
HAL Id: hal-03549009
https://hal.inria.fr/hal-03549009v2

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Integer Linear Programming Approach for Pipelined
Model Parallelism

Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova

To cite this version:
Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova. An Integer Linear Programming Approach
for Pipelined Model Parallelism. [Research Report] RR-9452, Inria. 2022. �hal-03549009v2�

https://hal.inria.fr/hal-03549009v2
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

52
--

FR
+E

N
G

RESEARCH
REPORT
N° 9452
Février 2022

Project-Team Hiepacs

An Integer Linear
Programming Approach
for Pipelined Model
Parallelism
Olivier Beaumont(1), Lionel Eyraud-Dubois(1), Alena Shilova(2)

(1) Inria centre at the university of Bordeaux, France
(2) Inria centre at the university of Lille, France
E-mail: firstname.lastname@inria.fr





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour

33405 Talence Cedex

An Integer Linear Programming Approach for
Pipelined Model Parallelism

Olivier Beaumont(1), Lionel Eyraud-Dubois(1), Alena Shilova(2)
(1) Inria centre at the university of Bordeaux, France

(2) Inria centre at the university of Lille, France
E-mail: firstname.lastname@inria.fr

Project-Team Hiepacs

Research Report n° 9452 — Février 2022 — 33 pages

Abstract: The training phase in Deep Neural Networks has become an important source
of computing resource usage and because of the resulting volume of computation, it is
crucial to perform it efficiently on parallel architectures. Even today, data parallelism is the
most widely used method, but the associated requirement to replicate all the weights on the
totality of computation resources poses problems of memory at the level of each node and of
collective communications at the level of the platform. In this context, the model parallelism,
which consists in distributing the different layers of the network over the computing nodes,
is an attractive alternative. Indeed, it is expected to better distribute weights (to cope
with memory problems) and it does not imply large collective communications since only
forward activations are communicated. However, to be efficient, it must be combined with
a pipelined/streaming approach, which leads in turn to new memory costs. The goal of this
paper is to model these memory costs in detail and to show that it is possible to formalize
this optimization problem as an Integer Linear Program (ILP).

Key-words: Training, Memory, Model Parallelism, Integer Linear Programming



Une approche fondée sur la programmation linéaire
pour le parallélisme de modèle

Résumé : La phase d’apprentissage dans les réseaux neuronaux profonds
est devenue une source importante d’utilisation des ressources de calcul et, en
raison du volume de calcul qui en résulte, il est crucial de l’exécuter efficace-
ment sur des architectures parallèles. Aujourd’hui encore, le parallélisme de
données est la méthode la plus utilisée, mais l’exigence associée de répliquer
tous les poids sur la totalité des ressources de calcul pose des problèmes de
mémoire au niveau de chaque nœud et de communications collectives au
niveau de la plateforme. Dans ce contexte, le parallélisme de modèle, qui
consiste à répartir les différentes couches du réseau sur les nœuds de calcul,
est une alternative intéressante. En effet, il est censé mieux répartir les
poids (pour faire face aux problèmes de mémoire) et il n’implique pas de
grosses communications collectives puisque seules les activations "forward"
sont communiquées. Cependant, pour être efficace, elle doit être combinée
avec une approche pipelinée/streaming, ce qui entraîne à son tour de nou-
veaux coûts mémoire. L’objectif de cet article est de modéliser ces coûts de
mémoire en détail et de montrer qu’il est possible de formaliser ce problème
d’optimisation comme un programme linéaire en nombre entier (ILP).

Mots-clés : Apprentissage, Mémoire, Parallélisme de modèle, Programma-
tion linéaire en nombres entiers



An Integer Linear Programming Approach for Pipelined Model Parallelism3

An Integer Linear Programming Approach for
Pipelined Model Parallelism

February 1, 2022

1 Introduction

Deep Neural Network (DNN) training is a long and memory-intensive op-
eration. Indeed, supervised DNN training requires performing numerous
forward and backward computations, each on a subset of input data called
a mini-batch. In turn, each forward and backward phase involves complex
data dependences and induces memory issues. In practice, parallel training
is performed both on small groups of GPU machines and on large HPC in-
frastructures [19, 40], especially because HPC machines offer high-bandwidth
and low-latency networks [22, 30, 12].

The first approach to use parallelism at the level of the node is to make
the best use of the available multi-core by optimizing the individual compute
kernels, which usually consist of tensor computations. This approach has
been widely used in the context of GPUs and TPUs and has made the success
of frameworks such as TensorFlow [4], PyTorch [35] or NGraph [1].

At a larger scale, the best known approach to parallel DNN training is
the so-called data parallel approach. Using data parallelism [43, 34], the
model and all associated weights are replicated on all participating nodes.
Then, different mini batches are trained in parallel on different nodes. In
this framework, all participating nodes execute forward and backward phases
in parallel, and thus all compute a gradient for all weights in the network.
Synchronization between the nodes takes place at the end of the backward
step, and all partial gradients are collected and aggregated through a collective
communication such as AllReduce, and then broadcast to all participating
nodes by a Broadcast type operation.

The above approach is feasible and scalable as long as two conditions are
fulfilled. The first condition is related to communication resources and states
that the network should support the collective communications of the weights,

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism4

without inducing too much idle computing time. The second condition is
related to memory and states that each participating node must be able to
store all network weights and activations corresponding to the processing of
a mini-batch.

In order to limit network issues and lower the size of the collective com-
munication, data parallelism can be combined with compression to limit the
size of messages. When used at a very large scale, this approach nevertheless
leads to poor performance due to synchronization and communication costs
and requires the use of huge mini-batches, which could also have a negative
impact on the performance of the training phase [31].

To deal with limitations induced by memory issues, several approaches
have been proposed. Indeed, it has been observed that in many cases, large
and heavy models are required to reach good classification accuracy.

In general, the memory consumption during the training phase is composed
of two main parts [17]. The first source of memory consumption is due to
the storage of all the forward activations on each node (i.e. all the outputs of
the different stages of the network) until the associated backward operation.
This part is directly proportional to the size of the mini-batch itself. The
second part is related to the storage of the network parameters (weights) and
is directly connected to the size of the model [27]. Using the data parallel
approach, these weights must be replicated on each node, and must even
be aggregated and disseminated on the network after each parallel training
phase in mini-batches.

To reduce the memory requirements related to the storage of forward
activations, several approaches have been proposed. Rematerialization [20,
8, 16, 28, 26, 29] consists in deleting from the memory certain activations
computed during the forward phase, which then must be recomputed during
the backward phase. Another approach [38, 37, 6] is to offload some of the
activations from the GPU memory to the CPU memory during the forward
phase and then to bring them back in GPU memory during the backward
phase when they are actually required.

In order to limit the memory requirements resulting from the storage of
network weights, a natural approach is to distribute the different layers of
the network over several computation resources. This approach, denoted as
model parallelism, has also been advocated in many papers [13, 24, 31, 41].
In this context, each mini-batch is processed by a sequence of processors,
and only activations are communicated between processors. This approach is
orthogonal to data parallelism and can naturally be combined with it, using
several processors to manage the same sub-part of the DNN.

Unfortunately, if images are processed entirely and in sequence, model

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism5

parallelism can reduce memory requirements, but it does not accelerate
computations because of the shape of the dependencies introduced by back-
propagation, as shown in [24, 31]. To obtain some speedup using this approach,
it is necessary to process several images in parallel, using a pipelined (or
streaming) approach. On the other hand, such approach requires the storage
of several models (to ensure that forward and backward computations for
the same image use the same weights) and several activations of each type,
corresponding to different images being processed in the pipeline.

Most of the literature on this approach combining pipelining and model
parallelism [24, 31, 32, 41] focuses on the problem of finding an efficient
partitioning of the network, that balances the load between processors and
minimizes data exchanges between resources. However, in these approaches,
memory issues are considered a posteriori and typically, the solution found
without memory constraints is then degraded, in terms of throughput, to
fulfill these constraints.

To the best of our knowledge, the analysis of the induced memory require-
ments proposed in the present paper is much tighter than what has been
proposed in the literature. In [39], the authors share several characteristics
with the present paper. As in the present paper, the authors propose an
ILP based solution for computing non-contiguous allocations of layers. The
main advantage of [39] over our approach is that it does not require graph
linearization and can be directly applied to general DAGs. The paper ad-
dresses both the inference and training phase, but the specificities of the
memory issues in the case of training are not addressed. These specificities
are in practice crucial in this context, and the careful modeling of memory
requirements is the main contribution of the present paper. Finally, since
both [39] and our approach are based on integer linear programming, their
use is in practice limited to medium size networks (Resnet-50 is the deepest
network considered in both papers).

Overall, in this paper, we perform the theoretical analysis of the pipelined
model parallelism under memory constraint. Our theoretical contributions are
a very careful modeling of induced memory costs, an analysis of the potential
benefits of non-contiguous allocations and an Integer Linear Program to
compute a non-contiguous solution, that provides significant improvement
over the literature for reasonable size networks.

The rest of the document is organized as follows. The related work is
presented in Section 2. We introduce the notations and the computational
model we use in Section 3. We then propose an Integer Linear Programming
(ILP) formulation of the optimization problem, which takes into account
all sources of memory consumption in Section 4. The performance of the

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism6

ILP-based solution, both in terms of solution quality and running time are
analyzed in Section 5. Finally, conclusions and perspectives of this work are
proposed in Section 6.

2 Related Works

Memory consumption is now becoming an important issue in deep learning
and encompasses many different aspects. Unfortunately, the memory limi-
tations of current hardware often prevent data scientists from considering
larger models, larger images, or larger batches of images. In practice, training
is performed automatically and transparently for the user thanks to auto-
grad tools for backpropagation, such as tf.GradientTape in TensorFlow or
torch.autograd.backward in PyTorch.

In order to reduce memory needs, one line of research is to design and
train memory efficient architectures while aiming at the same performance
as state-of-the-art networks. Reversible Neural Networks [18, 9] (RevNet),
for example, are designed to allow the backpropagation algorithm to be
performed without storing forward activations until the computation of the
associated backward operation. Quantization [36, 25] and pruning [21] rather
reduce memory consumption at the time of inference by changing weights
and/or network activations into binary or quantized variables. Other ad-hoc
architectures such as MobileNets [23] or ShuffleNet [42] finally try to sparsify
the network architecture in order to reduce the size of the model.

Rematerialization is being increasingly employed to reduce memory usage.
The use of rematerialization strategies has recently been advocated for DNN
in several papers. A direct adaptation of the results on homogeneous chains
has been proposed for the case of Recurrent Neural Networks (RNN) in [20].
A further generalization of the results on homogeneous chains enabled the
derivation of optimal rematerialization strategies for joint-networks [8], which
consist of several homogeneous chains joined together at the end. Some
research has attempted to adapt rematerialization strategies to Arbitrary
Computation Graphs (ACG) in [16, 28, 26, 29]. For practical use, an im-
plementation of rematerialization exists in PyTorch [2], based on a simple
strategy of periodic and one-pass rematerialization that exploits the ideas
presented in [11]. Another implementation [3] based on [5] has also been
proposed.

Another alternative [38, 37] is to offload some of the activations from the
GPU memory to the CPU memory and to bring them back when required
during the backward phase. Finally, domain decomposition or spatial paral-

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism7

lelism techniques can be used to limit the memory needed to store the forward
activations. In [14], dividing large images into smaller ones makes it possible
to train the network in parallel on the smaller images (enhanced by a halo),
at the cost of additional communications to synchronize parameter updates.
A similar strategy has been used in channel and filter parallelism in [15].
Approaches like rematerialization, activation offloading, spatial parallelism
and channel parallelism are orthogonal to our approach and could be used in
combination to achieve even greater memory savings, although it is out of
the scope of the present paper.

The use of model parallelism has been proposed in [24], where the training
batch is split into several mini-batches, which are then pipelined through
the layers of the network. Once the forward and backward phases have been
computed on all these mini-batches, the weights are then updated. This
approach is fairly simple to implement but has the disadvantage of leading
to a very limited speedup. It has been proposed in [31] to change a bit this
training process, by only forcing that for a given image the forward and
backward tasks use the same network weights. By weakening the constraint
on the training process, PipeDream is able to achieve a much better utilization
of processing resources.

An important issue related to memory and the pipelined approach pro-
posed in [31] is the need to keep many copies of the weights. To solve
this issue, a strategy has been proposed in [32] to keep only two models in
memory. In the present paper, we use the strategy of [32] in a more general
framework. Another strategy to keep fewer models in memory is to allow
more asynchronous updates. This strategy has been explored in particular in
[10], which proposes an intermediate approach to avoid the phenomenon of
gradient staleness, though it requires 2 versions of the model weights and 2
version of the gradients, which does not save memory more.

3 Model and Notations

3.1 Notations

In this section, we rely on the model presented in [7]. For completeness, we
provide it in this report as well.

In what follows we represent each DNNs as a chain so that the task graph
corresponding to forward and backward propagation is depicted in Figure 1.
This assumption on the shape of the network might require linearization and
is used in most of the related literature [11, 31, 32, 10, 41].

Let us model the network as a chain of L layers (each layer could consist

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism8

in a single layer or a block of layers in case of prior linearization), numbered
from 1 to L. Each layer l is associated both to a forward operation Fl and
a backward operation Bl. During training, each mini-batch undergoes a
forward pass followed by a backward pass through the whole network and the
dependences between tasks are depicted in Figure 1. Further, we consider Fl

and Bl as compute tasks Tl′ , where if l′ ≤ L then Tl′ = Fl′ and if l′ > L then
Tl′ = B2L−l′+1.

As we are interested in solutions in which the different layers of the
network are allocated to potentially different computation resources, we also
introduce communication tasks T c

l.l+1. These communication tasks correspond
to sending forward activations or gradients from one computation resource
to another, and their cost is 0 between two successive layers allocated to the
same resource. We denote by a(l) the activation tensor produced by Tl, l ≤ L
and by a(2L−l) = b(l) = ∂L

∂a(l)
the back-propagated intermediate gradient value

provided as input of the backward operation T2L−l.
The sequence of tasks associated with the processing of a minibatch is

therefore given by T1, T c
1.2, T2 . . . , T

c
L−1.L, TL, TL+1, T

c
L+1.L+2, TL+2, . . . , T

c
2L−1.2L, T2L.

During the training operation, we assume that the set of input data
(typically images) is split into mini-batches of size B. In this context, we
denote by

• dl = uFl
the duration of the forward task on the layer l with a mini-batch

of size B

• d2L−l+1 = uBl
the duration of the backward task on the layer l with a

mini-batch of size B

• al the size (in bytes) of the tensor a(l) produced by Tl, l ≤ L when
applied to a mini-batch of size B and

• al′ the size (in bytes) of the tensor a(l′) = b(2L−l
′) produced by Tl′ , l′ ≥

L+ 1 when applied to a mini-batch of size B. In general, we assume

F1 F2 · · · FL−2 FL−1 FL

B1 B2 B3 · · · BL−1 BL

a(0) a(1) a(2) a(L−3) a(L−2) a(L−1) loss

b(L) = 1b(L−1)b(L−2)b(3)b(2)b(1)b(0)

a(0) a(1) a(2) a(L−2) a(L−1) loss

Figure 1: Graph for the Backward Propagation

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism9

that tensors a(l) and b(l) have the same size, i.e. ∀l ≤ L, a2L−l = al.

Let us denote by P the total number of available GPUs and let us assume
(as in PipeDream) that all pairs of GPUs are connected through a direct
link of capacity β. Moreover, we assume that each GPU is equipped with an
available memory of size M . This memory is used to store all data required
to perform the training operation. More precisely, this memory requirements
can have different origins:

• Model weights. Since we are considering model parallelism, we assume
that the L layers of the network are split across the P GPUs. If GPU
Pk is in charge of layer l, then it has to store the corresponding weight
denoted asWl. As we will see, in order to update the weights and to use
consistent weights during both the forward and the backward phases,
Pk in practice stores several copies of the weights. In what follows, in
order not to add more weight and activation copies, we assume that
the processor in charge of a layer is in charge of processing both the
forward and backward tasks associated to this layer.

• Activations. Let us now concentrate on activations a(l). As depicted
in Figure 1, activation a(l) is produced by Tl and it must be kept in
memory until task T2L−l consumes it to produce b(l). Therefore, a
memory of size al must be reserved to store an activation between tasks
Tl and task T2L−l+1. As we will see, in general, to keep processors busy,
we process several batches in parallel. Therefore, several activations
corresponding to layer l are kept in memory simultaneously.

• Gradients. Let us now concentrate on gradients b(l). As depicted
in Figure 1, the gradient b(l) produced by task T2L−l is consumed by
T2L−l+1 to produce b(l−1). Therefore, a memory of size a2L−l(= al)must
be reserved to store an activation between tasks T2L−l and T2L−l+1 to
produce b(l−1). Thus, gradients are kept in memory for a much shorter
time than activations.

• Communication buffers. When tasks Tl and Tl+1 are assigned to dif-
ferent GPUs, a communication takes place, and we assume that for
convenience some memory is reserved as a buffer to store a(l) while it
is sent or received. This requires a storage of size al on both GPUs.

3.2 Periodic Schedules and Valid Patterns

In general, throughout this paper, we are interested in finding optimal task
allocation (load balancing) and optimal periodic schedules. Both problems

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism10

could be solved either simultaneously or separately i.e. solving the load bal-
ancing problem first and then finding an optimal schedule for it. Considering
some fixed allocation, it is possible to build various schedules, but we restrict
the search to periodic schedules that follow the Pattern conditions defined in
Definition 1 (see Figure 2 for an example). In Definition 1, a valid pattern
contains exactly one task Tl of each type l, for l ≤ 2L. The pattern defines
both the sequence of tasks that is performed on each computing resource,
and the index shifts between the tasks that are processed in the pattern. For
example, if T2 takes place before T1 in the pattern, then T2 must necessarily
apply to a batch for which T1 has been processed in the previous copy of
the pattern. In practice, we denote by s(l) the shift associated to Tl, so that
previous condition becomes s(1) ≥ s(2) + 1. Hence, during the i−th copy of
the pattern in the periodic schedule, Tl operates on mini-batch i+ s(l).

Definition 1 (Valid Pattern). A valid pattern is defined by the following
constraints:

• ∀l ≤ 2L, Tl is present exactly once in the pattern, on one of the GPUs
and it has an exclusive access to the GPU during dl time units.

• ∀l ≤ 2L− 1, T c
l.l+1 is present exactly once in the pattern, on one of the

communication links. Its duration is 0 if Tl and Tl+1 are located on
the same resource. Otherwise, it gets an exclusive access to the link
between the GPUs that process Tl and Tl+1 during al/β time units.

• task shifts are valid, i.e. if the shift for Tl is denoted by s(l), then
∀l′ > l, if task Tl′ starts before the end of Tl, then the shift for Tl′ must
satisfy s(l′) < s(l).

• In the pattern, on each GPU and on each communication resource, the
length of the period is smaller than T

• the starting dates of all tasks and communications should be within
the time range of size T

Definition 2 (1F1B). We call all periodical schedules satisfying the pattern
described in Definition 1 as 1F1B schedules (1-Forward-1-Backward).

Lemma 1. We can restrict the search of optimal periodic schedules to the
search of optimal patterns.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism11

t

#P

P1

P2

P3

T = 10

T
(i)
1

T c
1.2

T
(i)
2

T c
2.3

T
(i)
3

T c
3.4

T
(i−1)
4T

(i−2)
5

T c
5.6

T
(i−3)
6

T c
6.7

T
(i−4)
7

T c
7.8

T
(i−4)
8

T
(i−1)
3

Figure 2: Example of valid pattern. The batch indices are in the superscipts
near task names

Proof. Clearly, it is easy to build the periodic pattern from a valid periodic
schedule.

Let us now suppose that we have a valid periodic pattern and let us prove
that it can be turned into a valid periodic schedule. To do so, we need to
specify, for each task, the index of the mini-batch on which this task operates.
In order to determine these indexes, we can use a basic greedy algorithm.
Let us suppose that T2L processes the i-th mini-batch during a given period.
Then, we can always assume that during this period, T c

2L−1.2L is performed on
mini-batch i+2. Indeed let us assume that T2L is performed on Pk and T2L−1
on Pk′ , k

′ 6= k (the case where both tasks are scheduled on the same resource
is less interesting since the duration of T c

2L−1.2L is 0 in this case). Since
there could a small shift in the periodic pattern between Pk and Pk′ , it might
happen that T2L has already started on Pk at the time when T c

2L−1.2L ends.
On the other hand, since this shift is always smaller than T by construction,
the communicated activation during the current period is available on Pk 2
periods after, so that Pk is indeed able to process mini-batch i+ 2. Using
the same reasoning and the same shift of two mini-batches between any two
consecutive processing and communication tasks, it is possible to transform
any valid periodic pattern into a valid schedule.

Note that our greedy algorithm induces a very large span for the indexes
of the mini-batches performed in the same period. We will see later that this
large span induces a large memory costs, but that given a periodic pattern, it
is possible to build a schedule with minimal memory need (this will be done
in Lemma 8).

Similarly to PipeDream, we use the notion of 1F1B schedules from Def-

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism12

inition 2. As mentioned earlier, we are interested only in 1F1B schedules,
and therefore we look for 1F1B solutions that minimize the period T given a
batch-size B, or equivalently that maximize the number of trained images
per time unit in steady-state, given by BT .

4 Integer Linear Program

We present in this section an Integer Linear Program to find a valid pattern
with minimum period length. We concentrate on scheduling issues on both
computational and communication resources in Section 4.1, then we consider
memory related issues in Section 4.2.

We first present the main variables used in this ILP (other variables are
introduced later):

• T denotes the period considered in the 1F1B schedule;

• zl,l′ is equal to 1 if task Tl and task Tl′ are processed on the same
resource, and 0 otherwise (it is implied that zl,l = 1 and zl,l′ = zl′,l);

• τl is the starting time of task Tl in the period ;

• τ̃l is the starting time in the considered period of the communication
of the output of Tl.

We also use dl to denote the duration of the task Tl, i.e. uFl
if l ≤ L

and uBl
if l ≥ L+ 1, and d̃l to denote the time needed to communicate the

activation produced by Tl, equal to al
B . In several places, we use a large

constant K which needs to be larger than the period, for example we can use
K =

∑
l dl +

al
B .

4.1 Communication and Computation Constraints

4.1.1 Limit on the number of resources

In order to provide a limit on the number of resources used, we introduce
variable fl which is equal to 1 if and only if task Tl is the lowest-index
task processed on its resource. To this end, we consider the following set of

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism13

constraints:

∀l < l′ < l′′, zl′,l′′ ≥ zl,l′ + zl,l′′ − 1 (1)

∀l, fl ≥ 1−
∑
l′<l

zl,l′ (2)∑
l

fl ≤ P, (3)

and we show that they are enough to obtain the following:

Lemma 2. Constraints (1)-(3) ensure that at most P resources are used in
the schedule.

Proof. Constraint (1) ensures the consistency of the zl,l′ variables: for any l,
l′, l′′, if zl,l = 1 and zl,l′′ = 1, then zl′,l′′ = 1. They can thus be used to define
an equivalence relation between tasks, where each class contains tasks which
are processed on the same resource. Then, Constraint (2) ensures that fl is
exactly 1 for the task with the smallest index among all the tasks processed
on a given resource, and is trivially satisfied for all other tasks. Therefore, the
sum of fl provides the total number of allocated resources, and constraint (3)
enforces that no more than P resources are used in the schedule. Reciprocally,
in any valid solution that uses no more than P resources, there exists an
assignment of fl variables such that

∑
l fl ≤ P , i.e. the assignment where

fl = 1 for the task with the smallest index processed on the resource and 0
for all other tasks.

In addition, we consider only schedules where forward tasks TL−l for
l ≤ L are placed on the same resource as their respective backward tasks
TL+l+1, so we add the following equation to the Linear Program

∀l < L, zL−l,L+l+1 = 1. (4)

4.1.2 Ordering of Computational Tasks

Let us now consider tasks that are processed on the same resource. In order
to enforce that two tasks processed on the same resource cannot overlap, we
introduce a set of variables wl,l′ and the following equations, valid for all
l 6= l′:

τl − τl′ +K(1− zl,l′ + wl,l′) ≥ dl′ , (5)
τl′ − τl +K(2− zl,l′ − wl,l′) ≥ dl, (6)
wl,l′ ≤ zl,l′ . (7)

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism14

Throughout the proofs, K is used to define a condition that must be
valid as soon as a boolean variable x is equal to 1. The general idea is to use
(1− x) ∗K in the equation as follows: if x = 1, then (1− x)K = 0 and the
rest of the condition must be satisfied. Conversely, if x = 0 then (1− x)K is
significantly larger than the other terms and the condition is automatically
satisfied, regardless of the value of the other variables. An example of the
use of this technique can be found below in Lemma 3.

Lemma 3. Constraints (5)-(7) ensure the following:

• If Tl and Tl′ are assigned to the same resource, then either Tl′ starts
after the end of Tl (and wl,l′ = 1), or Tl starts after the end of Tl′ (and
wl,l′ = 0).

• If Tl and Tl′ are not assigned to the same resource, then wl,l′ = 0.

Proof. Let us assume that Tl and Tl′ are assigned to the same resource. Then,
by definition, zl,l′ = 1 and we obtain

τl − τl′ +Kwl,l′ ≥ dl′ ,
τl′ − τl +K(1− wl,l′) ≥ dl

and wl,l′ ≤ 1.

In turn, wl,l′ = 1 implies τl−τl′+K ≥ dl′ and τl′ ≥ τl+dl. The first constraint
is always true since K is large and the second constraint implies that Tl′
starts after the end of Tl. The proof for wl,l′ = 0 is symmetric and is omitted
here.

Then, let us assume that Tl and Tl′ are not assigned to the same resource.
Then, by definition, zl,l′ = 0 and we obtain

τl − τl′ +K(1 + wl,l′) ≥ dl′ ,
τl′ − τl +K(2− wl,l′) ≥ dl

and wl,l′ ≤ 0.

These three constraints are compatible since the first two are always true
independently of the value of wl,l′ , by definition of K, and the last one
enforces wl,l′ = 0.

4.1.3 Ordering of Communication Tasks

If tasks Tl and Tl+1 are not processed on the same resource, a communication
needs to take place for the output of Tl. We recall that a(l) denotes the

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism15

data (either an activation or a gradient) computed by Tl and needed by
Tl+1. In order to schedule these communications, we define a new set of
variables z̃l,l′ , which play an analogous role to zl,l′ for communication tasks.
More precisely, we want z̃l,l′ = 1 if the communications of a(l) and a(l′) share
the same communication link, and z̃l,l′ = 0 otherwise. We prove that this
property is enforced by the following equations, for all l 6= l′:

z̃l,l′ ≥ zl,l′ + zl+1,l′+1 − zl,l+1 − 1 (8)
z̃l,l′ ≥ zl,l′+1 + zl+1,l′ − zl,l+1 − 1, (9)
z̃l,l′ ≤ 1− zl,l+1 (10)
z̃l,l′ ≤ 1− zl′,l′+1 (11)
z̃l,l′ ≤ zl,l′ + zl+1,l′ (12)
z̃l,l′ ≤ zl,l′+1 + zl+1,l′+1 (13)

Proof. Constraints (10) and (11) ensure that z̃l,l′ = 0 if any of a(l) or a(l′) does
not require a communication (because the corresponding tasks are processed
on the same resource). In the following, we assume that both zl,l+1 and
zl′,l′+1 are 0, and we denote by Pi the processor that runs Tl and by Pj the
processor which runs Tl+1. We consider several cases:
First case: a(l) and a(l′) share the same communication link.

In that case, Tl′ must be processed either on Pi or Pj , otherwise the
communication of a(l′) occupies another link than (Pi, Pj). Therefore, con-
straint (12) simply becomes z̃l,l′ ≤ 1. Similarly, Tl′+1 must be processed
either on Pi or on Pj , so that constraint (13) simply becomes z̃l,l′ ≤ 1.

Since zl,l+1 = 0, constraints (8) and (9) become

z̃l,l′ ≥ zl,l′ + zl+1,l′+1 − 1

and z̃l,l′ ≥ zl,l′+1 + zl+1,l′ − 1.

Since the communication of a(l′) use the link between Pi and Pj , Tl′ and
Tl′+1 must be processed on these processors. Hence, either Tl′ is on Pi (and
Tl′+1 is on Pj) or Tl′ is on Pj (and Tl′+1 is on Pi) and therefore, one of the
conditions above enforces z̃l,l′ = 1.
Second case: a(l) and a(l′) do not share the same communication link.

Let us first focus on constraint (8). We claim that both zl,l′ and zl+1,l′+1

can not be 1 at the same time. Indeed, this would imply that Tl and Tl′ are
processed on Pi, and also that Tl+1 and Tl′+1 are processed on Pj , and thus
that a(l) and a(l′) share the same communication link. Since zl,l+1 = 0, the

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism16

right hand side of constraint (8) is at most 0. Using the same analysis for
constraint (9), we prove that the first two constraints simply become z̃l,l′ ≥ 0.

We now prove by contradiction that at least one among constraints (12)
and (13) enforces z̃l,l′ = 0. Indeed, zl,l′ + zl+1,l′ ≥ 1 implies that Tl′ is
processed either on Pi or Pj , and similarly zl,l′+1 + zl+1,l′+1 ≥ 1 implies that
Tl′+1 is processed either on Pi or Pj . Since we assume that zl′,l′+1 = 0, having
both zl,l′ + zl+1,l′ ≥ 1 and zl,l′+1 + zl+1,l′+1 ≥ 1 is in contradiction with the
fact that a(l) and a(l′) do not use the same link.

Therefore, in this second case, the system of constraints enforces z̃l,l′ =
0.

Finally, we can ensure a correct ordering of the communications without
overlap in a way similar to Lemma 3. We introduce binary variables w̃l,l′

together with the following equations, for all l 6= l′:

τ̃l − τ̃l′ +K(1− z̃l,l′ + w̃l,l′) ≥ d̃l′ (14)

τ̃l′ − τ̃l +K(2− z̃l,l′ − w̃l,l′) ≥ d̃l (15)
w̃l,l′ ≤ z̃l,l′ (16)

Lemma 4. Constraints (8)-(16) ensure that:

• z̃l,l′ = 1 if and only if both a(l) and a(l′) need to be communicated and
their communications are assigned to the same link.

• In that case, either the communication of a(l′) starts after the end of
the communication of a(l) (and w̃l,l′ = 1), or the communication of a(l)

starts after the end of the communication of a(l′) (and w̃l,l′ = 0).

• In the opposite case, w̃l,l′ = 0.

Proof. The proof is similar to the proof of Lemma 3, replacing wl,l′ by w̃l,l′

and zl,l′ by z̃l,l′ , and is therefore omitted here.

4.1.4 Period Length

In order to obtain a valid pattern from the variables defined so far, we use
without loss of generality the following conventions: the ending times of all
tasks and communications are between 0 and T , and task T1 starts at time 0:

∀l, 0 ≤ τl + dl ≤ T (17)

∀l, 0 ≤ τ̃l + d̃l ≤ T (18)
τ1 = 0 (19)

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism17

We cannot specify that all starting times should be non-negative: as can
be seen on Figure 2, in general the patterns on different processors are not
aligned to start at the same time. So in order to ensure that each resource
is occupied for a duration at most T , we include the following constraints
which state that the distance between the ending time and starting time of
two tasks assigned to the same resource is at most T :

∀l 6= l′, T ≥ τl + dl − τl′ −K(1− zl,l′) (20)

∀l 6= l′, T ≥ τ̃l + d̃l − τ̃l′ −K(1− z̃l,l′) (21)

Lemma 5. Without considering memory constraints, from any valid pattern
according to Definition 1, we can obtain values for all variables T , τl, zl,l′ , fl,
τ̃l, z̃l,l′, wl,′ and w̃l,l′ which respect equations (1)-(21), and vice-versa.

Proof. If all variables respect the constraints (1)-(21), then Lemmas 2, 3
and 4 ensure that the pattern built from the values of τl and zl,l′ is a valid
pattern. Furthermore, constraint (20) ensures that for any l and l′ such that
zl,l′ = 1, T is no smaller than τl + dl − τl′ and τl′ + dl′ − τl, depending on
which task starts first. Since a forward task is always allocated to the same
resource as the respective backward task (Constraint (4)), all used resources
process at least two tasks. The same can be said for communication tasks,
which ensures that T is a valid period for the constructed pattern.

Reciprocally, let us consider any valid pattern, and assign values to all
the variables according to this pattern. As discussed above, this can be done
in a way that respects constraints (17)-(19) without loss of generality. The
above lemmas ensure that constraints (1)-(16) are satisfied. Since T is a valid
period, constraints (20), (21) and (18) are satisfied for any l and l′ such that
zl,l′ = 1. Finally, if zl,l′ = 0, these constraints are automatically satisfied
since K is large.

4.2 Memory Constraints

In this section, we focus on the memory usage induced by the pattern
described in previous section. The memory needs have different origins:

• If two successive tasks Tl and Tl+1 are processed on the same resource,
the output of Tl needs to be stored in memory until it is processed by
Tl+1. This is addressed in Section 4.2.1.

• The main point of pipelining is that during one period, the forward
task TL−l and its associated backward task TL+l+1 do not operate on

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism18

the same mini-batch. This implies that the processor in charge of these
operations must store several activations produced by the forward task
and not yet consumed by the corresponding backward task. This will
be addressed in Section 4.2.2.

• Processors need to store the weights of the layers that they process.
This will be addressed in Section 4.2.3.

• When Tl′−1 and Tl′ are not processed on the same resource, either a
forward activation (if l′ < L) or a gradient (if l′ > L) are received by
the resource in charge of Tl′ and are kept in memory until the next Tl′
is performed. Similarly, when Tl′ and Tl′+1 are not processed on the
same resource, either a forward activation (if l′ < L) or a gradient (if
l′ > L) must be sent by the resource in charge of Tl′ and is kept in
memory until the associated communication. This will be addressed in
Section 4.2.4.

In order to avoid symmetries in the formulation of the Integer Linear
Program, we provide a formulation based on tasks and task collocations rather
than on processing resources. We therefore compute, for each task Tl, the
amount of memory required at the instant when Tl is performed respectively
by the storage of models M(mod)

l , by direct dependencies M(dir)
l , by local

activations M(act)
l and by external activations and gradients M(ext)

l .

4.2.1 Memory for Direct Dependencies

As depicted on Figure 2, the output a(l′) of a forward task Tl′ is used twice:
first by the next forward task Tl′+1, then by the corresponding backward task
T2L−l′−1. In this section, we account for the memory consumption of a(l′)

from Tl′ until Tl′+1; the memory consumption until the backward task will
be accounted for in Section 4.2.2.

To evaluate M(dir)
l , let us assume that tasks l, l′ and l′ + 1 are processed

on the same resource. We are interested in the following event: the output
produced by Tl′ occupies the memory of the resource when task Tl is performed.
This event occurs in three possible situations (see Figure 3):

• Tl′ is processed before Tl, and Tl before Tl′+1;

• Tl is processed before Tl′+1, and Tl′+1 before Tl′ ;

• Tl′+1 is processed before Tl′ , and Tl′ before Tl.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism19

t

Case 1 Tl′ Tl Tl′+1

t

Case 2 Tl Tl′+1 Tl′

t

Case 3 Tl′+1 Tl′ Tl

Figure 3: Different Cases for direct dependencies, where Tl, Tl′ and Tl′+1 are
on the same processor.

We therefore need to consider three variables: wl′,l, wl,l′+1 and wl′+1,l′ .
Since the ordering of execution on the resource is a total order, it is clear
that all three variables can not be equal to one, and the list above shows
that the event occurs if and only if exactly two of these variables are equal
to one. We thus introduce a binary variable ol,l′ for all l and l′ with l 6= l′

and l 6= l′ + 1, with the following constraint:

ol,l′ ≥ wl′,l + wl,l′+1 + wl′+1,l′ − 1 (22)

We obtain the following lemma:

Lemma 6. Consider any valid pattern according to Lemma 5, and assume
that variables ol,l′ satisfy Constraint (22).

If the output produced by Tl′ is present in memory as a direct dependency
when task Tl is performed, then ol,l′ ≥ 1. The total amount of memory that
is occupied by direct dependencies is at most M(dir)

l =
∑2L

l′=1 ol,l′al′ .

4.2.2 Memory Required for Local Activations

Let us now consider the memory required by the storage of local activations,
between the instant when they are used by a forward task and the instant
when they are consumed by the associated backward task. To achieve this,
we need to analyze precisely the shifts in indices of the mini-batches that are
processed during the same period.

As mentioned in the discussion of Definition 1, we observe that two
consecutive tasks in the task graph, either (Tl, T c

l.l+1) or (T
c
l.l+1,Tl+1), can

operate on the same mini-batch during a given period if they appear in the
proper order, i.e. Tl before T c

l.l+1 or T c
l.l+1 before Tl+1. Otherwise, they must

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism20

t

#P

P1

P2

T = 5

T
(i)
1 T

(i−2)
6 T

(i+1)
1 T

(i−1)
6

T
(i−1)
2 T

(i−1)
3 T

(i−1)
4 T

(i−1)
5 T

(i)
2 T

(i)
3 T

(i)
4 T

(i)
5

path of mini-batch (i− 1) path of mini-batch (i)

v1 = 1
v5 = 1

v2 = 0

Figure 4: Example schedule (without communications) with paths of different
mini-batches. Black arrows point from the end of a task Tl to the start of
Tl+1, and show the value of the associated vl variable.

t

#P

vart = 5

T
(i−2)
l+1

T
(i−1)
l

T
(i−1)
l+1

T
(i)
l

Figure 5: Example schedule where if task Tl processes mini-batch i during
the period, Tl+1 needs to process mini-batch i − 2. Tasks indicated with
dashed lines belong to different periods (the previous one for Tl, the next one
for Tl+1).

operate on different mini-batches. An example showing the path of different
mini-batches for a simple case of two processors and no communication is
shown on Figure 4.

When two successive tasks are too far apart in the pattern, it can even
happen (in rare cases) that they have to process mini-batches with an index
shift of two. Figure 5 shows such a case, which happens if and only if the
difference between the end time of Tl and the start time of Tl+1 is more than
T .

To evaluate the shifts of indices in the pattern, we introduce new boolean
variables associated to task l: vl and v′l are used to determine the shift
between Tl and T c

l.l+1, where vl is 1 if the shift is at least 1, and v′l is 1 if the
shift is 2. Variables ṽl and ṽ′l have the same meaning for the shift between

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism21

T c
l.l+1 and Tl+1. For all l, we include the following constraints:

τl + dl − τ̃l +K(1− vl) ≥ 0 (23)
τ̃l − (τl + dl) +Kvl ≥ 0 (24)

τ̃l + d̃l − τl+1 +K(1− ṽl) ≥ 0 (25)

τl+1 − (τ̃l + d̃l) +Kṽl ≥ 0 (26)
τ̃l + T − (τl + dl) + 2Kv′l ≥ 0 (27)

τl + dl − (τ̃l + T ) + 2K(1− v′l) ≥ 0 (28)

τl+1 + T − (τ̃l + d̃l) + 2Kṽ′l ≥ 0 (29)

τ̃l + d̃l − (τl+1 + T ) + 2K(1− ṽ′l) ≥ 0 (30)

Lemma 7. Consider any valid pattern according to Lemma 5, and assume
that variables vl, v′l, ṽl and ṽ

′
l satisfy Constraints (23)-(30).

If i denotes the mini-batch performed by TL, then for any 0 ≤ j ≤ L− 1,
the index of the mini-batch performed by TL−j is at least i +

∑L−1
l=L−j(vl +

ṽl + v′l + ṽ′l), and the index of the mini-batch performed by TL+j+1 is at most
i−

∑L+j
l=L (vl + ṽl + v′l + ṽ′l).

Hence, the number of activations of type a(L−j−1) that needs to stored at
the beginning of the period of this processor is

∑L+j
l=L−j vl + ṽl + v′l + ṽ′l.

Proof. Similarly to Lemma 3, we can show using the definition of K proposed
above that constraints (23)-(26) ensure that for any l, vl = 0 if τl + dl ≤ τ̃l,
and vl = 1 otherwise; likewise, ṽl = 0 if τ̃l + d̃l ≤ τl+1, and ṽl = 1 otherwise.
Additionally, constraints (27)-(30) ensure that if τ̃l +T < τl + dl, then ṽl = 1,
and ṽl = 0 otherwise; likewise if τl+1 + T < τ̃l + d̃l, then ṽ′l = 1, and ṽ′l = 0
otherwise.

The claimed result can be proved by induction. For any 0 ≤ j ≤ L− 1,
let us set k = L− j − 1 and let us assume that the index of the mini-batch
performed by Tk+1=L−j is at least I = i+

∑L−1
l=L−j vl + ṽl + v′l + ṽ′l. Let us

now consider Tk=L−j−1.
The ordering of τ̃k and τk+1 can yield three possible cases:

• If τ̃k + d̃k ≤ τk+1, then ṽk = ṽ′k = 0 and both computation and
communication tasks can process the same mini-batch in the same
period: the communication can process mini-batch I.

• If τ̃k + d̃k > τk+1 and τ̃k + d̃k ≤ τk+1 + T , then ṽk = 1 and ṽ′k = 0.
In this case, similar to the one shown on Figure 4 with tasks T1 and
T2, the communication cannot process mini-batch I: if it does, the

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism22

result arrives too late and task Tk+1 is not able to process mini-batch
I. However the communication can process mini-batch I + 1.

• If τ̃k + d̃k > τk+1 + T , then ṽk = 1 and ṽ′k = 1. In that case, similar
to the one shown on Figure 5, the communication can only process
mini-batch I + 2.

Therefore, in all cases the index of the mini-batch processed by the
communication is I + ṽk + ṽ′k.

The same reasoning can be applied to the possible shift between the
index of the mini-batch corresponding to Tk and the communication of this
activation, this time involving vk and v′k. We thus prove that the index
of the mini-batch performed by Tk during the current period is at least
I + ṽk + ṽ′k + vk + v′k = i+

∑L−1
l=L−j−1(vl + ṽl + v′l + ṽ′l), which achieves the

proof for forward tasks.
The proof for backward tasks is very similar and is omitted here.

As mentioned above, we are interested in M(act)
l , which is the memory

consumed by the set of activations at the time when task Tl is performed, on
the processor which computes Tl. We thus introduce integer variables σl,′l,
equal to the number of activations of type a(l′−1) stored on the processor
that computes Tl, which satisfy the following constraints:

∀l′, l σl,l′ ≤ 8Lzl,l′ (31)

∀l′, l σl,l′ ≥
2L−l′∑
m=l′

(vm + v′m + ṽm + ṽ′m)− 8L(1− zl,l′) (32)

Since Lemma 7 only provides the number of activations at the beginning
of the period, we also need to account for the following events which may take
place between the beginning of the period and instant τl (i) a forward task
Tl′ , l

′ ≤ L is computed, inducing an extra activation a(l′−1) in memory, and
(ii) a backward task T2L−l′+1, l

′ ≤ L is computed, removing an activation
a(l
′−1) from memory.

Lemma 8. Consider any valid pattern according to Lemma 5, satisfying
Constraints (23)-(32).

The amount of memory occupied when task Tl is performed by activations
required by future backward tasks is M(act)

l :

M(act)
l = al−1 + al +

L∑
l′=1

(σl,l′ + wl′,l − w2L−l′+1,l)al′−1.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism23

Proof. We first show that σl,l′ is at least the number of replicas for a layer
l′ derived in Lemma 7 if l′ is on the same processor as l, otherwise σl,l′ = 0.
Indeed, if Tl and Tl′ share the same resource then zl′,l = 1 and since the number
of replicas is less than 8L for any layer, σl,l′ ≥

∑2L−l′
m=l′ (vm + v′m + ṽm + ṽ′m).

On the other hand, when Tl and Tl′ are on different resources zl′,l = 0 and
σl′,l ≤ 0.

According to Lemma 7 the value
∑2L−l′

m=l′ (vm + v′m + ṽm + ṽ′m) represents
the number of activations of layer a(l′−1) stored in the beginning of the period,
but this number may vary within the period: it increases by one after each
task Tl′ (Fl′) and it decreases by one after task T2L−l′+1 (Bl′). Thus, the last
term in the equation for M(act)

l corresponds to all activations that have been
stored before task Tl and the rest represents the memory needed to perform
task Tl.

4.2.3 Memory Required for the Models

As it was shown in [32], having just two models stored is enough to perform
training. Besides, since the computed gradients have the same shape as model
weights, they require the same amount of memory. Thus, the equivalent of
three copies of the weights are necessary to perform all forward and backward
computations with consistent weights. Thus

M(mod)
l = 3

∑
l′,l′≤L

zl,l′Wl′ . (33)

4.2.4 Memory Buffer for Communications

Another type of memory usage on a resource Pi is the buffer memory to
store activations or gradients: incoming ones, that were computed by another
processor and then sent to Pi, or outgoing ones, that were computed on Pi

and need to be sent. We assume that a buffer is allocated to each of these
data for the whole duration of the execution, but they are not shared between
different data. We introduce binary variables bl,l′ for all l and l′, together
with the following constraints:

bl,l′ ≥ zl,l′ − zl,l′+1 (34)
bl,l′ ≥ zl,l′+1 − zl,l′ (35)

Lemma 9. Consider any valid pattern according to Lemma 5, satisfying
Constraints (34) and (35). If a buffer is required for a(l′) on the processor

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism24

which computes Tl, then bl,l′ = 1. Hence, the memory reserved for buffers at
the start of task Tl is at most M(buf)

l =
∑2L

l′=1 bl,l′al′.

4.2.5 Final Linear Program

We can now define the complete Linear Program for our problem: the
objective is to minimize T , subject to Contraints (1)-(35), together with

∀l, M(mod)
l + M(act)

l + M(dir)
l + M(buf)

l ≤M (36)
∀l, T, τl, τ̃l ∈ R
∀l, l′ σl,l′ ∈ Z
∀l, fl, vl, v

′
l, ṽl, ṽ

′
l ∈ {0, 1}

∀l, l′, zl,l′ , wl,l′ , z̃l,l′ , w̃l,l′ , ol,l′ , bl,l′ ∈ {0, 1}

Theorem 1. The optimal solution of the above Integer Linear Program
provides a valid pattern with minimum period, among those whose memory
usage is at most M .

5 Experimental Results

In this section, we present simulation results obtained for different state-
of-the-art ResNet neural networks of size 18, 34 and 50, which are widely
used for a large range of tasks. In order to perform these simulations, we
first perform the profiling of the neural networks to measure the durations
and memory costs of the different operations involved in the training. As
mentioned in Section 3, this work only considers networks in the shape of
adjoint chains as depicted in Figure 1. In the case of ResNet networks, a
simple linearization approach is enough to transform the neural network
computational graphs into chains, by applying a greedy procedure to obtain
minimal groups of operations. In each group, the set of predecessors outside
the group and the set of successors outside the group are disjoint. Overall,
such groups form a sequence of operations with a straightforward order of
execution. This approach was used as well in [5].

We implemented the ILP from Section 4 using the CPLEX solver [33]. In
all our experiments, the execution time was limited to one hour. In case there
is still a gap after one hour, we keep the best current solution computed by
the solver. For ResNet-18 up to ResNet-50, the solutions produced were of
very good quality (see the discussion below), though the solver was unable to
prove its optimality. The results obtained are therefore heuristic in nature.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism25

This time limit is reasonable, because the computed solution can be used
during the entire training phase associated with a given image and mini-batch
sizes, a given computing platform and a given network. It is common for the
training to last several hours/days on a parallel platform, which makes this
approach acceptable.

To evaluate the quality of the solutions produced by the integer linear
program, we compare the results obtained with those of PipeDream [31],
which is the state of the art solution for pipelined model parallelism. In
practice, PipeDream takes as input the memory limit and the characteristics
of the platform, computes the number of batches to be inserted in the pipeline,
called NOAM, and finds a partitioning of the network that is used for model
parallelism. PipeDream then uses a greedy 1F1B strategy to schedule tasks.
In practice, as we have pointed out, since the memory model used to compute
the partitioning is over simplified, the calculated NOAM value is generally
not optimal either.

Nevertheless, despite these limitations, PipeDream can be used to produce
a large number of solutions from which one can then build valid solutions that
fulfill the memory constraints. This is the approach we use in the following
experiments. For a fairly large number of possible memory targets and
possible NOAM values, we produce the allocations computed by PipeDream,
simulate the execution of the eager scheduling strategy for 500 batches, and
we evaluate a posteriori the actual memory consumption and the period (the
inverse of the asymptotic throughput) that can be obtained. We thus obtain
a set of (memory, period) pairs that correspond to feasible solutions. Our
observations indicate that the solution produced by PipeDream generally
consumes much more memory than the target value. Nevertheless, since the
execution time of PipeDream is small, obtaining a set of good valid solutions
through this “exhaustive” approach is still practical. In Figures 6 to 11, blue
dots correspond to the actual memory consumption and observed period of
solutions computed with this approach.

Figures 6 to 11 correspond respectively to the networks ResNet-18 (depth
18, with a batch size of 8 and image size 1000), ResNet-34 (depth 34, with a
batch size of 32 and image size 224) and ResNet-50 (depth 50, with a batch
size of 8 and image size 224), for the case of 4 or 8 GPUs. The red dots
correspond to the best solutions found by CPLEX for our ILP after one hour,
for different values of the memory limit.

First of all, it can be observed that the solutions returned by our ILP are
almost always better than the solutions returned by the exhaustive approach
based on PipeDream, even if optimality cannot be guaranteed. The only
exception can be seen on Figure 8, where for instance in the case of a memory

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism26

4 6 8 10 12
memory (in GB)

0.04

0.05

0.06

0.07

0.08

0.09

0.10

pe
rio

d 
(in

 se
co

nd
s)

Solutions for resnet-18, image size=1000, batch size=8, P=4 
Pipedream solutions
ILP-based solutions

Figure 6: Results with ResNet-18 and 4 processors

5 10 15 20 25
memory (in GB)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

pe
rio

d 
(in

 se
co

nd
s)

Solutions for resnet-18, image size=1000, batch size=8, P=8 
Pipedream solutions
ILP-based solutions

Figure 7: Results with ResNet-18 and 8 processors

size of 1 GB, PipeDream finds solutions that strictly dominate the one
returned by the linear program. It can also be observed that the ILP is
able to find better solutions both in cases where memory is scarce (Figures 7
and 11) and where memory is abundant (Figures 6 and 9). When memory is
abundant, the ability of the ILP to use non-contiguous partitionings of the
networks allows to use this abundant memory to achieve better load-balancing.
When memory is scarce, the precise scheduling formulation of the ILP allows
to obtain better solutions by reducing memory costs. The solutions produced
by the ILP are therefore of very high quality when the size of the network

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism27

1 2 3 4 5
memory (in GB)

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024
pe

rio
d 

(in
 se

co
nd

s)

Solutions for resnet-34, image size=224, batch size=32, P=4 
Pipedream solutions
ILP-based solutions

Figure 8: Results with ResNet-34 and 4 processors

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
memory (in GB)

0.0070

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

0.0110

pe
rio

d 
(in

 se
co

nd
s)

Solutions for resnet-34, image size=224, batch size=32, P=8 
Pipedream solutions
ILP-based solutions

Figure 9: Results with ResNet-34 and 8 processors

is not too large. On larger networks such as ResNet-101 or DenseNet-121
(of respective depths 101 and 121), one hour of execution is sometimes not
enough for the ILP to find integral solutions of good quality. In this case, it
would be necessary to consider other approaches, using fractional relaxations
of the linear program or decoupling partition and scheduling phases. We
leave these ideas for future works.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism28

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
memory (in GB)

0.007

0.008

0.009

0.010

0.011

0.012

pe
rio

d 
(in

 se
co

nd
s)

Solutions for resnet-50, image size=224, batch size=8, P=4 
Pipedream solutions
ILP-based solutions

Figure 10: Results with ResNet-50 and 4 processors

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
memory (in GB)

0.004

0.005

0.006

0.007

0.008

0.009

pe
rio

d 
(in

 se
co

nd
s)

Solutions for resnet-50, image size=224, batch size=8, P=8 
Pipedream solutions
ILP-based solutions

Figure 11: Results with ResNet-50 and 8 processors

6 Conclusion

In this paper, we consider the possibility of applying model parallelism,
which is an attractive parallelization strategy that allows in particular not
to replicate all the weights of the network on all the computation resources.
Following the ideas proposed in PipeDream [31] we propose to combine
pipelining and model parallelism, which allows to obtain a better resource
utilization. Then, model parallelism can be combined with data parallelism
to improve scalability.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism29

Nevertheless, the combination of pipelining and model parallelism re-
quires to store more activations at the nodes, which in turn causes memory
consumption problems. We propose a very fine analysis of the memory costs
induced by this combination. We use this modeling first to establish the
computational complexity of the problems related to memory constrained
pipelined model parallelism. This model also allows us to find a partition
of the network that explicitly takes memory costs into account, contrary to
what is done in PipeDream. We show that it is possible to formalize the
problem of memory constrained throughput optimization as an integer linear
program.

Through experiments on medium size networks (Resnet-18 to ResNet-50),
we prove that the ILP is able to compute in reasonable time solutions that are
better than those computed by PipeDream, by both providing good partitions
of the networks and good scheduling strategies. Nevertheless, the computing
cost induced by the integer programming approach becomes too large for
very deep networks, and therefore, new heuristic solutions are required in
this case, which opens interesting perspectives to this work.

References

[1] Ngraph compiler stack, 2018. http://ngraph.nervanasys.com/index.html/.

[2] Periodic checkpointing in pytorch, 2018.
https://pytorch.org/docs/stable/checkpoint.html.

[3] Rotor. https://gitlab.inria.fr/hiepacs/rotor, 2019.

[4] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16) (2016),
pp. 265–283.

[5] Beaumont, O., Eyraud-Dubois, L., Herrmann, J., Joly, A., and
Shilova, A. Optimal checkpointing for heterogeneous chains: how
to train deep neural networks with limited memory. Research Report
RR-9302, Inria Bordeaux Sud-Ouest, Nov. 2019.

[6] Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Optimal
GPU-CPU Offloading Strategies for Deep Neural Network Training. In
Proceeding of EuroPar 2020 (2020).

RR n° 9452

https://gitlab.inria.fr/hiepacs/rotor


An Integer Linear Programming Approach for Pipelined Model Parallelism30

[7] Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Pipelined
model parallelism: Complexity results and memory considerations. In
European Conference on Parallel Processing (2021), Springer, pp. 183–
198.

[8] Beaumont, O., Herrmann, J., Pallez, G., and Shilova, A. Opti-
mal Memory-aware Backpropagation of Deep Join Networks. Research
Report RR-9273, Inria, May 2019.

[9] Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., and
Holtham, E. Reversible architectures for arbitrarily deep residual neural
networks. In Thirty-Second AAAI Conference on Artificial Intelligence
(2018).

[10] Chen, C.-C., Yang, C.-L., and Cheng, H.-Y. Efficient and robust
parallel dnn training through model parallelism on multi-gpu platform.
arXiv preprint arXiv:1809.02839 (2018).

[11] Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[12] Chu, C.-H., Kousha, P., Awan, A. A., Khorassani, K. S., Sub-
ramoni, H., and Panda, D. K. Nv-group: link-efficient reduction for
distributed deep learning on modern dense gpu systems. In Proceedings
of the 34th ACM International Conference on Supercomputing (2020),
pp. 1–12.

[13] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. Large
scale distributed deep networks. In Advances in neural information
processing systems (2012), pp. 1223–1231.

[14] Dryden, N., Maruyama, N., Benson, T., Moon, T., Snir, M., and
Van Essen, B. Improving strong-scaling of cnn training by exploiting
finer-grained parallelism. In IEEE International Parallel and Distributed
Processing Symposium (2019), IEEE Press.

[15] Dryden, N., Maruyama, N., Moon, T., Benson, T., Snir, M., and
Van Essen, B. Channel and filter parallelism for large-scale cnn training.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2019), ACM, p. 10.

[16] Feng, J., and Huang, D. Optimal gradient checkpoint search for
arbitrary computation graphs, 2018.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism31

[17] Glorot, X., and Bengio, Y. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics (2010),
pp. 249–256.

[18] Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without storing activations.
In Advances in neural information processing systems (2017), pp. 2214–
2224.

[19] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch sgd: Training imagenet in 1 hour.

[20] Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and
Graves, A. Memory-efficient backpropagation through time. In Ad-
vances in Neural Information Processing Systems (2016), pp. 4125–4133.

[21] Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149 (2015).

[22] Hemenway, R. High bandwidth, low latency, burst-mode optical
interconnect for high performance computing systems. In Conference on
Lasers and Electro-Optics, 2004. (CLEO). (May 2004), vol. 1, pp. 4 pp.
vol.1–.

[23] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861 (2017).

[24] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. In Advances
in Neural Information Processing Systems (2019), pp. 103–112.

[25] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neural networks with
low precision weights and activations. The Journal of Machine Learning
Research 18, 1 (2017), 6869–6898.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism32

[26] Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Keutzer, K., Stoica, I., and Gonzalez, J. E. Checkmate: Breaking
the memory wall with optimal tensor rematerialization, 2019.

[27] Kukreja, N., Shilova, A., Beaumont, O., Huckelheim, J., Fer-
rier, N., Hovland, P., and Gorman, G. Training on the edge: The
why and the how. In 1st Workshop on Parallel AI and Systems for the
Edge, Rio de Janeiro, Brazil (2019).

[28] Kumar, R., Purohit, M., Svitkina, Z., Vee, E., and Wang, J.
Efficient rematerialization for deep networks. In Advances in Neural
Information Processing Systems (2019), pp. 15146–15155.

[29] Kusumoto, M., Inoue, T., Watanabe, G., Akiba, T., and
Koyama, M. A graph theoretic framework of recomputation algorithms
for memory-efficient backpropagation. arXiv preprint arXiv:1905.11722
(2019).

[30] Liu, J., , Yu, W., Wu, J., Buntinas, D., , Panda, D. K., and
Wyckoff, P. Microbenchmark performance comparison of high-speed
cluster interconnects. IEEE Micro 24, 1 (Jan 2004), 42–51.

[31] Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Zaharia,
M. PipeDream: generalized pipeline parallelism for DNN training. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles
(2019), pp. 1–15.

[32] Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Za-
haria, M. Memory-efficient pipeline-parallel dnn training. In Interna-
tional Conference on Machine Learning (2021), PMLR, pp. 7937–7947.

[33] Nickel, S., Steinhardt, C., Schlenker, H., Burkart, W., and
Reuter-Oppermann, M. Ibm ilog cplex optimization studio. In
Angewandte Optimierung mit IBM ILOG CPLEX Optimization Studio.
Springer, 2020, pp. 9–23.

[34] Paine, T., Jin, H., Yang, J., Lin, Z., and Huang, T. Gpu asyn-
chronous stochastic gradient descent to speed up neural network training.
arXiv preprint arXiv:1312.6186 (2013).

[35] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A.
Automatic differentiation in pytorch, 2017.

RR n° 9452



An Integer Linear Programming Approach for Pipelined Model Parallelism33

[36] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. Xnor-
net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision (2016), Springer, pp. 525–
542.

[37] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and Keck-
ler, S. W. vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (2016), IEEE Press, p. 18.

[38] S B, S., Garg, A., and Kulkarni, P. Dynamic memory manage-
ment for gpu-based training of deep neural networks. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS)
(2016), IEEE Press.

[39] Tarnawski, J., Phanishayee, A., Devanur, N. R., Mahajan, D.,
and Paravecino, F. N. Efficient algorithms for device placement of
dnn graph operators. arXiv preprint arXiv:2006.16423 (2020).

[40] You, Y., Zhang, Z., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Imagenet training in 24 minutes.

[41] Zhan, J., and Zhang, J. Pipe-torch: Pipeline-based distributed deep
learning in a gpu cluster with heterogeneous networking. In 2019 Seventh
International Conference on Advanced Cloud and Big Data (CBD) (2019),
IEEE, pp. 55–60.

[42] Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), pp. 6848–6856.

[43] Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Parallelized
stochastic gradient descent. In Advances in neural information processing
systems (2010), pp. 2595–2603.

RR n° 9452



RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour

33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Related Works
	Model and Notations
	Notations
	Periodic Schedules and Valid Patterns

	Integer Linear Program
	Communication and Computation Constraints
	Limit on the number of resources
	Ordering of Computational Tasks
	Ordering of Communication Tasks
	Period Length

	Memory Constraints
	Memory for Direct Dependencies
	Memory Required for Local Activations
	Memory Required for the Models
	Memory Buffer for Communications
	Final Linear Program


	Experimental Results
	Conclusion

