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Planar Floquet Codes
Christophe Vuillot

Inria Nancy

A protocol called the “honeycomb code”, or generically a “Floquet code”, was intro-
duced by Hastings and Haah in [1]. The honeycomb code is a subsystem code based on
the honeycomb lattice with zero logical qubits but such that there exists a schedule for
measuring two-body gauge checks leaving enough room at all times for two protected
logical qubits.

In this work we show a way to introduce boundaries to the system which curiously
presents a rotating dynamics but has constant distance and is therefore not fault-
tolerant.

1 Introduction
Building fault-tolerant quantum computers is an extremely challenging task. Bridging
the gap between theoretical fault-tolerant schemes and physics experiment is an ongoing
global effort. In this effort the honeycomb code was introduced in [1]. It is a protocol
for a fault tolerant quantum memory which uses only two-qubit Pauli measurements.
According to numerical simulations [2], it seems it could be a promising contender to
the long standing favorite, the surface code [3, 4], if one has access to native two-qubit
measurements. The question of designing boundaries and a planar geometry for the
honeycomb code was left open in [1, 2]. In this paper we present a way of adding
boundaries which generate a curious rotating dynamics for the logical operators but
which is not fault-tolerant as there are constant size space-time logical operators. In a
subsequent paper [5] a fault-tolerant way to introduce boundaries is presented.

In Section 2 we show how to define general Floquet codes and a way to introduce
boundaries to them. Then in Section 3 we focus on specific instances of planar Floquet
codes.

2 Floquet Codes from 2D Color Codes
In [1] the authors define Floquet codes using the hexagonal lattice wrapped around a
torus which takes inspiration from Kitaev’s honeycomb model [6]. In the same way
that Kitaev’s honeycomb model can be defined on more general geometries [7], Floquet
codes can be defined on any 2D color code lattice [8]. We will use a slightly different
definition compared to [1] which is equivalent up to a Clifford unitary.

We show in Section 2.1 and 2.2 that a planar graph G = (V, E, F ) tiling a surface
with no boundaries, which is 3-valent and whose faces are 3-colorable defines a Jn, k, dK
Floquet code. The parameters are given by n = |V |, k is obtained from the genus of
the surface as in Eq. (9) and d is a fraction of the minimal length of a homologically
non-trivial cycle in the graph. The code space is stabilized by measuring gauge checks
corresponding to edges following a cyclic schedule defined by the three colors. We then
show in Section 2.4 how to properly introduce boundaries to the system.

1



Figure 1: Part of the bulk of a generic planar graph suitable to define a Floquet code.

2.1 Gauge Checks, Stabilizers and Inner Logical Operators
We start from a planar graph, G = (V, E, F ), with vertex set V , edge set E ⊂ V 2 and
face set F ⊂ 2V . We impose that G is tiling a 2D surface with the property required to
define a color code: Namely vertices are 3-valent and the faces are 3-colorable. We also
consider that G as a single connected component. We denote |F | = nf the number of
faces, |V | = nv the number of vertices and |E| = ne the number of edges. For now we
consider that the surface does not have boundaries but we will introduce some later.
We use red, green and blue (R, G, B) for the three colors and a coloring map for the
faces, C : F → {R, G, B}. The faces are three colorable which is expressed by

∀(f1, f2) ∈ F 2, f1 ∩ f2 ∈ E ⇒ C(f1) 6= C(f2). (1)

The coloring map can be extended to edges as follows

C : E → {R, G, B}
e 7→ C(e) ∈ {R, G, B} \ {C(F (e))}, (2)

where F (e) designate the faces containing e (the coboundary of e). In words, an edge
is colored with the complementary color to the two colors of its bordering faces. Said
differently, edges are of the same color as the faces they link, see an example drawn in
Figure 1.

2.1.1 Gauge Checks

Qubits are put on vertices and to each color we associate a Pauli label. Throughout
we use the choice

P c =

X, for c = R
Y, for c = G
Z, for c = B

(3)

For v ∈ V and P ∈ {X, Y, Z}, we write Pv for the Pauli operator acting as P on the
qubit associated with v and the identity on the other qubits. Each edge e = (v1, v2)
defines a gauge check, Pe using the Pauli label associated with its color

Pe = P C(e)
v1

P C(e)
v2

. (4)

That is to say red edges are X-checks, green edges Y -checks and blue edges Z-checks.
We have one linear dependency between the gauge checks:∏

e∈E

Pe =
∏
v∈V

XvYvZv ∝ 1. (5)

There is exactly one such dependency per connected component as for each qubit to
be acted on by the identity the only way is to not have any of its edges or the three.

Christophe Vuillot: christopĥe.vuillot@inria.fr
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We restricted ourselves to graphs with exactly one connected component so we count
one linear dependency.

Using these gauge checks we define a basis of Pauli operators for the Hilbert space
of nv qubits using the notion of subsystem code. The gauge checks form the gauge
group whose dimension, ng, is given by

ng = ne − 1. (6)

2.1.2 Stabilizers

The center of the gauge group contains all operators generated by gauge checks com-
muting with every gauge check. For a product of gauge checks to commute with all
gauge checks it is necessary and sufficient that the product runs over cycles of edges
in the graph. Homologically trivial cycles are generated by faces of the graph. We call
these stabilizers. A face f ∈ F of color C(f) defines a stabilizer Pf as follows

Pf =
∏
v∈f

P C(f)
v ∝

∏
e∈f

Pe. (7)

That is to say that red faces are X-stabilizers, green faces are Y -stabilizers and blue
faces are Z-stabilizers. Since there are no boundaries and the graph has one connected
component, there is one linear dependency between stabilizers as the product of all
faces is proportional to the identity∏

f∈F

Pf =
∏
v∈V

XvYvZv ∝ 1. (8)

2.1.3 Inner Logical Operators

Homologically non-trivial cycles are also in the center of the gauge group. In [1], they
are called inner logical operators and their number depend on the orientability and
genus of the surface. We denote as k their number which is given by:

k =
{

2g, if orientable surface of genus g
g, if non-orientable surface of (non-orientable) genus g . (9)

In summary the dimension of the center of the gauge group, ns, is given by

ns = nf − 1 + k. (10)

2.1.4 Empty Subsystem Code

We can show that these operators completely stabilize the space. That is to say that
there are zero logical qubits if we consider inner logical operators as stabilizers. Note
that this fact has already been detailed and observed in [7].

This is computed as follows. Since the vertices are 3-valent, we have that

3nv = 2ne. (11)

Euler characteristics gives us

nv − ne + nf = 2− k. (12)

Using Eq. (11) in Eq. (12) we deduce a relation between the number of edges and the
number of faces, namely

ne = 3nf + 3k − 6. (13)
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The number of logical qubits, nL, is then given by

nL = nv −
ng − ns

2 − ns

= ne − nf + 2− k − ne − 1 + nf − 1 + k

2

= ne − 3nf − 3k + 6
2

nL = 0. (14)

Hence there are zero logical qubits in this subsystem code.

2.2 Measurement Schedule and Instantaneous Stabilizer Group
As explained in [1], in order to use these gauge checks to protect quantum information
it is possible to measure them in a specific order such that one effectively measures the
face stabilizers but never the inner logical operators (homologically non-trivial cycles).
This will ensure that at all times there is room for k logical qubits in the stabilized
subspace.

The idea consists in measuring all checks of a given color at once at each step and
cycle through the 3 colors giving a cyclic 3-steps schedule. When measuring say red
(X) checks after having measured green (Y ) checks we learn the value of each cycle
composed of red and green checks. We call these type of cycles bi-colored cycles. Bi-
colored cycles involve an even number of qubits and a Pauli operator acting like Z
on every qubit of such cycle can therefore be measured by two successive commuting
measurements of type Y then X [7].

Figure 2: Illustration of the fact that bicolored cycles are necessarilly trivial when there are no boundaries and
that no face borders a non-trivial loop.

We can show that these bi-colored cycles are necessarily homologically trivial when
there are no homologically non-trivial faces and therefore cannot be inner logical oper-
ators. Indeed, pick a cycle of green and red edges. Take a starting green edge followed
by a red edge of the cycle. they intersect at a qubit which has a third blue edge going
out of it. This blue edge points at a blue face bordering both green and red edges we
started with. The other end of the red edge has a blue and a green edge adjacent. The
blue one cannot belong to the blue face and therefore the next green edge in the cycle
has to belong to the same blue face. following the whole cycle this way we see that
this cycle borders a single blue face. Since there are no boundaries, and if we assume
that there are no homologically non-trivial faces, this cycle is trivial. The reasoning is
illustrated in Figure 2. Note that this also implies that inner logical operators involve
edges of all three colors.

In conclusion, the natural measurement schedule allows to measure the stabilizers
but never the inner logical operators. We sumarize the schedule as well as the instanta-
neous stabilizer group (ISG) at each step in Algorithm 1. The set of red gauge checks
is denoted R-gauge, the set of red stabilizers is denoted R-stab. and similarly for blue
with B and green with G.

Similarly to what is shown in [1, 9] in the steady state regime and at each step the
instantaneous stabilizer group (ISG) is equivalent through a constant depth Clifford
circuit to a 2D homological code. Indeed for each measured edge the two corresponding
qubits are projected onto a one qubit subspace. For instance if we just measured all
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red X-checks, each red edge is projected onto an effective qubit characterized by the
Pauli operators X ⊗ 1 (equivalently 1 ⊗ X) and Y ⊗ Y (equivalently Z ⊗ Z). The
face stabilizers can be seen as acting directly onto these effective qubits. The stabilizer
group in this picture is that of a 2D homological code. This is detailed in Table 1 and
illustrated in Figure 3.

Floquet code at step c ∈ {R, G, B} equivalent homological code
gauge checks: e ∈ E, C(e) = c Pe = P c ⊗ P c = ±1 edges (= qubits) Z̄ = P c ⊗ 1, X̄ = P c̃ ⊗ P c̃

c-faces: f ∈ F, C(f) = c P c-stabilizers faces Z̄-stabilizers
other faces: f ∈ F, C(f) = c̃ 6= c P c̃- stabilizers vertices X̄-stabilizers

Table 1: Correspondence of the stablized space after measuring gauge checks of color c ∈ {R, G, B} to an
equivalent homological code.

Figure 3: Representation of the three different configurations of stabilizers of the system at different time steps.
The faces are stabilizers of the system at all times. The gauge checks that were just measured (and as such
stabilize the space possibly with minus signs) are represented by colored edges. The space stabilized is Clifford
equivalent to a 2D homological code whose geometry is represented with thin black lines. In this homological
code qubits are placed on the edges and stabilizers are defined by faces and vertices.

Algorithm 1 Measurement Schedule
measure red (X) gauge checks . ISG = R-gauge
measure blue (Z) gauge checks�record green (Y ) stabilizers . ISG = B-gauge ∪G-stab.
measure green (Y ) gauge checks�record red (X) stabilizers . ISG = G-gauge ∪G-stab. ∪R-stab.

loop . Entering steady state
measure red (X) gauge checks�record blue (Z) stabilizers . ISG = R-gauge ∪G-stab. ∪R-stab. ∪B-stab.
measure blue (Z) gauge checks�record green (Y ) stabilizers . ISG = B-gauge ∪G-stab. ∪R-stab. ∪B-stab.
measure green (Y ) gauge checks�record red (X) stabilizers . ISG = G-gauge ∪G-stab. ∪R-stab. ∪B-stab.

end loop

2.3 Minimum Distance and Decoding
We have seen that homologically non-trivial cycles of gauge checks give logical operators
for the code (the inner logical operators). Therefore the minimal length for them gives
an upper-bound on the code distance. This set of logical operators does not constitute
the full set of logical operators (they all commute with one another for instance). To
form logical operators that are not generated by the gauge checks, one can use the
equivalent homological code picture. One can construct logical operators there and
translate them back to the Floquet code using the qubits definition in Table 1. These
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logical operators are called outer logical operators in [1]. Forming these, one can observe
that the operators act on the edges of the original graph but can skip across faces of
certain colors. For instance when the red checks are measured, a X̄-logical, i.e. a co-
cycle, also called electric operator, will act on a string of red edges that can skip through
red faces. A Z̄-logical operator, i.e. a cycle, also called magnetic operator, will act on
blue and green edges but can skip across blue or green faces. These logical operators
still extend over non-tricial cycles of the original edges but act only on a fraction of the
vertices of the cycle. The worst fraction achievable depends on the size of the faces. If
faces have bounded sizes then the minimum distance is at worst a constant fraction of
the minimal length of a non-trivial cycle.

A strategy for decoding the syndrome is given in [1] and can readily be applied
for general graphs. The main idea is to realize that Pauli errors happening between
rounds can always be split into complementary Pauli errors and commuted with the
next round. Using this we can consider that after measuring X checks, only X errors
happen, after Y checks only Y errors happen and after Z checks only Z errors happen.
A decoder based on this assumption will not be optimal against more general noise but
is sufficient for fault-tolerance.

We follow the measurement schedule in Algorithm 1. At every step of the schedule
a new value for the stabilizer of a given color is learned. These values are recorded
and are the syndrome bits. Assuming the error model described above we observe the
following relation between syndrome bits. An X error at time t, just after the red
(X) measurements, is going to flip the adjacent green (Y ) stabilizer recorded at time
t + 1 and the adjacent blue (Z) stabilizer recorded at time t + 3. Hence these two
syndrome bits are linked in the syndrome graph. Doing the same for Y errors after
green measurements and Z errors after blue measurements gives a syndrome graph
with two disconnected components offset by one time step. Matching syndrome bits
in this graph using minimum weight perfect matching gives the decoder [1]. Note that
partial magnetic, i.e. Z̄, logical operators, give non-trivial syndrome bits in only one
of the two components of the syndrome graph. Whereas partial electric, i.e. X̄, logical
operators, give nontrivial syndrome bits in both components of the syndrome graph.

Measurement errors can also be tolerated since at each step any qubit is involved
in at most one measurement. This makes it so that measurement errors are equivalent
to local qubit errors. Indeed a measurement error is equivalent to an error on one of
the qubits happening just before and just after the faulty measurement [1].

Floquet codes can therefore be summarized as follows:
Given a planar graph G = (V, E, F ) tiling a surface with no boundaries, which is 3-
valent and 3-colorable of the faces, we define a Jn, k, dK Floquet code with n = |V |, k is
defined as in Eq. (9) and d is a fraction of the minimal length of a homologically non-
trivial cycle in the graph. This fraction depends on the size of the faces of the graph.
The code space is stabilized by measuring gauge checks following a cyclic schedule of
the three colors. In the steady state regime, at each step of the schedule the space is
stabilized by the face stabilizers and all the gauge checks of the last measured color.
This space is Clifford equivalent to the space stabilized by a 2D homological code as
detailed in Table 1 and drawn in Figure 3. Decoding can be performed by matching
syndrome bits with minimum weight perfect matching.

2.4 Boundaries and Corners for Floquet Codes
One natural way to introduce boundaries to a 2D surface is to remove from F some of
the face. This creates boundaries which are called colored boundaries for 2D color codes.
The vertices belonging to these boundaries are still 3-valent. The edges belonging to
these boundaries form bi-colored cycles which is an issue raised in [1]. Indeed, as we
just saw, these cycles are measured when successively measuring these two colors. This
is unsurprising since the set of faces F is actually irrelevant for the definition of the
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Floquet code. Indeed it was convenient to derive its properties but removing some faces
or even completely changing F does not change what measurements are done at what
time. In turn it does not change the stabilizers that stabilizes the space at each step of
the measurement schedule. So removing a face from F cannot change the fact that the
bordering cycle of edges will be measured. In [1] the authors propose that non-uniform
and more clever measurement schedules could be used to escape this problem but also
show some obstructions.

Color codes have a rich theory of boundaries, corners and twists [10]. Taking in-
spiration from them we introduce corners, which are points where different colored
boundaries meet. Said differently we also allow vertex punctures in the graph which
removes some vertices and edges. Structurally a corner is a vertex which belongs to
only one face and only two edges. The two missing faces are two boundaries of different
colors. At each corner we associate the same color as the face it belongs to and a
single-qubit gauge check of this color. We also refer to them as corner checks.

Note that inner logical operators cannot terminate at colored boundaries. When
terminating them at some corners they commute with every gauge checks except with
the corner checks where they terminate. This means that such operators represent
logical operators at the steps where the corner checks at their ends are not measured.

Boundaries between corners of the same color have an even number of qubits whereas
boundaries between corners of different colors have an odd number of qubits. This
difference is crucial as a Pauli operator on an odd number of qubits cannot be measured
in two steps by measuring separately the two other complementary Pauli operators on
these qubits. On the contrary this is possible with an even number of qubits. This
means that a boundary between two corners of the same color should not be considered
as a boundary as it could be measured eventually1. In fact it should be considered
as a stabilizer and its two corners should be linked into a single gauge check. On the
contrary, boundaries between corners of different colors will not be measured by the
schedule of gauge check measurements, that is because they have odd length. These
are the proper boundaries to introduce in Floquet codes. These two possibilities are
shown in Figure 4.

Figure 4: Examples of even and odd blue boundaries. On the left a blue boundary joining two red corners. It
has an even length and should therefore be considered as a stabilizer. On the right a blue boundary joining a
red corner and a green one. It has odd length and will not be measured by the schedule of measurements.

Looking at the Floquet code in the equivalent homological code picture we can
assign smooth and rough labels to the boundaries. Right after having measured the
color c, the boundaries of color c are smooth and the other two colors are rough, see for
instance in Figure 6. With this we can see that the layout of 2D triangular color codes
will not make Floquet codes with a non-zero number of logical qubits. But making an
hexagonal patch with 6 boundaries alternating the three colors cyclically twice allows
to make exactly one logical qubit. Indeed it will have two rough boundaries alternating
with two smooth boundaries [11]. In Figure 5 we have drawn two examples, one based
on the hexagonal lattice and the other on the square-octagon lattice. For aesthetics we
mostly use the hexagonal layout but the square-octagon one is also valid and may even
be less resource intensive as the square-octagon lattice is more qubit efficient. Moreover
any color code layout with the same corner and boundary configuration would also
work. The overall performance will be a combination of qubit efficiency of the lattice
and decoder performance on it.

1If the measurement schedule is such that the color of the corners is measured right before the color of the other
edges in the boundary, then the boundary will be measured directly. If the schedule measures the other color just
before the color of the corners, then a two-qubit error (entangling the corners) is sufficient for accidentally measuring
the boundary. Even if the corners are far apart this is unwanted behavior for an error correcting code.
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3 Planar Floquet Codes
3.1 Definition
To define planar Floquet codes we use the layout of a 2D color codes on a disk with
colored boundaries such that all boundaries have odd length. This requirement trans-
late into the fact that the corners must cycle through the three colors and in turn that
the boundaries must also cycle through the 3 colors. We can do the same computation
as in Section 2, denoting the number of corners as nc, we have

ng = ne + nc − 1. (15)

A disk has trivial homology and inner logical operators cannot terminate at boundaries
or corners, besides there are no linear dependencies between the faces because of the
boundaries so

ns = nf . (16)

Vertices are still three valent when counting the corner checks so

3nv = 2ne + nc. (17)

Finally a disk has Euler characteristic 1

nf − ne + nv = 1. (18)

Counting the number of logical qubits as a subsystem code also yields zero:

nL = nv −
ng − ns

2 − ns = 2nv − ne − nc + 1− nf

2 = 0. (19)

A planar Floquet code with 3(k + 1) boundaries has k logical qubits. This can be
checked by looking at the equivalent homological code at any given time step. The
boundaries of two of the colors will correspond to rough boundaries and the third color
to smooth boundaries. There will therefore be (k + 1) smooth boundaries alternating
with (k + 1) rough boundaries which is known to host k logical qubits [12].

The simplest example is then an hexagonal patch with six boundaries cycling
through colors (R, G, B, R, G, B). The patch is hexagonal but the bulk can have any
color code structure, such as one like in Figure 1. As a color code such system has 4
logical qubits but as a Floquet code it has a single logical qubit.

Figure 5: Layouts for planar Floquet logical qubits based on the hexagonal and square-octagon lattices. Each
vertex hosts a physical qubit. Each edge or circle is a gauge check. The faces are stabilizers and there are no
inner logical operators. Products of checks ending at corners represent logical operators at rounds where the
corners they end on are not measured. For both lattices we show first two smallest instances.

3.2 Dynamics
We can examine the dynamics of the logical space of a single qubit planar Floquet
code. The cyclic sequence of measurements is exemplified in Figure 6. We see that the
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Figure 6: Representation of the schedule of measurements —red (X), blue (Z), green (Y ) and repeat— and
how the system evolves. At each time step the Clifford equivalent surface code is drawn in thin black edges. It
has two rough boundaries facing two smooth boundaries which are rotated counter-clockwise by 60 degrees at
each step.

hexagonal patch is gradually rotating counter-clockwise when considering the geometry
of the equivalent homological code.

In fact, if we track the evolution of logical operators they gradually rotate clockwise
and are mapped from smooth to rough at every time step. We show in Figure 7 the
evolution starting from a smooth logical operator at step 0. The way to track the
evolution is to apply the standard Gottesman-Knill rule [13] to track Pauli operators
evolution under Pauli measurements. At each time step we can multiply the current
logical operator by some currently measured gauge checks to make it commute with the
next set of gauge checks. This alternatively make the logical operator grow onto the
next boundary then shrinks it in a caterpillar-like motion going clockwise. Moreover
the logical operator is alternating between rough and smooth boundaries and as the
measurement cycle has odd length a Hadamard is applied every three steps to the
logical qubit.

3.3 Constant Size Logical Operators
A previous version of this manuscript was erroneously implying that the planar Floquet
codes obtained this way could be used for fault-tolerant quantum computation. It is in
fact not the case as there exist constant size logical operators.

Schematic examples for such space-time operators are represented in Fig. 8 and 9.
Considering that the logical operators are rotating clockwise, one can have an elec-

tric particle emerging at the tail (one goes clockwise from tail to head) of a rough
boundary. Two steps later the opposite rough boundary has rotated towards it and
the particle can be absorbed in it. On can then check that any space-time sheet rep-
resenting a logical operator of the opposite type is crossed an odd number of time by
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Figure 7: The dynamical evolution of logical operators in a planar Floquet code. We highlight a starting logical
operator, right after measured red (X) checks, and track its evolution. Going from a logical operator of the
equivalent homological code to the one of the Floquet code can be done using Table 1. In order to go from
one step to the other we multiply the current logical operator by some of the current gauge checks so that
it commutes with the next gauge checks. This can be used to change its Pauli type and make it grow along
an adjacent boundary. For some steps part of the logical operator is measured by the next gauge checks (but
never the whole operator) which we use to shrink it. Overall the logical operator is alternating between smooth
and rough at every step and is gradually moving clockwise along the boundary. The net effect of a cycle of
three steps is to map smooth to rough and rough to smooth. Using the convention that smooth boundaries
correspond to Z-logical operators and rough ones to X-logical operators implies that a Hadamard is applied to
the logical qubit.

this error path and creates therefore a logical error. The error can stay at a constant
distance from the corner and has to stay only a constant number of steps in the bulk
so there are constant-size errors independent of the size of the code patch.

One can note that the same type of error path emerging from the head of the rough
boundary and going clockwise into the next boundary would actually be equivalent to
a stabilizer and harmless to the logical information.

3.4 Decoding
Decoding can be done in the same way as it is done when there are no boundaries.
The only difference is that one can match some non-trivial syndrome bits with some
of the boundaries in the syndrome graph. Recall from Section 2.3 that errors creating
non-trivial syndrome bits within the same connected component of the syndrome graph
correspond to partial magnetic, i.e. Z̄, logical operators. This means that they can
terminate at rough boundaries. The rough boundaries are rotating with the dynamics
of the system so they form spiraling surfaces in the shape of a DNA strand in the
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Figure 8: A small space time error in three steps which is undetectable and non-trivial. The code is just
schematically represented by rough and smooth boundaries of the effective surface code present at each time
step. The error consists in creating an electric excitation from a rough boundary right next to an adjacent
smooth boundary. Then wait the next time step

Figure 9: Tracking a generic logical operator which is flipped by the error. The red regions show where
the operator has to be multiplied by checks and stabilizers in order to stay attached to the correct type of
boundaries. One can see that space time sheet supporting the logical operator has to pass by the left right
corner and therefore cross once the error path.

space-time syndrome graph.
Another way of seeing the constant distance is as follows: Since the rough boundaries

are spiraling and making a full revolution in a constant number of steps, in the space-
time decoding graph there are constant size space-time paths from one rough boundary
to the opposite one, see Sec. 3.3.

3.5 Computation
In this section we investigate how to perform quantum computation on the logical qubits
protected by planar Floquet codes. We show how to perform Hadamard and CNOT
gates using the natural dynamics of the system, and code deformation techniques.
Unfortunately there are no natural S gate, but a few number of magic states for the
S gate are sufficient to complete the set of Clifford gates. In order to add T gates for
universal quantum computation standard magic state distillation methods can be used.

3.5.1 Hadamard

We have seen from the dynamics of the logical operators that the Hadamard gate is
naturally applied to the logical qubits. More precisely every three steps the rough
logical Pauli is mapped to the smooth one. In order to apply Hadamards differentially
to some of the logical qubits and not the others, we can simply de-synchronize the
qubits needing a Hadamard from the other ones.

For instance if one repeat each schedule step twice for a given logical qubit, in 6
steps it will be back to its initial subspace but with a logical Hadamard applied on
it. In the same time other logical qubits changing measurement at each step will have
undergone two Hadamard gates, i.e. they are back to their initial state.

Repeating the measurements to (de-)synchronize patches will unfortunately allow
for some type of errors to accumulate a bit which can decrease the error correction
performance a bit. Since the slow down in measurements is by a constant factor this is
still fault-tolerant.

We can also play with the synchronization to rotate qubits with respect to one
another in order to targeted some specific configurations and choose which boundary
is facing which.
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3.5.2 CNOT gates

To perform a CNOT gate we can once again use the dynamics of the system to our
advantage. Consider a nonagon planar Floquet code, i.e. with nine boundaries: it
encodes two logical qubits. We schematically represent such a patch characterized by
its pattern of boundaries and corners in Figure 10.

Figure 10: Schematic representation of a two-qubits planar Floquet patch with the three different configurations
in time with the equivalent rough and smooth homological code boundaries.

We have seen in the previous section that logical operators gradually move clockwise
around the patch in a sort of “laridé” dance2. This is still the case when the patch hosts
more than one logical qubit. The crucial difference, in the case there are more than
one logical qubit, is that some boundaries then represent joint logical operators so the
dynamics of the system is to naturally entangle the logical qubits at certain time steps.
We represent this dance in Figure 11. After three time steps the logical information has
undergone two Hadamard gates and a CNOT. After nine steps it would have undergone
two Hadamard and a SWAP. After 18 steps it would be back to its initial state.

→

H •

H

↓

←

Figure 11: The dance of logical operators in a two-qubit planar Floquet code. We fix the basis of logical
operators at the first step (R) and track them along with the measurement schedule. After three step the
logical qubits have undergone a CNOT and two Hadamard gates. The logical circuit is shown in the center of
the figure.

We can now see how to perform these operations starting from single-qubit planar
Floquet codes. The idea is to use code deformation in the form of plain surgery [14, 15]
to merge two patches into a single one with the correct boundary configuration. This is
schematized in Figure 12. We put next to one another two hexagons with one rotated

2A traditional dance from Brittany where participant form a circle and go around holding each other’s hands.
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60◦. In Figure 12 this makes a red boundary facing a green boundary. In order to
merge them at the blue measurement step, one measures blue checks across the facing
red and green boundaries instead of along them. The red and green checks all remain
the same otherwise, except for on check near the green and red corners which disappear
in the merge. We present the microscopic details of the procedure for two patches of
minimum distance 5 in Figure 14.

→

Figure 12: A configuration with two hexagonal planar Floquet codes that can be merged into a single nonagon.
The logical information is kept untouched during the merging. The microscopic details of such plain merge are
shown in Figure 14

One can check that the logical information of the two qubits is preserved by the
merging and splitting procedures. For this it is enough to see that the logical operators
hosted by the boundaries away from the merged boundaries are preserved and evolve as
they would do without the merging procedure. When merging the patches by measuring
blue (Z) gauge checks across boundaries, it creates a lot of random ± signs on the new
red (X) and green (Y ) stabilizers extended across boundaries. This is equivalent to
a high density of Z errors along the middle of the merged patch. The fault-tolerance
of the procedure is then guaranteed by the fact that logical operators stringing Z
operators, if they can terminate at the middle bottom of the merged patch, they have
to reach to either right or left sides but cannot terminate at the top middle of the
merged patch. Only strings of X or Y operators from top to bottom in the middle of
the patch correspond to logical operators, see Figure 13.

Figure 13: Two planar Floquet codes merged in a single patch. We show the different logical operators that can
attach to the bottom middle of the patch. When red X checks are measured, a string of X operators down the
middle is a logical operator. When green Y checks are measured a string of Y operators down the middle is a
logical operator. Strings of Z operators can eventually attach to the bottom middle but then has to terminate
on the right or left side of the merged patch. So a high density of Z errors down the middle will not ruin the
protection of the logical information.

4 Conclusion
Building on the work of Hastings and Haah [1], we have defined Floquet codes on any
2D color code lattice [8]. We have shown how to introduce some boundaries to the
system taking the form of odd length colored boundaries of the color code [10]. The
logical information in such planar Floquet codes gradually rotates geometrically and
logically undergoes a Hadamard gate every three steps. For patches hosting more than
one logical qubit, entangling operation are also regularly performed on the logical space.
The rotation of the logical operators makes it so the overall protocol have constant-sized
logical errors and is therefore not useful for fault-tolerant computation. We leave open
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↓

↘

→

↖ ↙

↓

Figure 14: A schedule of measurements for realizing a CNOT. Arrows point toward the next set of check
measurements. Note that the blue corner qubit of the right patch is measured out and removed from the patch
at the second step. It is then reintroduced when splitting back the two patches. The loop in the middle is
executed a number of times according to the desired operations on the logical qubits. Note also that at the
merging step, which is a blue step, it helps to first measure the original blue checks and only then the new
ones. This allows to measure for one last time the original green stabilizers before deforming them to merge
the patches. The same thing can be done at the splitting blue step.
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the question of finding a way of keeping this rotating dynamics but also preserving the
distance of the code.

For set-ups allowing more flexibility in the connectivity, one could also use, for
instance, tessellations for 2D hyperbolic color codes [16]. This would yield a constant
rate Floquet codes with logarithmic distance. The decoding problem for these codes
would be that of hyperbolic surface codes which can prove advantageous in terms of
resources [17]. Besides it is very likely that the construction generalizes to quantum
pin codes [18] which have much of the structure of color codes.

In subsequent work [5], a fault-tolerant way to introduce boundaries is presented.This
could prove to be a promising route towards fault-tolerant quantum computation. In-
vestigating their performance numerically [2] and comparing different geometries is
the natural next step to assess if they can be more advantageous than surface code
architectures in practice.
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