
HAL Id: hal-03542057
https://hal.inria.fr/hal-03542057

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Covariant Subtyping Applied to Semantic Predicate
Calculi

William Babonnaud

To cite this version:
William Babonnaud. Covariant Subtyping Applied to Semantic Predicate Calculi. LACL 2021 -
Logical Aspects of Computational Linguistics, Dec 2021, Montpellier (online), France. �hal-03542057�

https://hal.inria.fr/hal-03542057
https://hal.archives-ouvertes.fr

Covariant Subtyping Applied to Semantic
Predicate Calculi

William Babonnaud

Loria, Université de Lorraine, CNRS, Inria Nancy Grand-Est, Nancy, France
william.babonnaud@loria.fr

Abstract. Manipulating type hierarchies in formal semantic frameworks
is often performed through a subtyping relation which obeys the con-
travariant rule for the left argument of a function type, due to the
traditional representation of predicates as functions. This approach has
however serious drawbacks when handling modifiers for first-order pred-
icates. The present paper adopts an opposite view on subtyping by
introducing a predicate calculus with a covariant behaviour, endowed
with a categorical semantics in which subtyping coercions behave as
generalisations of injective functions, and predicates are assimilated to
powerobjects. This calculus is type safe in the sense that it prevents
unwanted term applications, and is shown to provide a solution for the
difficulties faced by a contravariant subtyping.

Keywords: Covariant subtyping · Formal semantics · Category theory

1 Subtyping in Natural Language Semantics

Integrating lexical semantics into formal frameworks, in the form of complex
type systems using large hierarchies of base types, has been a challenging step in
natural language semantics, opening new questions on the interaction between
these hierarchies and compositionality. As in programming languages, the two
(possibly overlapping) main strategies introduced in semantic calculi to deal with
this multitude of types are type polymorphism (e.g. in MGL [27]), and subtyping
(e.g. in UTT [19] and TCL [1]). The comparison with programming languages is
relevant here to the extent that theories of polymorphism and subtyping have
emerged firstly in this field, through the works of Milner [22] for the former, and
Reynolds [28] and Cardelli [7,8] for the latter. In the present paper, we shall
focus on subtyping.

Roughly speaking, subtyping is comparable to the subset relation for sets: if
an entity is of type a and a is a subtype of b, then this entity can also be seen as
being of type b. Actually, Cardelli [7] proposed a set-theoretic semantics of his
calculus in which subtyping corresponds exactly to set inclusion on the semantic
side. This approach relies on the idea of a large domain of values V whose type
interpretations are subsets, and function types are interpreted as subsets of
V → V in such a way that if α is a subtype of β, then the interpretation of

β → γ is a subset of the interpretation of α→ γ, thus licensing the contravariant
rule for function types, that is, the fact that the subtyping order for functions is
reversed w.r.t. the domain type. However, large domains of values of this kind
are better known as denotational semantics for interpreting systems such as
the untyped lambda-calculus [31]. When it comes to typed lambda-calculus, a
better set-theoretic interpretation of terms of type α → β is given by the set
BA of (continuous) functions from A to B [4,5]; but in such a semantics, the
inclusion relation from BC to BA when A ⊂ C does not hold anymore, and
the correspondence between contravariant subtyping and set inclusion is lost.1
Actually, we have almost the converse semantic relation: the domain-restriction
function f 7→ f |A from BC to BA is generally surjective.2

Instead of inclusion, a more general idea conveyed by subtyping is related to
type safety: whenever α is a subtype of β, a term of type α can be used at any
place where a term of type β is expected without threatening the behaviour of
the system. An even stronger caracterisation of the subtyping relation has been
proposed by Liskov and Wing [16]: they require that whenever α is a subtype of β
and φ is a property provable for all objects x : β, then φ must be provable for all
objects y : α, where the intended properties are related to safety. These accounts
of safety naturally result in the contravariance rule; it is thus not surprising that
applications of subtyping in formal semantic frameworks follow this approach.
These applications are most commonly coercive [17,19,26], that is, the conversion
of a term from a type to its supertype is done explicitly with a specific functional
term called coercion. Such a choice is grounded in type-theoretical considerations
(see e.g. [19, §4]), and in terms of set interpretation, amounts to replace inclusions
by injective functions between disjoint domains. If c : α→ β is such a coercion,
the coercion corresponding to the contravariant rule for functions is easily built
as λf.λx.f(cx) : (β → γ) → α → γ for any γ. This ease of usage, along with
the amount of theoretical studies that supports it, explain why contravariant
subtyping has been naturally imported to computational semantics.

However, as in programming languages [9], contravariance is the source of
many difficulties in the interactions between subtyping and classical predicate
interpretations inherited from Montague [23]. The following example is adapted
from Luo [18]: suppose we are provided with a type v of vehicles and a type
p of physical objects, with the subtyping relation v ≤ p. Let car : v → t and
heavy : (p → t) → p → t be predicates corresponding the noun “car” and the
adjective “heavy”. Then, contravariance implies p → t ≤ v → t, which means
that car is not an acceptable argument for heavy. Besides, contravariance also
1 A different behaviour shows up whenever considering the set of partial functions:
covariance of domain types is obtained instead of contravariance. However, using
partial functions in natural language semantics may produce new kinds of difficulties
to cope with.

2 We may also build an injective function from BA to BC which extends the domain
of its argument and sets a defaut value on this extension, but if no specific value in
B is accessible, the axiom of choice is required to select this defaut value. We will see
in Sect. 5 that our proposal uses a similar idea for predicates, since their codomain
has precisely an accessible defaut value which must be “false”.

implies that general type schemes for adjective representation (α→ t)→ α→ t
and (β → t)→ β → t are not comparable even if α and β are, since they appear
both positively and negatively in the schemes. These remarks have notably led
to criticisms against Montagovian-based predicate models, for instance in [10]. In
this paper, we redirect criticms against contravariance subtyping, which seems
inadapted to the requirements of semantic-modelling calculi.

The idea of covariant subtyping have been pointed out as generally unsafe
in programming languages.3 However, formal frameworks for natural language
semantics do not share the object-oriented perspective on types inherited from
programming, where objects are thought as collections of methods in records
[7,11]. In linguistic applications, an important conceptual shift occurs by replacing
objects by entities, which do not carry methods of their own: predicates—which
generally arise from words through their part of speech, following the initial
proposal of Montague [23]—exist independently of entities, and simply may or
may not be applicable to them depending on their types. Even if we are right
when saying that physical entities have a mass, mass is not a method of physical
entities but a predicate which is meaningfully applicable only to physical entities.

The flexibility of language is such that predicates may be applied to entities
that does not match their type requirements, as for instance in the sentence
“the table talks”. If predicates are interpreted as functions from their meaningful
argument type to propositions or truth values, this means that they may be
extended to other arguments without losing their sense nor their distinction from
other predicates—an idea which is similar to covariance.4 The key to convert
this remark in a more general framework is to note that, in a semantic calculus,
the only functions whose codomain is not the proposition type t are base type
coercions themselves. We may thus take a sharper distinction between predicates
and other functions in order to provide a well-founded covariant subtyping for
predicate calculus. By doing so, we may also retrieve the correspondence between
subtyping relations and injective functions, provided that we are able to extend
the domain of a predicate in a satisfying way. This property would ensure that
whenever coerced to their supertypes, entities and predicates remain distinct,
which corresponds to what happens in natural language.5

We shall thus introduce the basis of a predicate calculus specifically designed
for applications in natural language semantics, abstracting predicate types by new
type constructors rather than using the traditional function types of codomain t.
Besides, this calculus will be completed with a covariant approach to subtyping,
and will be given a general semantics in category theory. The types and terms
3 In a specific setting, Castagna [9] showed that contravariance and covariance describe
different mechanisms which may be adapted to coexist in a type-safe way, but the
actual mechanism he defines is not exactly relevant to our purposes.

4 It also underlies the solution proposed by Asher to overcome the difficulties presented
above with the covariant type ∃x v α.x→ t [1, §4.2].

5 This has to be opposed to some accounts of subtyping in programming languages
where distinct objects may be identified through subtyping coercion, as in the example
of stacks as subtypes of bags discussed in [16, §2]: in these accounts, subtyping is
surjective rather than injective.

of this calculus are introduced in Sect. 2, and its categorical interpretation is
presented in Sect. 3. Through a semantic-driven construction, Sect. 4 develops
the rules of subtyping and shows that subtyping coercions thus defined are
interpreted as generalisation of injective functions. Sect. 5 supplies additional
results on the interaction between covariant subtyping and logical operators, and
gives more intuition on the behaviour of coerced predicates. Sect. 6 discusses
possible extensions and future perspectives.

2 A Predicate Calculus with Abstracted Functions

Rather than introducing a new version of a full lambda-calculus with some slight
changes compared to other proposals of Montagovian inspiration, we propose a
system which may appear weaker at first glance, but which actually abstracts
upon the simply-typed lambda-calculus. Motivation for such a proposal comes
from the fact that the expressive power of a semantic framework, viewed as
a system which ultimately aims at building logical formulae to represent the
intended semantics of sentences, relies mainly on three ingredients: predicates,
logical connectives, and construction rules. The first two of these ingredients are
rendered as constants in almost every calculus, and the last one is provided by
general rules for constructing lambda-terms, application being the most important
thereof.

It is particularly notable that the lambda-terms appearing in such frameworks
are closed ones, and that variables are mainly used for composition purposes as an
intermediate step before applying a rule of λ-abstraction. For instance, combining
two first-order predicates u, v : e→ t with the logical connective ∧ : t→ t→ t use
several applications and an abstraction to result in λx.u(x)∧v(x).6 Provided that
we have access to closed extensions of ∧ for use with other types, for instance with
the polymorphic AND definable in MGL [27], the same result could be obtained
up to η-expansion as ∧e→t u v in only two applications. We shall generalise this
reasoning by designing a “weaker” calculus which has no direct access to term
variables and no abstraction rule.

Following this idea and the discussions on subtyping from Sect. 1, we shall
therefore introduce the covariant subtyping calculus CΣ. It can be seen as a
higher-level lambda-calculus, in the same way as programming languages such
as Python are high-level languages w.r.t. machine code or assembly language:
its types will be abstractions of common types, its terms will be constants and
combinations thereof, and its rules will be restricted to application and other
combining rules—but all of these components will stay definable within a more
general typed lambda-calculus. As such, CΣ is intended to provide the minimal
setting for semantic purposes, and to be cleared of any other unnecessary feature.

We will successively define the three main parts of the type system of CΣ,
namely the type ontology, the type constructors, and the coercion types. Altogether,
these pieces build the set TCΣ of types of our calculus.
6 Throughout this paper usual logical connectives will be assumed to carry their usual
infix notation.

Definition 1. A type ontology is a pair (B,≤) where B is a set of base types
and ≤ ⊂ B× B is a partial order endowed with a greatest element e ∈ B.

While any type hierarchy may satisfy this definition, the term ontology is rem-
iniscent of Fred Sommers’ theory of ontological types [32,33], and hints how
we would expect the base types to be constructed. In particular, we think the
hierarchical structure underlying ≤ to be almost a tree.7

The next step is to introduce the type constructors. Leaving aside coercions,
we will use a unit type as well as products and predicates.

Definition 2. Let (B,≤) be a type ontology. The set ΞCΣ of complex types
upon B is defined recursively by the grammar

ΞCΣ ::= 1 | B | ΞCΣ ×ΞCΣ | PΞCΣ

where 1 is the unit type, and P is the predicate constructor.

We may assume the product constructor × to be associative, so that we can
avoid parentheses in successive applications. Compared to common type theories
in semantic frameworks, one may notice that we did not introduce a type t for
truth values or propositions. It is actually hidden in predicate types: for any
α ∈ ΞCΣ , the type Pα of predicates upon α corresponds conceptually to the
simple type α→ t. Furthermore, a predicate upon a product type corresponds
to the uncurried version of a n-ary function of codomain t, and as 1 stands for
the empty product, the type t is actually P1. The choice of P rather than → is
intended to highlight the conceptual differences between predicates and other
functions, as will be clarified when introducing subtyping rules in Sect. 4. The
arrow constructor is however not ruled out, as it is used for defining coercions.

Definition 3. Let ΞCΣ be a set of complex types upon some type ontology. A
ΞCΣ-coercion is a type of the form α→ β, where α, β ∈ ΞCΣ.

As to be seen in Sect. 4, we will generally use exactly one coercion term for
each ΞCΣ-coercion, that is, we will not allow to use two different coercions for
the same arrow type. This assumption enforces the coherence of the system of
coercions, and henceforth enables us to identify bijectively each ΞCΣ-coercion,
which is a type, to a corresponding term which is also called coercion. The simplest
version of the CΣ calculus can use the full set of coercions ΞCΣ → ΞCΣ , but the
resulting theory shall be degenerate. Therefore, we will assume to have a specific
subset K ⊂ ΞCΣ → ΞCΣ of coercions, whose construction will be constrained by
the guidelines in Sect. 4.

Definition 4. Let (B,≤) be a type ontology and K a set of ΞCΣ-coercions. The
set TCΣ of CΣ-types based upon B and K is defined as:

TCΣ = ΞCΣ ∪ K
7 The reader may also consult [2,29] for recent accounts of Sommers’ theory.

We hinted earlier that the CΣ calculus should be definable within a lower-
level typed lambda-calculus. Being given the set T of types of such a calculus,
including the base types of B, a proposition type t, a unit type 1, products and
arrows, we can define an encoding θ : TCΣ → T in the following way:

θ(1) = 1
θ(b) = b for b ∈ B

θ(α× β) = θ(α)× θ(β) for α, β ∈ ΞCΣ
θ(P(α1 × · · · × αn)) = θ(α1)→ · · · → θ(αn)→ t

for α1, . . . , αn ∈ ΞCΣ
θ(α→ β) = θ(α)→ θ(β) for α→ β ∈ K

(1)

We now turn to terms. As previously suggested, CΣ is mainly constant-based
and will not use variables nor lambda-abstraction, at least directly; yet some
terms introduced here as constants may be definable as operators in a lower-level
calculus precisely by using those hidden constructions. In the rest of this paper
we fix a type ontology and a coercion set, so that the set of CΣ-types is also
fixed. We call constant signature a pair (Q, τ) where Q is a set of constants and
τ is a function Q → ΞCΣ , and coercion signature a pair (K,σ) where K is a set
of coercions and σ a bijective function K → K.

Definition 5. Let (Q, τ) and (K,σ) be constant and coercion signatures. The
set ΛCΣ of untyped terms of CΣ is recursively defined by the grammar:

ΛCΣ ::= ∗ | Q | KΛCΣ | 〈ΛCΣ , ΛCΣ〉 | ΛCΣΛCΣ | π1ΛCΣ | π2ΛCΣ

Through misuse of language, we will consider K itself to be a coercion signature,
and denote by c : α→ β ∈ K that c is the symbol representing the coercion from
α to β.

The restriction to constants within CΣ also makes typing judgements simpler,
since variable environments are not needed anymore. As usual, a typing judgement
will be a sequent ` u : α where u is a term and α is a type in ΞCΣ . We shall
introduce the typing rules in two batches, starting with the more direct rules
and postponing the rules using coercions to Sect. 4. The first batch contains the
basic rules for constants and pairs, as well as direct application:

(unit)
` ∗ : 1

u ∈ (Q, τ)
(const)

` u : τ(u)
` u : α ` v : β

(pair)
` 〈u, v〉 : α× β

` u : P(α× β) ` v : α
(app)

` uv : Pβ
` u : Pα ` v : α

(app′)
` uv : P1

` u : α× β
(proj1)` π1u : α

` u : α× β
(proj2)` π2u : β

(2)

Similarly to product types, we may assume that pairs extend to tuples of any
size. As for direct application, the rules (app) and (app′) distinguish the cases

of “partial” and “total” application of predicates. We may have considered an
equivalent statement by using only the rule (app) and an isomorphic operator
Pα ∼= P(α × 1), thus enabling us to derive (app′) as an admissible rule; yet
we will keep the latter rule as such for clarity. One may observe that no rule
is provided to build predicate terms: all predicates have to be introduced as
constants. This implies of course that the constant signature is non-empty and
contains at least one predicate, which is consistent with the semantic aim of
the calculus: predicates in natural language semantics are generally introduced
as constants, and we argue that CΣ provides enough material to make explicit
construction of predicates as lambda-abstractions unnecessary. In particular, the
next section will introduce the logical operators that enables one to build complex
predicates from predicate constants.

We conclude the present section by stating the mandatory term equalities.
Besides the traditional rules of congruence (refl), (sym) and (trans), we assert
in (one) that ∗ is the only term of type 1, in (eqpr) and (eqpar) that equalities
propagate to products and applications, in (prj1) and (prj2) that projections
work on pairs as expected, and in (ap*) that successive applications of a predicate
to several arguments amount to applying it to the tuple of these arguments.
Furthermore, the rule (assoc) states the tuple equality which licenses the use of
× as an associative type constructor. Both (eqap) and (ap*) correspond to the
previous typing rule (app); the definition of their counterparts for the rule (app′)
is left as an exercise to the reader. Here again, the rules involving coercions are
postponed to Sect. 4.

` u : α
(refl)

` u = u : α
` u = v : α

(sym)
` v = u : α

` u : 1
(one)

` u = ∗ : 1

` u = v : α ` v = w : α
(trans)

` u = w : α
` u = u′ : α ` v = v′ : β

(eqpr)
` 〈u, v〉 = 〈u′, v′〉 : α× β

` u : α ` v : β
(prj1)` π1〈u, v〉 = u : α

` u = u′ : P(α× β) ` v = v′ : α
(eqap)

` uv = u′v′ : Pβ

` u : α ` v : β
(prj2)` π2〈u, v〉 = v : β

` u : P(α× β × γ) ` v : α ` w : β
(ap*)

` (uv)w = u〈v, w〉 : Pγ

` u : α ` v : β ` w : γ
(assoc)

` 〈u, 〈v, w〉〉 = 〈〈u, v〉, w〉 : α× β × γ

(3)

3 Categorical Model of CΣ

In order to study more efficiently its underlying type theory, we define an
interpretation of CΣ in category theory. Many equivalences between type systems
and classes of categories have been identified, notable examples including the
correspondences between simply-typed λ-calculi and cartesian closed categories
[14], as well as between Martin-Löf type theories and locally cartesian closed

categories [30]. As CΣ is “high-level”, we may expect its categorical model to
have weaker assumptions; however, this will not actually be the case: we need all
the power of the underlying “low-level” model to interpret efficiently our calculus.

The rest of this paper assumes preliminary knowledge of category theory,
including the notions of categories, initial and terminal objects, products, ex-
ponentials, pullbacks, functors, natural transformations, and adjunctions.8 The
reader may consult [20,25] for an introduction; useful elements (with increasing
difficulty) can also be found in [12,13,21]. Only three definitions will be recalled
here: monomorphisms, subobject classifiers, and toposes.

Definition 6. A morphism f : A → B is a monomorphism (or “is mono”,
noted f : A B) if for any pair of morphisms g, h : C → A, f ◦ g = f ◦ h
implies g = h. A is a subobject of B if there is a monomorphism A B.

Definition 7. In any category with a terminal object, a subobject classifier is
an object Ω along with a morphism > : 1→ Ω such that for any monomorphism
m : A B, there is a unique morphism χm : B → Ω such that the following
diagram is a pullback:

B Ω

A 1

χm

m

!A

>

Definition 8. A topos is a cartesian closed category with a subobject classifier.

The type ontology (B,≤) can be seen as a category B by taking elements of
B as objects, and by introducing a morphism a→ b whenever a ≤ b. We consider
from now on a topos C containing B as a subcategory, and we note ζ : B → C
the associated faithful functor. In particular, we define the object E of entities
as ζe, where e is the greatest element of B. Besides, we require the image ζf of
each morphism f in B to be a monomorphism. Notice then that B as a poset is
contained in Sub(E), the set of subobjects of E.

For any object A of C, we note PA the exponential ΩA, which is called
the powerobject of A. The associated evaluation map is evA : PA × A → Ω.
Notice that, by a well-known property of exponentials, we have the isomorphism
P(A×B) ∼= PA×PB for any objects A and B. If f : A×B → Ω is a morphism,
we call name of f the morphism name(f) : A → PB obtained from f by the
universal property of exponentials. As 1×B ∼= B, this definition extends up to
isomorphism to any morphism B → Ω. As a consequence, a predicate in a topos
has three equivalent modes of presentation: as an arrow f : B → Ω, as its name
1→ PB, or as the subobject A B obtained by pullback of > along f .

We have now enough theoretical support to properly define an interpretation
of CΣ in the topos C. This interpretation will be denoted as a map J·K which
8 The composition of f : A→ B and g : B → C will be noted g ◦ f or gf whenever no
ambiguity may occur. The identity on A is idA. The product map of f ′ : A→ B and
g′ : A→ C will be noted 〈f ′, g′〉 : A→ B × C. The initial and terminal objects are
noted 0 and 1, and the associated morphisms are 0A : 0→ A and !A : A→ 1.

assigns to each type in ΞCΣ an object of C, and to each well-typed term a global
element in C, that is, a morphism of the form 1→ A. For types the definition of J·K
is straightforward since every constructor has an obvious categorical counterpart:

J1K = 1
JbK = ζb for b ∈ B

Jα× βK = JαK× JβK for α, β ∈ ΞCΣ
JPαK = PJαK for α ∈ ΞCΣ

(4)

Terms however need a few more assumptions to be correctly interpreted. First,
even if by Definition 5 coercions are not considered as terms, they are given an
interpretation by J·K. We will thus assume that each coercion c : α→ β ∈ K is
assigned a morphism κ(c) : JαK→ JβK. Moreover, we require that each constant
u ∈ (Q, τ) has a corresponding morphism ρ(u) : 1→ Jτ(u)K, and that the induced
map ρ from Q to the morphisms of C is injective. Then, any well-typed term
u : α is interpreted as a morphism 1→ JαK according to the following definition:

J∗K = id1 : 1→ 1
JuK = ρ(u) : 1→ Jτ(u)K for u ∈ (Q, τ)
JcK = κ(c) : JαK→ JβK for c : α→ β ∈ K

JcuK = JcK ◦ JuK : 1→ JβK for c : α→ β ∈ K and u : α
J〈u, v〉K = 〈JuK, JvK〉 : 1→ JαK× JβK for u : α and v : β

JuvK = compJαK,JβK ◦〈JuK, JvK〉 : 1→ PJβK for u : P(α× β) and v : α

Jπ1uK = π
JαK,JβK
1 ◦ JuK : 1→ JαK for u : α× β

Jπ2uK = π
JαK,JβK
2 ◦ JuK : 1→ JβK for u : α× β

(5)

where, for any objects A,B, πA,B1 and πA,B2 are the usual projections A×B → A
and A×B → B, and compA,B is defined to be the name of the composite:9

(P(A×B)×A)×B P(A×B)× (A×B) Ω∼ evA×B

Then, we need to ensure that this interpretation respects the term equalities
introduced in (3). This is straightforward for the congruence rules and for the
propagation rules (eqpr) and (eqap), and the well-foundedness of the rule (one)
is guaranteed by the fact that the unit type is interpreted as the terminal object
1, for which id1 is the unique morphism 1→ 1. Moreover, the projection rules
(prj1) and (prj2) are easily retrieved by the definition of categorical products.
The major subtlety lies in the translation of the last two rules, stating the
associativity of the product and its consequence on direct application. For any
terms u, v and w, the interpretations of 〈u, 〈v, w〉〉 and 〈〈u, v〉, w〉 are only equal
up to some isomorphism which belongs to the class of isomorphisms of the form
9 Notice in particular that, up to isomorphism, compA,1 = evA. This is consistent
because the isomorphism P1 ∼= Ω holds in any topos.

ιA,B,C : (A×B)×C → A×(B×C). These isomorphisms also propagates to n-ary
predicates through isomorphisms ∃ιA,B,C : P((A×B)× C)→ P(A× (B × C)),
whose notation will become clearer at the end of this section. As a result, the
term equalities may be correctly retrieved by considering the equivalence classes
of the categorical interpretations for the relation on morphisms of being equal
up to composition with some isomorphism of the form ι, ∃ι, or combination
thereof.10

So far, in the construction of CΣ and its interpretation above we only dis-
cussed two of the three main ingredients of a semantic calculus as presented at
the beginning of Sect. 2: predicates and rules. What about logical connectives?
Obviously we may introduce them as constants as well, but since we do not use
directly a proposition type nor lambda-abstractions, the usual definition of logical
constants does not fit in CΣ: we would be unable to connect predicates before all
their arguments are provided, whereas construction of lambda-abstracted com-
pounds is common in natural language semantics. Furthermore, the introduction
of these connectives should be carefully studied from a categorical perspective
because toposes have their own internal logic: we then expect the logical constants
of CΣ to reflect this logic. Toposes are powerful enough to model higher-order
logic [15], and depending on the properties of the given topos, this logic can be
classical or intuitionistic [12].

The formal basis of topos logic lies on morphisms ¬ : Ω → Ω and ∧,∨,⇒:
Ω ×Ω → Ω. For any A, we can extend these arrows to “generalised” operators
¬A : PA→ PA and ∧A,∨A,⇒A: PA× PA→ PA as names of composites of the
above morphisms with evaluation maps. For instance, ∧A names the composite:

(PA× PA)×A Ω ×Ω Ω

(PA× PA)× (A×A) (PA×A)× (PA×A)

id×∆A

∧

∼

evA× evA

where ∆A : A→ A×A is the diagonal map 〈idA, idA〉. Other logical connectives
are obtained in the same way. In CΣ, we may think of ¬, ∧, ∨ and ⇒ as
polymorphic constants of respective types ∀α.P(Pα × α) for the former and
∀α.P(Pα×Pα×α) for the others. They are however distinct from other constants
and more generally from other terms in the sense that their interpretations are
not global elements: to keep things consistent, we have for instance to posit for
each type α in ΞCΣ the interpretation J∧αK = ∧JαK. Thus, logical connectives
play a very specific role in CΣ, and may be added to the calculus as a separate
set of constants.

The treatment of quantifiers is slightly more complex, as it requires additional
constructions of topos theory. As pulling back along a morphism f : A → B
preserves monomorphisms, it induces a pullback function f−1 : Sub(B)→ Sub(A)

10 As suggested at the end of Sect. 2, we may extend this reasoning to the class
of isomorphisms of the form A × 1 → A to avoid the typing rule (app′) and its
counterparts in term equalities.

which has both a left adjoint ∃f and a right adjoint ∀f . As PA is the internal
version of the set Sub(A) for any object A, those adjoints themselves induce
internal morphisms ∃f : PA→ PB and ∀f : PA→ PB [21, §IV.9]. To produce
models of the usual quantifiers, we use versions of these morphisms obtained
from product projections: if π : A×B → B is such a projection, ∃π and ∀π are
morphisms P(A×B)→ PB which can serve as interpretations for polymorphic
constants ∃α,β and ∀α,β of type P(P(α×β)×β) in CΣ. Other kinds of generalised
quantifiers may also be introduced as morphisms of this family of types; their own
properties would depend on their respective definitions, and they would differs
from the universal and existential quantifiers only by the absence of obvious
relation to the pullback function. This completes the introduction of logical
connectives in the calculus.

4 Monomorphic Subtyping Discipline

Monomorphism is the categorical generalisation of the notion of injective function;
in particular, both notions coincide in the category Set (see e.g. [12, §3.1]). As
discussed in Sect. 1, a set-based interpretation of the subtyping relation in natural
language semantics should be injective as well, for entities and for predicates.
From a categorical perspective, we come naturally to think of the subtyping
relation in terms of monomorphisms. The present section details how we can
construct such a “monic” subtyping relation in CΣ, and how such a relation is
necessarily a covariant one.

In Sect. 2, we hinted that defining the subtyping relation amounts to give
constraints for building the set of coercions K. If α and β are types in ΞCΣ , we
note α v β to express that α is a subtype of β, and whenever it is the case, we
enforce the constraint α → β ∈ K. We shall generate subtyping relations and
categorical interpretations of the corresponding coercions simultaneously. As a
starting point, recall that the construction of CΣ is based on a type ontology
(B,≤) which includes the foundations of the subtyping relation. For every pair
a, b ∈ B, we naturally posit a v b whenever a ≤ b holds.11 By assumptions made
on the topos C in Sect. 3, such a pair provides also a monomorphism ζa ζb
which is exactly the interpretation of the related coercion a→ b ∈ K. This sets
up the basis of the subtyping relation, and we have now to investigate how it
propagates to type constructors.

To avoid inconsistency, the unit type should only be comparable with itself,
that is, 1 v 1 is the only valid subtyping relation involving 1. To see how to deal
with products and predicates, we turn to their categorical interpretations. The
topos C, as a cartesian category, is equipped with a bifunctor × : C ⊗ C → C,
where ⊗ stands for the product of categories. The following lemma is a common
result whose proof is easy to retrieve:
11 Actually, we may remove superfluous coercions by limiting K to the strict part of

the subtyping relation, that is, α→ β in K only if α @ β holds. Indeed, the coercion
corresponding to α→ α is the identity map idJαK, which brings no useful additional
information.

Lemma 1. The bifunctor × preserves monomorphisms, that is, if f : A C
and g : B D are monos, then so is f × g : A×B C ×D.

A similar result can be established for powerobjects through a less common
view than usual. Indeed, the operator P is generally extended to a contravariant
functor Cop → C by taking Pf to be the internal counterpart of the map f−1

introduced in Sect. 3, but this definition does not satisfy our requirements. We
shall use instead the covariant powerobject functor P+ : C → C defined on any
object A by P+A = PA and on any morphism f by P+f = ∃f . This definition is
correct since ∃(gf) = ∃g ◦ ∃f for any morphisms f, g, and ∃ idA = idPA for any
object A [13, §A2.3]. The following lemma appears in [13, Cor. A2.2.5] and [21,
Cor. 3, §IV.3]:

Lemma 2. If m : A B is mono, then Pm◦∃m = idPA, i.e. ∃m is split mono.

A weaker way to put it is to say that P+ preserves monomorphisms. Never-
theless we shall see below that the existence of the retraction Pm will be useful
for a special extension of CΣ. Altogether, the lemmata above provide the keys to
complete the definition of the subtyping relation for all the type constructors.
Hence we assert the following subtyping rules:

a, b ∈ B a ≤ b
(base)

a v b
α v γ β v δ

(prod)
α× β v γ × δ

α v β
(pred)

Pα v Pβ
(6)

The coercion set K must be built consequently. The map κ introduced in Sect. 3,
which sends each coercion in K to a corresponding morphism in C, can also
be properly defined using similar rules: if c, c′ are coercions, the corresponding
product coercion introduced by the rule (prod), noted c× c′, shall be interpreted
by κ(c× c′) = κ(c)×κ(c′); and similarly, if c is a coercion, the predicate coercion
introduced by the rule (pred), noted Pc, shall be interpreted by κ(Pc) = ∃κ(c).
Recall then that we put JcK = κ(c) for a coercion c. Lemmata 1 and 2, as well as
the construction of C above the type ontology, can be used to prove inductively
the following result, which puts monomorphisms at the heart of the subtyping
interpretation.

Proposition 1. For any coercion c ∈ K, if c has been constructed using the
rules in (6), then JcK is a monomorphism.

As promised in Sect. 2, we now turn to the second batch of typing rules for
CΣ, which shall constrain the use of coercions. Our main concern when defining
these rules is to provide a strong discipline on coercion uses in order to preserve
type safety, even if we take this notion in a weaker understanding compared to its
definition for programming languages. Our objective is to prevent overgeneration
in CΣ by constraining the use of coercions: for instance, we may forbid the
application of coercions both to a predicate and its argument at the same time,
because it would allow any predicate to take any argument. Moreover, we may
need to prevent n-ary predicates with argument-places related in types to accept
arguments coerced from different types if the underlying semantics intends to
link them, as it could lead to unwanted semantic interpretations.

Assume we add a base type � to CΣ, and define a type context to be a type
in Ξ�

CΣ , that is, a type with at least one occurrence of �. If d is such a context,
define for any base type a 6= � the type d[a] to be d where all occurrences of �
are replaced by a. We may generally think of a type d[a] for a term to represent
a product of types in ΞCΣ , some of them involving the type a. We propose the
following formulation:

Definition 9. A CΣ calculus is type safe if:
1. for all pairs a, b of incompatible base types, type context d, term u : Pd[a]

and constant v : d[b], and coercions c and c′ of respective domains Pd[a] and
d[b], no combinations of typing rules make (cu)(c′v) a well-typed term ;

2. for all type a, pair of incompatibles types b, c, type contexts d, d′, d′′ and γ
such that d = d′ × d′′ × γ, term u : Pd[a], constants v : d′[b] and w : d′′[c],
and coercions c′ : d′[b] → d′[a] and c′′ : d′′[c] → d′′[a], no combinations of
typing rules make u((c′ × c′′)〈v, w〉) a well-typed term.

This formulation is intended to translate into formal conditions the discussion
of the previous paragraph: the first condition forbids to coerce predicates and
arguments at the same time, and the second condition forbids the simultaneous
coercion of two incompatible types to the same type between arguments of a
given predicate. Recall that, by the equality rule (ap*) and the definition of
the product of coercion, the second condition also applies to terms of the form
u(c′v)(c′′w). In practice, the first condition states for instance that the following
rule of free coerced application (fca) is not acceptable for type safety:

` u : Pα ` v : β c : α→ γ ∈ K c′ : β → γ ∈ K
unsafe! (fca)

` ((Pc)u) (c′v) : P1
(7)

In a similar vein, the second condition states for instance that the rule of
partial coerced application (pca) defined below is also not type safe:

` u : P(β × γ) ` v : α c : α→ β ∈ K
unsafe! (pca)

` u (cv) : Pγ
(8)

Indeed, consider base types h, v and p standing for humans, vehicles and physical
entities respectively, with h ≤ p, v ≤ p and h, v incompatible, and assume
constant predicates j : h, car : Pv and heavy : P(Pp× p). By construction, we
have coercions c : h→ p and c′ : Pv → Pp. Now, by two successive applications of
the rule (pca), the term heavy(c′ car)(c j) is well-typed, which explicitly breaks
the second condition, hence the unsafeness of (pca).12 This term could be the
semantics of a category-mistaken sentence such as “?John is a heavy car”. Of
course, we might want to have semantic representation of such sentences in our
calculus, but it should not be obtained by means of the subtyping relation.

To preserve type safety, we need a weaker version of the rule (pca), which
will be called restricted total coerced application (rtca). The idea behind this
12 The same reason explains why we did not introduce a typing rule to build directly

coerced terms of the form cu in Sect. 2.

rule is to force all the arguments of a given predicate to be gathered before
application and to restrict coercion uses so that the arguments filling slots with
the same expected base type are themselves of the same base type, thus avoiding
simultaneous application of a predicate to terms such as car and j.

` u : Pd[b] ` v : d[a] c : d[a]→ d[b] ∈ K
(rtca)

` u (cv) : P1
(9)

It follows directly from Definition 9 that (rtca) is type safe. It can even be safely
extended for simultaneous subtyping of several base types: generalise the notion
of type context for finite number of holes �1, . . . ,�n, the corresponding extended
rule is defined for ` u : Pd[b1, . . . , bn] and ` v : d[a1, . . . , an] with the additional
condition that all bi must be pairwise distinct. This extension is useful when
dealing with n-ary predicates, for instance transitive verbs.

We acknowledge however that (rtca), even in its extended form, may be
too restrictive for semantic uses, in particular in a calculus like CΣ where no
variables and λ-abstractions are available. What if we need to perform the partial
application of heavy on car as the semantic representation of the phrase “a
heavy car” requires? A solution to retrieve the flexibility of partial coercion
application is to exploit the retraction of the corresponding predicate coercion.
For each predicate coercion c : Pα → Pβ in K, define its reverse coercion
c̄ : Pβ → Pα with Jc̄ K = Pm, where m is the mono JαK → JβK such that
JcK = ∃m. Instead of using coercions to embed the type of the argument term
into the type expected by the predicate, reverse coercions enable us to specialise
the type of the predicate to the type of its argument. Once again, predicate
specialisation must be performed on all occurrences of a given base type to prevent
unsafe applications as examplified with (pca). However, this global specialisation
makes subsequent partial applications possible. If we extend our set of coercions
with reversed ones, the specialised partial coerced application rule (spca) is given
by:

` u : P(d[b]× d′[b]) ` v : d[a] c : a→ b ∈ K
(spca)

` (c̄′ u) v : Pd′[a]
(10)

where c̄′ is the reverse of the coercion c′ : P(d[a]× d′[a])→ P(d[b]× d′[b]) built
upon c. This rule is again type safe since it guarantees that after applying it, all
subsequent applications will be done with base types which are subtypes of a.13

We insist on the fact that (spca), while ressembling a contravariant subtyping
rule—justified by the fact that the retraction Pm of a mono comes indeed from a
contravariant functor—, is actually a direct consequence of the covariant property
of our subtyping relation. As highlighted in Sect. 1, a contravariant subtyping
13 As an anonymous reviewer pointed out, the rule (spca) is similar in spirit to a

typing rule for bounded polymorphism, using a predicate of type ∀b.P(d[b] × d′[b]).
The connections between this kind of polymorphism and covariant subtyping may be
even deeper and may be worth investigating, but are beyond the scope of this paper.
Incidentally, the author also took part in the developpment of another framework
using bounded polymorphism and record types [3].

is unable to compare the types (a → t) → a → t and (b → t) → b → t, even
if a and b are comparable base types, while the covariant subtyping is able
to perform the corresponding comparison between P(Pa × a) and P(Pb × b),
and provides coercions in both directions depending on the situation. Notice
however that in this case the interpretation of the corresponding reverse coercion
is not a monomorphism, but has the dual property of epimorphism, as another
consequence of Lemma 2.14

The last remark to make on the previous typing rules is to observe that (rtca)
is actually a special case of (spca) with d′[a] = d′[b] = 1.15 To understand why,
consider the coercion c : d[a]→ d[b]. Using (spca), from u : Pd[b] and v : d[a] we
can construct the term (c̄′u) v with Jc̄′K = PJcK. In the categorical model, the
following diagram commutes by general property of the contravariant powerobject
functor [21, §IV.1]:

1 PJd[b]K× Jd[a]K PJd[a]K× Jd[a]K

PJd[b]K× Jd[b]K Ω

〈JuK,JvK〉 PJcK×id

id×JcK evJd[a]K

evJd[b]K

In other words, J(c̄′u)vK = Ju(cv)K. This semantic result licenses the introduction
on the syntactic side of the following coerced equational rule:

` u : Pd[b] ` v : d[a] c : d[a]→ d[b]
(ceq)

` (c̄′u)v = u(cv) : P1
(11)

It is then clear that with (ceq), the rule (spca) entails the rule (rtca). We can
even extend the rule (ceq) to a more general form for partial application, provided
that we take care of all the details in order to preserve type safety. The resulting
rule, call it (pceq), is given by:

` u : P(d[b]× d′[b]) ` v : d[a] c : a→ b
(pceq)

` (c̄′u)v = c̄′′(u(c′′′v)) : Pd′[a]
(12)

where c′ is as before, and c′′ and c′′′ are the coercions Pd′[a] → Pd′[b] and
d[a] → d[b] built upon c. It captures the previous rule when d′[a] = d′[b] = 1,
by noticing that c′′ and its reverse are then the coercion P1→ P1, an identity
which can be safely removed from the term. Moreover, the right-hand side of the
equality does not fall under the forbidden terms of Definition 9. To complete the
construction of CΣ, we shall add the rules (spca) and (pceq) to the first batch of
rules introduced in Sect. 2.
14 For this reason and despite the name of “coercion”, reverse coercions must not be

part of K. Their use is only licensed by explicit involvement of the bar notation in
the typing rules.

15 This fact is more precisely verified under the assumption of interpreting terms up to
the isomorphism A× 1 ∼= A, cf. footnote 10.

5 Understanding Predicate Covariance

The aim of this section is to provide further intuition on covariance for predicates,
as the formalisms of the previous sections have been kept rather abstract. A few
more results on the interactions between predicates and logical connectives will
also be stated. But for now, let us start with this simple question: if u : Pα is
a predicate constant and c : Pα → Pβ is a coercion, what does the predicate
cu : Pβ actually describe? To answer it, we turn once again to the categorical
model of CΣ. If c′ is the coercion for α → β, we have JcuK = ∃Jc′K ◦ JuK by (5)
and (6). Thus, we need to explain how the covariant powerobject functor P+

works in C.
Let m : A B be a mono in C. As the powerobject PA is an internal

representation of the set Sub(A), it will be sometimes convenient to study the
external function ∃m : Sub(A)→ Sub(B) instead of ∃m in order to derive internal
properties as an application of the Yoneda lemma (see [21, §IV.9] for details).
To give even more intuition, suppose in this paragraph only that A and B are
sets. Then Sub(A) and Sub(B) are their respective powersets, and if U ∈ Sub(A),
then ∃m(U) = {m(x) | x ∈ U}. Besides, if we further assume that the injective
function m actually stands for the inclusion A ⊆ B, then ∃m(U) is U itself viewed
as a subset of B. The category Set has {0, 1} as subobject classifier, and the
characteristic χAU of U in A is the classical one, with χAU (x) = 1 if x ∈ U , and
χAU (x) = 0 otherwise. As there is a one-to-one correspondence between subsets of
A and characteristic functions on A, ∃m induces a map sending each function
χAU to χBU , and it is clear that for all x ∈ A, χAU (x) = χBU (x).

Now, abstracting over these set-theoretic considerations, we can generalise
some observed properties to any topos C. For any object X, define the morphism
trueX : X → Ω as the composite >◦ !X . By definition of the subobject classifier,
any subobject k : U A is classified by some f : A→ Ω, such that fk = trueU .
The following result appears in [21, Prop. 1, §IV.3] with slight differences in
notation:

Proposition 2. Let g : B → Ω be the map such that name(g) = ∃m ◦ name(f).
Then, g classifies the subobject mk : U B.

In other words, mk is the pullback of > along g, which also means that g shares
the same conditions as f to be evaluated to true. In CΣ, this means that, being
given terms u : Pα, v : β and the coercion c : α → β, the term ((Pc)u)v : P1,
as a logical formula, is true if and on only if there is a term w : α such that
v = cw and uw is true.16 It is legitimate to ask whether the same result holds
for conditions of falsity. We shall investigate this question from an external point
of view, and study several results related to logical connectives in the way to
answer it.
16 This property, grounded in topos theory, ignores the requirements of type safety as

given in Definition 9, according to which the term ((Pc)u)v cannot be typed. It shows
nonetheless that terms of the form given in the first conditions are not necessary
from a truth-theoretical point of view, since it brings “true” application of a coerced
form of a predicate u back to a direct application of u.

Recall that for any X, 〈Sub(X),≤, 0, X,∪,∩,⇒〉 is a Heyting algebra (see
e.g. [12, §8.3]), where ∪, ∩ and ⇒ are external counterparts to ∧X , ∨X and
⇒X introduced in Sect. 3. If U ∈ Sub(X), write U for the pseudo-complement
U ⇒ 0. Being given any mono m : A B, we would like to know whether
these logical morphisms, as well as the quantifiers ∃A,X ,∀A,X : P(A×X)→ PX,
are preserved by the predicate subtyping ∃m. The following proposition states
a stronger property for some of these connectives: they are actually natural
transformations from P+ to itself.
Proposition 3. The transformations ∧A, ∨A are natural in A, and ∃A,X is
natural in A and X.

Due to the lack of space, we omit proofs of this proposition and of the following
results below. The naturality of conjunction, disjunction and existential quantifier
amounts to say that CΣ can be completed with new equational rules describing
the good interaction of these connectives with subtyping coercions. For the first
two, the equational rules are the following:

` u : Pα ` v : Pα c : Pα→ Pβ ∈ K
(∧-eq)

` ∧β (c× c)〈u, v〉 = c (∧α〈u, v〉) : Pβ

` u : Pα ` v : Pα c : Pα→ Pβ ∈ K
(∨-eq)

` ∨β (c× c)〈u, v〉 = c (∨α〈u, v〉) : Pβ

(13)

As for the existential quantifier, there are two corresponding rules to account for
the double naturality:

` u : P(α× γ) c′ : P(α× γ)→ (β × γ) ∈ K
(∃-eq1)

` ∃β,γ(c′ u) = ∃α,γu : Pγ

` u : P(α× γ) c : Pγ → Pδ c′ : P(α× γ)→ (α× δ)
(∃-eq2)

` ∃α,δ(c′ u) = c (∃α,γu) : Pδ

(14)

In terms of truth-theoretical interpretation, these rules mean that coercions inter-
acts well with the truth conditions of conjunctions, disjunctions and existential
quantifiers applied to predicates: in each of the equalities above, the left-hand
and right-hand sides have the same conditions of truth and falsity.17

However, the naturality of logical connectives w.r.t. P+ does not propagate
to the relative pseudo-complement, nor to the universal quantifier. There is
a strict entailment between logical formulae using these connectives through
the subtyping relation, under the sufficient condition that the codomain of the
subtyping coercion contains the disjoint union of the domain with a non zero
object, where X non zero means X � 0. Within the type ontologies used for
formal semantics, this condition generally holds: for instance, the types p, h and
v from the example in Sect. 4 are such that p ≥ h ∨ v. The key properties are
stated below:
17 Notice that this property applies regardless of the ambient logic, be it classical or

intuitionistic.

Proposition 4. Let f : A→ B be any morphism. If ∃f (A) is non zero, then for
all U, V ∈ Sub(A) we have the strict inclusion ∃f (U ⇒ V) < ∃f (U)⇒ ∃f (V).

Corollary 1. If ∃f (A) is non zero, ∃f
(
U

)
< ∃f (U).

Proposition 5. Let m : A B be a monomorphism and X any object, and
suppose m′ = m× idX . If ∃m(A) is non zero, then for all U ∈ Sub(A×X) we
have the strict inclusion ∀πB,X

(∃m′(U)) < ∀πA,X
(U).

These propositions show in particular that neither the equational rules in (13) nor
(∃-eq1) have counterparts for implication, negation, and universal quantifier on its
first parameter. In term of truth conditions, Prop. 4 shows for instance that there
are arguments on which the predicate ⇒β(c× c)〈u, v〉 : Pβ can be proved true,
whereas c (⇒α〈u, v〉) : Pβ will be proved false, the arguments in question being
those on which ⇒α〈u, v〉 fails to have a truth value due to type mismatch—and
similar results hold for negation and universal quantifier. However, we have for
universal quantifiers the following proposition which is weaker than naturality
on the second parameter, but suffices for interaction with coercions:

Proposition 6. Let m : X Y be a monomorphism and A any object. Then,
∀πA,Y

∃(idA×m) = ∃m∀πA,X
.

The consequence of the latter result is the following counterpart to (∃-eq2):

` u : P(α× γ) c : Pγ → Pδ c′ : P(α× γ)→ (α× δ)
(∀-eq)

` ∀α,δ(c′ u) = c (∀α,γu) : Pδ
(15)

All the previous properties are expected to provide a better understanding of
the covariant subtyping. Prop. 2 showed in particular that if u : Pa is a first-order
predicate and c : Pa → Pb a predicate coercion, then c u is a predicate which
is true on the same entities as u. By Cor. 1, we can affirm that if u is false on
some entity, then c u is also false on that very entity. However, c u can be false
on an entity without it even being in the span of u at all, that is, even if it is
not of type α. In terms of a lower-level lambda-calculus, c u can be expressed
by λx:b.∃y:a. (c′(y) = x) ∧ u(y), where c′ : a→ b is the coercion that underlies
c, that is, JcK = ∃Jc′K. Thus, the behaviour of c u is simply explained: if x is an
entity of type β, then either x is not in the image of c′, in which case c u x is
false, or there is an antecedent y of x through c′ and c u x = u y.

It turns out that the complex coercion c can be itself interpreted as an operator
λu.λx.∃y. (c′(y) = x) ∧ u(y), which resembles the functor used by Asher in [1,
§6.1] to transform a first-order predicate on a dot type to another one whose
argument type is an aspect of the initial one. Even if dot type projections are
not exactly subtyping relations as intended in this paper—neither it is for Asher,
incidentally—, this similitude should not be surprising since both operators
carry the same idea of a covariant transformation of predicates. Moreover, the
reverse coercion c̄ coincides with the usual contravariant subtyping for first-order
predicates as the operator λuλx.u(c′x), and as c′ is intended to be mono, the

composition λu.c̄(cu) amounts to the identity up to isomorphism, which is also a
consequence of Lemma 2. Thus, a last rule of term equality can be added:

` u : Pα c : Pα→ Pβ
(retract)

` u = c̄(c u) : Pα
(16)

However, for v : Pβ, we have v 6= c(c̄ v) in general.

6 Conclusion and Future Works

We introduced CΣ, a general semantic predicate calculus using a constructor P
instead of the traditional functions of codomain t, and completed by a covariant
subtyping. The typing rules constraining the use of subtyping coercions ensure
a property of type safety which is sufficient for semantic purposes. The general
typing rules of CΣ are obtained by gathering the rules in (2) and (10), and the
term equality rules consist in those given in (3), to which we add the equalities
given in (12–16). The typing rule in (9) as well as the term equality rule in
(11) are also admissible. Altogether, these rules enable CΣ to be as efficient as
other proposals for natural language semantics. However, CΣ gains in flexibility
by its covariant approach of subtyping, which enables us to deal easily with
second-order types that pose difficulties to other semantic frameworks.

In the previous section, we generalised reasoning in Set to any topos in such a
way that the interpretation of CΣ is not restricted to sets—even if toposes have a
general “set-like” behaviour. It may be relevant then to ask whether interpreting
CΣ directly in Set would not have sufficed for our purposes, instead of carrying
on with the generalisation we presented. There are actually two reasons for such a
move. Firstly, in spite of its specific status amongst toposes (and in mathematics
in general), Set has a few restrictive properties which we may want to dismiss, the
most important one being the fact that, as a Boolean topos, the internal logic of
Set is always classical: we may want to use another topos with intuitionistic logic,
for instance. Secondly, some semantic phenomena, such as vagueness [6], suggests
that predicate modelling might need to go beyond the set-theoretical basis: if this
happens to be the case, we believe that the generalisation we presented offers
more flexibility to help accounting for any new proposal.

We ought to add that the genericity of topos theory, as compared to set theory,
make the choice of a canonical covariant subtyping coercion more difficult. We
may however think of such a canonical coercion as similar to an inclusion in Set,
in the sense that a coerced entity is roughly the same entity viewed in another
perspective. It may be hard however to systematise this idea in a general topos,
unless we introduce an entity constant by a global element for each supertype
the entity has, and then choose coercions which preserve the resulting families
of global elements. Nevertheless, this issue may be less harmful than it seems,
to the extent that covariant coercions ensure at least that two distinct entities
remain distinct when coerced, thus preserving the relations of entities w.r.t. each
other.

Finally, we may extend the calculus with additional non-subtyping coercions
to improve its abilities, in the spirit of the reverse coercions introduced in Sect. 4.
The projection maps from product terms π1 and π2 have been introduced here as
term constructors, but could actually be added as such coercions, provided that
we enforce a strong distinction between subtyping coercions and other ones when
defining the rules of our calculus. Other possible coercions—whose introduction
did unfortunately not fit in those pages although studied by the author—are what
we could call transstructural coercions, that is, coercions that do not preserve the
structure of type constructors. This case includes the introduction of dot types
[26] as subtypes of products (as proposed in [1,2]), and other transformations
such as type shifts [24]. Finally, creative uses of language and other transfers of
meaning may be handled by more general coercions. Overall, future studies on
CΣ-like frameworks will be devoted to explore these potential extensions of the
calculus.

Acknowledgments. The author is grateful to the three anonymous reviewers
for their helpful and valuable comments.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press (2011)

2. Babonnaud, W.: A topos-based approach to building language ontologies. In:
Bernardi, R., Kobele, G.M., Pogodalla, S. (eds.) Formal Grammar. 24th Interna-
tional Conference, FG 2019, Riga, Latvia, August 11, 2019, Proceedings. pp. 18–34.
Springer, Berlin (2019)

3. Babonnaud, W., de Groote, P.: Lexical selection, coercion, and record types. In:
LENLS17: Logic & Engineering of Natural Language Semantics, Online, November
15-17, 2020 (2020)

4. Barendregt, H.P.: The Lambda-Calculus: Its Syntax and Semantics. Elsevier (1984)
5. Berry, G.: Stable models of typed λ-calculi. In: Ausiello, G., Böhm, C. (eds.)

Automata, Languages and Programming. pp. 72–89. Springer (1978)
6. Burnett, H., Sutton, P.: Vagueness and natural language semantics. In: Gutzmann,

D., Matthewson, L., Meier, C., Rullmann, H., Zimmermann, T.E. (eds.) The Wiley
Blackwell Companion to Semnatics. John Wiley & Sons (2020)

7. Cardelli, L.: A semantics of multiple inheritance. In: Kahn, G., MacQueen, D.B.,
Plotkin, G. (eds.) Semantics of Data Types. pp. 51–67. Springer, Berlin (1984)

8. Cardelli, L.: Structural subtyping and the notion of power type. In: Ferrante, J.,
Mager, P. (eds.) POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 70–79. Association for
Computing Machinery, New York (1988)

9. Castagna, G.: Covariance and contravariance: Conflict without a cause. ACM
Transactions on Programming Languages and Systems 17(3), 431–447 (1995)

10. Chatzikyriakidis, S., Luo, Z.: On the interpretation of common nouns: Types versus
predicates. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in Type-
Theoretical Semantics, Studies in Linguistics and Philosophy, vol. 98, pp. 43–70.
Springer (2017)

11. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Allen, F.E.
(ed.) POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. pp. 125–135. Association for Computing
Machinery, New York (1990)

12. Goldblatt, R.: Topoi: The Categorial Analysis of Logic, Studies in logic and the
foundations of mathematics, vol. 98. North-Holland Publishings (1979)

13. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
University Press (2002)

14. Lambek, J.: From λ-calculus to cartesian closed categories. In: Hindley, J.R., Seldin,
J.P. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 375–402. Academic Press, London (1980)

15. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge
University Press (1986)

16. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16(6), 1811–1841 (1994)

17. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130
(1999)

18. Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Li, N., Lutz, D.
(eds.) Proceedings of SALT 20. pp. 38–56 (2010)

19. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: Theory and implementation.
Information and Computation 223, 18–42 (2013)

20. MacLane, S.: Categories for the Working Mathematician. Springer (1971)
21. MacLane, S., Moerdĳk, I.: Sheaves in Geometry and Logic: A First Introduction to

Topos Theory. Springer, New York (1992), corr. 2nd edition 1994
22. Milner, R.: A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17(3), 348–375 (1978)
23. Montague, R.: The proper treatment of quantification in ordinary english. In:

Suppes, P., Moravcsik, J., Hintikka, J. (eds.) Approaches to Natural Language, pp.
221–242. Reidel, Dordrecht (1973)

24. Partee, B.H.: Noun phrase interpretation and type-shifting principles. In: Groe-
nendĳk, J., de Jongh, D., Stokhof, M. (eds.) Studies in discourse representation
theory and the theory of generalized quantifiers, pp. 115–143. De Gruyter (1986)

25. Pierce, B.C.: Basic Category Theory for Computer Scientists. The MIT Press,
Cambridge (1991)

26. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
27. Retoré, C.: The montagovian generative lexicon ΛTyn: a type theoretical framework

for natural language semantics. In: Matthes, R., Schubert, A. (eds.) Proceedings
of the 19th International Conference on Types for Proofs and Programs. LIPICS,
vol. 26, pp. 202–229 (2014)

28. Reynolds, J.C.: Using category theory to design implicit conversions and generic
operators. In: Jones, N.D. (ed.) Semantics-Directed Compiler Generation. pp. 211–
258. Springer (1980)

29. Saba, W.S.: Language and its commonsense: Where formal semantics went wrong,
and where it can (and should) go. Journal of Knowledge Structures and Systems
1(1), 40–62 (2020)

30. Seely, R.A.G.: Locally cartesian closed categories and type theory. Mathematical
Proceedings of the Cambridge Philosophical Society 95(1), 33–48 (1984)

31. Smyth, M.B., Plotkin, G.: The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing 11(4), 761–783 (1982)

32. Sommers, F.: The ordinary language tree. Mind 68(2), 160–185 (1959)
33. Sommers, F.: Type and ontology. The Philosophical Review 72(3), 327–363 (1963)

