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Abstract. We are concerned with the iterative solution of linear systems with multiple right-hand sides available one group after4

another with possibly slowly-varying left-hand sides. For such sequences of linear systems, we first develop a new block minimum5

norm residual approach that combines two main ingredients. The first component exploits ideas from GCRO-DR [SIAM J. Sci.6

Comput., 28(5) (2006), pp. 1651–1674], enabling to recycle information from one solve to the next. The second component is the7

numerical mechanism to manage the partial convergence of the right-hand sides, referred to as inexact breakdown detection in IB-8

BGMRES [Linear Algebra Appl., 419 (2006), pp. 265–285], that enables the monitoring of the rank deficiency in the residual space9

basis expanded block-wise.10

Secondly, for the class of block minimum norm residual approaches, that relies on a block Arnoldi-like equality between the11

search space and the residual space (e.g., any block GMRES or block GCRO variants), we introduce new search space expansion12

policies defined on novel criteria to detect the partial convergence. These novel detection criteria are tuned to the selected stopping13

criterion and targeted convergence threshold to best cope with the selected normwise backward error stopping criterion, enabling to14

monitor the computational effort while ensuring the final accuracy of each individual solution. Numerical experiments are reported to15

illustrate the numerical and computational features of both the new block Krylov solvers and the new search space block expansion16

polices.17
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1. Introduction. Many scientific and industrial simulations require the solution of a sequence of linear21

systems with multiple right-hand sides and possibly slowly-changing left-hand sides. In that context, one22

has to solve a series of linear systems of the form23

A(`)X(`) = B(`), ` = 1, 2, . . . , (1.1)

where, associated with the `th family, A(`) ∈ Cn×n is a square nonsingular matrix of large dimension n24

along the family index `, B(`) = [b(`,1), b(`,2), . . . , b(`,p
(`))] ∈ Cn×p(`)

are simultaneously given right-hand25

sides of full rank with p(`) � n, and X(`) = [x(`,1), x(`,2), . . . , x(`,p(`))] ∈ Cn×p(`)

are the solutions to be26

computed. Both the coefficient matrix A(`) and right-hand sides B(`) change from one family to the next,27

and the families of linear systems are typically available in sequence.28

When solving sequences of linear systems as Equation (1.1), attractive approaches are those that can29

exploit information generated during the solution of a given system to accelerate the convergence for the30

next ones. Deflated restarting implements a similar idea between the cycles in the generalized minimum31

residual norm method (GMRES) [19, 21, 27]; it is realized by using a deflation subspace containing a few32

approximate eigenvectors deemed to hamper the convergence of the Krylov subspace methods [11–13].33

Another alternative technique is the subspace recycling strategy proposed in the generalized conjugate34

residual method with inner orthogonalization (GCRO) and deflated restarting (GCRO-DR) method [16].35

This latter method can reuse information accumulated in previous cycles as well as that accumulated36

during the solution of the previous families. Because the multiple right-hand sides of Equation (1.1) are37

simultaneously available, block Krylov subspace methods are often considered as the suitable candidates38

for their capability of sharing search subspace that can be generated using basic linear algebra subprograms,39

level 3 BLAS-like implementation [10]. A common issue in block Krylov subspace methods is the rank40

deficiency that might appear when expanding the residual spaces, which is caused by the convergence41

of some individual solution or a linear combination of solution vectors. Such rank deficiency problem42

could lead the block Arnoldi process to break down before the solutions for all the right-hand sides are43

found. For the sake of balancing robustness and convergence rate, Robbé and Sadkane proposed an inexact44

breakdown detection for the block GMRES algorithm (denoted by IB-BGMRES) [20], which could keep45

and reintroduce directions associated with the almost converged parts in next iteration if necessary. We refer46
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to [1,2,20], for relevant works on inexact breakdown detection, as well as to [23–26,28], for related variants47

of block Krylov subspace methods for solving linear systems with multiple right-hand sides.48

The contribution of this paper is twofold. We first show how to combine subspace recycling techniques49

of GCRO-DR [16], for recycling spectral information at a new cycle/family, with the inexact breakdown50

detection introduced by Robbé and Sadkane in IB-BGMRES [20], for handling the issue of almost rank51

deficient block generated by the block Arnoldi procedure, to develop the IB-BGCRO-DR algorithm, a new52

recycling block GCRO-DR variant with partial convergence detection. This is a natural extension of our53

previous work IB-BGMRES-DR [1], that enables the deflated restarting strategy proposed by Morgan [13]54

to be applied not only at restart but also when solving a sequence of linear systems. The IB-BGCRO-DR55

method can reuse spectral information both from the solutions in the previous cycles and families thus56

showing obvious advantages when solving sequences of linear systems like Equation (1.1). In addition,57

we propose a flexible counterpart of the new algorithm, which allows the use of a mixed arithmetic58

computation where all steps are computed with a selected working precision except for the preconditioner59

which is performed with a reduced precision. The second contribution is related to the block search space60

expansion policies that can be further developed based on the partial convergence detection. In particular,61

for stopping criteria based on normwise backward error we introduce new strategies enabling to focus on62

the computational effort while ensuring the final accuracy of each individual solution.63

The remainder of this paper is organized as follows. Section 2 is devoted to the development of the new64

algorithm, containing some background parts that enable us to introduce the various numerical ingredients65

and notations required to design our algorithm. In Section 2.1 we first recall the governing ideas of the66

minimum norm residual Krylov method GCRO in a single right-hand side setting and briefly present its67

block variant in Section 2.2. Next in Section 2.3 we present how the original inexact breakdown detection68

mechanism [20] introduced for block GMRES can be applied to block GCRO as well. These two main69

ingredients are combined to develop the new algorithm IB-BGCRO-DR in Section 2.4 and its flexible70

preconditioning variant referred to as IB-BFGCRO-DR discussed in Section 2.5. In Section 3, we describe71

how to extend the original inexact breakdown detection mechanism to best adapt the computational effort72

and reach the targeted accuracy prescribed by the stopping criterion defined in terms of normwise backward73

errors for the individual solutions. In particular, we derive strategies to manage the situation where the74

different right-hand sides need to be solved with different convergence thresholds. We also present policies75

adapted to a stopping criterion based on normwise backward error on the right-hand side only (i.e. classical76

residual norm scaled by the norm of the right-hand side) or the more general one used to establish the77

backward stability of GMRES [14]. In Section 4, some remarks on computational and algorithmic aspects78

are detailed; the associated pseudocode of the IB-BGCRO-DR algorithm is presented as well. In Section 579

we present numerical experiments that illustrate the benefits of the new algorithm with both constant and80

slowly varying successive linear systems with multiple right-hand sides as well as the numerical capabilities81

of the novel search space expansion policies. Finally some concluding remarks are detailed in Section 6.82

The symbol || · || denotes the Euclidean norm defaultly for both vectors and matrices, and the Frobenius83

norm is denoted with the subscript F . The superscript H denotes the transpose conjugate and T for transpose.84

Because many notations are involved, we make choices to help the readability of the paper. The vectors are85

described by lowercase letter, matrices with multiple columns described by uppercase letter, the calligraphy86

uppercase letters like V represent the matrices whose columns are enlarged by multiple columns at each87

iteration as commonly appearing in the block Krylov context, and the uppercase letter with blackboard bold88

form like V refers to the block Krylov basis generated at each iteration. The superscript † refers to the89

Moore-Penrose inverse. For convenience of the algorithm illustration and presentation, some MATLAB90

notations are used. Without special note, a subscript j for a vector (in single right-hand case) or a matrix91

(in block case) is used to indicate that the vector or matrix is obtained at iteration j, and a positive subscript92

integer m represents the maximal iteration number of each (block) Krylov cycle. All the involved recycling93

subspaces of dimension k are described as a matrix with the subscript k whose columns form a basis. A94

matrix C ∈ Cm×` consisting of m rows and ` columns sometimes is denoted as Cm×` explicitly. The95

identity and null matrices of dimension m are denoted respectively by Im and 0m or just I and 0 when the96

dimension is evident from the context. For a matrix C ∈ Cm×`, the singular values of C are denoted by97

σ1(C) ≥ . . . ≥ σmin(m,`)(C) in descending order; furthermore we denote span(C) the space spanned by98

the columns of C.99

For simplicity and notational convenience, we drop in the rest of this paper the superscript (`) in B(`)
100

and X(`) when considering to solve the current `th family of linear systems in the entire sequence of101

families. We indicate the superscript for a family order explicitly when necessary. That is, suppose that the102
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current `th family of linear systems to be solved is103

AX = B, (1.2)

where, A ∈ Cn×n is the current square nonsingular matrix of dimension n, B = [b(1), b(2), . . . , b(p)] ∈104

Cn×p are the right-hand sides given simultaneously, and X = [x(1), x(2), . . . , x(p)] ∈ Cn×p are the105

solutions to be computed.106

2. Block GCRO-DR with partial convergence detection. For the sake of completeness of exposure,107

this section contains some possibly well-known background which enables us to introduce the numerous108

notations required to describe the new algorithm and detail its properties. In that respect, we first recall the109

main ingredients of the subspace recycling techniques existing in the minimum residual Krylov methods110

GCRO [7] and GCRO-DR [16] that are presented in the single right-hand side context. The straightforward111

extension to the multiple right-hand sides framework, that is the block formulation of GCRO-DR (BGCRO-112

DR) [15, 17, 18] is next introduced. Then the driving ideas of partial convergence detection [20] as well113

as the corresponding block Arnoldi-like recurrence equation are derived in the block GCRO-DR context114

leading to the new IB-BGCRO-DR algorithm.115

2.1. GCRO. The background of GCRO [7] is briefly reviewed first in the case of a single right-hand116

side and then extended to the block case. The GCRO method relies on a given full-rank matrix Uk ∈ Cn×k,117

and a matrix Ck as the image of Uk by A satisfying the relations118

AUk = Ck, (2.1)
CH

k Ck = Ik. (2.2)

For the solution of a single right-hand side linear system Ax = b and a given initial guess x0, the governing
idea is to first define x1 ∈ x0 + Range(Uk) that minimizes the residual norm. From x1 and its associated
residual r1, Arnoldi iterations are performed to enlarge the nested orthonormal basis of the residual spaces.
The vector

x1 = argmin
x∈x0+Range(Uk)

||b−Ax||,

is defined by

x1 = x0 + UkC
H
k r0, and r1 = (I − CkC

H
k )r0 such that r1 ∈ C⊥k .

Starting from the unit vector v1 = r1/‖r1‖, the Arnoldi procedure enables us to form an orthonormal basis119

Vm = [v1, ..., vm] of the Krylov space Km((I − CkC
H
k )A, v1) = span(v1, (I − CkC

H
k )Av1, ..., ((I −120

CkC
H
k )A)m−1v1) yielding an Arnoldi-like relation in the matrix form as121

(I − CkC
H
k )AVm = Vm+1Hm, (2.3)

where the top square part of Hm ∈ C(m+1)×m is upper Hessenberg, and only the last entry of its last row is
nonzero. Combining Equation (2.1) and (2.3) in one matrix form allows us to write a relation quite similar
to an Arnoldi equality that reads

AŴm = V̂m+1Gm,

where the columns of Ŵm = [Uk, Vm] defines a basis of the search space, columns of V̂m+1 = [ Ck, Vm+1]

are an orthonormal basis of the residual space and Gm =

[
Ik Bm

0(m+1)×k Hm

]
∈ C(k+m+1)×(k+m),

with V̂ H
m+1V̂m+1 = Im+1 and Bm = CH

k AVm. The minimum residual norm solution in the affine space
x1 + Range(Ŵm) can be written as xm = x1 + Ŵmym where

ym = argmin
y∈Ck+m

‖c−Gmy‖

and c = V̂ H
m+1r1 = (0k, ‖r1‖, 0m)T ∈ Ck+m+1 are the components of the residual associated with x1 in122

the residual space spanned by the columns of V̂m+1.123
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GCRO and GMRES [21], both belong to the family of residual norm minimization approaches and124

rely on an orthonormal basis of the residual space. In addition to sharing the Arnoldi procedure to form125

part of or all this basis, they do also share the property of “happy breakdown”; that is, if the search space126

cannot be enlarged because the new direction computed by the Arnoldi process is the null vector, then the127

solution is exactly found in the search space. This sharing of features does extend to the block context for128

the solution of linear system with multiple right-hand sides; in particular the inexact breakdown principle129

introduced in [20] in the context of block GMRES can be extended to block GCRO as discussed in the130

sequel. The purpose of the partial convergence detection is to prevent in an elegant and effective way the131

loss of numerical rank of the search space basis, that turns out to be also a way to monitor the search space132

expansion according to the final target accuracy.133

2.2. Block GCRO. The straightforward extension of the GCRO method in the block context is briefly
described below. To facilitate reading, we change the calligraphy of the notations but keep the same letters
to denote the block counterparts of the quantities involved in the method. Starting from the block initial
guess X0 = [x

(1)
0 , x

(2)
0 , . . . , x

(p)
0 ] ∈ Cn×p and associated initial residual block R0 = B − AX0, one can

define

X1 = argmin
X∈X0+Range(Uk)

||B −AX||F ,

given by134

X1 = X0 + UkC
H
k R0, and R1 = (I − CkC

H
k )R0 such that R1 ∈ C⊥k . (2.4)

For the sake of simplicity of exposure, we first assume that R1 is of full rank and denote R1 = V1Λ1 as135

its reduced QR-factorization. The orthonormal block V1 is then used to build the search space via m steps136

of block Arnoldi procedure depicted in Algorithm 1 to generate Vm = [V1, ...,Vm], whose columns form137

an orthonormal basis of Km((I − CkC
H
k )A,V1) =

⊕p
t=1Km((I − CkC

H
k )A, v

(t)
1 ). The block Arnoldi

Algorithm 1 Block Arnoldi procedure with deflation of the Ck space
1: Given a nonsingular coefficient matrix A ∈ Cn×n, choose a matrix V1 ∈ Cn×p with orthonormal

columns
2: for j = 1, 2, . . . ,m do
3: Compute Wj = (I − CkC

H
k )AVj

4: for i = 1, 2, . . . , j do
5: Hi,j = VH

i Wj

6: Wj = Wj − ViHi,j

7: end for
8: Wj = Vj+1Hj+1,j (reduced QR-factorization of Wj)
9: end for

138

procedure leads to the matrix equality139

(I − CkC
H
k )AVm = Vm+1H m, (2.5)

where H m is a block Hessenberg matrix with (i, j) block defined by Hi,j . Similarly to the single right-140

hand side case, Equation (2.1) and (2.5) can be gathered in a matrix form141

AŴm = V̂m+1Gm, (2.6)

where Ŵm = [Uk,Vm] ∈ Cn×(k+mp), V̂m+1 = [Ck,Vm+1] ∈ Cn×(k+(m+1)p) and Gm =[
Ik Bm

0(m+1)p×k H m

]
=

[
Gm

0p×(k+(m−1)p) Hm+1,m

]
∈ C(k+(m+1)p)×(k+mp) with V̂ H

m+1V̂m+1 =

Ik+(m+1)p and Bm = CH
k AVm ∈ Ck×mp, here mp = m× p. The minimum residual norm solution in the

affine space X1 + Range(Ŵm) can be written as Xm = X1 + ŴmYm where

Ym = argmin
Y ∈C(k+mp)×p

‖C − GmY ‖F ,

C = V̂ H
m+1R1 = (0p×k,Λ

T
1 , 0p×mp)T ∈ C(k+(m+1)p)×p and the columns of C are the components of the142

initial residual block R1 in the residual space V̂m+1.143
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2.3. Block GCRO with partial convergence detection. When one solution or a linear combination144

of the solutions has converged, the block Arnoldi procedure implemented to build an orthonormal basis145

of Kj((I − CkC
H
k )A,V1) needs to be modified to account for this partial convergence. This partial146

convergence is characterized by a numerical rank deficiency in the new p directions that are usually147

introduced for enlarging the search space at the next iteration. In [20], the authors present an elegant148

numerical variant that enables the detection of what is referred to as inexact breakdowns. In that approach149

the directions that have a low contribution to the residual block are discarded from the candidate set of150

vectors used to expand the search space at the next iteration, but these abandoned directions are kept and151

reintroduced in iterations afterwards if necessary. In this section, we try to give an insight and the main152

equality required to derive the IB-BGCRO-DR algorithm. We refer the reader to the original paper [20]153

for a detailed and complete description. For the sake of simplicity of exposure and easy cross-reading, we154

adopt most of the notations from [1, 20].155

Because when an partial convergence occurs, not all the space spanned by Wj is considered to build156

Vj+1 in order to expand the search space. For the sake of simplicity, we assume that p1 = p and we denote157

by pj+1 the number of columns of the block orthonormal basis vector Vj+1. Then Vj+1 ∈ Cn×pj+1 ,Wj ∈158

Cn×pj andHj+1,j ∈ Cpj+1×pj . As a consequence the dimension of the search spaceKj((I−CkC
H
k )A,V1)159

considered at the jth iteration is no longer necessarily equal to j × p but is equal to nj =
∑j

i=1 pi; that is,160

the sum of the column rank of V′is (i = 1, . . . , j).161

When no partial convergence has occurred pj+1 = pj = . . . = p1 = p, the range of Wj has always162

been used to enlarge the search space and we obtain the block relation given by Equation (2.6). To account163

for a numerical deficiency in the residual block Rj = B −AXj in a way that is described later, Robbé and164

Sadkane [20] proposed to split165

Wj = Vj+1Hj+1,j +Qj (2.7)

such that the columns of Qj and Vj+1 are orthogonal to each other and only Vj+1 is used to enlarge Vj to166

form Vj+1. We can then extend Equation (2.6) into167

AŴj = V̂jGj + [0n×k, Qj−1, Wj ], (2.8)

where Gj ∈ C(k+nj)×(k+nj) is the first k+nj rows of Gj ∈ C(k+nj+p)×(k+nj),Qj−1 = [Q1, . . . , Qj−1] ∈168

Cn×nj−1 accounts for all the abandoned directions. The matrixQj−1 is rank deficient, and it reduces to the169

zero matrix of Cn×nj−1 as long as no partial convergence has occurred.170

In order to characterize a minimum norm solution in the space spanned by Ŵj using Equation (2.8)171

we need to form an orthonormal basis of the space spanned by [V̂j ,Qj−1,Wj ]. This is performed by first172

orthogonalizing Qj−1 against V̂j , that is Q̃j−1 = (I − V̂jV̂ H
j )Qj−1. Because Qj−1 is of rank deficiency173

so is Q̃j−1 that can be written174

Q̃j−1 = Pj−1Gj−1 with
{
Pj−1 ∈ Cn×qj has orthonormal columns with V̂ H

j Pj−1 = 0,
Gj−1 ∈ Cqj×nj−1 is of full rank with qj = p− pj .

(2.9)

Next Wj , that is already orthogonal to V̂j , is made to be orthogonal to Pj−1 with Wj − Pj−1Ej where175

Ej = PH
j−1Wj ; then one computes W̃jDj with W̃j ∈ Cn×pj and Dj ∈ Cpj×pj by carrying out the176

reduced QR-factorization of the tall and skinny matrix Wj − Pj−1Ej . Eventually, the columns of the177

matrix [V̂j , Pj−1, W̃j ] form an orthonormal basis of the residual space spanned by [V̂j ,Qj−1,Wj ].178

With this new basis, Equation (2.8) writes179

A[Uk,Vj ] =[Ck,Vj ]

[
I Bj
0 Lj

]
+

[
0k, Pj−1Gj−1,

[
Pj−1, W̃j

] [ Ej

Dj

]]

=
[
Ck,Vj , [Pj−1, W̃j ]

]
Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej

0 Dj

 , (2.10)
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where Lj =


H1,1 H1,2 H1,3 · · · H1,j

H2,1 H2,2 H2,3 · · · H2,j

VH
3 Q1 H3,2 H3,3 · · · H3,j

...
...

...
. . .

...
VH

j Q1 · · · VH
j Qj−2 Hj,j−1 Hj,j

 ∈ Cnj×nj is no longer upper Hessenberg as180

soon as one partial convergence occurs, i.e., ∃`, s.t., Q` 6= 0.181

Equation (2.10) can be rewritten in a more compact form as

A[Uk,Vj ] =
[
Ck,Vj , [Pj−1, W̃j ]

]
F j ,

so that the least squares problem to be solved to compute the minimum residual norm solution associated182

with the generalized Arnoldi relation (2.10) becomes183

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, (2.11)

with184

F j =


Ik Bj

0(nj+p)×k

Lj

Gj−1 Ej

0 Dj

 =

[
Fj

Hj

]
∈ C(k+nj+p)×(k+nj) (2.12)

and Λj =

 0k×p
Λ1

0nj×p

 ∈ C(k+nj+p)×p, where Fj =

[
Ik Bj

0nj×k Lj

]
∈ C(k+nj)×(k+nj)

185

and Hj =

[
0p×k

Gj−1 Ej

0 Dj

]
∈ Cp×(k+nj).186

The numerical mechanism to select Vj+1 out of
[
Pj−1, W̃j

]
follows the same ideas as discussed in [1,187

20] in the context of block GMRES. The governing idea consists in building an orthonormal basis for the188

directions that contribute the most to the individual residual norms and make them larger than a prescribed189

threshold τ . Specifically, the singular value decomposition (SVD) is applied to the least squares residuals190

Λj −F jYj = U1,LΣ1UH
1,R + U2,LΣ2UH

2,R, (2.13)

where Σ1 contains the pj+1 singular values larger than or equal to the prescribed threshold τ . Then we191

decompose U1,L =

(
U(1)

1

U(2)
1

)
in accordance with

[
[Ck,Vj ] , [Pj−1, W̃j ]

]
, that is U(1)

1 ∈ C(k+nj)×pj+1 and192

U(2)
1 ∈ Cp×pj+1 . Because the objective is to construct an orthonormal basis, we consider a unitary matrix193

[W1,W2] such that Range(W1) = Range(U(2)
1 ). The new set of orthonormal candidate vectors used to194

expand the search space195

Vj+1 =
[
Pj−1, W̃j

]
W1 (2.14)

is the one that contributes the most to the residual norms while

Pj =
[
Pj−1, W̃j

]
W2,

is the new set of abandoned directions with orthonormal columns. Through this mechanism, directions that196

have been abandoned at a given iteration can be reintroduced, if the residual block has a large component197

along them. Furthermore, this selection strategy ensures that all the solutions have converged when p198

partial convergence have been detected. We do not give the details of the calculation and refer to Section 3199

of [20] for a complete description, but only state that via this decomposition, the main terms that appear in200

Equation (2.10) can be computed incrementally.201
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2.4. Subspace recycling policies along with partial convergence detection. So far, we have not202

made any specific assumption on the definition of the recycling space Uk except that it has full column rank.203

In the context of subspace recycling, one key point is to specify what subspace is to be recycled at restart.204

At the cost of the extra storage of k vectors, block GCRO offers more flexibility than block GMRES in the205

choice of the recycling space. This extra storage, that enables us to remove the constraints to have the search206

space included in the residual space, allows us to consider any subspace to be deflated at restart. In particular207

any of the two classical alternatives, that are Rayleigh-Ritz procedure and harmonic-Ritz procedure, can be208

considered to compute the targeted approximated eigenvectors to define Uk and Ck at restart. Considering209

a reasonable length of the current manuscript, we solely present the details of building a recycling subspace210

based on harmonic-Ritz projection here. We refer the reader to our technical report [9, Section 2.4 and 5.1]211

for the corresponding discussions on the implementation based on Rayleigh-Ritz procedure.212

DEFINITION 1. harmonic-Ritz projection.
Consider a subspaceW of Cn. Given a general nonsingular matrix A ∈ Cn×n, λ ∈ C and g ∈ W , (λ, g)
is a harmonic-Ritz pair of A with respect to the spaceW if and only if

Ag − λ g ⊥ AW

or equivalently,

∀w ∈ Range(AW), wH (Ag − λ g) = 0.

The vector g is a harmonic-Ritz vector associated with the harmonic-Ritz value λ.213

Once the maximum size of the search space has been reached, we have214

AŴm = V̂m+1Fm =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm, (2.15)

Xm = X1 + ŴmYm, (2.16)

Rm = B −AXm =
[
Ck,Vm, [Pm−1, W̃m]

]
(Λm −FmYm), (2.17)

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F , Λm = [0p×k,Λ
T
1 , 0p×nm ]T . (2.18)

Then, a restart procedure has to be implemented to possibly refine the spectral information to be recycled215

during the next cycle. Based on these equalities we will compute the approximated eigen-information as216

shown in Proposition 1 and then use it to define the new deflation basis Unew
k and its orthonormal image217

Cnew
k by A as described in Theorem 1.218

PROPOSITION 1. At restart of IB-BGCRO-DR, the update of the recycling subspace for the next219

cycle relies on the computation of harmonic-Ritz vectors Ŵmgi ∈ span(Ŵm) of A with respect to220

Ŵm = [Uk,Vm] ∈ Cn×(k+nm).221

The harmonic-Ritz pairs (θi, Ŵmgi) to be possibly used for the next restart satisfy222

FH
mFmgi = θjF

H
mV̂ H

m+1Ŵmgi, for 1 ≤ i ≤ k + nm, (2.19)

where V̂ H
m+1Ŵm =


CH

k Uk 0k×nm

V H
m Uk Inm

PH
m−1Uk

W̃H
mUk

0p×nm

 ∈ C(k+nm+p)×(k+nm).223

Proof. The proofs basically rely on some matrix computations as shortly described below:224

According to Definition 1, each harmonic-Ritz pair (θi, Ŵmgi) satisfies

∀w ∈ Range(AŴm) wH (AŴmgi − θi Ŵmgi) = 0,

which is equivalent to

(AŴm)H (AŴmgi − θi Ŵmgi) = 0.

Substituting Equation (2.15) into the above one leads to225 (
V̂m+1Fm

)H (
V̂m+1Fmgi − θi Ŵmgi

)
= 0. (2.20)
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Because the columns of V̂m+1 = [Ck,Vm, [Pm−1, W̃m]] generated at the end of each cycle are orthonormal,
Equation (2.20) becomes

FH
m Fmgi − θiF

H
mV̂ H

m+1Ŵmgi = 0,

which gives the formulation (2.19).226

227

Depending on the region of the spectrum that is intended to be deflated (e.g., subspace associated with228

the smallest or/and largest eigenvalues in magnitude), a subset of k approximated eigenvectors is chosen229

among the k + nm ones to define a space that will be used to span Unew
k . Then, we describe in Theorem 1230

the update of Unew
k and its image Cnew

k with respect to A at restart of IB-BGCRO-DR.231

THEOREM 1. At restart of the IB-BGCRO-DR, if we intend to deflate the space span([Uk,Vm]Gk)232

where Gk = [g1, ..., gk] is the set of vectors associated with the targeted eigenvalues, the matrices Unew
k233

and Cnew
k to be used for the next cycle are defined by234

Unew
k = ŴmGkR

−1 = [Uk,Vm]GkR
−1, (2.21)

Cnew
k = V̂m+1Q =

[
Ck,Vm, [Pm−1, W̃m]

]
Q, (2.22)

where Q and R are the factors of the reduced QR-factorization of the tall and skinny matrix FmGk, which235

ensure that AUnew
k = Cnew

k and (Cnew
k )

H
Cnew

k = Ik.236

Proof. LetQ and R be the factors of the reducedQR-factorization of the tall and skinny matrix FmGk.237

And right multiplying Gk on both sides of Equation (2.15) leads to AŴmGk = V̂m+1FmGk = V̂m+1QR,238

that is equivalent to AŴmGkR
−1 = V̂m+1FmGkR

−1 = V̂m+1Q, concluding the proof as239

span(ŴmGkR
−1) = span(ŴmGk) and V̂m+1Q is the product of two matrices with orthonormal240

columns so are its columns.241

242

COROLLARY 1. The residual block at restart Rnew
1 = Rold

m = B − AXnew
1 with Xnew

1 = Xold
m is243

orthogonal to Cnew
k .244

Proof. Xold
m = X1+ŴmYm where Ym solves the least squares problem (2.18) so that (Λm−FmYm) ∈245

(Range(Fm))⊥ = Null(FH
m). We also have Rold

m = V̂m+1 (Λm −FmYm), consequently246

(Cnew
k )HRold

m =
(
V̂m+1Q

)H (
V̂m+1 (Λm −FmYm)

)
=
(
V̂m+1FmGkR

−1
)H (

V̂m+1 (Λm −FmYm)
)

= R−HGH
k FH

m (Λm −FmYm)︸ ︷︷ ︸
= 0 because of (2.18)

= 0.

247

248

2.5. A variant suited for flexible preconditioning. All what have been described in the previous249

sections are naturally extended to the right preconditioning case with a fixed preconditioner M , and the250

central equality writes as251

A[Uk,MVm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm. (2.23)

The least squares problem to be solved to compute the minimum norm solution becomes

Ym = argmin
Y ∈C(k+nm)×p

‖Λm −FmY ‖F ,

and the solution is

Xm = X1 + [Uk,MVm]Ym.
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If we denote Mj a (possibly nonlinear) nonsingular preconditioning operator at iteration j and Mj(Vj)
denotes the action of Mj on a block vector Vj , Equation (2.23) translates into

A[Uk,Zm] =
[
Ck,Vm, [Pm−1, W̃m]

]
Fm with Zm = [M1(V1), ...,Mm(Vm)] ,

which writes in a more compact form as252

AẐm = V̂m+1Fm with Ẑm = [Uk,Zm] and V̂m+1 =
[
Ck,Vm, [Pm−1, W̃m]

]
. (2.24)

The solution update is Xm = X1 + [Uk,Zm]Ym. To keep the notation simple, we choose to keep the253

notation for quantities that have the same meaning as in the non-flexible case but of course they will have254

different values.255

In the context of flexible preconditioning many strategies for defining harmonic-Ritz vectors can be256

envisioned for GCRO-DR. Among those considered in [4], we follow the one with a lower computational257

cost required in solving the generalized eigenvalue problem, referred to as Strategy C in [4]. Furthermore, it258

also allows us to obtain counterpart properties in the flexible preconditioning case that are quite similar to the259

ones we have exposed in the non-preconditioned case as shown in Section 2.4. We refer to [9, Appendix A]260

for another two strategies for approximating targeted eigen-information. Proposition 2 indicates that with261

an appropriate definition of the harmonic-Ritz vectors, all the properties of IB-BGCRO-DR extend to the262

flexible preconditioning variant denoted as IB-BFGCRO-DR.263

PROPOSITION 2. At the end of a cycle of the IB-BFGCRO-DR algorithm, if the deflation space is264

built on the harmonic-Ritz vectorsWmgi ∈ span(Wm) of AẐmW†m with respect toWm = [Wk, Vm] ∈265

Cn×(k+nm) :266

1. The harmonic-Ritz pairs (θi,Wmgi) for all restarts satisfy267

FH
mFmgi = θjF

H
mV̂ H

m+1Wmgi, for 1 ≤ i ≤ k + nm, (2.25)

where V̂ H
m+1Wm =


CH

k Wk 0k×nm

V H
m Wk Inm

PH
m−1Wk

W̃H
mWk

0p×nm

 ∈ C(k+nm+p)×(k+nm),268

2. At restart, if Gk = [g1, . . . , gk] is associated with the k targeted eigenvalues, the matricesWnew
k ,269

Unew
k and Cnew

k to be used for the next cycle are updated by270

Wnew
k =WmGkR

−1 = [Wk,Vm]GkR
−1, (2.26)

Unew
k = ẐmGkR

−1 = [Uk,Zm]GkR
−1, (2.27)

Cnew
k = V̂m+1Q =

[
Ck,Vm, [Pm−1, W̃m]

]
Q,

where Q and R are the factors of the reduced QR-factorization of the tall and skinny matrix271

FmGk, ensuring AUnew
k = Cnew

k with (Cnew
k )

H
Cnew

k = Ik.272

3. The residual at restart Rnew
1 = Rold

m = B −AXnew
1 with Xnew

1 = Xold
m is orthogonal to Cnew

k .273

Proof. The proof essentially follows the same arguments as the ones developed for IB-BGCRO-DR274

described in Section 2.4, and we refer the reader to the [9, Appendix B] for the details.275

276

We also mention that a closely related numerical technique that extends IB-BGMRES-DR in the flexible277

preconditioning context can be derived similarly. We refer to [9, Appendix C] where the resulting new278

algorithm named IB-BFGMRES-DR is detailed and its properties are described.279

3. Search space expansion policies governed by the stopping criterion. In this section we280

describe a few novel policies to expand the search space that generalize the original one considered for281

inexact breakdown detection [20]. In particular we first show how numerical criteria to detect the partial282

convergence and expand the search space expansion can be tuned to ensure that a targeted threshold for a283

prescribed stopping criterion based on the individual backward error solution will be eventually satisfied.284

Secondly, we present how computational constraints can be taken into account, and combined with any of285

the previous numerical criteria, to best cope with the performance of the underlying computer architecture.286
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The partial convergence detection shortly described in Section 2.3 ensures that if all the singular values287

of the least squares residual are smaller than the threshold τ , then all the linear system residual norms are288

also smaller than τ (i.e., p partial convergences have occurred). This is due to the following inequality289

∀i ‖b(i) −Ax(i)
j ‖ ≤ ‖B −AXj‖ = ‖Λj −F jYj‖ = σmax(Λj −F jYj) < τ, (3.1)

which follows from the fact that the 2-norm of a matrix is an upper bound of the 2-norm of its individual290

columns and V̂j+1 has orthonormal columns.291

3.1. Search space expansion policy governed by ηb. A classical stopping criterion for the solution292

of a linear system Ax = b is based on backward error analysis and consists in stopping the iteration when293

ηb(xj) =
‖b−Axj‖
‖b‖

≤ ε. (3.2)

This criterion was considered in [1] where it was consequently proposed to define τ = ε min
i=1,...,p

‖b(i)‖.294

With this choice, when the iteration complies with Equation (3.1), we have295

ηb(x
(i)
j ) ≤

‖b−Ax(i)
j ‖

min
i=1,...,p

‖b(i)‖
≤ ε. (3.3)

When the different right-hand sides have very different norms in magnitude, the subspace expansion296

associated with this criterion might not be effective as the upper bound in Equation (3.3) will not be297

tight. This leads to enlarging the search space with directions that are not relevant (generating useless298

computation). In that context a better choice would be to better focus on the space expansion to reduce299

more the residual associated with right-hand side of large norm. For that purpose, the idea is to perform the300

SVD not directly on the least squares residual but on its scaled least squares residual.301

PROPOSITION 3.1. Performing the SVD of the scaled least squares residuals (Λj −F jYj)Db,ε with302

threshold τ = 1 and Db,ε = ε−1diag(‖b(1)‖−1, · · · , ‖b(p)‖−1) ensures that when p partial convergences303

have occurred, so that the search space cannot be enlarged, the current individual iterates comply with the304

stopping criterion (3.2).305

Proof. This is a direct consequence of the following inequalities

max
i=1,..,p

‖b(i) −Ax(i)
j ‖

ε‖b(i)‖
≤ ‖(B −AXj)Db,ε‖ = ‖(Λj −F jYj)Db,ε‖ ≤ 1

that implies ∀i ηb(x(i)
j ) ≤ ε.306

307

In some applications all the solutions associated with a block of right-hand sides do not need to be308

solved with the same accuracy. That is, we may have to solve a family of right-hand sidesB = [b(1), ..., b(p)]309

with individual convergence thresholds ε(i) for the solution associated with each right-hand side b(i) (i =310

1, · · · , p), thus we have a more general version of Equation (3.2) as311

ηb(i)(x
(i)
j ) =

‖b(i) −Ax(i)
j ‖

‖b(i)‖
≤ ε(i). (3.4)

In that context, the subspace expansion policy can be easily adapted to ensure the convergence for each312

individual accuracy.313

COROLLARY 2. Performing the SVD of the scaled least squares residuals (Λj − F jYj)Db,εi314

with threshold τ = 1 and Db,εi = diag((ε1‖b(1)‖)−1, · · · , (εp‖b(p)‖)−1) ensures that when p partial315

convergences have occurred the current individual iterates comply with the stopping criterion (3.4).316

3.2. Search space expansion policy governed by ηA,b. One can also adapt the expansion policy317

described in the previous section to the situation where the stopping criterion is based on the normwise318

backward error on A and b, defined by319

ηA,b(xj) =
‖b−Axj‖

‖b‖+ ‖A‖ ‖xj‖
≤ ε. (3.5)
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It suffices to define accordingly the scaled least squares residuals in the SVD that is involved in the search320

space expansion. We notice that this type of stopping criterion will have a computational penalty as the321

iterates of all individual iterations have to be computed to calculate their norm.322

COROLLARY 3. Performing the SVD of the scaled least squares residual (Λj − F jYj)DA,b,ε with323

threshold τ = 1 and DA,b,ε = ε−1diag((‖A‖‖x(1)
j ‖ + ‖b(1)‖)−1, · · · , (‖A‖‖x(p)

j ‖ + ‖b(p)‖)−1) ensures324

that when p partial convergences have occurred, the current individual iterates comply with the stopping325

criterion (3.5).326

We do not develop further these ideas but similarly we could define expansion policies where for each327

solution we can select either ηb or ηA,b as stopping criterion with individual threshold setting.328

The occurrence of p partial convergences is a sufficient condition that ensures the convergence of the329

p solution vectors, but the convergence might happen before and a more classic stopping criterion can be330

accommodated at a low computational cost. Given the norms of true residuals are very close to those of the331

least squares residuals when the loss of orthogonality of the generated block Krylov basis is not too serious,332

one can also check the convergence by looking at the norm of the least squares residual, which is easy to333

compute. Let QLS
j RLS

j be a full QR-factorization of F j (i.e., QLS
j is unitary) , then334

Λj −F jYj = QLS
j

(
0(nj+k)×p

R`s
j

)
, (3.6)

where R`s
j ∈ Cp×p are the last p rows of (QLS

j )HΛj so that ‖b(i) − Ax(i)
j ‖ = ‖R`s

j (:, i)‖. Those residual335

norm calculations are part of the stopping criterion based on ηb or ηA,b336

3.3. Search space expansion policy governed by computational performance. Based on any of337

these expansion policies, the abandoned directions at a given iteration might be reintroduced in a subsequent338

one, thereby we can trade on the considered numerical policy and select for the subspace expansion only339

a subset of those eligible. In particular, it might be relevant to choose a prescribed block size pCB (here340

the superscript CB stands for Computational Blocking) that is suited to best cope with the computational341

features on a given platform rather than selecting the numerical block size pj+1 defined as the number342

of singular values larger than or equal to the prescribed threshold τ = 1. In that respect, we consider a343

subspace expansion policy so that the block size at the end of step j is defined as pCB
j+1 = min(pCB , pj+1).344

We refer this variant as Inexact Breakdown Block GCRO-DR with computational blocking (denoted by345

IB-BGCRO-DR-CB).346

Note that all the subspace expansion policies discussed in Section 3 could be applied to any other347

block minimum residual norm methods equipped with the partial convergence detection such as the IB-348

BGMRES [20] and IB-BGMRES-DR [1] algorithms.349

4. Remarks on some computational and algorithmic aspects. The mathematical description made350

in the previous section assumes exact calculation. In practice, the numerical behavior of the algorithms does351

depend on the numerical algorithms selected to perform the computation in finite precision arithmetic. In352

particular, all the above descriptions assume the orthonormality of the residual basis; it ensures the norm353

equality of the true linear system residual and their least squares counterpart which governs the numerical354

search space expansion policies described in the previous section. In our implementation, for the block355

Arnoldi procedure (See Algorithm 1), we consider the block Modified Gram-Schmidt (BMGS) algorithm356

with reduced QR factorization based on Householder reflections of the final tall and skiny block (referred357

to as (BMGS ◦ HouseQR) in [3]). In addition, at restart the re-orthogonalization of the recyling space Ck358

and initial block residual vector [V1, P0] in Equation (4.2) is performed a vector at a time using Modified359

Gram-Schmidt. For the sake of conciseness, we do not necessarily give the full technical details of what we360

briefly expose in the core of the paper but sometimes refer to a particular part in the appendix.361

4.1. Inexact breakdown and re-orthogonalization at restart. For the sake of simplicity of362

exposure, in the previous sections we made the assumption that the initial residual block was of full rank. In363

practice, this constraint can be removed by applying the partial convergence detection to the initial residual364

block. In that case, only a subspace of the space spanned by the columns of the initial residual block will365

be selected to define the first search space and the abandoned directions are kept in the basis of the residual366

space. This has two main consequences:367

1. The first iteration needs some extra attention to set up the initial basis V1 and abandoned directions368

P0 defined in Equation (2.9).369
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2. A consequence of having abandoned directions in the first search space is that the projection of the370

initial residual block in the residual space, that defines the right-hand side of the least squares371

residual solved at each block iteration, will no longer have the nested block structure that is372

expanded by a p× p zero block at each block iteration as presented in Equation (2.18).373

Without loss of generality, let us present the partial convergence detection and re-orthogonalization at374

restart where the recycling subspace Unew
k and Cnew

k are defined by Equation (2.21) and (2.22), so that375

mathematically AUnew
k = Cnew

k and (Cnew
k )

H
Cnew

k = Ik and the initial residual block Rnew
1 = R1 in376

Corollary 1 is orthogonal to Cnew
k . For a prescribed stopping criterion and convergence threshold, let us377

denote Dε the diagonal matrix used to select the space expansion described in the Section 3. Let378

R1Dε = [Vnew
1 , Pnew

0 ]

[
Σp1

Σq1

]
VH

R1
= [Vnew

1 , Pnew
0 ]Λ̂

′

1, (4.1)

where Vnew
1 ∈ Cn×p1 , Pnew

0 ∈ Cn×q1 with p1 + q1 = p, and Σp1 contains the p1 singular values of R1Dε379

larger than or equal to the prescribed τ , and Σq1 the ones smaller than τ .380

We first perform an MGS re-orthogonalization of the columns of [Cnew
k , [Vnew

1 , Pnew
0 ]] that writes381

[Cnew
k , [Vnew

1 , Pnew
0 ]] = [Ck, [V1, P0]]

[
R11 R12

R22

]
, (4.2)

where all the columns of [Ck, [V1, P0]] are orthogonal to each other,
[
R11 R12

R22

]
∈ C(k+p)×(k+p) is an382

upper triangular matrix with R11 ∈ Ck×k and R22 ∈ Cp×p. Next, we update Uk = Unew
k R−1

11 to satisfy383

Equation (2.1), and V1 = V1 will serve to span the first search space and P0 will be abandoned for this first384

block iteration that will be run as follows.385

1. Form W1 = AV1 and orthogonalize it (using BMGS ◦ HouseQR) against the set of orthonormal386

vectors that are part of the residual space [Ck,V1, P0] which enables the computation of the387

entries of B1 = CH
k W1, L1,1 = VH

1 W1 and E1 = PH
0 W1.388

389

2. The resulting block W̄1 formally writes W̄1 = W1 −CkB1 −V1L1,1 − P0E1 with W̄1 = W̃1D1390

being its reduced QR-factorization.391

3. In matrix form the above relations also writes

W1 = AV1 =
[
Ck,V1, [P0, W̃1]

]
B1

L1,1

E1

D1

 .
So that we have the first Arnoldi-like relation392

A[Uk,V1] =
[
Ck,V1, [P0, W̃1]

]
F 1 (4.3)

with393

F 1 =

 Ik B1

0(p1+p)×k
L1,1

H̃1

 ∈ C(k+p1+p)×(k+p1) and H̃1 =

[
E1

D1

]
∈ Cp×p1 .

4. Next, define the minimum norm solution X2 = X1 + [Uk,V1]Y and notice that R1 belongs394

to the space [Ck,V1, P0, W̃1] where its components in this orthogonal basis are given by395

[Ck,V1, P0, W̃1]HR1. From Equation (4.3) we have396

‖B −AX2‖F = ‖R1 −A [Uk,V1]Y ‖F = ‖R1 − [Ck,V1, P0, W̃1]F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]HR1 −F 1Y ‖F
= ‖[Ck,V1, P0, W̃1]H [Vnew

1 , Pnew
0 ]Λ̂1 −F 1Y ‖F ,

and then from Equation (4.1), we have397

R1 = [Vnew
1 , Pnew

0 ]Λ̂
′

1D
−1
ε = [Vnew

1 , Pnew
0 ]Λ̂1 with Λ̂1 = Λ̂

′

1D
−1
ε . (4.4)
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So that from (4.2), the right-hand side of the above least squares residual reads398

Λ1 = [Ck,V1, P0, W̃1]H [Vnew
1 , Pnew

0 ]Λ̂1 = [Ck,V1, P0, W̃1]H [CkR12 + [V1, P0]R22]Λ̂1

=
(

[Ck,V1, P0, W̃1]HCkR12 + [Ck,V1, P0, W̃1]H [V1, P0]R22

)
Λ̂1

=

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1 0k×q1
Ip1 0p1×q1

0q1×p1
Iq1

0p1×p1
0p1×q1

R22Λ̂1 ∈ C(k+p1+p)×p. (4.5)

5. Compute Y1 the solution of the first new least squares problem399

Y1 = argmin
Y ∈C(k+p1)×p

‖Λ1 −F 1Y ‖F .

6. Execute the search space expansion policy following the IB principles400

(a) compute the SVD of the scaled least squares residual401

(Λ1 −F 1Y1)Dε = U1,LΣ1VH
1,R + U2,LΣ2VH

2,R, where σmin(Σ1) ≥ 1 > σmax(Σ2).

(b) Compute W1 and W2 such that Range(W1) = Range(U(2)
1 ) ∈ Cp×p2 with U1,L =402 (

U(1)
1

U(2)
1

)
∈ C(k+p1+p)×p2 , [W1, W2] is unitary and W2 ∈ Cp×q2 with p2 + q2 = p.403

404

(c) Compute the new orthonormal matrices V2 and P1 as

V2 = [P0, W̃1]W1 ∈ Cn×p2 , P1 = [P0, W̃1]W2 ∈ Cn×q2 ,

as well as the last block row matrix L2,: of L 1 and G1 as

L2,: = WH
1 H̃1 ∈ Cp2×p1 , G1 = WH

2 H̃1 ∈ Cq2×p1 .

7. Set L 1 =
(

L1

L2,:

)
∈ C(p1+p2)×p1 = Cn2×p1 .405

Whenever a partial convergence is detected in R1, some of its components (along Pnew
0 ) are firstly406

abandoned but could be reintroduced in some subsequent iterations. One of the consequences, is that the last407

q1 columns of the least squares right-hand side problem will evolve from one iteration to the next, depending408

on how some of the Pnew
0 directions will be re-introduced in the search space along the iterations. There is409

a way to incrementally update the least squares right-hand side to be discussed in the next proposition.410

PROPOSITION 3. At each iteration of IB-BGCRO-DR, the new least squares problem reads411

Yj+1 = argmin
Y ∈C(k+nj+1)×p

∥∥Λj+1 −F j+1Y
∥∥
F
, Λj+1 ∈ C(k+nj+1+p)×p, j = 0, 1, 2, · · · (4.6)

with the updated right-hand sides being412

Λj+1 =

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1
0pj+1×q1

R22 Λ̂1, (4.7)

where Φj+1 =

 Φj(1 : nj , :)

[W1,W2]
H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]  ∈ C(nj+p)×q1 for j = 0, 1, 2, · · · , with413

Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 , qj = p − pj(j > 0) and [W1,W2] is unitary as defined in the search space414

expansion algorithm based on IB principles, R12 ∈ Ck×p and R22 ∈ Cp×p are two block components of415

the upper triangular matrix as shown in the right-hand side of Equation (4.2).416

Proof. We refer the reader to Appendix A for the proving details.417

418

Based on the above discussions, the IB-BGCRO-DR algorithm with partial convergence detection in the419

initial residual block and updated right-hand sides of the least squares residual is presented in Algorithm 2420

for solving a series of linear systems with slowly-changing left-hand sides.421
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Algorithm 2 IB-BGCRO-DR for slowly-changing left-hand sides and massive number of right-hand sides
Require: A ∈ Cn×n left-hand side of current family (supposed not vary much compared to previous one)
Require: B ∈ Cn×p the block of right-hand-sides and X0 ∈ Cn×p the block initial guess
Require: m maximum number of Arnoldi step within a cycle
Require: pCB a given constant number satisfying 1 ≤ pCB ≤ p for computational blocking
Require: Dε ∈ Cp×p a diagonal matrix used to select the space expansion described in the Section 3
Require: Uk, Ck ∈ Cn×k the recycling subspaces supposed be empty for the first family and obtained after

solving previous slow-changing family
1: Compute R0 = B −AX0

/* Some families have already been solved ? */
2: if the recycling space is not empty, Uk 6= 0 then
3: Apply the reduced QR-factorization to AUk for updating Uk and Ck for the current family such that

the Uk and Ck satisfy Equation (2.1) and (2.2). Compute R1 and X1 as described in Equation (2.4)
4: else
5: Set R1 = R0, X1 = X0, Uk = 0, Ck = 0
6: end if

/* Loop over the restarts */
7: while the stopping criterion based on Section 3.1 or 3.2 is not met do
8: Apply partial convergence detection in the scaled (least squares) residual block following Section 4.1

/* Arnoldi loop */
9: for j = 2, 3, . . . ,m do

10: Orthogonalize AVj against Ck as Wj = (I − CkC
H
k )AVj . Then orthogonalize Wj against

previous block orthonormal vector Vj = [V1, . . . ,Vj ] as

Wj = AVj−CkC
H
k AVj−VjL1,1:j , where L1,1:j = V H

j (Wj) = V H
j (AVj) is a block column matrix

11: Set Lj =
[
L j−1, L1,1:j

]
∈ Cnj×nj , Bj =

[
Bj−1, CH

k AVj

]
∈ Ck×nj

12: Orthogonalize Wj against Pj−1 and carry out its reduced QR-factorization as

W̃jDj = Wj − Pj−1Ej , where Ej = PH
j−1Wj

13: Compute Yj by solving the least squares problem described in Equation (2.11) (or (4.6)) with F j

shown in Equation (2.12) composed by Fj and Hj but with the updated right-hand side Λj as
shown in Equation (4.7) instead

14: if the stopping criterion is met then
15: return Xj = X1 + [Uk,Vj ]Yj , Uk and Ck

16: end if
17: Singular value decomposition of the residuals scaled by Dε

(Λj −F jY )Dε = U1,LΣ1VH
1,R + U2,lΣ2VH

2,R with σmin(Σ1) ≥ 1 > σmax(Σ2)

18: if Computational blocking of Section 3.3 is activated then
19: U1,L = U1,L(:, 1 : pCB

j ) with pCB
j = min(pCB , nlΣ1

), nlΣ1
refers to column number of Σ1

20: end if
21: Following item 6 described in Section 4.1 for computing W1 and W2

22: Compute orthonormal matrices Vj+1 and Pj , the last block row matrix Lj+1,: of L j , and Gj as

Vj+1 =
[
Pj−1, W̃j

]
W1, Pj =

[
Pj−1, W̃j

]
W2,Lj+1,: = WH

1 Hj ,Gj = WH
2 Hj ,L j =

(
Lj

Lj+1,:

)
23: end for

/* Restart procedure */
24: Compute the solution Xm as described in Equation (2.16) and residual Rm according to (2.17)
25: Compute the targeted harmonic-Ritz vectors Gk = [g1, ..., gk] by solving the generalized eigenvalue

problem (2.19) described in Proposition 1
26: Update the values of Uk and Ck respectively by Equation (2.21) and (2.22) described in Theorem 1
27: Restart with X1 = Xm, V̂m+1, R

LS
1 = Λm −FmYm (R1 = Rm = V̂m+1R

LS
1 )

28: end while
29: return Xj for approximation of the current family; Uk, Ck for the next family to be solved
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4.2. Solution of the least squares problem and cheap SVD calculation of the scaled least squares422

residual. Computing the fullQR-factorization of the matrices involved in the least squares problems allows423

us to reuse its Q factor to compute the SVD of the least squares residual using a QR-SVD algorithm such424

that the actual SVD decomposition is performed on a p× p block R`s
j Dε, where R`s

j appeared in the right-425

hand side of Equation (3.6), at each iteration (we refer to Appendix B for the details of this calculation).426

Note that this observation applies naturally to the IB-BGMRES [20] and IB-BGMRES-DR [1] algorithms427

as well.428

5. Numerical experiments. In the following sections we illustrate different numerical features of the429

novel algorithm introduced above. For the sake of comparison, in some of the experiments we also display430

results of closely related block methods such as BGCRO-DR [17,18,22,29] or IB-BGMRES-DR [1]. All the431

numerical experiments have been run using a MATLAB prototype, so that the respective performances of the432

algorithms are evaluated in term of number of matrix-vector products, denoted asmvps (and preconditioner433

applications in the preconditioned case) required to converge.434

For each set of block of right-hand sides, referred to as a family, the block initial guess is equal to435

0 ∈ Cn×p, where p is the number of right-hand sides. The block right-hand sideB = [b(1), b(2), . . . , b(p)] ∈436

Cn×p is composed of p linearly independent vectors generated randomly (using the same seed when block437

methods are compared). While any part of the spectrum could be considered to define the recycling space we438

consider for all the experiments the approximated eigenvectors associated with the k smallest approximated439

eigenvalues in magnitude. The maximum dimension of the search space in each cycle is set to be md =440

15 × p. To illustrate the potential benefit of IB-BGCRO-DR when compared to another block solver, we441

consider the overall potential gain when solving a sequence of ` families defined as442

Gain (`) =

∑`
s=1 #mvps (method)(s)∑`

s=1 #mvps (IB-BGCRO-DR)(s)
. (5.1)

5.1. Benefits of recycling between the families. To illustrate the benefits of recycling spectral443

information from one family to the next as well as the computational saving due to the partial convergence444

detection mechanism, we first report on experiments with BGCRO-DR, IB-BGCRO-DR and IB-BGMRES-445

DR on a series of linear systems with constant left-hand side. Following the spirit of the test examples446

considered in [12], we consider a bidiagonal matrix of size 5000 with upper diagonal unity so that its447

spectrum is defined by the diagonal entries: 0.1, 1, 2, 3, . . . , 4999, which is denoted as Matrix 1. We448

consider experiments with a family size p = 20, the size of the recycled space k = 30 and the maximal449

dimension of the search space md = 300.
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FIG. 5.1. Comparison history for Section 5.1. IB-BGCRO-DR with BGCRO-DR and IB-BGMRES-DR by solving
Matrix 1 (p = 20, md = 300 and k = 30). Left: convergence histories of the largest/smallest backward errors ηb(i) at
each mvps for 2 consecutive families. Right: varying blocksize (i.e. pj) along the iterations.

450

In the left plot of Figure 5.1 we display the convergence histories for solving two consecutive families451

with the ηb-based stopping criterion. Several observations can be made. Because IB-BGMRES-DR, IB-452

BGCRO-DR and BGCRO-DR do not have a deflation space to start with for the first family, the convergence453

histories of these three solvers overlap as long as no partial convergence is detected. After this first partial454
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convergence, the convergence rate of IB-BGCRO-DR and IB-BGMRES-DR becomes faster (in terms of455

mvps) than that of BGCRO-DR, and the former two convergence histories mostly overlap as the two456

IB solvers remain mathematically equivalent. For the second and subsequent families, the capability457

to start with a deflation space shows its benefit for BGCRO-DR and IB-BGCRO-DR. It is because IB-458

BGMRES-DR needs a few restarts to capture this spectral information again and refines it in its subsequent459

search spaces construction process; eventually it exhibits a convergence rate similar to the BGCRO-DR460

counterpart. For the sake of comparison and to illustrate the benefit of the partial convergence detection we461

also display the convergence histories of BGCRO-DR which always requires more mvps compared to its462

IB counterpart. Those extra mvps mostly concur to improve the solution quality for some right-hand sides463

beyond the targeted accuracy.464

To visualize the effect of the partial convergence detection, we also report in the right plot of Figure 5.1465

the size of search space expansion pj as a function of the iterations. Because BGCRO-DR does not466

implement the partial convergence detection, its search space is increased by p = 20 at each iteration.467

For the other two block IB-solvers, the block size monotonically decreases down to 1. Note that the partial468

convergence detection is implemented in the initial (least squares) residual block in IB-BGCRO-DR, thus469

its block size does not jump back to the original block size p at restart. By construction, IB-BGMRES-DR470

implements the partial convergence detection at restart so that the same observation applies.471

Number of families Method mvps its

2
BGCRO-DR 6640 332
IB-BGMRES-DR 5404 343
IB-BGCRO-DR 4928 299

20
BGCRO-DR 56940 2847
IB-BGMRES-DR 53772 3454
IB-BGCRO-DR 45652 2637

TABLE 5.1
Numerical results in both terms of mvps and its for Section 5.1 with Matrix 1 (p = 20, md = 300 and k = 30).

A summary of the mvps and the number of block iterations (referred to as its) is given in Table 5.1472

that shows the benefit of using IB-BGCRO-DR.473

In the rest of this paper, the Matrix 1 is chosen as the constant left-hand side in the following474

Section 5.2- 5.4, in which the related parameters are likewise set to be p = 20, k = 30 and md = 300475

defaultly.476

5.2. Subspace expansion governed by the convergence criterion ηA,b. In this section we show477

the capability of the novel subspace expansion policy to drive the individual backward errors ηA,b down478

to different accuracies and its benefit with respect to the original BGCRO-DR method. In Figure 5.2, we479

display the convergence histories of the IB and IB-free method for three different convergence thresholds,480

from the less stringent on the left to the most stringent on the right. We can firstly observe that the first481

iteration, where the partial convergence detection starts to act, depends on the targeted accuracy as it can482

have been expected from the associated threshold on the singular values of the least squares residual. The
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FIG. 5.2. Convergence histories of the largest/smallest ηA,b(i)(x
(i)
j ) at each mvps for 2 consecutive families for

Section 5.2 with different convergence thresholds. Comparison of IB-BGCRO-DR with BGCRO-DR by solving Matrix 1
(p = 20, md = 300 and k = 30).
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483

second interesting observation is that IB-BGCRO-DR is able to decrease ηA,b down to a very low value484

close to the machine epsilon, that is O(10−16). This latter result mostly reveals the orthogonality quality485

of the residual space basis computed by (BMGS ◦ HouseQR) in the block Arnoldi implementation and the486

re-orthogonalization using MGS between all the columns of the recycling subspace Ck and the initial block487

Arnoldi basis at restart. This ensures that the least squares residual norms to be quite close to the linear488

system residual ones. This latter fact ensures the relevance of the space expansion policy, that monitors the489

linear system residual norms through the least squares residual ones. To illustrate the orthonormal quality490

of the basis V̂j+1 =
[
Ck,Vj , [Pj−1, W̃j ]

]
, we display in Figure 5.3 the loss of orthogonality along mvps491

that is defined by492

Loss-Orth =
∥∥∥V̂ H

j+1V̂j+1 − Ij+1

∥∥∥ . (5.2)

In a quite similar manner to MGS-GMRES, that is backward-stable [14], it can be observed that the loss of493

orthogonality mostly appears when the solutions of the linear systems converge. Note that without the re-494

rothogonalization at restart, the loss of orthogonality tends to be accumulated along restart which prevents495

the value of Loss-Orth to be close to the machine epsilon. Refer to [9, Figure 5.7] for the corresponding496

results without applying re-orthogonalization to all the columns of [Ck, [V1, P0]] at restart.497
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FIG. 5.3. Loss-Orth defined in Equation (5.2) of GCRO-variants with stopping criterion based on ηA,b(i)(x
(i)
j ) at

eachmvps for 2 consecutive families for Section 5.2 with different convergence thresholds. Comparison of IB-BGCRO-
DR with BGCRO-DR for solving Matrix 1 (p = 20, md = 300 and k = 30).

5.3. Subspace expansion policy for individual convergence thresholds for ηb. To illustrate this498

feature, we consider a family of p right-hand sides and a convergence threshold 10−4 for the first p/2499

right-hand sides and 10−8 for the last p/2 ones. As an estimate of the computational benefit of this500

feature, we also compare with calculations where all the right-hand sides are solved with the most stringent501

threshold, that is 10−8. We display in the left part of Figure 5.4, the convergence histories for 3 successive502

families. The variant that controls the individual threshold is denoted as IB-BGCRO-DR-VA, where VA503

stands for Variable Accuracy. It can be seen that the numerical feature works well and that the envelope504

of the backward errors has the expected shape, that is, the minimum backward error goes down to 10−8
505

while the maximum one (associated with the first p/2 solutions) only goes down to 10−4. If we compare506

the convergence histories of IB-BGCRO-DR and IB-BGCRO-DR-VA, it can be seen that the slope of IB-507

BGCRO-DR-VA is deeper than that of IB-BGCRO-DR once the first p/2 solutions have converged; after508

this point IB-BGCRO-DR-VA somehow focuses on the new directions (produced by mvps given for the x-509

axis) to reduce the residual norms of the remaining p/2 solutions that have not yet converged. The right plot510

of Figure 5.4 shows the computational gain induced by the individual control of the accuracy compared to511

the situation where all the right-hand sides would have been solved to the most stringent one if this feature512

had not been designed. In this case the individual monitoring of the convergence saves around 45 % of513

mvps on this example. Those results are summarized in Table 5.2.514

We refer to [9, Figure F.1 and Table F.1 of Appendix F] for an illustration of extending such individual515

control to the block solver IB-BGMRES-DR that can also accommodate this feature.516

5.4. Expansion policy governed by computational performance. As discussed in Section 3.3,517

only a subset of the candidate directions exhibited by the partial convergence detection mechanism can518

be eventually selected to expand the search space at the next block iteration; we denote this maximum size519
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FIG. 5.4. Comparison of IB-BGCRO-DR to IB-BGCRO-DR-VA for Section 5.3 with Matrix 1 (p = 20, md = 300
and k = 30). Left: convergence histories of the largest/smallest backward errors ηb(i) at each mvps for 3 consecutive
families. Right: Gain (`) defined in Equation (5.1) of IB-BGCRO-DR-VA to IB-BGCRO-DR versus family index.

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-VA 5119 395

30
IB-BGCRO-DR 68263 3932
IB-BGCRO-DR-VA 47143 3566

TABLE 5.2
Numerical results of IB-BGCRO-DR with fixed/varying accuracy for each right-hand side in terms of mvps and

its for Section 5.3, where the coefficient matrix is Matrix 1 with p = 20, md = 300 and k = 30.

as pCB and refer to this variant as IB-BGCRO-DR-CB where the CB stands for Computational Blocking.520

In Table 5.3 we show the effect of this algorithmic parameter on mvps and its for the solutions of 3 and 30521

families with Matrix 1 when pCB varies from 1 to 15 for a number of right-hand sides p = 20. Generally,522

the smaller pCB is, the smaller mvps, but the larger its. Although reported only on one example this trend523

has been observed in all our numerical experiments. Depending on the computational efficiency or cost524

of the mvps with respect to the computational weight of the least squares problem and SVD of the scaled525

least squares residual, this gives opportunities to monitor the overall computational effort to the complete526

solution.527

Number of families Method mvps its

3
IB-BGCRO-DR 7182 428
IB-BGCRO-DR-CB (pCB = 15) 6934 467
IB-BGCRO-DR-CB (pCB = 10) 6941 668
IB-BGCRO-DR-CB (pCB = 5) 6968 1312
IB-BGCRO-DR-CB (pCB = 1) 6966 6444

30
IB-BGCRO-DR 68262 3932
IB-BGCRO-DR-CB (pCB = 15) 65364 4303
IB-BGCRO-DR-CB (pCB = 1) 65823 60836

TABLE 5.3
Numerical results of IB-BGCRO-DR and IB-BGCRO-DR-CB for pCB = 1, 5, 10, 15 in terms of mvps and its for

Section 5.4, where the coefficient matrix is Matrix 1 with p = 20, md = 300 and k = 30.

Similar to previous subsections, we notice that this subspace expansion policy is also applicable to528

IB-BGMRES-DR and we refer to [9, Figure G.1 and Table G.1 of Appendix G] for an illustration.529

5.5. Behavior on sequences of slowly-varying left-hand sides problems. The example used in530

this section is from a finite element fracture mechanics problem in the field of Fatigue and Fracture of531

Engineering Components (denoted as FFEC collection), which is fully documented in [16, Section 4.1].532
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Over 2000 linear systems of size 3988× 3988 from FFEC collection need to be solved in order to capture533

the fracture progression, and among them 151 linear systems 400− 550 representing a typical subset of the534

fracture progression in which many cohesive elements break are examined in [16]. The solutions of these535

linear systems have been investigated using both GCRO-DR and GCROT (generalized conjugate residual536

with inner orthogonalization and outer truncation), and we refer to [8] for a comprehensive experimental537

analysis. For our numerical experiments we borrow the ten linear systems numbered 400 − 409 from this538

FFEC collection. For each set of linear system we select the matrix and the corresponding right-hand sides539

that we expand to form a block of p = 20 by appending random linearly independent vectors.540

We display the convergence histories for solving the first 3 consecutive families of such linear systems541

in the left plot of Figure 5.5. For the solution of the first linear system, the observations on the IB and DR542

mechanisms discussed in Section 5.1 apply. Even though the coefficient matrix has changed, the recycling543

spectral information computed for the previous family still enables a faster convergence at the beginning544

of the solution of the next one. Specifically, for the solution of the first family the convergence histories of545

the two methods fully overlap until the first partial convergence occurs, as until this step the two methods546

are identical. From the initial slope of the subsequent families, it can be seen that the sequence of matrices547

are close enough to ensure that the recycled space from one system to the next still makes benefit to the548

convergence. The benefit of the partial convegence detection is also illustrated on that example since IB-549

BGCRO-DR still outperforms BGCRO-DR. The overall benefit in term of mvps saving is illustrated in550

the right plot on a sequence of 10 linear systems, where the saving is more than 65 % with respect to551

BGCRO-DR. Corresponding results are summarized in Table 5.4.552
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FIG. 5.5. Convergence results of IB-BGCRO-DR and BGCRO-DR on a sequence of slowly-changing left-hand sides
described in Section 5.5, where the coefficient matrices are built on FFEC with p = 20, md = 300 and k = 15.

Number of families Method mvps its

3
BGCRO-DR 13050 651
IB-BGCRO-DR 7489 540

10
BGCRO-DR 39935 1990
IB-BGCRO-DR 24200 1658

TABLE 5.4
Numerical results in terms of mvps and its for Section 5.5 with p = 20, md = 300 and k = 15.

5.6. A variant suited for flexible preconditioning. In this section, we illustrate the numerical553

behavior of the flexible variant IB-BFGCRO-DR that we have derived in Section 2.5 and make comparison554

with closely related variants namely BFGCRO-DR (a straightforward block extension of FGCRO-DR [5]).555

We consider a representative quantum chromodynamics (QCD) matrix from the University of Florida556

sparse matrix collection [6]. It is the conf5.4-00l8x8-0500 matrix denoted as BQCD of size 49152 ×557

49152 with the critical parameter κc = 0.17865 as a model problem. Thirty families of linear systems are558

constructed that are defined as A(`) = I − κc(`)BQCD with 0 ≤ κc(`) < κc and ` = 1, 2, . . . , 30. We559

use the MATLAB function linspace(0.1780, 0.1786, 30) to generate the parameters κc(`) for a sequence of560

matrices and observe that those matrices have the same eigenvectors associated with shifted eigenvalues. A561
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sequence of p = 12 successive canonical basis vectors are chosen to be the block of right-hand sides for a562

given left-hand side matrix following [16, Section 4.3] so that the complete set of the right-hand sides for563

the ` linear systems reduces to the first p× ` columns of the identity matrix. This choice could be supported564

by the fact that the problem of numerical simulations of QCD on a four-dimensional space-time lattice for565

solving QCD ab initio (cf. [16, Section 4.3]) has a 12 × 12 block structure, and then a system with 12566

right-hand sides related to a single lattice site is often of interest to solve.567

The flexible preconditioner is defined by a 32-bit ILU(0) factorization of the matrix involved in the568

linear system. In a 64-bit calculation framework, the preconditioning consists in casting the set of directions569

to be preconditioned in 32-bit format, performing the forward/backward substitution in 32-bit calculation570

and casting back the solutions in 64-bit arithmetic. The rounding applied to the vectors, cast from 64 to571

32-bit format, has a nonlinear effect that makes the preconditioner nonlinear.572
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FIG. 5.6. Behavior of the BGCRO-DR-solvers with flexible preconditioner on families of QCD matrices described
in Section 5.6 with p = 12, md = 180 and k = 90. Left: convergence histories of the largest/smallest backward errors
ηb(i) at each mvps for 3 consecutive families. Right: Gain (l) of the block methods with respect to IB-BFGCRO-DR
along family index.

Number of families Method mvps its

3
BFGCRO-DR 1944 147
IB-BFGCRO-DR 1838 148

30
BFGCRO-DR 18774 1347
IB-BFGCRO-DR 18054 1350

TABLE 5.5
Numerical results in terms of mvps and its for Section 5.6 with p = 12, md = 15× p = 180 and k = 90.

For those experiments, we attempt to favor the recycling of the space, because the matrices share the573

same invariant space, so that we choose a relative large value for k that is k = md/2. We report in the574

left plot of Figure 5.6, the convergence histories of the two flexible block variants. Similarly to what has575

already been observed previously the convergences are very similar on the first family and only differ when576

the partial convergence detection becomes active mostly in the last restart. For the second and third families,577

one can see that IB-BFGCRO-DR and BFGCRO-DR have identical convergence speed. One can observe578

a shift in the convergence histories between the end of the solution of one family and the beginning of the579

next one for both IB-BFGCRO-DR and BFGCRO-DR. This shift is due to the extra k mvps that have to be580

performed when the matrix changes in order to adapt the recycling space as follows581

1. compute A(`+1)U
(`)
k = C̃k582

2. compute the reduced QR-factorization of C̃k = C
(`+1)
k R583

3. update the basis of the deflation space U (`+1)
k = U

(`)
k R−1 so that A(`+1)U

(`+1)
k = C

(`+1)
k .584

Because k is large, we can clearly see this shift in the left plot of Figure 5.6. For this parameter selection585

in this section, it can be noticed that the dominating effect on the convergence improvement is due to the586

space recycling and not the partial convergence detection. This observation is highlighted in the right plot587

of Figure 5.6, where the benefit of using IB-BFGCRO-DR rather than BFGCRO-DR does diminish when588
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compared to previous experiments and is only about 4%. Numerical details are summarized in Table 5.5.589

6. Concluding remarks. In this paper, we develop a new variant of the block GCRO-DR method590

denoted as IB-BGCRO-DR that inherits the appealing genes of its two parents [16, 20]. First, it inherits the591

capabilities to speed up the convergence rate when solving sequences of linear systems by recycling spectral592

information from one family to the next. Second, the extended search space expansion policy enabled by the593

so-called partial convergence detection allows us to focus on the convergence by considering only the most594

important directions. Along this line, we introduce stopping-criterion driven search space expansion polices595

that enable us to ensure that a prescribed threshold used for the partial convergence detection will eventually596

lead to reach a prescribed threshold for a backward error based stopping criterion. While introduced in the597

block GCRO context, those policies apply to any block minimum residual norm approach that relies on598

an Arnoldi-like relation and includes both block GMRES and GCRO variants. In exact arithmetic, these599

policies exploit the close link between the least squares residuals and the linear system residuals, which is600

guaranteed by the orthonormal basis of the residual space. Through numerical experiments, we show that601

the MGS re-orthogonalization between the columns of recycling space and initial block Arnoldi basis at602

restart combined with (BMGS ◦ HouseQR) in the block Arnoldi algorithm seems to generate good enough603

orthonormal basis to ensure that such a property does also hold in finite precision calculation. Following604

ideas from [14], it would be a future research work to theoretically establish that this class of subspace605

augmentation algorithms is backward stable. To comply with mixed-precision calculation, the flexible606

preconditioning variant is also proposed, which would be of interest for emerging computing platforms607

where mixed-precision calculation could be a way to reduce data movement, which is foreseen as one of608

the major bottleneck to reach high performance.609
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Appendix A. Proof of Proposition 3.673

Proof. From Equation (4.1), (4.2) and (4.4), the initial residual block R1 with partial convergence674

detection at restart could be described as675

R1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]HR1 = [Ck,V1, P0, W̃1][Ck,V1, P0, W̃1]H [Vnew
1 , Pnew

0 ]Λ̂1

= [Ck,V1, P0, W̃1]
(

[Ck,V1, P0, W̃1]HCkR12 + [Ck,V1, P0, W̃1]H [V1, P0]R22

)
Λ̂1

= [Ck,V1, P0, W̃1]Λ1 with Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1

0k×q1
Ip1 0p1×q1

0q1×p1 Iq1
0p1×p1

0p1×q1

R22Λ̂1,

by [Vnew
1 , Pnew

0 ] = CkR12 + [V1, P0]R22 obtained from Equation (4.2). That can also be written as676

Λ1 =

[
R12

0(p1+p)×p

]
Λ̂1 +


0k×p1

0k×q1
Ip1

0q1×p1

Φ1

0p1×p1 0p1×q1

R22Λ̂1,

where Φ1 =

[
0p1×q1
Iq1

]
∈ Cp×q1 and q1 + p1 = p.677

The right-hand sides of the least squares problem at iteration (j + 1) for j = 1, 2, · · · , are defined by678

Λj+1 = [Ck,Vj+1, [Pj , W̃j+1]]HR1 = [Ck,Vj , Vj+1, [Pj , W̃j+1]]HR1

=
[
Ck,Vj , [Pj−1, W̃j ]W1, [Pj−1, W̃j ]W2, W̃j+1

]H
R1 =

[
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
[Vnew

1 , Pnew
0 ]Λ̂1

=

([
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
CkR12 +

[
Ck,Vj , [Pj−1, W̃j ][W1,W2], W̃j+1

]H
[V1, P0]R22

)
Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


CH

k V1 CH
k P0

V H
j V1 V H

j P0

[Vj+1, Pj ]
H V1 [W1,W2]

H
[
Pj−1, W̃j

]H
P0

W̃H
j+1V1 W̃H

j+1P0

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +



0k×p1
0k×q1[

Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1
[W1,W2]

H

[
PH
j−1

W̃H
j

]
P0

0pj+1×p1
0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1

0k×q1[
Ip1

0(nj−p1)×p1

]
Φj(1 : nj , :)

0p×p1
[W1,W2]

H

[
Φj(nj + 1 : nj + qj , :)

0pj×q1

]
0pj+1×p1 0pj+1×q1

R22Λ̂1

=

[
R12

0(nj+p+pj+1)×p

]
Λ̂1 +


0k×p1 0k×q1[
Ip1

0(nj+p−p1)×p1

]
Φj+1

0pj+1×p1
0pj+1×q1

R22Λ̂1

where Φj+1 ∈ C(nj+p)×q1 for j = 1, 2, · · · .679

680
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Appendix B. The SVD decomposition of the least squares residual and the solution of the least681

squares problem. The partial convergence detection mechanism allows to extract from the residual spaces682

new directions to expand the search space at the next iteration of the block method. The selection consists in683

extracting the directions that contribute the most to the scaled residual block and is based on the SVD of the684

scaled least squares residual. In this section, we detail how the solution of the least squares problem (2.11)685

enables to compute easily and cheaply the SVD of the associated scaled (least squares) residual block. The686

least squares problem687

Yj = argmin
Y ∈C(k+nj)×p

∥∥Λj −F jY
∥∥
F
, with F j ∈ C(k+nj+p)×(k+nj) (B.1)

is solved by using a full QR-factorization of F j = QLS
j RLS

j , where the superscript LS comes from Least688

Squares,QLS
j = [Q

LS(1)
j , Q

LS(2)
j ] withQLS(1)

j ∈ C(k+nj+p)×(k+nj) andQLS(2)
j ∈ C(k+nj+p)×p,RLS

j =689 [
R

LS(1)
j

0p×(k+nj)

]
∈ C(k+nj+p)×(k+nj) with R

LS(1)
j ∈ C(k+nj)×(k+nj) is an upper triangular matrix, from690

which the reduced QR-factorization of F j is formulated as F j = Q
LS(1)
j R

LS(1)
j if QLS(1)

j is considered691

as an orthogonal basis of F j . Thus, we could still formulate Yj in a relatively economic way as692

Yj = (R
LS(1)
j )−1((Q

LS(1)
j )HΛj) ∈ C(k+nj)×p, (B.2)

from which we could deduce the residual of the least squares problem described in Equation (3.6) as follows:693

Λj −F jYj = Λj −QLS
j RLS

j Yj = QLS
j

(
(QLS

j )HΛj −RLS
j Yj

)
,

= QLS
j

([
(Q

LS(1)
j )H

(Q
LS(2)
j )H

]
Λj −

[
R

LS(1)
j

0p×(k+nj)

]
Yj

)
,

= QLS
j

([
0(k+nj)×(k+nj+p)

(Q
LS(2)
j )H

]
Λj

)
,

= QLS
j

(
0(k+nj)×p

R`s
j

)
,

where R`s
j = (Q

LS(2)
j )HΛj ∈ Cp×p are the last p rows of (QLS

j )HΛj . The SVD of scaled residual R`s
j Dε

can be written as

R`s
j Dε = U`sΣV

H
`s ,

so that the SVD of the scaled least squares residual is

(
Λj −F jYj

)
Dε = QLS

j

(
0(nj+k)×p Inj+k

U`s 0p×(nj+k)

)
︸ ︷︷ ︸

Unitary

(
Σ

0(nj+k)×p

)
V H
`s .


