d’extraire facilement des modèles de processus représentant les opérations qui
structurent leurs organisations. Ces méthodes automatisées de découverte de processus
prennent en entrée un journal d’événements et produisent un modèle de processus qui
capture les relations entre les tâches observées dans le journal. Les modèles produits sont
généralement des réseaux de Petri ou des modèles BPMN (Business Process Management
Notation) parce qu’ils permettent de décrire formellement la causalité, la concurrence, le
choix et le comportement des boucles [9]. Nous présentons formellement les réseaux de
Petri.

Definition 28 (Modèle de Processus (Réseau de Petri Étiqueté) [87]). Un modèle de
Processus défini par un réseau de Petri labelé est un tuple N = ⟨P, T, F,m0,mf ,Σ,Λ⟩
où P est un ensemble de places, T un ensemble de transitions (avec P ∩ T = ∅),
F ⊆ (P × T ) ∪ (T × P ) les relations, m0 le marquage initial, mf le marquage final, Σ
l’ensemble des activités donné et Λ : T → Σ ∪ {τ} la fonction de correspondance entre les
transitions et les labels où τ désigne une activité silencieuse.

Sémantique. Un marquage correspond à l’ensemble des places qui contiennent un
jeton à un instant donné. Une transition peut s’executer lorsque l’ensemble des places
en amont contiennent un jeton. Ceci est noté par •x

def
= {y ∈ P | (y, x) ∈ F} où x est

la transition que l’on souhaite executer. Les jetons sont alors supprimés de ces places
et toutes les places situées en aval de cette transition recoivent un jeton: x•

def
= {y ∈

P | (y, x) ∈ F}. On dit qu’un marquage m′ est atteignable depuis m lorsqu’il existe une
séquence de transitions ⟨t1 . . . tn⟩ qui transformem enm′. On note cette transformation par
m[t1 . . . tn⟩m′. L’ensemble des marquage atteignable depuis m dans N est noté RS(N,m).

En Process Mining, les transitions représentent les activités et les places correspondent
aux états des processus.

s

f

c

g

b

a

τ

d

Figure 7.3: Un model N

Il existe différentes classes de réseaux de Petri. Ici nous utilisons les réseaux de Petri
sauf et plutôt-fiable, c’est-à-dire qu’un seul jeton est contenu dans une même place à un
instant donné et qu’il existe au moins une séquence de transitions reliant le marquage initial
au marquage final. Il est courant en Process Mining que ces réseaux soient contraints à
une place maximum pour chacun de ces deux marquages délimitant les processus.

137



7.1. INTRODUCTION

Nous montrons ci-dessus un exemple d’un modèle de processus pouvant représenter les
données de la Fig 7.2. On remarque le modèle de processus est capable de représenter
certaines séquences du log. Cependant, d’autres ne trouvent pas leur compte dans ce
modèle comme la séquence ⟨s, f, a⟩. En effet, le pattern de concurence, fermé par a ici,
nécessite l’activation d’une des transitions b ou g pour cette séquence. C’est là qu’intervient
la Vérification de Conformité, Conformance Checking en anglais, un sous-domaine du
Process Mining qui vise à vérifier les correspondances entre les informations contenues
dans le log et celles modélisées.

7.1.2 Vérification de conformité
La Vérification de Conformité, a.k.a, Conformance Checking, vise à comparer les comporte-
ments décrits par le modèle et ceux enregistrés dans les logs. Pour cela, quatre critères ont
été définis, à savoir:

• Adéquation: qui vérifie que les comportements observés sont bien présents dans le
modèle.

• Précision: qui présente la quantité modélisée qui est bien contenue dans les logs.

• Généralisation: qui représente la capacité du modèle à capturer des comportements
pas encore observés dans le log mais bien présents dans le système.

• Simplicité: qui quantifie la densité et l’interprétabilité des modèles.

Un compromis entre ces critères de qualité est un grand dilemme du domaine en raison
de la grande complexité des données d’évènements [120].

7.1.3 Variantes de traces et méthodes de partitionnement
Pour réduire la complexité des logs qui induisent la découverte de modèles de processus
complexes, plusieurs méthodes ont été développées. Par exemple, de nombreux travaux
proposent d’étudier les processus en analysant les variantes de traces, c’est-à-dire, les
séquences uniques d’activités [114]. Par exemple, on observe en Fig. 7.2 deux fois le
comportement ⟨s, f, a⟩ qui peuvent donc être représentés par une seule même séquence
que l’on appelle variante.

Par ailleurs, une autre méthode permettant de regrouper les traces d’un log est le par-
titionnement, clustering en anglais. Le partitionnement est la tâche qui consiste à répartir
les objets en différents groupes appelés clusters, dans lesquels les objets sont similaires. Le
regroupement d’instances de processus est donc la partition des instances de journaux en
sous-journaux, aussi appelés sublogs, de sorte que ces groupes rassemblent des processus
similaires. Ce sujet de recherche a suscité un grand intérêt pour l’exploration de processus
au cours des deux dernières décennies, avec 103 travaux pertinents d’après une récente

138



CHAPTER 7. FRENCH SUMMARY

étude [144]. Au final, la similarité des instances de processus a été abordée sous plusieurs
angles :

• D’une part, l’étude du flux donné par les traces permet de regrouper les instances de
processus en fonction du comportement qu’elles décrivent. En d’autres termes, on
évalue les activités qui apparaissent dans le système. Ces méthodes de regroupement
vont de l’étude de la fréquence des activités [108] à l’étude des patterns [63, 39, 21, 78].

• D’autre part, des approches traitent le contexte des évènements et fournissent un re-
groupement basé sur les attributs de données tels que ”Ressource 1” et ”Ressource 2”
de la Fig. 7.1. Ces techniques se rapprochent de l’exploration de données habituelle [133].

• Certains travaux emploient des deux approches combinées [108, 79].

Aucun des travaux énoncés précédemment ne considèrent l’existance d’un modèle de
processus pour regrouper les instance de processus. Les variantes de traces et différentes
approches de partitionnement des traces sont uniquement basées sur les données contenues
dans les logs. Dans cette thèse, nous proposons de combler ces lacunes de la littérature en
proposant des rapproches permettant d’extraire des variantes modélisées des traces grâce,
entre autre, à des méthodes de clustering.

7.1.4 Problématique et motivation
Une fois qu’un modèle de processus a été validé par son propriétaire, l’expert des don-
nées peut bénéficier de l’existence de ce modèle en l’utilisant comme base de référence
pour l’analyse des logs. Ainsi, les algorithmes d’extraction de variantes de traces et le
partitionnement d’instances de processus peuvent utiliser ce modèle comme entrée. Cette
idée s’oppose légèrement à l’idée de découvrir des modèles plus simples en partionnant
les traces au préalable. Ici, le modèle de processus, qui représente le log entier, peut être
complexe et l’objectif est d’en extraire des artefacts plus simples. Cette perspective se mo-
tive par la complexité des modèles de processus produits par les algorithmes de découverte
qui priorétisent habituellement à l’adéquation [120]. Puisque le modèle appris contient les
informations des processus et donne une visualisation de ceux-ci, une analyse de logs basée
sur le modèle apporte une vue nouvelle pour la prise de décision.

Dans cette thèse, nous présentons plusieurs approches qui utilisent des techniques de
Vérification de Conformité pour représenter les sous-ensembles de log en se basant sur un
modèle de processus. Ces sous-ensembles sont alors représentés par des artefacts extraits
du modèle que nous utilisons comme variantes modélisées de traces.

7.1.5 Contributions et plan du résumé en langue française
Ce présent rapport est un résumé en langue française qui accompagne la thèse intit-
ulée Process Instance Clustering Based on Conformance Checking Artefacts, elle, rédigée

139



7.1. INTRODUCTION

en anglais. Les contributions de cette thèse se concentrent sur les trois grands artefacts
de la Vérification de Conformité, à savoir les alignements, les multi-alignements et les
anti-alignements:

Figure 7.4: Extraction de multi-alignements

Les multi-alignements sont une première approche de variantes modélisées de traces. A
partir d’un ensemble d’instances, une unique séquence médiane est extraite du modèle pour
représenter les comportements donnés en entrée. On remarque que les multi-alignements
sont inappropriés lorsque les traces font référence à différents types de comportements où
plusieurs séquences seraient nécessaires pour les représenter.

Figure 7.5: Partitionnement des traces en utilisant les alignements

Nous utilisons alors les alignements dans des méthodes de partitionnement qui, à par-
tir d’un log et d’un modèle de processus, extraient des clusters associés à des variantes
modélisées des différents groupes des traces qui ont été automatiquement identifés. Nous
proposons trois types de partitionnement des traces dont les variantes modélisées, qui font
office de centroids, ont des structures différentes. Elles sont alors soit une séquence, un
processus ou un sous-modèle, tous extraits du modèle initial. Ces trois algorithmes sont
liés par des propriétés des réseaux de Petri que nous détaillons dans la thèse.

Enfin, l’utilisation du modèle en entrée de nos méthodes fait réfléchir sur la pertinence
de celui-ci. C’est dans cette dernière perspective que nous élaborons les anti-alignements.
Définis comme les séquences du modèle les plus éloignées des traces du log, les anti-
alignements permettent de calculer la précision du modèle.

140



CHAPTER 7. FRENCH SUMMARY

Figure 7.6: Calcul de la précision avec les anti-alignements

7.2 Les artefacts de vérification de conformité
Un modèle de processus permet de représenter un ensemble de processus différents. Cepen-
dant le langage d’un tel modèle est rarement celui contenu dans le log à cause de la com-
plexité des données d’évènements. Les relations log-modèle peuvent alors s’établir grâce
aux artefacts de la Vérification de Conformité.

7.2.1 Les alignements
Nous présentons d’abord les alignements qui ne sont pas une nouveauté en Process Min-
ing [4].

Definition 29 (Alignement). Pour une trace de log σ et un modèle de processus N , un
alignement (optimal) de σ dans N est une séquence entière générée par N , u ∈ Runs(N),
telle que la distance dist(σ, u) entre cette séquence u et la trace σ soit minimale:

min
u∈Runs(N)

dist(σ, u) (7.1)

où dist fait référence à une distance entre séquences.

En Process Mining, la distance usuellement utilisée est la distance de Levenshtein que
nous rappelons.

Definition 30 (Distance de Levenshtein ). La distance de Levenshtein L(u, v) entre deux
sequences u and v ∈ Σ∗ est le minimum d’éditions nécessaires pour transformer u en v.
Dans notre cas, les éditions peuvent être des suppressions ou des additions d’activités dans
les séquences.

Example 7.2.1. Un alignement de σ = ⟨s, f, a⟩ dans N est ⟨s, f, b, a⟩. La distance
entre ces deux séquences est alors de 1 pour la suppression de b.

On note que les alignements sont l’extraction d’une séquence par trace de log. Or,
un journal d’évènement contient habituellement un grand nombre de traces. Obtenir un
alignement par trace nuit à la lisibilité.

141



7.3. VARIANTES MODÉLISÉES DE TRACES

7.2.2 Les multi-alignements
Pour extraire une unique séquence du modèle qui représente plusieurs séquences de log, on
introduit les multi-alignements.
Definition 31 (Multi-alignement). Pour un ensemble fini de traces de log L et un modèle
de processus N , un multi-alignement (optimal) de L dans N est une séquence entière de
N , u ∈ Runs(N), telle que la distance maximale de u à σ ∈ L est minimale:

min
u∈Runs(N)

max
σ∈L

dist(σ, u) (7.2)

où dist est une distance entre séquences, communément la distance de Levenshtein.

Example 7.2.2. Pour l’ensemble L1 = {⟨s, f, a⟩, ⟨s, f, b, a⟩, ⟨s, b, b, a⟩} de traces de
log, un multi-alignement de L1 dans N est ⟨s, f, b, a⟩ qui est à une distance maximale
de 2 pour toutes les traces de L1.

7.2.3 Les anti-alignements
Les anti-alignements donnent l’opposé des multi-alignements. Un anti-alignement est une
séquence qui existe dans le modèle de processus alors qu’elle s’éloigne particulièrement des
traces du log.
Definition 32 (Anti-alignement). Pour un ensemble fini de traces de log L et un modèle
de processus N , un anti-alignement (optimal) de L dans N est une séquence entière de N ,
u ∈ Runs(N), telle que la distance minimale de u à σ ∈ L est maximale:

max
u∈Runs(N)

min
σ∈L

dist(σ, u) (7.3)

où dist est une distance entre séquences, communément la distance de Levenshtein.
A cause des boucles, les anti-alignements peuvent s’éloigner indéfiniment des traces.

Pour résoudre ce problème, on peut normaliser la distance sur la taille de l’anti-alignement
ou lui fixer une taille de manière arbitraire.

Example 7.2.3. Pour L1 donné en Exemple 2.2.1, un anti-alignement de taille 8
dans N est ⟨s, c, g, d, d, d, d, τ⟩ qui est à une distance minimale de 8 de toutes des
traces de L1.

7.3 Variantes modélisées de traces
L’intérêt principal de la thèse résumée est d’extraire des sous parties du modèle de processus
qui représentent les traces. Voyons dans cette partie les différentes étapes qui permettent
d’obtenir ces arteafacts que nous appelons variantes modélisées de traces.

142



CHAPTER 7. FRENCH SUMMARY

7.3.1 Lesmulti-alignements commevariantesmodéliséesde traces
et ses limites

Comme nous l’avons vu précedemment, les multi-alignements donnent une représentation
médiane modélisée des traces données. Ainsi, un multi-alignement de traces similaires
donne une bonne variante modélisée des traces. Cependant pour des traces distinctes, les
multi-alignements s’avèrent inadaptés. En effet, en minimisant la distance maximale aux
traces, les multi-alignements cherchent à faire un compromis entre les différents processus
observés ce qui, parfois, donne des séquences éloignées de toutes les traces de log.

Example 7.3.1. Pour L2 = {⟨s, f, b, a⟩, ⟨s, c, g, d, d, d, d⟩}, un multi-alignement op-
timal est ⟨s, f, g, d⟩ à distance minimale de 4 des traces et ne représente pas vraiment
les traces.

7.3.2 Méthodesdepartitionnementde tracesbasées sur les aligne-
ments

Le partitionnement des traces basé sur un modèle de processus est la contribution la plus
importante de cette thèse. Les traces de logs sont regroupées en considérant le modèle
comme une base de référence. Des parties des modèles, appelées centroides, représentent
les clusters et peuvent alors être utilisés comme variantes modélisées des traces. Nous
proposons trois types de méthodes de partitionnement dont la différence est le type de
centroides acceptés:

• Partitionnement basé sur les alignements : cette version a été introduite dans [33].
Les centroids sont des séquences du modèle qui permettent un bon partitionnement
des traces à l’aide de multi-alignements.

• Partitionnement basé sur les alignements et les ordres partiels : pour accepter les
choix et la concurence d’activités dans les centroids, nous avons élaboré cette deux-
ième méthode de partitionnement qui utilise des ordres partiels du modèle initial
comme centroids. Ainsi, un centroid contient plusieurs séquences auxquelles sont
alignées les traces.

• Partitionnement basé sur les alignements et les sous-modèles : l’incorporation des
boucles s’est fait en acceptant des sous-modèles du modèle initial comme centroids.

143



7.4. IMPLÉMENTATION DES MÉTHODES

Example 7.3.2. Nous donnons ci-après un exemple de partitionnement de 7 traces
basé sur les alignements et les sous-modèles (méthode nommée AMSTC en anglais).

Cluster 1 Cluster 2 Cluster 3

s

f

c

g

b

a

τ

d

s

f

c

g

b

a

τ

d

s

f

c

g

b

a

τ

d

⟨s, c, g⟩
⟨s, c, g, d⟩

⟨s, b, f, a⟩
⟨s, f, b, a⟩
⟨s, f, f, a⟩

⟨s, g, f, d, d⟩
⟨s, g, f, d, d, d, d⟩

Pour obtenir des partitionnements qualitatifs, nous introduisons dans la thèse un en-
semble de critères comme la distance maximale entre une trace et son centroide.

7.3.3 Impact de la qualité des modèles

Les variantes modélisées des traces étant extraites du modèle initial, sa qualité est un critère
important pour obtenir de bonnes variantes capables de représenter aux mieux les traces
qui leurs sont associées. L’adéquation du modèle se mesure à l’aide d’alignements entre les
traces et le modèle. Cette méthode fait l’unanimité au sein de la communauté. Ce n’est
pas le cas du calcul de la précision qui peine à accorder tous les chercheurs du domaine. La
précision doit répondre à cinq axiomes précis donné par [109]. Nous proposons un calcul
de la précision, qui vérifie ces axiomes, à l’aide des anti-alignements:

Definition 33 (Précision basée sur les anti-alignements). Soit L un journaux d’évènements
et N un modèle de processus. La précision de N par rapport à L est:

P ϵ
aa(N,L)

def
= 1− sup

γ∈Runs(N)

min
σ∈L

∆(γ, σ)

(1 + ϵ)|γ|
(7.4)

où ∆(γ, σ) = dist(γ,σ)
|γ|+|σ| , γ étant un anti-alignement,et ϵ ≥ 0.

7.4 Implémentation des méthodes

Les fondements des multi-alignements et anti-alignements sont présentés dans la thèse et,
pour la première fois, leur calcul exact est obtenu grâce à des algorithmes optimaux. Ce
codage ayant des limites en espace de mémoire, nous présentons une seconde méthode qui
fournit des approximations de ces artefacts grâce à une nouvelle distance escomptée que
nous introduisons.

144



CHAPTER 7. FRENCH SUMMARY

7.4.1 Encodage SAT
Le problème de satisfiabilité (SAT), est le problème qui consiste à déterminer, pour une
formule booléenne donnée, s’il existe une combinaison d’affectations aux variables qui la
satisfait. En d’autres termes, pour l’alignement, le multi-alignement et l’anti-alignement,
nous définissons des problèmes de satisfiabilité que nous codons en formules booléennes :

• Alignement : pour une traceσ et un modèle N , existe-t-il une sequence u de N telle
que dist(σ, u) ≤ d ? (où dist est la distance de Levenshtein et d ∈ N)

• Multi-alignement : pour un log L et un modèle N , existe-t-il une sequence u de N
telle que ∀σ∈Ldist(σ, u) ≤ d ?

• Anti-alignement : pour un log L et un modèle N , existe-t-il une sequence u de N
telle que ∀σ∈Ldist(σ, u) ≥ d ?

De plus, les problèmes exacts consistent à obtenir une distance optimale. Par exemple,
pour l’alignement, au lieu de chercher une distance inférieure ou égale à d, la définition
vise à obtenir la distance minimale, c’est-à-dire quelle séquence du modèle minimise la
distance à la trace. La minimisation peut être encodée dans des problèmes MaxSAT qui
fonctionnent avec des clauses pondérées.

Les méthodes de partitionnement sont elles aussi implémentées en formules satisfiables
à partir de l’idée suivante:

• Partitionnement des traces : pour un log L et un modèle N , existe-t-il un partition-
nement des traces basé sur un modèle vérifiant X ? où X mentionne les critères de
qualité d’un partitionnement qui n’ont pas été détaillés dans ce résumé.

Les formules sont composées de trois parties: la sémantique d’un réseau de Petri, la
distance d’édition et la minimisation ou la maximisation des distances. Les trois artefacts
de Vérification de Conformité utilise ces trois mêmes blocs ce qui permet rapidement de
passer d’un codage à l’autre. Toutes les variables et les formules sont détaillées dans la
thèse.

7.4.2 Distance escomptée
La plupart des algorithmes de calcul d’alignement en Process Mining utilisent une recherche
du plus court chemin dans un graphe appelé le produit synchrone liant le modèle de pro-
cessus et la trace de log donnée [4]. Les algorithmes sont notamment Dijsktra et A*.
Cependant pour des modèles complexes, parcourir ce graphe est une tâche difficile et éten-
dre l’idée aux multi-alignements et aux anti-alignements devient alors impossible. Pour
réduire le nombre de chemins à parcourir nous introduisons une nouvelle distance que nous
nommons la distance escomptée, discounted edit distance en anglais. L’idée de cette dis-
tance est de priorétiser les alignements d’activités en début de processus, supprimant ainsi
tous les chemins du modèle qui s’éloignent de la trace dès le début.

145



7.5. EXPÉRIENCES

Definition 34 (Distance escomptée). Nous définissons la distance escomptée entre deux
séquences u et v avec le paramètre θ ≥ 1 par Dθ(u, v)

def
= D0

θ(u, v) où:

Dk
θ (u, v) =



Dk
θ (⟨⟩, ⟨⟩) = 0

Dk
θ (⟨⟩, b.v′) = Dk+1

θ (⟨⟩, v′) + θ−k

Dk
θ (a.u

′, ⟨⟩) = Dk+1
θ (u′, ⟨⟩) + θ−k

Dk
θ (a.u

′, b.v′) = Dk+2
θ (u′, v′) si (a == b)

Dk
θ (a.u

′, b.v′) = min
{
Dk+1

θ (u′, v) + θ−k

Dk+1
θ (u, v′) + θ−k autrement.

(7.5)

Ainsi, insertions et suppressions coûtent θ−k où k fait référence à la position de l’édition.

Cette nouvelle distance est proche de la distance de Levenshtein. On note par exemple
que pour θ = 1, on obtient la distance de Levenshtein.

Example 7.4.1. Let u = ⟨x, a, b⟩ and v = ⟨a, y, b⟩. The discounted edit distance
between u and v is Du,v

θ = θ−1 + θ−4. If θ = 1, the distance equals to 2 and is the
Levenshtein edit distance where deleting x costs 1 and adding y costs 1.

On montre dans la thèse comment, en utilisant cette distance escomptée, on réduit
considérable le nombre de séquences du modèle pouvant être un bon alignement, multi-
alignement ou anti-alignement selon l’algorithme étudié.

7.5 Expériences
Les contributions de cette thèse ont été implémentées au sein de trois logiciels:

• DarkSider : DarkSider est le premier outil qui a implémenté les méthodes optimales.
Démarré par Thomas Chatain en 2016, le logiciel est implémenté en Ocaml, un lan-
gage fonctionnel qui permet une bonne typographie utile pour l’encodage de formules
SAT. L’outil est un logiciel en ligne de commande qui nécessite uniquement un ter-
minal.

• da4py : En raison du fort intérêt pour Python dans la communauté d’analyse de
données, da4py est d’abord une traduction de DarkSider en Python 3. Puis, le codage
SAT des méthodes devenu plus performant dans cette version Python que dans l’outil
en Ocaml grâce à la bibliothèque pysat qui fait le pont entre Python et toutes les
différentes sorties des solveurs SAT [68].

• pm4py : Enfin, les dernières contributions de la thèse, à savoir l’introduction de la
distance escomptée qui s’associe à un algorithme par artefact, sont implémentées
dans une copie de pm4py dans l’objectif d’étendre la disponibilité des artefacts de
Vérification de Conformité à la communauté. On notera que ces versions sont des

146



CHAPTER 7. FRENCH SUMMARY

approximations des artefacts qui permettent d’avoir des résultats rapides sur des
données réelles où les versions optimales ne permettent pas toujours d’obtenir des
résultats.

La thèse contient un ensemble d’expériences qui servent de preuves de concept des
méthodes introduites. On présente ces résutats pour des jeux de données artificiels mais
aussi des jeux de données réels. Dans la plupart des cas, ces données sont connues de la
communauté. On peut par exemple citer les logs des Bussiness Process Management Chal-
lenge [127]. Enfin, la thèse contient, en annexe, des tutoriels pour utiliser les différentes
méthodes implémentées.

7.6 Conclusion
Cette thèse présente une étude des artefacts de Vérification de Conformité dans le contexte
du partitionnement des traces de logs. Le thème principal est la relation entre les modèles
de processus et les journaux d’évènements qui est donnée par ces artefacts. Nous avons
étudié les alignments, multi-alignments et anti-alignments dans l’objectif d’extraire de bons
représentants des instances de processus que nous appelons variantes modélisées de traces.
La thèse fournit des définitions formelles de nos approches associées à des algorithmes op-
timaux qui permettent de présenter des preuves de concept des méthodes. Les algorithmes
sont encodées en problèmes SAT, ce qui contribue à une récente famille de méthodes al-
gorithmiques pour la Vérification de Conformité [31, 19]. De plus, des heuristiques de ces
algorithmes et des algorithmes d’approximation sont développés. Ils permettent de tra-
vailler sur de grandes entrées réelles pour une petite perte de qualité. Toutes les méthodes
ont été expérimentées et comparées à plusieurs approches de pointe pour des journaux
artificiels et réels.

Nous avons identifiés des améliorations possibles de nos travaux que nous listons ci-
après :

• Optimisation des formules SAT : l’utilisation en mémoire des formules SAT peut
sûrement être réduite en améliorant le codage

• Association de plusieurs optimisations : nous proposons une heuristique pour
réduire l’espace de recherche des alignements qui peut être accumulée avec d’autres
techniques de la littérature comme [101, 74]. Par exemple, [74] utilise une méthode
de diviser-pour-régner qui se concentre sur des sous-ensemble d’activités. Ainsi, une
association de notre méthode dans leur cadre est prometteuse.

• Calcul de l’adéquation avec nos alignements approximatifs : nous avons
présenté une technique pour calculer des approximations d’alignement. Comme cet
artefact est généralement utilisé dans la mesure de l’adéquation, une question ou-
verte est d’évaluer l’adéquation du modèle de processus avec ces approximations
d’alignement. Cette étude permettrait de comparer la qualité de l’adéquation du

147



7.6. CONCLUSION

mondel obtenue avec cette contribution et celle donnée par l’approche token-replay
de Berti et al. in [14].

Enfin, nous voyons un grand nombre de travaux futurs qui pourraient suivre nos con-
tributions :

• Analyse des Centroids: l’analyse des centroids obtenus par nos méthodes de
partitionnement peut être développée afin d’expliquer les clusters comme dans cit-
ede2014secpi,de2017explaining.

• Mesures de qualité pour les partitionnements basés sur des modèles de
processus : Des critères de qualité donnés pour un bon clustering basé sur un
modèle ont été introduits dans cette thèse. Ils ouvrent de nombreuses perspectives
pour analyser et améliorer les centroides modélisés obtenus. Ce dernier point est
une nouveauté dans le domaine de la fouille de processus et il peut être suivi par
un ensemble de mesures comme il est apparu dans le clustering de données classique
pour mesurer la qualité des clusters découverts [50, 103]. Par exemple, l’indice de
Dunn donné dans [50] calcule un rapport spécifique entre la distance intra-cluster
et la distance inter-cluster pour estimer la compacité des clusters. Des métriques
similaires peuvent être développées en incorporant les structures particulières des
centroids de nos méthodes.

• Connaissances du propriétaire du processus : l’implication des propriétaires
de processus dans les méthodes de clustering peut apporter de nouvelles directions de
recherche derrière la même idée que [41, 42] où la connaissance experte est directe-
ment incorporée dans l’algorithme. Dans ces travaux, un ensemble de contraintes
”doit-être-lié” et ”ne-peut-pas-être-lié” est donné. La même idée peut être facile-
ment ajoutée à notre encodage SAT.

• multi-alignement et anti-alignement entre modèles : les multi-alignement
et anti-alignements peuvent être généralisés entre deux modèles de processus pour
trouver un comportement du premier qui se rapproche ou s’éloigne le plus des com-
portements du second.

• Extension des multi-alignement et anti-alignment : comme pour les approches
de clustering introduites dans cette thèse, les artefacts de Vérification de Conformité
peut être étendus aux ordres partiels ou aux sous-modèles afin de trouver la plus
grande partie du modèle qui se rapproche, pour les multi-alignements, ou qui est
déviante, pour les anti-alignements, du journal d’évènements.

148



Appendices

149



Appendices A

Tutorials

The scripts are mainly in Python 3. We use the pm4py library that proposes a large set
of techniques and objects for Process Mining.

The following lines show how to load a XES log and a PNML process model.
1 from pm4py.objects.log.importer.xes import importer as xes_importer
2 from pm4py.objects.petri.importer import importer as petri_importer
3

4 # load log and model
5 log = xes_importer.apply("/examples/medium/model2multi.xes")
6 net, marking, fmarking =

petri_importer.apply("/examples/medium/model2.pnml")↪→

A.1 Using the SAT-based Algorithms for Alignments,
Multi-alignments and Anti-alignments

The SAT-based algorithm for computing the conformance checking artefacts is given in
darksider and da4py. Despite that darksider is out-of-date, we provide below some com-
mands to creates and solve the SAT formulas. The tool only runs for TPN type of files
for models and TR files for logs. The minimization of the sum of distances is given for
multi-alignments and the maximization of the sum of distance for anti-alignments.

> ./darksider -MA ./data_test/example_anti/LoanA.tpn ./data_test/example_anti/LoanA.tr 10
20

• where -MA stands for ”multi-alignment”, 10 is the size of the run and 20 the allowed
number of edits in the SAT formulas.

> ./darksider -AA ./data_test/example_anti/LoanA.tpn ./data_test/example_anti/LoanA.tr 10
22

150



APPENDICES A. TUTORIALS

• here -AA stands for ”anti-alignment”.

The solid and up-to-date version of the SAT implementation for alignment, multi-
alignments and anti-alignments is given in da4py. The next box shows how to get a
multi-alignment for a given log and model. We give some expected outputs below.

1 from da4py.main.conformanceChecking.conformanceArtefacts import
ConformanceArtefacts↪→

2

3 artefacts = ConformanceArtefacts()
4 # the algorithm is implemented for both the edit and hamming distance
5 artefacts.setDistance_type("edit")
6 # classical multi-alignment minimizes the maximal distance
7 artefacts.setOptimizeSup(False)
8 # the algorithm limits the search of unbounded models
9 artefacts.setSize_of_run(8)

10 # this is an heuristic to reduce the runtime, optimal is size_of_run*2
11 artefacts.setMax_d(16)
12

13 # run a multi-Alignment
14 artefacts.multiAlignment(net, marking, fmarking, log)
15

16 # print the artefact
17 print(artefacts.getRun())
18 # show the distance between the traces and the artefact
19 print(artefacts.getTracesWithDistances())

> ['S', 'C', 'B', 'tau', 'w', 'w', 'w', 'w']

> distance traces

3 [S, F, B, A]
2 [S, B, F]
1 [S, C, B, A]
4 [S, G, C, A, D]
4 [S, D, D]

The ’w’ hold for ’wait’ activity and appear in order to fill the expected length (8 in this
example). See page 31 for more details.

151



A.2. USING THE A*-BASED ALGORITHMWITH THE DISCOUNTED EDIT DISTANCE FOR
COMPUTING THE CONFORMANCE CHECKING ARTEFACTS

A.2 Using theA*-basedAlgorithmwith theDiscounted
Edit Distance for Computing the Conformance
Checking Artefacts

The A*-based algorithm for computing alignments, multi-alignments and anti-alignments
is implemented in pm4py. Three separated packages are involved:

• pm4py.algo.conformance.alignments

• pm4py.algo.conformance.antialignments

• pm4py.algo.conformance.multialignments

The use of the algorithms is based on the existing method contained in the library for
computing alignment. We give an example below.

1 from pm4py.algo.conformance.alignments import algorithm as ali
2

3 # select the discounted method
4 algorithm = ali.VERSION_DISCOUNTED_A_STAR
5

6 # in this example we chose the simulation of the synchronous product
7 my_params = {ali.Parameters.SYNCHRONOUS:False, ali.Parameters.EXPONENT:1.5}
8

9 # play the alignments
10 alignments = ali.apply(log, net, marking, fmarking, variant=algorithm,

parameters=my_params)↪→

11

12 print(alignments)

A.3 AMSTC
The AMSTC algorithm uses subnets as centroids. In the next script box we detail the
different settings.

1 # process model
2 model, m0, mf = importer.pnml.import_net('examples/medium/model2.pnml')
3

4 # log traces
5 traces = xes_importer.import_log('examples/medium/model2.xes')
6

7 # sampleSize : number of traces that are used in the sampling method
8 sampleSize= 5

152



APPENDICES A. TUTORIALS

9

10 # sizeOfRun : maximal length requested to compute alignment
11 sizeOfRun = 8
12

13 # maxNbC : maximal number of transitions per cluster to avoid to get a
unique centroid↪→

14 maxNbC = 5
15

16 # m : number of cluster that will be searching at each AMSTC of the
sampling method. Understand that more than m cluster can be returned.↪→

17 m = 2
18

19 # maxCounter : as this is a sampling method, maxCounter is the number of
fails of AMSTC before the sampling method stops↪→

20 # silent_label : every transition that contains this string will not cost
in alignment↪→

21 clustering = samplingVariantsForAmstc(net, m0, mf, log, sampleSize,
sizeOfRun, maxD, maxNbC, m, maxCounter=1, silent_label="tau")↪→

The clustering output can then be used like :
1 from pm4py.visualization.petrinet import factory as vizu
2

3 for (centroid, traces) in clustering:
4 if type(centroid) is tuple:
5 net, m0,mf=centroid
6 vizu.apply(net, m0, mf).view()
7 print(traces)

153



Appendices B

Experiment Scripts

In each chapter of the present thesis, we have elaborated a set of experiments to depict
the value of our contributions. We give most of the scripts that have been created for this
purpose. Some experiments are only a variant of other ones which we have removed for
redundancy.

B.1 Comparing Alignments Methods
The following script has been used in Section. 3.5.1 for comparing the A*-based algorithm
and its parameter influence with respect to the baseline implemented in pm4py.

1 def execute_script(log_path, pnml_path, version, parameters):
2 '''
3 This function has been used to compute the differences between

alignment methods.↪→

4 '''
5 # load log and model
6 net, marking, fmarking = petri_importer.apply(pnml_path)
7 log = xes_importer.apply(log_path)
8

9 # get the variants
10 variants = get_variants(log)
11

12 # we save asyn moves, time and length of variants
13 sum_asyn_moves=[]
14 diff_time=[]
15 lent=[]
16

17 for i in variants:
18 trace = variants[i][0]
19 lent.append(len(trace))

154



APPENDICES B. EXPERIMENT SCRIPTS

20

21 start = time.time()
22 alignments = ali.apply(trace, net, marking,

fmarking,variant=version, parameters=parameters)↪→

23 # save time to run this alignment
24 diff_time.append(time.time()-start)
25

26 # get the number of moves
27 moves = (len(str(alignments["alignment"]).split(">>")))-1
28 sum_asyn_moves.append(moves)
29

30 return str(""+ "{:.2f}".format(sum(sum_asyn_moves) /
len(sum_asyn_moves))+"\t"+ "{:.2f}".format(np.std(sum_asyn_moves))+
"\t"+"{:.2f}".format(sum(diff_time)))

↪→

↪→

31

32 def run_exp():
33 '''
34 This function runs the experiments.
35 '''
36 list = ["2012", "2018_pa", "2019", "2020_dd", "2020_rp"]
37 folders = ["im_SI","sm_SI"]
38

39 for f in folders:
40 for log in list:
41 log_path = "./tests/log/"+str(log)+".xes" # check if log are

decompressed or add .gz↪→

42 pnml_path = "./tests/model/"+f+"/"+log+".pnml"
43

44 print("\n----", f, log)
45 # execute the state-of-the-art methods
46 print("DSA\t", execute_script(log_path, pnml_path,

ali.VERSION_DIJKSTRA_NO_HEURISTICS, {}))↪→

47

48 print("DLMA\t", execute_script(log_path, pnml_path,
ali.VERSION_DIJKSTRA_LESS_MEMORY,{}))↪→

49

50 print("DSA\t", execute_script(log_path, pnml_path,
ali.VERSION_DIJKSTRA_NO_HEURISTICS, {}))↪→

51 print("DLMA\t", execute_script(log_path, pnml_path,
ali.VERSION_DIJKSTRA_LESS_MEMORY, {}))↪→

52

53 # give our results for different values of theta
54 for theta in [1, 1.25, 1.5, 1.75, 2]:

155



B.2. COMPUTING MULTI-ALIGNMENT

55 parameters = {ali.Parameters.SYNCHRONOUS:False,
ali.Parameters.NOTCOMPLETEHEURISTIC:True,
ali.Parameters.EXPONENT:theta}

↪→

↪→

56

57 print("DPAexp=",str(theta),"\t", execute_script(log_path,
pnml_path, ali.VERSION_DISCOUNTED_A_STAR, parameters))↪→

58

59 parameters = {ali.Parameters.SYNCHRONOUS:True,
ali.Parameters.NOTCOMPLETEHEURISTIC:True,
ali.Parameters.EXPONENT:theta}

↪→

↪→

60

61 print("DSAexp=",str(theta),"\t", execute_script(log_path,
pnml_path, ali.VERSION_DISCOUNTED_A_STAR, parameters))↪→

62

63 if __name__ == '__main__':
64 run_exp()

B.2 Computing Multi-Alignment
Thanks to the proposed algorithms and heuristics of this thesis, multi-alignments though
edit distance can be computed for real-life instances. The following script gives the results
presented in Section. 3.5.2.

1 from da4py.main.conformanceChecking.conformanceArtefacts import
ConformanceArtefacts↪→

2

3 from pm4py.objects.petri.importer import importer as petri_importer
4 from pm4py.objects.log.importer.xes import importer as xes_importer
5 from pm4py.algo.conformance.multialignments.variants.discounted_a_star

import apply as multi↪→

6 from pm4py.algo.conformance.multialignments.algorithm import Parameters
7

8 if __name__ == '__main__':
9

10 # we work on the models discovered with the split miner and the
inductive miner↪→

11 folder = ["sm_SI","im_SI"]
12 loglist = ["2012","2018_pa","2019","2020_dd","2020_rp"]
13 for l in loglist :
14 log_path = "log/" + l + ".xes"
15 log = xes_importer.apply(log_path)
16 log._list = log._list[:50]
17

156



APPENDICES B. EXPERIMENT SCRIPTS

18 for f in folder:
19 pnml_path = "model/" + f + "/" + l + ".pnml"
20 net, marking, fmarking = petri_importer.apply(pnml_path)
21

22 # SAT Algorithm
23 artefacts = ConformanceArtefacts()
24 artefacts.setDistance_type("edit")
25 # all silent transitions have been set to "tau".
26 artefacts.setSilentLabel("tau")
27 artefacts.setOptimizeSup(True)
28 artefacts.setSize_of_run(10)
29 artefacts.setMax_d(20)
30

31 start = time.time()
32 artefacts.multiAlignment(net, marking, fmarking, log)
33 print(time.time()-start, artefacts.getRun(),

artefacts.getMaxDistanceToRun())↪→

34

35 # A* Algorithm
36 start = time.time()
37 multi_alignment = multi(log,net,marking,fmarking,

parameters={Parameters.EXPONENT:1.5,
Parameters.MARKING_LIMIT:200})

↪→

↪→

38 print(time.time()-start, multi_alignment['multi-alignment'],
multi_alignment['max_distance_to_log'])↪→

From the previous experimentation, we observed that multi-alignments can be very far,
in term of edit distance, to the collection of log traces that its should be representing. To
improve the quality of these model-based variants, we propose some preprocessing steps
that we experiment in the next script.

1 import copy
2 from pm4py.statistics.variants.log import get as variants_module
3 from pm4py.objects.log.importer.xes import importer as xes_importer
4 from pm4py.algo.conformance.multialignments.variants.discounted_a_star

import apply as multi↪→

5 from pm4py.algo.conformance.antialignments.algorithm import Parameters
6 import numpy as np
7 from pm4py.algo.discovery.inductive import algorithm as inductive_miner
8 from sklearn.cluster import KMeans
9 from random import randrange

10

11

12 def encoder(traces):
13 '''

157



B.2. COMPUTING MULTI-ALIGNMENT

14 A small sequences of words to sequences of int encoder where a position
in vector corresponds to an activity.↪→

15 :param traces: (list of string)
16 :return (list of int)
17 '''
18 int_traces = []
19 indexOfActivities = []
20 for trace in traces:
21 for a in trace:
22 if a not in indexOfActivities:
23 indexOfActivities.append(a)
24 for trace in traces:
25 my_list = [0 for i in indexOfActivities]
26 for a in trace:
27 my_list[indexOfActivities.index(a)]+=1
28 # length of trace is also a criterion we want to consider
29 my_list.append(len(trace))
30 int_traces.append(my_list)
31 return int_traces
32

33

34 if __name__ == '__main__':
35

36 log = xes_importer.apply("Loan Application.xes.gz")
37 net, marking, fmarking = inductive_miner.apply(log)
38

39 # multi-alignment with entire log
40 multi_alignment = multi(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT:1.05, Parameters.MARKING_LIMIT:200})↪→

41 print("Entire Log:", multi_alignment['max_distance_to_log'],
multi_alignment['multi-alignment'])↪→

42

43 for number_of_clusters in [3, 6]:
44 # multi-alignment with K-mean as preprocessing step
45 variants = variants_module.get_variants(log)
46 traces = list(variants.keys())
47 int_traces = np.asarray(encoder(traces))
48 kmedoids = KMeans(n_clusters = number_of_clusters,

random_state=0).fit(int_traces)↪→

49 temp = copy.copy(log)
50 for c in range(0, number_of_clusters):
51 # getting each variant once only is sufficient, we are not

working on runtime here.↪→

52 temp._list = [variants[i][0] for i in variants if
kmedoids.labels_[traces.index(i)]==c]↪→

158



APPENDICES B. EXPERIMENT SCRIPTS

53 multi_alignment = multi(temp, net, marking, fmarking,
parameters={Parameters.EXPONENT:1.05,
Parameters.MARKING_LIMIT:200})

↪→

↪→

54 print("For ", number_of_clusters, " clusters, ", c, ":",
multi_alignment['max_distance_to_log'],
multi_alignment['multi-alignment'])

↪→

↪→

55

56 # multi-alignment with random selection as preprocessing step
57 len_of_log = len(log)
58 temp = copy.copy(log)
59 for repeat in range (0,10):
60 temp._list=[]
61 for i in range (0,10):
62 random_index = randrange(len_of_log)
63 temp._list.append(log._list[random_index])
64 multi_alignment = multi(temp, net, marking, fmarking,

parameters={Parameters.EXPONENT:1.05,
Parameters.MARKING_LIMIT:200})

↪→

↪→

65 print("Random ", repeat, " 10traces :",
multi_alignment['max_distance_to_log'],
multi_alignment['multi-alignment'])

↪→

↪→

Results are of form:

> For 3 clusters, 0 : 9.0 [tau_1, Check application form completeness, Return application back
to applicant, Receive updated application, Check application form completeness, Return
application back to applicant, Receive updated application, Check application form com-
pleteness, Return application back to applicant, Receive updated application, Check appli-
cation form completeness, Return application back to applicant, Receive updated applica-
tion, Check application form completeness, Appraise property, Check credit history, Assess
loan risk, Assess eligibility, skip_5, skip_8, skip_9, Verify repayment agreement, skip_11]

> For 3 clusters, 1 : 10.0 [tau_1, Check application form completeness, Return application
back to applicant, Receive updated application, Check application form completeness, Re-
turn application back to applicant, Receive updated application, Check application form
completeness, Return application back to applicant, Receive updated application, Check
application form completeness, Return application back to applicant, Receive updated ap-
plication, Check application form completeness, Return application back to applicant, Re-
ceive updated application, Check application form completeness, Return application back
to applicant, Receive updated application, Check application form completeness, Return
application back to applicant, Receive updated application, Check application form com-
pleteness, Appraise property, Check credit history, Assess loan risk, Assess eligibility, skip_5,
skip_8, skip_9, Verify repayment agreement, skip_11]

> For 3 clusters, 2 : 9.0 [tau_1, Check application form completeness, Return application back

159



B.3. COMPUTING ANTI-ALIGNMENT AND PRECISION OF PROCESS MODEL

to applicant, Receive updated application, Check application form completeness, Appraise
property, Check credit history, Assess loan risk, Assess eligibility, skip_5, skip_8, skip_9, Verify
repayment agreement, skip_11]

B.3 Computing Anti-Alignment and Precision of Pro-
cess Model

Find below the experiment script for computing anti-alignment by using the A*-based
algorithm.

1 from pm4py.objects.petri.importer import importer as petri_importer
2 from pm4py.objects.log.importer.xes import importer as xes_importer
3 from pm4py.algo.conformance.antialignments.variants.discounted_a_star

import apply as antii↪→

4 from pm4py.algo.conformance.antialignments.algorithm import Parameters
5 from pm4py.visualization.petrinet.visualizer import apply as vizu
6 import time
7

8 if __name__ == '__main__':
9

10 # TABLE 5.3 ----------------------
11 EPSILON = 0.01
12 log = xes_importer.apply("artificial-1.xes")
13

14 # GENERATIVE MODEL
15 net, marking, fmarking = petri_importer.apply("fig1.pnml")
16 for theta in [1.1,1.5,2.0]:
17 start = time.time()
18 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : theta,Parameters.EPSILON : EPSILON})↪→

19 print(time.time()-start)
20 print("1", theta, resAnti['anti-alignment'], "P=",

resAnti['precision'])↪→

21

22 # FLOWER MODEL
23 net, marking, fmarking = petri_importer.apply("fig3.pnml")
24 for theta in [1.5,2.0]:
25 start = time.time()
26 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : theta,Parameters.EPSILON : EPSILON})↪→

27 print(time.time()-start)
28 print("3", theta, resAnti['anti-alignment'], "P=",

resAnti['precision'])↪→

160



APPENDICES B. EXPERIMENT SCRIPTS

29

30 # TABLE 5.4 ----------------------
31 # FLOWER MODEL
32 MU = 100
33 THETA = 1.5
34 for epsilon in [0.01, 0.001]:
35 start = time.time()
36 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : THETA, Parameters.EPSILON : epsilon,
Parameters.MARKING_LIMIT : MU})

↪→

↪→

37 print(time.time()-start)
38 print("mu3", THETA, resAnti['anti-alignment'], "P=",

resAnti['precision'])↪→

39

40 MU = 5
41 EPSILON = 0.01
42 start = time.time()
43 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : THETA, Parameters.EPSILON : EPSILON,
Parameters.MARKING_LIMIT : MU})

↪→

↪→

44 print(time.time()-start)
45 print("mu3", THETA, resAnti['anti-alignment'], "P=",

resAnti['precision'])↪→

46

47 # TABLE 5.5 ----------------------
48 THETA = 1.5
49 MU = 10
50 EPSILON = 0.01
51 for i in [1,2,3,4,5,6,7,8,9,12]:
52 pnml_path = "fig"+str(i)+".pnml"
53 net, marking, fmarking = petri_importer.apply(pnml_path)
54 vizu(net,marking,fmarking).view()
55 start = time.time()
56 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : THETA,Parameters.EPSILON : EPSILON,
Parameters.MARKING_LIMIT : MU})

↪→

↪→

57 print(time.time()-start)
58 print(i, resAnti['anti-alignment'], "P=", resAnti['precision'])
59

60 # TABLE 5.7 ----------------------
61 THETA = 2
62 MU = 5
63 EPSILON = 0.01
64 folder = ["sm_SI","im_SI"]
65 log = ["2012", "2019","2020_dd","2020_rp"]

161



B.3. COMPUTING ANTI-ALIGNMENT AND PRECISION OF PROCESS MODEL

66 for l in log :
67 log_path = "./log/"+l+".xes"
68 log = xes_importer.apply(log_path)
69 for f in folder:
70 pnml_path = "./model/"+f+"/"+l+".pnml"
71 net, marking, fmarking = petri_importer.apply(pnml_path)
72 start = time.time()
73 resAnti = antii(log,net,marking,fmarking, parameters =

{Parameters.EXPONENT : THETA,Parameters.EPSILON : EPSILON,
Parameters.MARKING_LIMIT : MU})

↪→

↪→

74 print(time.time()-start)
75 print(l, f, "---",r esAnti)
76 print("P=", resAnti['precision'])

We computed clustering of some process models to explore potential relationships be-
tween conformance criteria and clustering outputs.

1 log = xes_importer.apply("<log_path>")
2 net, marking, fmarking = petri_importer.apply("<model_path>")
3

4 alignment = ali.apply(log._list[0], net, marking, fmarking)
5 clustering = samplingVariantsForAmstc(net, marking, fmarking, log,5,

len(alignment)+5 , 3, len(alignment)+5, 2
,maxCounter=10,editDistance=True,silent_label="tau", debug=None)

↪→

↪→

6 print("2012, im SI A+5; ",len(clustering)-1,sum([len(clustering[i][1])
for i in range(len(clustering)-1)]), len(clustering[-1][1]))↪→

The next script is used for comparing clustering of some process model of the same log
and same process discovery algorithms but different thresholds.

1 from pm4py.algo.discovery.inductive.parameters import Parameters as
inductive_minerp↪→

2 from pm4py.objects.log.importer.xes import importer as xes_importer
3 from da4py.main.analytics.amstc import samplingVariantsForAmstc
4 from pm4py.algo.conformance.alignments import algorithm as ali
5 from pm4py.algo.discovery.inductive import algorithm as inductive_miner
6 from pm4py.algo.discovery.heuristics import algorithm as heuristic_miner
7 from pm4py.algo.conformance.antialignments.variants.discounted_a_star

import apply as antii↪→

8 from pm4py.algo.conformance.antialignments.variants.discounted_a_star
import Parameters↪→

9 from pm4py.evaluation.replay_fitness import evaluator as fitness_eval
10

11 if __name__ == '__main__':
12

13 log = xes_importer.apply("2020_dd.xes")

162



APPENDICES B. EXPERIMENT SCRIPTS

14 log._list=log._list[:1000]
15 for threshold in [0.1,0.2,0.5,0.8, 0.9]:
16 net, marking, fmarking = inductive_miner.apply(log, parameters =

{inductive_minerp.NOISE_THRESHOLD : threshold})↪→

17 alignment = ali.apply(log._list[0], net, marking, fmarking)
18 clustering = samplingVariantsForAmstc(net, marking, fmarking, log,

5, len(alignment)+5 , 2, len(alignment)+5, 2, maxCounter=5,
editDistance=True, silent_label="tau", debug=None)

↪→

↪→

19 print("T"+str(threshold),
len(clustering)-1,sum([len(clustering[i][1]) for i in
range(len(clustering)-1)]), len(clustering[-1][1]))

↪→

↪→

20

21 resAnti = antii(log, net, marking, fmarking, parameters =
{Parameters.EXPONENT : 1.5, Parameters.EPSILON : 0.1,
Parameters.MARKING_LIMIT : 5})

↪→

↪→

22

23 fitness = fitness_eval.apply(log, net, marking, fmarking,
variant=fitness_eval.ALIGNMENT_BASED)↪→

24 print("Fitness", fitness, "Precision:", resAnti['precision'])
25

26 for threshold in [0.9,0.99,0.999,0.9999]:
27 net, marking, fmarking = heuristic_miner.apply(log,parameters =

{heuristic_miner.Variants.CLASSIC.value.
Parameters.DEPENDENCY_THRESH:threshold})

↪→

↪→

28 alignment = ali.apply(log._list[0], net, marking, fmarking)
29 clustering = samplingVariantsForAmstc(net, marking, fmarking,

log,5, len(alignment)+5 , 2, (len(alignment)+5), 2
,maxCounter=5,editDistance=True,silent_label="tau", debug=None)

↪→

↪→

30 print("T"+str(threshold),
len(clustering)-1,sum([len(clustering[i][1]) for i in
range(len(clustering)-1)]), len(clustering[-1][1]))

↪→

↪→

31

32 resAnti = antii(log,net,marking,fmarking,
parameters={Parameters.EXPONENT:1.2, Parameters.EPSILON:0.1,
Parameters.MARKING_LIMIT:5})

↪→

↪→

33 fitness = fitness_eval.apply(log,net, marking, fmarking,
variant=fitness_eval.ALIGNMENT_BASED)↪→

34 print("Fitness",fitness,"Precision:",resAnti['precision'])

163



Bibliography

[1] Idc’s global datasphere forecast shows continued steady growth in the creation
and consumption of data. https://www.idc.com/getdoc.jsp?containerId=
prUS46286020. 08 May 2020.

[2] Linkedin’s 2020 u.s. emerging jobs report. https://business.linkedin.com/
content/dam/me/business/en-us/talent-solutions/emerging-jobs-report/
Emerging_Jobs_Report_U.S._FINAL.pdf.

[3] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisci-
plinary reviews: computational statistics, 2(4):433–459, 2010.

[4] Arya Adriansyah. Aligning observed and modeled behavior. PhD thesis, Department
of Mathematics and Computer Science, 2014.

[5] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. Measuring precision of modeled behavior. Inf. Syst.
E-Business Management, 13(1):37–67, 2015.

[6] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F van Dongen,
and Wil MP van der Aalst. Alignment based precision checking. In International
Conference on Business Process Management, pages 137–149. Springer, 2012.

[7] Arya Adriansyah, Boudewijn F van Dongen, and Wil MP van der Aalst. Memory-
efficient alignment of observed and modeled behavior. BPM Center Report, 3:1–44,
2013.

[8] Adriano Augusto, Abel Armas-Cervantes, Raffaele Conforti, Marlon Dumas, Mar-
cello La Rosa, and Daniel Reißner. Abstract-and-compare: A family of scalable
precision measures for automated process discovery. In Mathias Weske, Marco Mon-
tali, Ingo Weber, and Jan vom Brocke, editors, Business Process Management -
16th International Conference, BPM 2018, Sydney, NSW, Australia, September 9-
14, 2018, Proceedings, volume 11080 of Lecture Notes in Computer Science, pages
158–175. Springer, 2018.

[9] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fab-
rizio Maria Maggi, Andrea Marrella, Massimo Mecella, and Allar Soo. Automated

164

https://www.idc.com/getdoc.jsp?containerId=prUS46286020
https://www.idc.com/getdoc.jsp?containerId=prUS46286020
https://business.linkedin.com/content/dam/me/business/en-us/talent-solutions/emerging-jobs-report/Emerging_Jobs_Report_U.S._FINAL.pdf
https://business.linkedin.com/content/dam/me/business/en-us/talent-solutions/emerging-jobs-report/Emerging_Jobs_Report_U.S._FINAL.pdf
https://business.linkedin.com/content/dam/me/business/en-us/talent-solutions/emerging-jobs-report/Emerging_Jobs_Report_U.S._FINAL.pdf


BIBLIOGRAPHY

discovery of process models from event logs: Review and benchmark. IEEE transac-
tions on knowledge and data engineering, 31(4):686–705, 2018.

[10] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Artem
Polyvyanyy. Split miner: automated discovery of accurate and simple business pro-
cess models from event logs. Knowledge and Information Systems, 59(2):251–284,
2019.

[11] Nithish Pai Ballambettu, Mahima Agumbe Suresh, and R. P. Jagadeesh Chandra
Bose. Analyzing process variants to understand differences in key performance in-
dices. In AISE, pages 298–313. Springer, 2017.

[12] Martin Bauer, Arik Senderovich, Avigdor Gal, Lars Grunske, and Matthias Weidlich.
How much event data is enough? a statistical framework for process discovery. In
International Conference on Advanced Information Systems Engineering, pages 239–
256. Springer, 2018.

[13] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidi-
mensional data, pages 25–71. Springer, 2006.

[14] Alessandro Berti and Wil MP van der Aalst. Reviving token-based replay: Increasing
speed while improving diagnostics. In ATAED@ Petri Nets/ACSD, pages 87–103,
2019.

[15] Vincent Bloemen, Sebastiaan J. van Zelst, Wil M. P. van der Aalst, Boudewijn F.
van Dongen, and Jaco van de Pol. Maximizing synchronization for aligning observed
and modelled behaviour. In Business Process Management - 16th International
Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings,
pages 233–249, 2018.

[16] Alfredo Bolt, Massimiliano de Leoni, and Wil M. P. van der Aalst. A visual approach
to spot statistically-significant differences in event logs based on process metrics. In
AISE. Springer, 2016.

[17] Alfredo Bolt, Massimiliano de Leoni, and Wil M.P. van der Aalst. Process variant
comparison: Using event logs to detect differences in behavior and business rules.
Information Systems, 74:53–66, 2018.

[18] Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. Encoding confor-
mance checking artefacts in sat. In International Conference on Business Process
Management, pages 160–171. Springer, 2019.

[19] Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. Generalized
alignment-based trace clustering of process behavior. In Proceedings of the 40th
International Conference on Applications and Theory of Petri Nets (ICATPN’19),
number 11522 in Lecture Notes in Computer Science. Springer, 2019.

165



BIBLIOGRAPHY

[20] Mathilde Boltenhagen, Benjamin Chetioui, and Laurine Huber. An alignment cost-
based classification of log traces using machine-learning. In First International Work-
shop on Leveraging Machine Learning in Process Mining-ML4PM2020, 2020.

[21] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Trace clustering based
on conserved patterns: Towards achieving better process models. In Business Process
Management Workshops, BPM 2009 International Workshops, Revised Papers, pages
170–181, 2009.

[22] RP Jagadeesh Chandra Bose and Wil MP Van der Aalst. Context aware trace
clustering: Towards improving process mining results. In proceedings of the 2009
SIAM International Conference on Data Mining, pages 401–412. SIAM, 2009.

[23] J.C.A.M. Buijs. Loan application example. 4TU. Centre for Research Data. Dataset.
doi.org/10.4121, 2013.

[24] Igor Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, and Steven
White. Model-based clustering and visualization of navigation patterns on a web
site. Data mining and knowledge discovery, 7(4):399–424, 2003.

[25] Josep Carmona, Boudewijn van Dongen, Andreas Solti, and Matthias Weidlich. Con-
formance checking. Springer, 2018.

[26] Humberto Carrillo and David Lipman. The multiple sequence alignment problem in
biology. SIAM journal on applied mathematics, 48(5):1073–1082, 1988.

[27] Tullio Ceccherini-Silberstein, Machı Antonio, and Fabio Scarabotti. On the entropy
of regular languages. Theoretical computer science, 307(1):93–102, 2003.

[28] Abel Armas Cervantes, Nick RTP van Beest, Marcello La Rosa, Marlon Dumas,
and Luciano García-Bañuelos. Interactive and incremental business process model
repair. In OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”, pages 53–74. Springer, 2017.

[29] SC Chan, Andrew KC Wong, and David KY Chiu. A survey of multiple sequence
comparison methods. Bulletin of mathematical biology, 54(4):563–598, 1992.

[30] Thomas Chatain, Mathilde Boltenhagen, and Josep Carmona. Anti-alignments—
measuring the precision of process models and event logs. Information Systems,
page 101708, 2020.

[31] Thomas Chatain and Josep Carmona. Anti-alignments in conformance checking–the
dark side of process models. In International Conference on Application and Theory
of Petri Nets and Concurrency, pages 240–258. Springer, 2016.

166



BIBLIOGRAPHY

[32] Thomas Chatain, Josep Carmona, and Boudewijn Van Dongen. Alignment-based
trace clustering. In International Conference on Conceptual Modeling, pages 295–
308. Springer, 2017.

[33] Thomas Chatain, Josep Carmona, and Boudewijn F. van Dongen. Alignment-based
trace clustering. In Conceptual Modeling - 36th International Conference, ER 2017,
Proceedings, pages 295–308, 2017.

[34] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets.
Theoretical Computer Science, 147(1-2):117–136, 1995.

[35] Raffaele Conforti, Marcello La Rosa, and Arthur HM ter Hofstede. Filtering out in-
frequent behavior from business process event logs. IEEE Transactions on Knowledge
and Data Engineering, 29(2):300–314, 2016.

[36] Carsten Cordes, Thomas Vogelgesang, and Hans-Jürgen Appelrath. A generic ap-
proach for calculating and visualizing differences between process models in multidi-
mensional process mining. In BPM Workshops, pages 383–394. Springer, 2015.

[37] Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Ma-
zowiecki. The reachability problem for petri nets is not elementary. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 24–33,
2019.

[38] Ian Davidson, SS Ravi, and Leonid Shamis. A sat-based framework for efficient
constrained clustering. In Proceedings of the 2010 SIAM International Conference
on Data Mining, pages 94–105. SIAM, 2010.

[39] Pieter De Koninck and Jochen De Weerdt. Scalable mixed-paradigm trace clustering
using super-instances. In 2019 International Conference on Process Mining (ICPM),
pages 17–24. IEEE, 2019.

[40] Pieter De Koninck, Jochen De Weerdt, and Seppe KLM vanden Broucke. Explaining
clusterings of process instances. Data mining and knowledge discovery, 31(3):774–
808, 2017.

[41] Pieter De Koninck, Klaas Nelissen, Bart Baesens, Seppe vanden Broucke, Monique
Snoeck, and Jochen De Weerdt. An approach for incorporating expert knowledge
in trace clustering. In International Conference on Advanced Information Systems
Engineering, pages 561–576. Springer, 2017.

[42] Pieter De Koninck, Klaas Nelissen, Seppe Vanden Broucke, Bart Baesens, Monique
Snoeck, and Jochen De Weerdt. Expert-driven trace clustering with instance-level
constraints. Knowledge and Information Systems, 63(5):1197–1220, 2021.

167



BIBLIOGRAPHY

[43] Massimiliano de Leoni and Andrea Marrella. Aligning real process executions and
prescriptive process models through automated planning. Expert Syst. Appl., 82:162–
183, 2017.

[44] Massimiliano De Leoni and Wil MP van der Aalst. Data-aware process mining:
discovering decisions in processes using alignments. In Proceedings of the 28th annual
ACM symposium on applied computing, pages 1454–1461, 2013.

[45] Javier de San Pedro and Jordi Cortadella. Mining structured Petri nets for the
visualization of process behavior. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, pages 839–846, 2016.

[46] Jochen De Weerdt and Seppe vanden Broucke. Secpi: searching for explanations
for clustered process instances. In International Conference on Business Process
Management, pages 408–415. Springer, 2014.

[47] Pavlos Delias, Michael Doumpos, Evangelos Grigoroudis, Panagiotis Manolitzas, and
Nikolaos Matsatsinis. Supporting healthcare management decisions via robust clus-
tering of event logs. Knowledge-Based Systems, 84:203–213, 2015.

[48] William Edwards Deming and Deming W Edwards. Quality, productivity, and com-
petitive position, volume 183. Massachusetts Institute of Technology, Center for
advanced engineering study …, 1982.

[49] Marlon Dumas, Wil van der Aalst, and Arthur Ter Hofstede. Process aware infor-
mation systems, volume 1. Wiley Online Library, 2005.

[50] Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters. 1973.

[51] Sean R Eddy et al. Multiple alignment using hidden markov models. In Ismb,
volume 3, pages 114–120, 1995.

[52] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28(6):575–591,
1991.

[53] Javier Esparza. Decidability and complexity of petri net problems—an introduction.
In Advanced Course on Petri Nets, pages 374–428. Springer, 1996.

[54] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets. Petri nets
newsletter, 94:5–23, 1994.

[55] Joerg Evermann, Tom Thaler, and Peter Fettke. Clustering traces using sequence
alignment. In International Conference on Business Process Management, pages
179–190. Springer, 2016.

168



BIBLIOGRAPHY

[56] Dirk Fahland and Wil MP van der Aalst. Repairing process models to reflect re-
ality. In International conference on business process management, pages 229–245.
Springer, 2012.

[57] Mohammadreza Fani Sani, Mathilde Boltenhagen, and Wil van der Aalst. Prototype
selection based on clustering and conformance metrics for model discovery. arXiv,
2019.

[58] Diogo R. Ferreira, Marielba Zacarias, Miguel Malheiros, and Pedro Ferreira. Ap-
proaching process mining with sequence clustering: Experiments and findings. In
Business Process Management, 5th International Conference, BPM 2007, Proceed-
ings, pages 360–374, 2007.

[59] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and
Rincy Thomas. A survey of sequential pattern mining. Data Science and Pattern
Recognition, 1(1):54–77, 2017.

[60] Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software Development,
9(8):28–35, 2001.

[61] Fabio Fumarola, Pasqua Fabiana Lanotte, Michelangelo Ceci, and Donato Malerba.
Clofast: closed sequential pattern mining using sparse and vertical id-lists. Knowledge
and Information Systems, 48(2):429–463, 2016.

[62] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

[63] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà. Discovering
expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng.,
18(8):1010–1027, 2006.

[64] Dan Gusfield. Algorithms on stings, trees, and sequences: Computer science and
computational biology. Acm Sigact News, 28(4):41–60, 1997.

[65] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[66] Anders Haug, Frederik Zachariassen, and Dennis Van Liempd. The costs of poor data
quality. Journal of Industrial Engineering and Management (JIEM), 4(2):168–193,
2011.

[67] Bart Hompes, Joos Buijs, Wil van der Aalst, Prabhakar Dixit, and Hans Buurman.
Discovering deviating cases and process variants using trace clustering. In Proceedings
of the 27th Benelux Conference on Artificial Intelligence (BNAIC 2015), 2015.

169



BIBLIOGRAPHY

[68] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. Pysat: A python toolkit
for prototyping with sat oracles. In International Conference on Theory and Appli-
cations of Satisfiability Testing, pages 428–437. Springer, 2018.

[69] Neil D Jones, Lawrence H Landweber, and Y Edmund Lien. Complexity of some
problems in petri nets. Theoretical Computer Science, 4(3):277–299, 1977.

[70] Anna Kalenkova and Artem Polyvyanyy. A spectrum of entropy-based precision and
recall measurements between partially matching designed and observed processes. In
International Conference on Service-Oriented Computing, pages 337–354. Springer,
2020.

[71] Marcello La Rosa, Hajo A Reijers, Wil MP Van Der Aalst, Remco M Dijkman, Jan
Mendling, Marlon Dumas, and Luciano García-Bañuelos. Apromore: An advanced
process model repository. Expert Systems with Applications, 38(6):7029–7040, 2011.

[72] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence align-
ment using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[73] Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der
Aalst, and Marcos Sepúlveda. Recomposing conformance: Closing the circle on
decomposed alignment-based conformance checking in process mining. Inf. Sci.,
466:55–91, 2018.

[74] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process
discovery and conformance checking. Softw. Syst. Model., 17(2):599–631, 2018.

[75] Sander J. J. Leemans, Dirk Fahland, and Wil MP van der Aalst. Discovering block-
structured process models from event logs-a constructive approach. In International
conference on applications and theory of Petri nets and concurrency, pages 311–329.
Springer, 2013.

[76] X Lu. Using behavioral context in process mining: exploration, preprocessing and
analysis of event data. 2018.

[77] Xixi Lu, Dirk Fahland, and Wil M. P. van der Aalst. Conformance checking based
on partially ordered event data. In Business Process Management Workshops - BPM
2014 International Workshops, Eindhoven, Revised Papers, pages 75–88, 2014.

[78] Xixi Lu, Seyed Amin Tabatabaei, Mark Hoogendoorn, and Hajo A Reijers. Trace
clustering on very large event data in healthcare using frequent sequence patterns. In
International Conference on Business Process Management, pages 198–215. Springer,
2019.

[79] Daniela Luengo and Marcos Sepúlveda. Applying clustering in process mining to
find different versions of a business process that changes over time. In International
Conference on Business Process Management, pages 153–158. Springer, 2011.

170



BIBLIOGRAPHY

[80] James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[81] Lisa Luise Mannel and Wil MP van der Aalst. Finding uniwired petri nets using est-
miner. In International Conference on Business Process Management, pages 224–237.
Springer, 2019.

[82] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and
Samir Loudni. Constrained clustering using sat. In International Symposium on
Intelligent Data Analysis, pages 207–218. Springer, 2012.

[83] Andrey Mokhov, Jordi Cortadella, and Alessandro de Gennaro. Process windows.
In 17th International Conference on Application of Concurrency to System Design,
ACSD 2017, pages 86–95, 2017.

[84] Makoena Moloto, Anneke Harmse, and Tranos Zuva. Impact of agile methodology
use on project success in organizations-a systematic literature review. In Proceedings
of the Computational Methods in Systems and Software, pages 267–280. Springer,
2020.

[85] Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Single-entry
single-exit decomposed conformance checking. Inf. Syst., 46:102–122, 2014.

[86] Jorge Munoz-Gama et al. Conformance checking and diagnosis in process mining.
Springer, 2016.

[87] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–574, April 1989.

[88] Hoang Huy Nguyen, Marlon Dumas, Marcello La Rosa, and Arthur H.M. ter Hofst-
ede. Multi-perspective comparison of business process variants based on event logs
(extended paper). April 2018.

[89] William S Noble. What is a support vector machine? Nature biotechnology,
24(12):1565–1567, 2006.

[90] A. Pini, R. Brown, and M. T. Wynn. Process visualization techniques for multi-
perspective process comparisons. pages 183–197. Springer, 2015.

[91] Artem Polyvyanyy, Andreas Solti, Matthias Weidlich, Claudio Di Ciccio, and Jan
Mendling. Monotone precision and recall measures for comparing executions and
specifications of dynamic systems. ACM Transactions on Software Engineering and
Methodology (TOSEM), 29(3):1–41, 2020.

171



BIBLIOGRAPHY

[92] Hernán Ponce de León, César Rodríguez, and Josep Carmona. POD - A tool for
process discovery using partial orders and independence information. In Proceedings
of the BPM Demo Session 2015 Co-located with the 13th International Conference
on Business Process Management (BPM 2015), pages 100–104, 2015.

[93] Hernán Ponce de León, César Rodríguez, Josep Carmona, Keijo Heljanko, and Stefan
Haar. Unfolding-based process discovery. In Automated Technology for Verification
and Analysis - 13th International Symposium, ATVA 2015, Proceedings, pages 31–47.
Springer, 2015.

[94] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and SS Iyengar. A survey on deep learn-
ing: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR),
51(5):1–36, 2018.

[95] Steven Prestwich, Des Higgins, and Orla O’Sullivan. A sat-based approach to mul-
tiple sequence alignment. In International Conference on Principles and Practice of
Constraint Programming, pages 940–944. Springer, 2003.

[96] Steven David Prestwich. Cnf encodings. Handbook of satisfiability, 185:75–97, 2009.

[97] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. Similarity between
euclidean and cosine angle distance for nearest neighbor queries. In Proceedings of
the 2004 ACM symposium on Applied computing, pages 1232–1237, 2004.

[98] Thomas C Redman. Bad data costs the us $3 trillion per year. Harvard Business
Review, 22:11–18, 2016.

[99] Hajo A Reijers and S Liman Mansar. Best practices in business process redesign:
an overview and qualitative evaluation of successful redesign heuristics. Omega,
33(4):283–306, 2005.

[100] Lars Reinkemeyer. Process Mining in Action. Springer, 2020.

[101] Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Abel
Armas-Cervantes. Scalable conformance checking of business processes. In OTM
CoopIS, , Rhodes, Greece, pages 607–627, 2017.

[102] Daniel Reißner, Abel Armas-Cervantes, Raffaele Conforti, Marlon Dumas, Dirk
Fahland, and Marcello La Rosa. Scalable alignment of process models and event
logs: An approach based on automata and s-components. Information Systems,
94:101561, 2020.

[103] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

172



BIBLIOGRAPHY

[104] Anne Rozinat and Wil MP Van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[105] Vladimir Rubin, Irina Lomazova, and Wil MP van der Aalst. Agile development
with software process mining. In Proceedings of the 2014 international conference on
software and system process, pages 70–74, 2014.

[106] Nikita Saxena, Priyanka Gupta, Ruchir Raman, and Anurag S Rathore. Role of
data science in managing covid-19 pandemic. Indian Chemical Engineer, pages 1–11,
2020.

[107] Walter Andrew Shewhart and William Edwards Deming. Statistical method from the
viewpoint of quality control. Courier Corporation, 1986.

[108] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. Trace clus-
tering in process mining. In Business Process Management Workshops, BPM 2008
International Workshops, Milano, Italy, September 1-4, 2008. Revised Papers, pages
109–120, 2008.

[109] Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, and Wil M. P. van der Aalst.
The imprecisions of precision measures in process mining. Inf. Process. Lett., 135:1–8,
2018.

[110] Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil MP van der Aalst. Mining
local process models. Journal of Innovation in Digital Ecosystems, 3(2):183–196,
2016.

[111] Farbod Taymouri and Josep Carmona. A recursive paradigm for aligning observed
behavior of large structured process models. In 14th International Conference of
Business Process Management (BPM), Rio de Janeiro, Brazil, September 18 - 22,
2016.

[112] Farbod Taymouri and Josep Carmona. Model and event log reductions to boost
the computation of alignments. In Paolo Ceravolo, Christian Guetl, and Stefanie
Rinderle-Ma, editors, Data-Driven Process Discovery and Analysis, pages 1–21.
Springer International Publishing, 2018.

[113] Farbod Taymouri and Josep Carmona. Computing alignments of well-formed process
models using local search. ACM Trans. Softw. Eng. Methodol., 29(3):15:1–15:41,
2020.

[114] Farbod Taymouri, Marcello La Rosa, Marlon Dumas, and Fabrizio Maria Maggi.
Business process variant analysis: Survey and classification. Knowledge-Based Sys-
tems, 211:106557, 2021.

[115] Farbod Taymouri, Marcello La Rosa, Marlon Dumas, and Fabrizio Maria Maggi.
Business process variant analysis: Survey and classification, 2019.

173



BIBLIOGRAPHY

[116] Nick R. T. P. van Beest, Marlon Dumas, Luciano García-Bañuelos, and Marcello
La Rosa. Log delta analysis: Interpretable differencing of business process event
logs. In BPM. Springer, 2015.

[117] Wil Van Der Aalst. Process mining: Overview and opportunities. ACM Transactions
on Management Information Systems (TMIS), 3(2):1–17, 2012.

[118] Wil Van Der Aalst. Data science in action. In Process mining. Springer, 2016.

[119] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros, Franco Arcieri,
Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter Van Den Brand,
Ronald Brandtjen, Joos Buijs, et al. Process mining manifesto. In International
Conference on Business Process Management, pages 169–194. Springer, 2011.

[120] Wil Van Der Aalst, Joos Buijs, and Boudewijn Van Dongen. Towards improving the
representational bias of process mining. In International Symposium on Data-Driven
Process Discovery and Analysis, pages 39–54. Springer, 2011.

[121] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discov-
ering process models from event logs. IEEE transactions on knowledge and data
engineering, 16(9):1128–1142, 2004.

[122] Wil M. P. van der Aalst. Decomposing petri nets for process mining: A generic
approach. Distributed and Parallel Databases, 31(4):471–507, 2013.

[123] Wil MP van der Aalst. Re-engineering knock-out processes. Decision Support Sys-
tems, 30(4):451–468, 2001.

[124] Wil MP Van der Aalst. Using process mining to bridge the gap between bi and bpm.
IEEE Computer, 44(12):77–80, 2011.

[125] Jan Martijn EM Van der Werf, Boudewijn F van Dongen, Cor AJ Hurkens, and
Alexander Serebrenik. Process discovery using integer linear programming. In Inter-
national conference on applications and theory of petri nets, pages 368–387. Springer,
2008.

[126] Boudewijn Van Dongen, Josep Carmona, Thomas Chatain, and Farbod Taymouri.
Aligning modeled and observed behavior: A compromise between computation com-
plexity and quality. In International Conference on Advanced Information Systems
Engineering, pages 94–109. Springer, 2017.

[127] Boudewijn F van Dongen. Bpi challenge 2015. In 11th International Workshop on
Business Process Intelligence (BPI 2015), 2015.

[128] Boudewijn F van Dongen. Efficiently computing alignments: using the extended
marking equation. In 16th International Conference on Business Process Manage-
ment, BPM 2018, pages 197–214. Springer, 2018.

174



BIBLIOGRAPHY

[129] Boudewijn F van Dongen, Josep Carmona, and Thomas Chatain. A unified approach
for measuring precision and generalization based on anti-alignments. In International
Conference on Business Process Management, pages 39–56. Springer, 2016.

[130] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMW Verbeek, AJMM Wei-
jters, and Wil MP van Der Aalst. The prom framework: A new era in process
mining tool support. In International conference on application and theory of petri
nets, pages 444–454. Springer, 2005.

[131] Sebastiaan J. van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. Online conformance checking: relating event streams to
process models using prefix-alignments. Int. J. Data Sci. Anal., 8(3):269–284, 2019.

[132] Sebastiaan J van Zelst, Alfredo Bolt, and Boudewijn F van Dongen. Tuning alignment
computation: An experimental evaluation. In ATAED@ Petri Nets/ACSD, pages 6–
20, 2017.

[133] Sebastiaan J van Zelst and Yukun Cao. A generic framework for attribute-driven
hierarchical trace clustering. In International Conference on Business Process Man-
agement, pages 308–320. Springer, 2020.

[134] Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart
Baesens. Determining process model precision and generalization with weighted
artificial negative events. IEEE Trans. Knowl. Data Eng., 26(8):1877–1889, 2014.

[135] Seppe KLM vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Baesens,
and Jan Vanthienen. Event-based real-time decomposed conformance analysis. In
OTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”, pages 345–363. Springer, 2014.

[136] H. M. W. Verbeek and W. M. P. van der Aalst. Merging Alignments for Decomposed
Replay, pages 219–239. Springer International Publishing, Cham, 2016.

[137] Silke Wagner and DorotheaWagner. Comparing clusterings: an overview. Universität
Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

[138] Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart
Baesens. Active trace clustering for improved process discovery. IEEE Trans. Knowl.
Data Eng., 25(12):2708–2720, 2013.

[139] AJMM Weijters, Wil MP van Der Aalst, and AK Alves De Medeiros. Process mining
with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep.
WP, 166:1–34, 2006.

[140] Lijie Wen, Wil MP Van Der Aalst, Jianmin Wang, and Jiaguang Sun. Mining process
models with non-free-choice constructs. Data Mining and Knowledge Discovery,
15(2):145–180, 2007.

175



BIBLIOGRAPHY

[141] Edwin B Wilson. Probable inference, the law of succession, and statistical inference.
Journal of the American Statistical Association, 22(158):209–212, 1927.

[142] Glynn Winskel. Petri nets, algebras, morphisms, and compositionality. Information
and Computation, 72(3):197–238, 1987.

[143] M.T. Wynn, E. Poppe, J. Xu, A.H.M. ter Hofstede, R. Brown, A. Pini, and W.M.P.
van der Aalst. Processprofiler3d: A visualisation framework for log-based process
performance comparison. DSS, 100, 2017.

[144] Fareed Zandkarimi, Jana-Rebecca Rehse, Pouya Soudmand, and Hartmut Hoehle. A
generic framework for trace clustering in process mining. In 2020 2nd International
Conference on Process Mining (ICPM), pages 177–184. IEEE, 2020.

176



Titre: Partitionnement d’instances de processus basé sur les techniques de conformité de
modèles

Mots clés: Process Mining, Vérification de Conformité, Partitionnement

Résumé: Les données d’événements de-
venant une source d’information omniprésente,
les techniques d’analyse de données représentent
une opportunité sans précédent pour étudier
et réagir aux processus qui génèrent ces don-
nées. Le Process Mining est un domaine émer-
gent qui comble le fossé entre les techniques
d’analyse de données, comme le Data Min-
ing, et les techniques de management des en-
treprises, à savoir, le Business Process Man-
agement. L’une des bases fondamentales du
Process Mining est la découverte de modèles
de processus formels tels que les réseaux de
Petri ou les modèles BPMN qui tentent de don-
ner un sens aux événements enregistrés dans
les journaux. En raison de la complexité des
données d’événements, les algorithmes de dé-
couverte de processus ont tendance à créer des
modèles de processus denses, qui sont difficiles
à interpréter par les humains. Heureusement,
la Vérification de Conformité, un sous-domaine
du Process Mining, permet d’établir des liens
entre le comportement observé et le comporte-
ment modélisé, facilitant ainsi la compréhen-
sion des correspondance entre ces deux éléments
d’information sur les processus. La Vérifica-
tion de Conformité est possible grâce aux arte-
facts d’alignement, qui associent les modèles de
processus et les journaux d’événements. Il ex-
iste différents types d’artefacts d’alignement, à
savoir les alignements, les multi-alignements et
les anti-alignements. Actuellement, seuls les
alignements sont traités en profondeur dans la
littérature scientifique. Un alignement permet
de relier le modèle de processus à une instance
de processus donnée. Cependant, étant donné
que de nombreux comportements existent dans
les logs, l’identification d’un alignement par in-
stance de processus nuit à la lisibilité des re-
lations log-modèle. La présente thèse propose

d’exploiter les artefacts de conformité pour re-
grouper les exécutions de processus enregistrées
dans les journaux d’événements, et ainsi extraire
un nombre restrictif de représentations mod-
élisées. Le regroupement de données, communé-
ment appelé partitionnement, est une méthode
courante pour extraire l’information de données
denses et complexes. En regroupant les ob-
jets par similarité dans des clusters, le parti-
tionnement permet d’extraire des ensembles de
données plus simples qui englobent les similar-
ités et les différences contenues dans les données.
L’utilisation des artefacts de conformité dans
une approche de partitionnement permet de
considérer un modèle de processus fiable comme
une base de référence pour le regroupement des
instances de processus. Ainsi, les clusters décou-
verts sont associés à des artefacts modélisés, que
nous appelons variantes modélisées des traces,
ce qui fournit des explications opportunes sur
les relations entre le journal et le modèle. Avec
cette motivation, nous avons élaboré un ensem-
ble de méthodes pour calculer les artefacts de
conformité. La première contribution est le
calcul d’un comportement modélisé unique qui
représente un ensemble d’instances de processus,
à savoir le multi-alignement. Ensuite, nous pro-
posons plusieurs approches de partitionnement
basées sur l’alignement qui fournissent des clus-
ters d’instances de processus associés à un arte-
fact modélisé. Enfin, nous soulignons l’intérêt
de l’anti-alignement pour extraire les déviations
des modèles de processus par rapport au jour-
nal. Ce dernier artefact permet d’estimer la pré-
cision du modèle. Nous montrons son impact
sur nos approches de partitionnement basées
sur des modèles. Nous fournissons un encodage
SAT pour toutes les techniques proposées. Des
heuristiques sont ensuite ajoutées pour tenir
compte de la capacité de calcul des ordinateurs
actuels, au prix d’une perte d’optimalité.



3

Title: Process Instance Clustering Based on Conformance Checking Artefacts

Keywords: Process Mining, Conformance Checking, Clustering

Abstract: As event data becomes an ubiq-
uitous source of information, data science tech-
niques represent an unprecedented opportunity
to analyze and react to the processes that gen-
erate this data. Process Mining is an emerg-
ing field that bridges the gap between tradi-
tional data analysis techniques, like Data Min-
ing, and Business Process Management. One
core value of Process Mining is the discovery of
formal process models like Petri nets or BPMN
models which attempt to make sense of the
events recorded in logs. Due to the complex-
ity of event data, automated process discovery
algorithms tend to create dense process models
which are hard to interpret by humans. For-
tunately, Conformance Checking, a sub-field of
Process Mining, enables relating observed and
modeled behavior, so that humans can map
these two pieces of process information. Con-
formance checking is possible through alignment
artefacts, which associate process models and
event logs. Different types of alignment arte-
facts exist, namely alignments, multi-alignments
and anti-alignments. Currently, only alignment
artefacts are deeply addressed in the literature.
It allows to relate the process model to a given
process instance. However, because many be-
haviors exist in logs, identifying an alignment
per process instance hinders the readability of
the log-to-model relationships. The present the-
sis proposes to exploit the conformance check-
ing artefacts for clustering the process execu-

tions recorded in event logs, thereby extract-
ing a restrictive number of modeled represen-
tatives. Data clustering is a common method
for extracting information from dense and com-
plex data. By grouping objects by similarities
into clusters, data clustering enables to mine
simpler datasets which embrace the similarities
and the differences contained in data. Using the
conformance checking artefacts in a clustering
approach allows to consider a reliable process
model as a baseline for grouping the process in-
stances. Hence, the discovered clusters are as-
sociated with modeled artefacts, that we call
model-based trace variants, which provides op-
portune log-to-model explanations. From this
motivation, we have elaborated a set of meth-
ods for computing conformance checking arte-
facts. The first contribution is the computa-
tion of a unique modeled behavior that repre-
sents of a set of process instances, namely multi-
alignment. Then, we propose several alignment-
based clustering approaches which provide clus-
ters of process instances associated to a mod-
eled artefact. Finally, we highlight the inter-
est of anti-alignment for extracting deviations
of process models with respect to the log. This
latter artefact enables to estimate model pre-
cision, and we show its impact in model-based
clustering. We provide SAT encoding for all the
proposed techniques. Heuristic algorithms are
then added to deal with computing capacity of
today’s computers, at the expense of loosing op-
timality.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Abstract
	Acknowledgement
	Introduction
	Data Analysis of Business Processes
	Process Mining
	Research Motivation
	Thesis Overview

	Background
	Structures
	Alignments
	Formal Methods 

	Multi-Alignments: Conformance Checking Artefacts for Model-based Representations of Logs and Sub-Logs
	Introduction
	Related Work
	MinSAT Encoding for Computing Multi-alignments
	An A* Algorithm for Computing Discounted Multi-Alignments
	Experiments
	Conclusion

	Model-based Clustering of Log Traces through Alignments 
	Motivation
	Related Work
	Fitting Centroids to Concurrency and Loop Behavior
	Quality Criteria of Clusterings
	Complexity of Alignment-based Trace Clusterings
	AMSTC SAT Encoding
	Sampling Algorithm to Deal with Large Logs
	Experiments
	Conclusion

	Anti-alignments for Measuring Precision and its Interest in Model-based Clustering 
	Related Work
	Definitions
	 Algorithms for Computing Anti-alignments 
	Anti-alignment and Precision Experiments
	Impact of Precise Process Models on Clustering Results
	Opening: An Agile Framework for Model Repair with Anti-alignments
	Conclusion

	Conclusion 
	General Conclusion of the Contributions
	Open Issues
	Future Works

	French Summary
	Introduction
	Les artefacts de vérification de conformité
	Variantes modélisées de traces
	Implémentation des méthodes
	Expériences
	Conclusion

	Appendices
	Tutorials
	 Using the SAT-based Algorithms for Alignments, Multi-alignments and Anti-alignments 
	Using the A*-based Algorithm with the Discounted Edit Distance for Computing the Conformance Checking Artefacts
	AMSTC

	Experiment Scripts
	Comparing Alignments Methods
	Computing Multi-Alignment
	Computing Anti-Alignment and Precision of Process Model


