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1. Introduction

This work addresses the issue of estimating return levels associated with return periods
longer than the observation duration of a random phenomenon.

Equivalently, the problem is to estimate the probabilities associated with the occurrence
of unobserved extreme values of a random phenomenon.

Extreme value theory offers statistical models from which estimators of these quantities
of interest can be constructed.

However, the resulting estimators depend on a parameter which is essential to extract a
sample of extreme values to model.

According to the used extreme value probability distribution family, this parameter can be
either a threshold corresponding to the value beyond which an observation is considered
as extreme, or an integer value corresponding to the number of consecutive observations
whose maximum is considered as extreme.

Moreover, the choice of such a parameter is quite tricky in practice since an inappropriate
value, even large enough, can lead to an underestimation of the target critical values.

This study addresses this problem by setting the objective of constructing estimators for
upper bounds of return levels.

This deviation from the initial problem can be justified by the fact that an appropriate
strategy for managing a high risk remains effective for managing lower risks.

The rest of this document is organized as follows.

• Chapter 2 briefly presents some results from extreme value theory while introducing
the theoretical foundation of the proposed strategy.

• Chapter 3 contains not only a detailed description of our algorithmic strategy but
also its theoretical justification.

• Chapter 4 shows the validity of this strategy on simulated data from some continuous
random variables and stationary processes.

• Chapter 5 illustrates this strategy on real data in which the goal is to quantify the
upper bounds of extrapolations associated with the localization errors of a vehicle
on the road.
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2. Basics on GEV model for extreme values analysis

2.1 Method of block maxima 6

2.2 Estimation of return levels 10

2.3 Estimation of extremal index 11

2.4 Selection of block size 13

Introduction

The block maxima approach is one of the main methodologies in extreme value theory to
obtain a suitable model for extrapolations.

In this approach, the block size is usually selected in order to reflect the possible intrinsic
periodicity of the studied phenomenon.

The generalization of this approach to data from non-seasonal phenomena is not straight-
forward.

To address this problem, we propose in this chapter a data-driven method to identify the
candidate block sizes to focus on.

2.1 Method of block maxima

Let X be a random variable (associated with the phenomenon of interest) for which we want
to assess the probability of extreme events. Let X1, . . . ,Xn be n independent copies of X. Define
the sample maximum by Mn =max{X1, . . . ,Xn}. The main goal of extreme value analysis is to
appropriately estimate for a large value x ≥Mn the following probability

P{X > x}. (2.1)

The inverse of the probability (2.1) is defined as the return period T of x. In other words, T
is the time period during which X is expected to exceed on average once the value x. It is
clear that classical statistical methods are not applicable to solve the above problem. Indeed,
for x ≥ Mn the empirical estimation of the probability (2.1) is equal to zero as there is no
observation beyond the sample maximum. Moreover, a parametric estimation may not be
reliable either since a good fit in the distribution bulk does not necessarily yield a good fit in
the tail. For instance, both Gaussian and Student distributions can fit very well a given set
of observations whereas the behavior of large values from the fitted Student distribution is
significantly different from the behavior of large values from the fitted Gaussian distribution.
Extreme value theory provides the solid fundamentals needed for the statistical modeling of
extreme events and the computation of probabilities such as (2.1). The strength of extreme

6



Chapter 2. Basics on GEV model for extreme values analysis 7

value theory is that, ideally, the original parent distribution function of X needs not to be
known, because the maximum term Mn, up to linear normalization, asymptotically follows a
distribution nowadays called generalized extreme value (GEV) family [e.g. 10, 11, 13, 7, 6,
2]. Consequently, a sample of Mn (also called block maxima) where the nonnegative integer n
(referred to as block size) approaches infinity can be approximated by the GEV distribution
as stated in Theorem 2.1 from [6].

Theorem 2.1 If there exist sequences of constants an > 0 and bn ∈ R such that

lim
n→+∞

Pn
{
X − bn
an

≤ x
}
= lim
n→+∞

P

{
Mn − bn
an

≤ x
}
= G(x) (2.2)

or equivalently

lim
n→+∞

nP

{
X − bn
an

> x

}
= − logG(x) (2.3)

for a non-degenerate distribution function G, then G belongs to the Generalized Ex-
treme Value (GEV) family

G(x) = G(x;µ,σ ,γ) = exp
{
−
[
1+γ

(x −µ
σ

)]− 1
γ

}
, (2.4)

defined on
{
x ∈ R : 1 +γ

(
x−µ
σ

)
> 0

}
, where γ , 0, µ ∈ R, σ > 0.

The distribution G includes three parameters: the location parameter µ, the scale param-
eter σ and the shape parameter γ also referred to as the extreme value index. The GEV
family can be divided into three families, namely the Fréchet family, the Weibull family and
the Gumbel family. The Fréchet and the Weibull families correspond respectively to the cases
where γ > 0 and γ < 0. The Gumbel family with γ = 0 is interpreted as the limit of (2.4) as
γ → 0, leading to the distribution

G(x) = exp
{
−exp

{
−
(x −µ
σ

)}}
, x ∈ R. (2.5)

By Taylor expansion, one can observe that the Fréchet family has a power law decaying tail
whereas the Gumbel family has an exponentially decaying tail [7]. Consequently, the Fréchet
family suits well heavy tailed distributions (e.g. the Pareto and the Loggamma distributions)
while the Gumbel family characterizes light tailed distributions (e.g. the Gaussian and the
Gamma distributions). Finally, the Weibull family is the asymptotic distribution of finite
right endpoint distributions such as the Uniform and the Beta distributions.

In Theorem 2.1, one can see that the sequences of constants an and bn are strongly related
to the limiting GEV distribution parameters µ, σ and γ. The next theorem provides explicit
expressions of these relationships in the particular case where the random variable under study
follows a GEV distribution.

Theorem 2.2 Norming constants for GEV distributions If X is a random variable
having the GEV distribution function G(x;µ0,σ0,γ0), then the limit in (2.2) is satisfied



8 2.1. Method of block maxima

with the sequence an and bn defined by

bn = µ0 + σ0

(
nγ0 − 1
γ0

)
, an = σ0n

γ0 (2.6)

unless γ0 = 0, in which case

bn = µ0 + σ0 log(n), an = σ0. (2.7)

Furthermore, all other sequences of constants ãn > 0 and b̃n ∈ R for which the limit in
(2.2) also holds with X are related to the sequences an and bn by

lim
n→+∞

an
ãn

= a, lim
n→+∞

b̃n − bn
an

= b (2.8)

for some constants a > 0 and b ∈ R.

Proof. of Theorem 2.2. Easy computations show that

lim
n→+∞

Gn(an x+ bn;µ0,σ0,γ0) = exp
{
−(1 +γ0 x)−1/γ0

}
unless γ0 = 0, in which case

lim
n→+∞

Gn(an x+ bn;µ0,σ0,γ0) = exp {−e−x} .

The proof ends noticing that limits in (2.8) are obtained from the result of Khintchine (see
Thoerem 1.2.3 in [13]).

Each of the extreme value models derived so far has been obtained through mathematical
arguments that assume an underlying process consisting of a sequence of independent random
variables. However, for some data to which extreme value models are commonly applied,
temporal independence is usually an unrealistic assumption. Extreme conditions often persist
over several consecutive observations, bringing into question the appropriateness of models
such as GEV distributions. A detailed investigation of this question is given in [13]. The
dependence in stationary series can take many different forms, and it is impossible to develop
a general characterization of the behaviors of extremes unless some constraints are imposed.
These conditions aim to ensure that the gap to independence between sets of variables that
are far enough apart is sufficiently close to zero to have no effect on the limit laws for extremes.
A summary of the obtained results is given in Theorem 2.3 from [6].

Theorem 2.3 Let X1,X2, . . . be a stationary process and X?1 ,X
?
2 , . . . be a sequence of in-

dependent variables with the same marginal distribution. Define Mn =max{X1, . . . ,Xn}
and M?

n =max{X?1 , . . . ,X?n }. Under suitable regularity conditions,

lim
n→+∞

P

{
M?
n − bn
an

≤ x
}
= G1(x)

for normalizing sequences an > 0 and bn ∈ R, where G1 is a non-degenerate distribution
function, if and only if

lim
n→+∞

P

{
Mn − bn
an

≤ x
}
= G2(x),



Chapter 2. Basics on GEV model for extreme values analysis 9

where
G2(x) = G

θ
1 (x) (2.9)

for some θ ∈ (0, 1].

Since the marginal distributions of the Xi and X?i are the same, any difference in the
limiting distribution of maxima must be attributable to the dependence of the Xi series. The
parameter θ defined by (2.9) is called the extremal index. This quantity summarizes the
strength of dependence between extremes in a stationary sequence. Theorem 2.3 implies that,
if maxima of a stationary series converge, provided that an appropriate condition is satisfied,
the limit distribution is related to the limit distribution of an independent series according
to equation (2.9). The effect of dependence in stationary series is simply a replacement of
G1 as the limit distribution, which would have arisen for the associated independent series
with same marginal distribution, with Gθ1 . This is consistent with Theorem 2.1, because if G1

is a GEV distribution, so is Gθ1 . According to the foregoing, if the limiting distribution of a
random sequence Mn =max{X1, · · · ,Xn} from a stationary sequence X1, X2, · · · is non degener-
ate, then the probability distribution of the sample maxima Mn can be approximated by the
continuous GEV distribution family for large values of n. One of the practical methodologies
for statistical modeling of extreme values consists to apply the block maxima approach. In
this method, data are split into sequences of observations of length n, for some large value of
n, generating a series of m block maxima, Mn,1, Mn,2, . . . , Mn,m, say, to which the generalized
extreme value distribution can be fitted. The choice of a block size n is equivalent to the
choice of the number m of block maxima. The delicate point of this method is the appropri-
ate choice of the time periods defining blocks. Indeed, a too high value of n results in too few
block maxima and consequently high variance estimators. For too small n, estimators become
biased. A similar issue is the selection of threshold in the peak over threshold (POT) method
for fitting the generalized Pareto distribution to excesses [19, 17, 22, 23].

The block maxima method has been widely used in extreme value modeling of seasonal
data such as wind speeds, floods and rainfalls by setting for example, with a year as block
size when data are daily observed. For non seasonal data from other fields such as vehicle
engineering, the selection of an optimal block size is still a problem. Some recent studies in
the literature have attempted to solve this issue [20, 4, 5]. The method proposed by [4] and
[5] can be summarized as follows. The last 10% part of the actual data is reserved as test
data. GEV models are fitted to different samples of block maxima from the first 90% part
of the actual data. The estimated GEV models are used to generate samples (also referred
to as predicted data) of size equal to that of test data. The selected block size is associated
with the GEV model for which the highest similarity is observed between large values from
the predicted and test data. Our main comment about this method is that the use of only
one test data may not be enough to guarantee that the resulting GEV model is suitable to
characterize large values from future data. To continue reviewing the literature, one can sum
up the method developed by [20] as follows. GEV models are fitted on different samples of
block maxima from the actual data. The goodness-of-fit (g.o.f.) of the estimated GEV mod-
els is evaluated by means of an entropy based indicator which includes three g.o.f. measures,
namely the Kolmogorov Smirnov, the Chi-square and the average deviation in probability
density function. The selected block size is associated with the GEV model for which the
smallest value of the above mentioned g.o.f. indicator is observed. Our main comment about
this method is that the resulting GEV model exhibits the best fitting result with respect to
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the considered criterion. However, the selected GEV distribution does not necessarily have
desired property of being sufficiently accurate when extrapolating.

It is worth noticing that the estimators of the GEV model parameters depend on the order
of observations. Consequently, permuting the observations will in general not lead to the same
estimates. To overcome this limitation, new estimates have been constructed based either
on sliding blocks [3, 16] or on (all) permutation blocks [14, 15] for reducing the estimation
uncertainty in estimators from disjoint blocks under quite general conditions. However, all
of these approaches still require specifying an appropriate block size in practice. The rest of
this study is designed to explain the theoretical and practical aspects of the methodology we
propose to achieve this block size selection goal.

2.2 Estimation of return levels

Let p ∈ (0, 1). The quantile zp of the GEV family is obtained by solving the equation

G(zp) = 1− p, (2.10)

where G is the GEV distribution function. For γ , 0, the solution of equation (2.10) is

zp = µ−
σ
γ
{1− [− log(1− p)]−γ } = µ+ σ

wγp − 1γ

 , (2.11)

where wp = [− log(1− p)]−1 ≥ 0 and for γ = 0, the solution of equation (2.10) is

zp = µ− σ log {− log(1− p)} = µ+ σ log(wp). (2.12)

In common terminology, zp is the return level associated with the return period T = p−1.
This means that the level zp is expected to be exceeded on average once every T blocks of
observations. It is easy to see that the return level zT is strictly increasing with the return
period T . Consequently, one can estimate the frequency of events associated with values larger
than the highest observation of the studied random variable. Let us denote by (µ̂, σ̂ , γ̂) the
maximum likelihood estimate of the GEV distribution parameters (µ,σ ,γ) obtained when
fitting a sample of m block maxima zi , i = 1, . . . ,m with a GEV distribution, where the block
size is equal to n. By substituting (µ̂, σ̂ , γ̂) into (2.11) and (2.12), the maximum likelihood
estimate of zp is obtained for γ , 0 as

ẑp = µ̂+ σ̂

wγ̂p − 1γ̂

 (2.13)

and for γ = 0, the maximum likelihood estimate of zp is obtained as

ẑp = µ̂+ σ̂ logwp. (2.14)

Furthermore, by the delta method,

V ar
(̂
zp

)
≈ ∇zTp V∇zp, (2.15)
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where V is the asymptotic variance-covariance matrix [6] of the joint estimate (µ̂, σ̂ , γ̂) of the
parameter (µ,σ ,γ) and

∇zTp =
[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂γ

]
=

[
1, γ−1

(
w
γ
p − 1

)
, σγ−2

(
1−wγp +w

γ
p logw

γ
p

)]
is evaluated at (µ̂, σ̂ , γ̂) . In the particular case where γ = 0, V stands for the asymptotic
variance-covariance matrix [6] of the joint estimate (µ̂, σ̂ ) of the parameter (µ,σ ) and

∇zTp =
[
∂zp
∂µ

,
∂zp
∂σ

]
=

[
1, logwp

]
.

2.3 Estimation of extremal index

In many practical cases that include common environmental or financial applications, the un-
derlying observations are not independently generated from the same probability distribution,
but possibly from a strict stationary process. In the latter case, the block maxima method
still “works” because the block maxima are still approximated by a GEV distribution (see
Theorem 2.3). However, the location and scale parameters attached to block maxima from a
strict stationary process are different from those attached to block maxima from independent
random variables following the marginal distribution of the underlying stationary process.
Nevertheless, the location and scale parameters attached to both samples of block maxima
are non-linearly related by the extremal index, a parameter θ ∈ (0, 1] capturing the tendency
of extreme observations from the stationary process to occur in clusters. Consequently, the
additional step to perform when estimating return levels that depend on the marginal distri-
bution of a stationary process is the estimation of extremal index. Regarding the estimation
of extremal index, a large variety of estimators has been proposed (see, e.g., [8, 9, 12, 16,
18, 21] and references therein). This section provides a brief discussion on the most common
approaches to estimate θ, namely the runs, blocks and intervals methods.

Let X1, · · · ,Xn be a sample of n consecutive observations from a stationary process with
marginal distribution function F. We consider as extreme observations those exceeding a
chosen high threshold u. Let N = Nn(u) =

∑n
i=1 1(Xi > u) be the number of observations

exceeding u and let 1 ≤ S1 < · · · < SN ≤ n be the exceedance times. The inter-exceedance
times are Ti = Si+1 −Si for i = 1, · · · ,N −1. The blocks and runs estimators are based on their
own clusters identification procedure and both correspond to the ratio between the number
of clusters and the number of exceedances above the threshold u. More precisely, if Cn(u) is
the number of found clusters of extreme observations then the blocks and runs estimators are
expressed as

θ̂ =
Cn(u)
Nn(u)

. (2.16)

The relationship (2.16) shows that the extremal index can also be interpreted as the reciprocal
of the mean number of exceedances in a cluster. The blocks method to identify clusters consists
in choosing a block length, say b, then partitioning the sequence X1, · · · ,Xn into disjoint blocks
of b consecutive observations, and assigning to the same cluster any extreme observations
(exceedances) lying within the same block. The runs method to identify clusters consists
in choosing a run length, say r, and assigning to the same cluster any extreme observations
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separated by fewer than r non-extreme observations. In addition to the threshold choice, the
blocks and runs methods require the block and run lengths as respective parameters which
can have significant impact on the estimate of extremal index. The intervals estimators [9]
is introduced to overcome this limitation. It is completely prescribed by the data and it
provides a consistent estimate of the extremal index. The intervals estimators is defined by
the following formula, namely

θ̂ =min

1, 2
(∑N−1

i=1 Ti
)2

(N − 1)
∑N−1
i=1 T

2
i

 (2.17)

unless max{Ti : 1 ≤ i ≤N − 1} > 2, in which case

θ̂ =min

1, 2
(∑N−1

i=1 (Ti − 1)
)2

(N − 1)
∑N−1
i=1 (Ti − 1)(Ti − 2)

 . (2.18)

Here, Ti denotes the inter-exceedance times defined above.

We end this section by showing how to estimate the return levels associated with the
unknown marginal distribution function F of a stationary process having an extremal index
θ > 0. Let zi =

(
zi,1, · · · , zi,m(i)

)
be the sample maxima from disjoint blocks of i consecutive

observations, where zi,j is the maximum of the observations X1, · · · ,Xn within the j-th block.
Assume that the block size i is such that the sample maxima zi is well approximated by a
GEV model and denote by (γ̂i , σ̂i , µ̂i) the estimated vector of parameters. Now, consider the
threshold u defined by u = F−1n (1− 1/i) , where Fn(x) = (1/n)

∑n
j=1 1(Xj ≤ x) for all x ∈ R. Then,

use the formula (2.17)-(2.18) to find an estimate θ̂ of the extremal index θ. It follows from
Theorem 2.3 that the approximation

Fi(x) ≈ GEV 1/θ̂ (x; γ̂i , σ̂i , µ̂i) (2.19)

holds for all x ≥ u. That lead us to consider F(x) as approximately GEV-distributed when
x ≥ u since in this case, (2.19) can also be written as

F(x) ≈ GEV (x; γ̂ , σ̂ , µ̂) ,

where

γ̂ = γ̂i , σ̂ = σ̂i
(
i × θ̂

)−γ̂i
, µ̂ = µ̂i + σ̂i


(
i × θ̂

)−γ̂i − 1
γ̂i

 . (2.20)

It is important to note that unless θ̂ = 1 or γ̂ = 0, the parameters σ̂ and µ̂ are different from
σ̂i and µ̂i . It results that for the marginal distribution F, the return level zp associated with
the probability p ∈ [1− 1/i, 1) can be estimated by the formula

ẑp = û + σ̂

wγ̂p − 1γ̂

 , (2.21)

where wp = −1/ log(1− p).
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2.4 Selection of block size

In this section, we try to provide an answer to the following natural question which arises in
practice:

Problem 2.1 Given a continuous stationary sequence X1, X2, · · · , how can we choose
the value of n which guarantees that the GEV model fitted to a sample from the random
variable Mn =max{X1, · · ·Xn} is appropriate for extrapolation?

In the sequel, we exploit Theorem 2.4 to provide an objective answer to the above question
which is valid for both continuous and discrete random variables.

Theorem 2.4 Let X1, X2, . . . , be a continuous stationary sequence. Let Mn =
max{X1, . . . ,Xn}. Under suitable regularity conditions, suppose that for large n, there
are constants an > 0 and bn ∈ R such that for all x ∈ R

lim
n→+∞

P{Mn ≤ an x+ bn} = G(x;µ,σ ,γ),

for some constants µ ∈ R, σ > 0 and γ ∈ R, where G is the GEV distribution function.
Then for all non-negative integer j > 1, we have

lim
n→+∞

P{Mj×n ≤ an x+ bn} = G(x;µj ,σj ,γj ), (2.22)

where for γ , 0,

µj = µ+ σ
(
jγ − 1
γ

)
, σj = σ j

γ , γj = γ (2.23)

and for γ = 0,
µj = µ+ σ log(j), σj = σ, γj = 0.

Proof. of Theorem 2.4. Let X?1 ,X
?
2 , . . . be a continuous sequence of independent and identically

distributed random variables whose common distribution is the marginal distribution of the
stationary sequence X1, X2, . . . . Define M?

n = max{X?1 , . . . ,X?n }. The idea is to consider M?
j×n,

the maximum random variable in a sequence of j×n variables for some large value of n, as the
maximum of j maxima, each of which is the maximum of n observations. From Theorem 2.3,
there exists θ ∈ (0,1] such that the following equality holds true for all j > 1.

lim
n→+∞

P{Mj×n ≤ an x+ bn} =
[(

lim
n→+∞

P{M?
n ≤ an x+ bn}

)θ]j
.

Hence, one can write

lim
n→+∞

P{Mj×n ≤ an x+ bn} =
(
lim
n→+∞

P{Mn ≤ an x+ bn}
)j
= (G(x;µ,σ ,γ))j .

The conclusion results from the following straightforward algebraic computation

(G(x;µ,σ ,γ))j = G(x;µj ,σj ,γ).
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A natural technique to identify potential candidates for the optimal block size consists in
fitting the GEV distribution at a range of block sizes, and to look for stability of parameter
estimates. The argument is as follows. By Theorem 2.4, if a GEV distribution is a reasonable
model for block maxima of a block size n0, then block maxima of block size nj = j × n0 for
any integer j > 1, should also follow a GEV distribution with the same shape parameters.
However, the location parameter µj and the scale parameter σj are expected to change with
j as in formula (2.22) and (2.23). By reparametrizing the GEV distribution parameters when
γ , 0 as

µ? = µj + σj

(
(1/j)γ − 1

γ

)
, σ? = σj (1/j)

γ (2.24)

and when γ = 0 as

µ? = µj + σj log(1/j), σ? = σj (2.25)

the estimates γ̂ , σ̂? and µ̂? , of γ, σ? and µ? should be constant (up to estimation uncer-
tainty) if n0 is a valid block size for sample maxima to follow the GEV distribution. This
argument suggests plotting γ̂ , σ̂? and µ̂? , together with their respective confidence intervals,
and selecting for each normalized parameter an integer n0 as the lowest value for which these
estimates remain approximately constant for almost all nj = j ×n0 with j ≥ 1. Uncertainty in
the estimation of the normalized GEV distribution parameters µ? and σ? can be assessed by
using the delta method as follows. For γ = 0, the asymptotic variance of the rescaled location
parameter is

V ar
(
µ̂?

)
=

(
∇µ̂?

)T
V (µ̂j , σ̂j )∇µ̂? , (2.26)

where V (µ̂j , σ̂j ) is the asymptotic variance-covariance matrix of the joint estimate (µ̂j , σ̂j ) of
the parameter (µj ,σj ). Here, the gradient is calculated by the following formula

(
∇µ̂?

)T
=

[
∂µ̂?

∂µ̂j
,
∂µ̂?

∂σ̂j

]
= [1, − log(j)].

Similarly, for γ , 0, the asymptotic variances of the rescaled location parameter and the
rescaled scale parameter areV ar

(
µ̂?

)
=

(
∇µ̂?

)T
V (µ̂j , σ̂j , γ̂j )∇µ̂?

V ar
(
σ̂?

)
=

(
∇σ̂?

)T
V (µ̂j , σ̂j , γ̂j )∇σ̂?

(2.27)

where V (µ̂j , σ̂j , γ̂j ) is the asymptotic variance-covariance matrix of the joint estimate (µ̂j , σ̂j , γ̂j )
of the parameter (µj ,σj ,γj ). Here, the gradients are calculated by the following formula in
which γ̂j is denoted by γ̂ for the sake of clarity

(
∇µ̂?

)T
=

[
∂µ̂?

∂µ̂j
,
∂µ̂?

∂σ̂j
,
∂µ̂?

∂γ̂

]
=

[
1, −j−γ̂

(
j γ̂ − 1
γ̂

)
, σ̂j

(
1− j−γ̂ (γ̂ log(j) + 1)

γ̂2

)]
,

and (
∇σ̂?

)T
=

[
∂σ̂?

∂µ̂j
,
∂σ̂?

∂σ̂j
,
∂σ̂?

∂γ̂

]
=

[
0, j−γ̂ , −σ̂j j−γ̂ log(j)

]
.

It follows from the foregoing that a large set of potential candidates for the optimal block size
can be obtained.
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Given a sample X = (x1, . . . ,xn) of size n, denote the sample of maxima from disjoint blocks

of i consecutive observations by zi =
(
zi,1, . . . , zi,m(i)

)
, where zi,j is the maximum of the X ′s

observations within the j-th block of size i. It is easy to show that the normalized parameters
µ? , σ? and γ? defined in (2.24) satisfy for all block size i the relation

G
(
x;µ? ,σ? ,γ?

)
= G1/i (x;µi ,σi ,γi) ≈ P{X ≤ x}. (2.28)

Moreover, one can see in the formula (2.11) that return levels increase with each of the three
parameters µ, σ and γ. These results suggest the following strategy to select six candidate
block sizes i? including the related estimates of the GEV model parameters which can be used
for extrapolation.

Procedure 2.1

Let S be the set of block sizes for which the fitted GEV model, namely
GEV

(
x; γ̂X,zi , σ̂X,zi , µ̂X,zi

)
is in adequation with sample of univariate block maxima zi

associated with the block size i. We take γ̂?X ≡ γ̂
?
X,zi?

, σ̂?X ≡ σ̂
?
X,zi?

and µ̂?X ≡ µ̂
?
X,zi?

where

i? ∈
{
i?

(
γ?

)
, i?

(
σ?

)
, i?

(
µ?

)
, ĩ?

(
γ?

)
, ĩ?

(
σ?

)
, ĩ?

(
µ?

)}
(2.29)

with

i?
(
γ?

)
= argmax

i∈S

{
γ̂X,zi

}
(2.30)

i?
(
σ?

)
= argmax

i∈S

{
σ̂X,zi

}
(2.31)

i?
(
µ?

)
= argmax

i∈S

{
µ̂X,zi

}
(2.32)

and

ĩ?
(
γ?

)
= argmin

i∈S

∣∣∣∣γ̂?X,zi −∑
i∈S

wγ
(
γ̂?X,zi

)
× γ̂?X,zi

∣∣∣∣
 (2.33)

ĩ?
(
σ?

)
= argmin

i∈S

∣∣∣∣σ̂?X,zi −∑
i∈S

wσ
(
σ̂?X,zi

)
× σ̂?X,zi

∣∣∣∣
 (2.34)

ĩ?
(
µ?

)
= argmin

i∈S

∣∣∣∣µ̂?X,zi −∑
i∈S

wµ
(
µ̂?X,zi

)
× µ̂?X,zi

∣∣∣∣
 (2.35)

in which for all i ∈ S,

• the normalized parameters are quantities given by

γ̂?X,zi = γ̂X,zi (2.36)

σ̂?X,zi = σ̂X,zi (1/i)
γ̂X,zi (2.37)

µ̂?X,zi = µ̂X,zi + σ̂X,zi

 (1/i)γ̂X,zi − 1γ̂X,zi

 (2.38)
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• the weights are quantities defined by

wγ
(
γ̂?X,zi

)
=

exp
{
γ̂?X,zi

}
∑
j∈S exp

{
γ̂?X,zj

} (2.39)

wσ
(
σ̂?X,zi

)
=

exp
{
σ̂?X,zi

}
∑
j∈S exp

{
σ̂?X,zj

} (2.40)

wµ
(
µ̂?X,zi

)
=

exp
{
µ̂?X,zi

}
∑
j∈S exp

{
µ̂?X,zj

} (2.41)

• Note that in the proposed procedure, we give more weight to GEV models with large values of
parameters in order to reduce the risk of selecting the worst model for extrapolations.

• Note that the survival levels, also called the return levels, can be estimated by means of the
formula (2.21) along with (2.20).

• Note that the above procedure is described under the main assumption that observations are
independently generated from the same probability distribution. The case where observations are
generated from a strict stationary process will be studied in Chapter 3.

In practice, the proposed procedure can be very expensive in terms of execution time for
long sequence of observations. To overcome this limitation, we introduce Theorem 2.5 which
justifies that our procedure is expected to yield the same result when a sub-sequence of the
largest values is used.

Theorem 2.5 Let X be a continuous random variable having the distribution function
FX . For any real number u smaller than the right endpoint xX ≤ +∞ of X, denote by
FXu the distribution function of the random variable X given that X > u, that is

1−FXu (x) = P{X > x |X > u} = P{X > x, X > u}
P{X > u}

, x ∈ R. (2.42)

If there are sequences of constants an > 0 and bn ∈ R as well as some parameters γ ∈ R,
µ ∈ R and σ > 0, such that for all x ∈ R, we have

lim
n→+∞

n [1−FX(an x+ bn)] = − logG(x;µ,σ ,γ) (2.43)

in which G belongs to the GEV distribution function family, then for all x ∈ R, we have

lim
n→+∞

n
[
1−FXu

(
ãn x+ b̃n

)]
= − logG(x;µ,σ ,γ), (2.44)

where
ãn = a n

P{X>u}
> 0, b̃n = b n

P{X>u}
∈ R. (2.45)
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Proof. of Theorem 2.5.

lim
n→+∞

n
[
1−FXu

(
ãn x+ b̃n

)]
= lim

n→+∞
n

P
{
X > ãn x+ b̃n, X > u

}
P{X > u}


= lim

n→+∞

(
n

P{X > u}

)
P
{
X >

(
a n

P{X>u}

)
x+

(
b n

P{X>u}

)
, X > u

}
= lim

m→+∞
mP {X > am x+ bm, X > u} , (m = n/P{X > u})

= lim
m→+∞

mP {X > am x+ bm} , (am x+ bm > u, m→ +∞)

= − logG(x;µ,σ ,γ) (2.46)

The proof ends making use of the following properties.

1. If γ > 0, then Theorem 3.3.7 in [7] allows to see that bn = 0 and

ãn = a n
P{X>u}

= inf
{
x ∈ R : FX(x) ≥ 1− P{X > u}

n

}
≥ inf

{
x ∈ R : FX(x) ≥ 1− 1

n

}
= an. (2.47)

2. If γ < 0, then Theorem 3.3.12 in [7] allows us to see that bn = xX and

ãn = a n
P{X>u}

= xX − inf
{
x ∈ R : FX(x) ≥ 1− P{X > u}

n

}
≤ xX − inf

{
x ∈ R : FX(x) ≥ 1− 1

n

}
= an. (2.48)

3. If γ = 0, then Theorem 3.3.26 in [7] allows us to see that

b̃n = b n
P{X>u}

= inf
{
x ∈ R : FX(x) ≥ 1− P{X > u}

n

}
≥ inf

{
x ∈ R : FX(x) ≥ 1− 1

n

}
= bn (2.49)

and
ãn = a n

P{X>u}
= a

(
b n

P{X>u}

)
= a

(̃
bn

)
, (2.50)

where

a(x) =
∫ xX

x

1−FX(t)
1−FX(x)

dt, ∀x < xX . (2.51)
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Context

Consider a data set X = (x1, . . . ,xn) of n consecutive observations from a stationary pro-
cess having an unknown marginal cumulative distribution function F.

Denote by xF(T ) the true return level from F associated with a return period T , namely

xF(T ) = F
−1

(
1− 1

T

)
.

Objective

Denote by x̂GEV (T ) the return level of the GEV distribution estimated on block maxima
from the sample X associated with a return period T , namely

x̂GEV (T ) = GEV
−1

(
1− î

T
; γ̂ , σ̂ , µ̂

)
.

Here, the quantities î , γ̂ , σ̂ , µ̂ are respectively called the block size, the shape, the scale
and the location parameters.

The goal of this Chapter is to provide a guideline to find GEV model parameters (̂i, γ̂ , σ̂ , µ̂)
which guarantee that the true return level xF(T ) is always smaller than its estimate
x̂GEV (T ), namely

x̂GEV (T ) ≥ xF(T )
for any return period T > n.

3.1 Routine procedure

Procedure 3.1

Stage 1: Given a sample X = (x1, . . . ,xn) of size n, extract the samples of maxima from

disjoint blocks of consecutive observations, denoted by zi =
(
zi,1, . . . , zi,m(i)

)
for

i = 1,2, . . . , where zi,j is the maximum of the X ′s observations within the j-th
block of size i.

18
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Stage 2: For i = 1,2, . . . perform the following tasks.

• Carry out the Augmented Dickey-Fuller (ADF) stationary test on the sample
maxima zi and record the p-value, denoted by pi,ADF , of the test statistic.

• Carry out the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationary test on
sample maxima zi and record the p-value, denoted by pi,KP SS , of the test
statistic.

• Use the maximum likelihood estimation method to fit the GEV distribution
with non zero shape parameter to each sample maxima zi . Denote the fitted
cumulative distribution function by GEVzi .

• Carry out the Anderson-Darling (AD) test to check the goodness-of-fit of
the sample maxima zi with the GEV distribution. Then record the p-value,
denoted by pi,AD , of the test statistic.

• Construct a 100× (1−α)%-confidence interval for the normalized shape pa-
rameter γ?i = γi , 0 and denote it by C(γ?i ).

• Construct a 100 × (1 − α)%-confidence interval for the normalized scale pa-
rameter σ?i > 0 and denote it by C(σ?i ).

• Construct a 100 × (1 − α)%-confidence interval for the normalized location
parameter µ?i ∈ R and denote it by C(µ?i ).

Stage 3: Compute the subset S of block sizes defined by

S =
{
i = 1,2, . . . : pi,AD ≥ α ∩

(
pi,ADF < α ∪ pi,KP SS ≥ α

)}
,

where α ∈ (0, 1) is the significance level for the tests. The set S contains all block
sizes i for which the sample maxima zi is stationary and is in adequacy with the
GEV distribution.

Stage 4: Perform the following tasks.

• Construct the largest subset S(γ?) of S containing block sizes i for which
the associated confidence intervals C(γ?i ) overlap in the sense that they have
some elements in common, namely⋂

i∈S(γ? )
C(γ?i ) , ∅.

This means that the estimates of normalized GEV distribution parameters
γ?i , 0 are not significantly different for all block sizes in the set S(γ?).

• Construct the largest subset S(σ?) of S containing block sizes i for which
the associated confidence intervals C(σ?i ) overlap in the sense that they have
some elements in common, namely⋂

i∈S(σ? )
C(σ?i ) , ∅.

This means that the estimates of normalized GEV distribution parameters
σ?i > 0 are not significantly different for all block sizes in the set S(σ?).
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• Construct the largest subset S(µ?) of S containing block sizes i for which
the associated confidence intervals C(µ?i ) overlap in the sense that they have
some elements in common, namely⋂

i∈S(µ? )
C(µ?i ) , ∅.

This means that the estimates of normalized GEV distribution parameters
µ?i ∈ R are not significantly different for all block sizes in the set S(µ?).

Stage 5: Perform one and only one of the two tasks a) and b).

a) Perform the following tasks.

– Select the quantities
(
i(γ?),γi(γ? ),σi(γ? ),µi(γ? )

)
in which

i(γ?) = argmax
i∈S(γ? )

{
γ?i

}
is a block size and

(
γi(γ? ),σi(γ? ),µi(γ? )

)
are the GEV model parameters

fitted to the sample maxima zi(γ? ).

– Select the quantities
(
i(σ?),γi(σ? ),σi(σ? ),µi(σ? )

)
in which

i(σ?) = argmax
i∈S(σ? )

{
σ?i

}
is a block size and

(
γi(σ? ),σi(σ? ),µi(σ? )

)
are the GEV model parameters

fitted to the sample maxima zi(σ? ).

– Select the quantities
(
i(µ?),γi(µ? ),σi(µ? ),µi(µ? )

)
in which

i(µ?) = argmax
i∈S(µ? )

{
µ?i

}
is a block size and

(
γi(µ? ),σi(µ? ),µi(µ? )

)
are the GEV model parameters

fitted to the sample maxima zi(µ? ).

b) Perform the following tasks.

– Select the quantities
(
i(γ?),γi(γ? ),σi(γ? ),µi(γ? )

)
in which

i(γ?) = argmin
i∈S(γ? )


∣∣∣∣γ?i − ∑

i∈S(γ? )
wγ

(
γ?i

)
×γ?i

∣∣∣∣
 , wγ

(
γ̂?i

)
=

exp
{
γ̂?i

}
∑
j∈S(γ? ) exp

{
γ̂?j

}
is a block size and

(
γi(γ? ),σi(γ? ),µi(γ? )

)
are the GEV model parameters

fitted to the sample maxima zi(γ? ).

– Select the quantities
(
i(σ?),γi(σ? ),σi(σ? ),µi(σ? )

)
in which

i(σ?) = argmin
i∈S(σ? )


∣∣∣∣σ?i − ∑

i∈S(σ? )
wσ

(
σ?i

)
× σ?i

∣∣∣∣
 , wσ

(
σ̂?i

)
=

exp
{
σ̂?i

}
∑
j∈S(σ? ) exp

{
σ̂?j

}
is a block size and

(
γi(σ? ),σi(σ? ),µi(σ? )

)
are the GEV model parameters

fitted to the sample maxima zi(σ? ).
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– Select the quantities
(
i(µ?),γi(µ? ),σi(µ? ),µi(µ? )

)
in which

i(µ?) = argmin
i∈S(µ? )


∣∣∣∣µ?i − ∑

i∈S(µ? )
wµ

(
µ?i

)
×µ?i

∣∣∣∣
 , wµ

(
µ̂?i

)
=

exp
{
µ̂?i

}
∑
j∈S(µ? ) exp

{
µ̂?j

}
is a block size and

(
γi(µ? ),σi(µ? ),µi(µ? )

)
are the GEV model parameters

fitted to the sample maxima zi(µ? ).

Stage 6: Select the estimated GEV model parameters (i∗,γ∗,σ ∗,µ∗) where

i∗ = max
{
i(γ?), i(σ?), i(µ?)

}
,

γ∗ = max
{
γi(γ? ),γi(σ? ),γi(µ? )

}
,

σ ∗ = max
{
σi(γ? ),σi(σ? ),σi(µ? )

}
,

µ∗ = max
{
µi(γ? ),µi(σ? ),µi(µ? )

}
.

3.2 Main algorithm

Procedure 3.2

Stage 1: Given a sample X = (x1, . . . ,xn) of n observations. Denote the identity per-
mutation of the set {1, · · · ,n} by π1, that is Xπ1

= X . Define the permutations

πk of the set {1, · · · ,n} for k = 2, . . . ,K by Xπk =
(
xmk+1, . . . ,xn,x1, . . . ,xmk

)
, where

mk = (k − 1)×m with m = dn/Ke and K ≤
√
n.

Stage 2: For k = 1, . . . ,K, perform the following tasks.

• Apply the routine procedure described in Section 3.1 to the sample Xπk .
Denote the selected GEV model parameters by

(
i∗k ,γ

∗
k ,σ
∗
k ,µ
∗
k

)
.

• Use the method of [9] to estimate the extremal index θ∗k of the input (sta-
tionary) sequence X above the threshold u∗k defined as the empirical quantile
of X whose order is 1− 1/i∗k .

Stage 3: Estimate the required GEV model parameters (̂i, γ̂ , σ̂ , µ̂) as follows.

• Calculate the block size î by means of the following formula

î =
1
K

K∑
k=1

i∗k . (3.1)

• Calculate the extremal index θ̂ by means of the following formula

θ̂ =
1
K

K∑
k=1

θ∗k . (3.2)
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• Calculate the pseudo parameters γ̃ , σ̃ and µ̃ of the GEV model by means of
the formula

γ̃ =
1
K

K∑
k=1

γ∗k , σ̃ =
1
K

K∑
k=1

σ ∗k , µ̃ =
1
K

K∑
k=1

µ∗k . (3.3)

• Calculate the scale and the location parameters σ̂ and µ̂ of the GEV model
by means of the following formula

σ̂ = σ̃ ×
(
θ̂
)−γ̃

, µ̂ = µ̃+ σ̃ ×

(
θ̂
)−γ̃
− 1

γ̃
(3.4)

• Calculate the shape parameter γ̂ of the GEV model using either formula
(3.5) or (3.6) depending on whether Stage 5-a) or Stage 5-b) is respectively
considered in the Routine procedure.

γ̂ = 0.8379× γ̃ (3.5)

γ̂ = 0.8628× γ̃ (3.6)

• The Procedure 3.2 integrates a scheme to consistently estimate the two important quantities,
namely the block size i0 and the extremal index θ as they are generally unknown in practice.

• In practice, the Procedure 3.2 can be very expensive in terms of execution time for long sequence
of observations. Making use of Theorem 2.5, one can reduce this latency by dealing with a
sub-sequence of the largest values.

3.3 Diagnostic test

Diagnostic test to the obtained GEV distribution with parameters î , µ̂, σ̂ and γ̂ for return
levels upper bounds estimation can be carried out by checking whether quantiles of generalized
Pareto (GP) distribution having scale parameter σ = σ̂ + γ̂ (û− µ̂) and shape parameter γ = γ̂
are significantly greater than those of the empirical excesses over the threshold û. Here, û is the
quantile of observations whose order is 1−1/̂ i. Recall that the generalized Pareto distribution
function is defined on the set {x ∈ R : 1 +γx/σ > 0} , by

H(x) = 1−
(
1+γ

x
σ

)
where σ > 0 is the scale parameter and γ ∈ R is the shape parameter. In practice, the
GEV model obtained from the Procedure 3.2 could be either too pessimistic or more realistic
depending on whether Stage 5-a) or Stage 5-b) is respectively considered in the Routine
procedure. Thus, we suggest users to consider the GEV distribution resulting from the flow
including Stage 5-b) unless the above diagnostic test fails.
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3.4 Heuristic justification

Let x = x1, · · · ,xn be a sequence of n observations from a stationary process having an extremal
index θ ∈ (0, 1]. Assume that there is a block size i0 such that the function GEV

(
x;µi0 ,σi0 ,γi0

)
approximates well the limit distribution for maxima of the underlying stationary process.
Here, the parameters µi0 , σi0 and γi0 are obtained by applying the block maxima modeling

approach to the sequence x. According to Theorem 2.3, the function GEV 1/θ
(
x;µi0 ,σi0 ,γi0

)
will also approximate well the limit distribution for maxima of the marginal distribution
associated with the above stationary process. Making use of (2.28), it results that this marginal

distribution is well approximated for all x ≥ F−1n (1−1/i0) by the function GEV
(
x;µ? ,σ? ,γ?

)
,

where Fn is the empirical cumulative distribution function associated with the sequence x and

µ? = µi0 + σi0 ×
(
(i0 ×θ)−γi0 − 1

γi0

)
, σ? = σi0 × (i0 ×θ)

−γi0 , γ? = γi0 . (3.7)

On the other hand, the application of Procedure 3.2 to the sequence x gives an estimate of
the above marginal distribution defined by the function GEV

(
x; µ̂? , σ̂? , γ̂?

)
, where

µ̂? = µ̃? + σ̃? ×
(
θ−γ̃

? − 1
γ̃?

)
, σ̂? = σ̃? ×θ−γ̃

?
, γ̂? = γ̃? . (3.8)

In (3.8), the parameters µ̃? , σ̃? and γ̃? are though as the normalized versions of µ̃, σ̃ and γ̃
defined in (3.3). It is clear that the inequalities in (3.9) hold true by the construction of the
Procedure 3.1 since the GEV model having the largest values of the normalized parameters
is selected at each round, that is

µ? ≤ µ̂? , σ? ≤ σ̂? , γ? ≤ γ̂? . (3.9)

This yields the following expected inequality between the related return levels defined in
(2.11), namely

zp = µ
? + σ?

w
γ?
p − 1
γ?

 ≤ µ̂? + σ̂?
w

γ̂?
p − 1
γ̂?

 = ẑp. (3.10)

It remains to show that the shape parameter γ̂ defined in (3.4) and (3.5) is always greater than
the true value of the shape parameter γ associated with the considered stationary process.
This statement can be verified by analyzing the results of the following procedure.

Procedure 3.3

Stage 1: Consider a trivariate sequence (γ1,σ1,µ1), · · · , (γJ ,σJ ,µJ ) of J = 500 GEV model
parameters defined as follows.

• The univariate sequence γ1, · · · ,γJ is a sample from the continuous uniform
probability distribution on the interval (−0.5, 1).

• The univariate sequence σ1, · · · ,σJ is a sample from the continuous log-normal
probability distribution having 0 as mean and 1/4 as standard deviation.

• The univariate sequence µ1, · · · ,µJ is a sample from the continuous standard
normal probability distribution.
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Stage 2: For j = 1, · · · , J, consider the sequence Xj,1, · · · ,Xj,K of K = 128 samples, where

each sample Xj,k =
(
xj,k,1, · · · ,xj,k,n

)
consists of n = 10,000 observations from the

continuous GEV probability distribution having the parameter vector (γj ,σj ,µj ).

Stage 3: For j = 1, · · · , J and for k = 1, . . . ,K, apply the Routine procedure to the sample

Xj,k . Denote the selected GEV model parameters by
(
i∗j,k ,γ

∗
j,k ,σ

∗
j,k ,µ

∗
j,k

)
.

Stage 4: For j = 1, · · · , J, estimate the shape parameter γ̃j by means of the formula

γ̃j =
1
K

K∑
k=1

γ∗j,k . (3.11)

The plots in Figures 3.1-3.2 show that there is a linear relationship between the true
GEV model shape parameters γj and the estimated ones γ̃j resulting from the Procedure 3.3.
Moreover, this relationship is very strong as indicated by the characteristics of the associated
simple linear regression model displayed in Figures 3.3-3.4. It is clear from these results that
the estimated shape parameters γ̂ = 0.8379 × γ̃ or γ̂ = 0.863 × γ̃ , represented by the yellow
lines in Figures 3.1-3.2, are always greater than the true γ as expected.
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Figure 3.1: Plot of the simple linear regression model between the true GEV model shape parameter γ and

the estimated one γ̃ resulting from Procedure 3.3 in which Stage 5-a) is considered in the Routine procedure.
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Figure 3.2: Plot of the simple linear regression model between the true GEV model shape parameter γ and

the estimated one γ̃ resulting from Procedure 3.3 in which Stage 5-b) is considered in the Routine procedure.
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Variables Beta 95% CI1 p-value

(Intercept) -0.192 -0.194, -0.19 <0.001

Estimated shape 0.838 0.835, 0.84 <0.001

R² = 0.998786; Adjusted R² = 0.9987836; Sigma = 0.016; Statistic = 409,719; p-value = <0.001; df = 1; Log-likelihood = 1,370; AIC = -2,733; BIC = -2,720; Deviance = 0.122; Residual df = 498; No. Obs. = 500

1 CI = Confidence Interval 

Figure 3.3: Summary of the simple linear regression model between the true GEV model shape parameter

γ and the estimated one γ̃ from the result of Procedure 3.3 in which Stage 5-a) is considered in the Routine

procedure, namely γ = 0.838× γ̃ −0.192+ε, where ε is a normal random variable having the zero as mean and

0.016 as standard deviation parameters.

Variables Beta 95% CI1 p-value

(Intercept) -0.049 -0.051, -0.048 <0.001

Estimated shape 0.863 0.86, 0.865 <0.001

R² = 0.9989615; Adjusted R² = 0.9989594; Sigma = 0.015; Statistic = 479,038; p-value = <0.001; df = 1; Log-likelihood = 1,408; AIC = -2,809; BIC = -2,797; Deviance = 0.105; Residual df = 498; No. Obs. = 500

1 CI = Confidence Interval 

Figure 3.4: Summary of the simple linear regression model between the true GEV model shape parameter

γ and the estimated one γ̃ from the result of Procedure 3.3 in which Stage 5-b) is considered in the Routine

procedure, namely γ = 0.863× γ̃ −0.049+ε, where ε is a normal random variable having the zero as mean and

0.015 as standard deviation parameters.
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Introduction

Consider the sequence X = (x1, . . . ,xN ) of size N = 10,000 observations from a stationary
process.

The goal is to estimate the upper bounds of return levels which are associated with return
periods ranging from N to 105N.

We show how to properly use the strategy described in Chapter 3 with the sequence X in
order to archive this goal.

4.1 IID cases

In this section, we consider the strategy described by the Procedure 3.2 using Stage 5-b) in
the Routine procedure. We apply this strategy on simulated data of size N = 10,000 from the
probability distributions given in the examples below. We take the number 123 as seed value
for each simulation in the R statistical software. Numerical results are gathered in Table 4.1
where one can see that the estimated upper bounds for return levels of interest are greater
than the true return levels. The graphical diagnostics provided in Figures 4.1–4.6 show that
this conclusion is also true for return periods smaller than the sample size N.

28
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Exemple 4.1 (Law1) The triangular distribution with parameters a, b, c ∈ R such that
a ≤ c ≤ b has probability density function defined as follows.

• For a < x ≤ c
f (x;a,b,c) =

2(x − a)
(b − a)(c − a)

. (4.1)

• for c < x < b

f (x;a,b,c) =
2(b − x)

(b − a)(b − c)
. (4.2)

For illustration, we use the special case where a = −1, b = +1 and c = 0.

Exemple 4.2 (Law2) The normal distribution with location parameter µ ∈ R and scale
parameter σ > 0 has probability density function defined for x ∈ R by

f (x;µ,σ ) =
1

√
2πσ2

exp
{
−
(x −µ)2

2σ2

}
. (4.3)

For illustration, we use the special case where µ = 0 and σ = 1.

Exemple 4.3 (Law3) The exponential distribution with rate parameter λ > 0 has prob-
ability density function defined for x > 0 by

f (x;λ) = λexp{−λx}. (4.4)

For illustration, we use the special case where λ = 1.

Exemple 4.4 (Law4) The generalized Pareto (GP) distribution with parameters µ ∈ R,
σ > 0 and γ ∈ R has probability density function defined for γ , 0 and x ∈ R such that

1+γ
(
x−µ
σ

)
> 0 by

f (x;µ,σ ,γ) =
1
σ

(
1+γ

x −µ
σ

)−1− 1
γ
. (4.5)

For illustration, we use the special case where µ = 0, σ = 1 and γ = −0.2.

Exemple 4.5 (Law5) For illustration, we consider the special case of the generalized
Pareto (GP) distribution defined by the formula (4.5), where µ = 0, σ = 1 and γ = −0.5.

Exemple 4.6 (Law6) The logistic distribution with location parameter µ ∈ R and scale
parameter σ > 0 has probability density function defined for x ∈ R by

f (x;µ,σ ) =
1
σ

exp
{
−x−µσ

}
(
1+ exp

{
−x−µσ

})2 . (4.6)

For illustration, we use the special case where µ = 0 and σ = 1.



30 4.1. IID cases

Table 4.1: Table of estimated GEV distribution parameters obtained from the Procedure 3.2 when Stage 5-b)
is considered in the Routine procedure. Upper bounds of return levels x̂(T ) associated with some return periods
expressed in terms of numbers of observations are provided. The threshold û is the quantile of observations
whose order is 1− 1/̂ i. The true values γ of shape parameters and the true values x(T ) of return levels for the
considered probability distributions (Law1 to Law6) are also included.

Law1 Law2 Law3 Law4 Law5 Law6

γ̃ -0.5218 -0.1240 0.0923 -0.1722 -0.4659 0.0741
σ̃ 0.0831 0.6573 1.5631 0.5593 0.1258 1.7085
µ̃ 0.8973 2.7595 5.8383 3.4388 1.8795 5.9212

î 207.0000 328.0000 349.3438 354.4688 290.3438 340.1562
û 0.8907 2.7872 5.8593 3.4177 1.8742 5.7311

θ̂ 0.9971 1.0000 0.9623 0.9234 0.9589 1.0000

γ̂ -0.4502 -0.1070 0.0796 -0.1486 -0.4020 0.0639
γ -0.5000 0.0000 0.0000 -0.2000 -0.5000 0.0000

σ̂ 0.0829 0.6573 1.5686 0.5517 0.1233 1.7085
µ̂ 0.8975 2.7595 5.8984 3.4830 1.8847 5.9212

x̂ (N ) 1.0500 4.6335 11.8930 4.9293 2.1171 12.3322
x (N ) 0.9859 3.7190 9.2103 4.2076 1.9800 9.2102

x̂ (10N ) 1.0710 5.5713 17.1024 5.5899 2.1621 17.6244
x (10N ) 0.9955 4.2649 11.5129 4.5000 1.9937 11.5129

x̂
(
102N

)
1.0783 6.2995 23.3250 6.0554 2.1798 23.7215

x
(
102N

)
0.9986 4.7534 13.8155 4.6845 1.9980 13.8155

x̂
(
103N

)
1.0809 6.8683 30.7954 6.3858 2.1868 30.7809

x
(
103N

)
0.9996 5.1993 16.1181 4.8009 1.9994 16.1181

x̂
(
104N

)
1.0818 7.3129 39.7681 6.6205 2.1896 38.9586

x
(
104N

)
0.9999 5.6120 18.4207 4.8744 1.9998 18.4207

x̂
(
105N

)
1.0821 7.6605 50.5458 6.7871 2.1907 48.4323

x
(
105N

)
1.0000 5.9978 20.7233 4.9208 1.9999 20.7233
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Figure 4.1: Diagnostics related to the GEV model for return levels upper bounds estimation of Law1.

Figure 4.2: Diagnostics related to the GEV model for return levels upper bounds estimation of Law2.
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Figure 4.3: Diagnostics related to the GEV model for return levels upper bounds estimation of Law3.

Figure 4.4: Diagnostics related to the GEV model for return levels upper bounds estimation of Law4.
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Figure 4.5: Diagnostics related to the GEV model for return levels upper bounds estimation of Law5.

Figure 4.6: Diagnostics related to the GEV model for return levels upper bounds estimation of Law6.
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4.2 Non-IID cases

In this section, we consider the strategy described by the Procedure 3.2 using Stage 5-b) in
the Routine procedure. We apply this strategy on simulated data of size N = 10,000 from
the stationary processes given in the examples below. We take the number 123 as seed value
for each simulation in the R statistical software. Numerical results are gathered in Table 4.2
where one can see the estimated upper bounds for return levels of interest. The graphical
diagnostics provided in Figures 4.7–4.10 show that the estimated upper bounds of return levels
are greater than the true return levels for return periods smaller than the sample size N. It is
therefore very likely that this conclusion remains true for longer return periods.

Exemple 4.7 (Process1) The autoregressive moving average process of first order,
namely ARMA(1,1) with parameters φ and ψ is a time series Xt which satisfies

Xt −φXt−1 = εt +ψεt−1 (4.7)

in which the random variables εt are independent and identically distributed. For
illustration, we use the special case where φ = 0.25, ψ = 0.25 and εt follows the normal
distribution defined by (4.3) with parameters µ = 0 and σ = 1.

Exemple 4.8 (Process2) The generalized autoregressive conditionally heteroscedastic
process of first order, namely GARCH(1,1) with parameters α0, α1 and β is a time series
Xt which satisfies

Xt = σt|t−1 εt (4.8)

in which the random variables εt are independent and identically distributed, εt is
independent of past xt−s, s = s1,2, · · · , and

σt|t−1 = βσt−1|t−2 +α0 +α1 x
2
t−1. (4.9)

For illustration, we use the special case where α0 = 0.25, α1 = 0.25, β = 0.25 and
εt follows the generalized Pareto distribution defined by (4.5) with parameters µ = 0,
σ = 1 and γ = +0.2.

Exemple 4.9 (Process3) For illustration, we consider the special case of the
GARCH(1,1) process defined by the formula (4.8)-(4.9), where α0 = 0.25, α1 = 0.25,
β = 0.25 and εt follows the Student distribution defined by (4.10) with parameters
ν = 5.

Exemple 4.10 (Process4) For illustration, we consider the special case of the
GARCH(1,1) process defined by the formula (4.8)-(4.9), where α0 = 0.25, α1 = 0.25,
β = 0.25 and εt follows the Student distribution defined by (4.10) with parameters
ν = 2.
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Table 4.2: Table of estimated GEV distribution parameters obtained from the Procedure 3.2 when Stage 5-b)
is considered in the Routine procedure. Upper bounds of return levels x̂(T ) associated with some return periods
expressed in terms of numbers of observations are provided. The threshold û is the quantile of observations
whose order is 1− 1/̂ i. The true values γ of shape parameters and the true values x(T ) of return levels for the
considered stationary processes (Process1 to Process4) are not included.

Process1 Process2 Process3 Process4

γ̃ 0.0096 0.5568 0.2861 0.9023
σ̃ 0.7183 9.9949 1.4868 24.0561
µ̃ 3.0665 19.1773 3.7870 30.8539

î 341.0625 335.2188 333.7188 368.0000
û 3.0510 26.6459 4.3542 41.8074

θ̂ 0.9267 0.5210 0.6533 0.6416

γ̂ 0.0083 0.4804 0.2469 0.7785
σ̂ 0.7189 14.3693 1.6793 35.9047
µ̂ 3.1212 27.0331 4.4600 43.9850

x̂ (N ) 5.5714 148.7385 13.3388 592.2888
x̂ (10N ) 7.3016 458.8409 25.4470 3614.6998

x̂
(
102N

)
9.0547 1393.9096 46.7373 21746.2584

x̂
(
103N

)
10.8406 4219.9201 84.3097 130621.2637

x̂
(
104N

)
12.6608 12762.7527 150.6398 784446.3008

x̂
(
105N

)
14.5162 38587.7203 267.7429 4710885.9619
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Figure 4.7: Diagnostics related to the GEV model for return levels upper bounds estimation of Process1.

Figure 4.8: Diagnostics related to the GEV model for return levels upper bounds estimation of Process2.
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Figure 4.9: Diagnostics related to the GEV model for return levels upper bounds estimation of Process3.

Figure 4.10: Diagnostics related to the GEV model for return levels upper bounds estimation of Process4.
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4.3 Cautions

In this section, we consider the strategy described by the Procedure 3.2. We apply this
strategy on simulated data of size N = 10,000 from the probability distributions given in the
examples below. We take the number 123 as seed value for each simulation in the R statistical
software. Numerical results gathered in Table 4.1 are obtained in the first particular case
where Stage 5-b) of the Routine procedure is used. These results show that the estimated
upper bounds for return levels of interest are not always greater than the true return levels.
The similar numerical results provided in Table 4.4 are obtained in the second particular case
where Stage 5-a) of the Routine procedure is used on the same data. It can be observed
that the estimated upper bounds for return levels of interest are greater than the true return
levels. We displayed the graphical diagnostics for return periods smaller than the sample
size N in Figures 4.11–4.22. It follows that the estimated upper bounds for return levels of
interest are not significantly greater than the true return levels in the first particular case,
but are significantly greater than the true return levels in the second particular case. It is
therefore necessary to always perform such diagnostics to check the reliability of estimators
for the upper bounds of return levels resulting from the Procedure 3.2.

Exemple 4.11 (Law7) The Student distribution with degrees of freedom parameter
ν > 0 has probability density function defined for x > 0 by

f (x;η) =
Γ
(
ν+1
2

)
Γ
(
ν
2

) √
νπ

(
1+

x2

ν

)− ν+12
, (4.10)

where Γ (·) is the gamma function defined by

Γ (z) =
∫ +∞

0
xz−1 exp{−x}dx, z > 0. (4.11)

For illustration, we use the special case where ν = 5.

Exemple 4.12 (Law8) For illustration, we consider the special case of the generalized
Pareto (GP) distribution defined by the formula (4.5), where µ = 0, σ = 1 and γ = +0.2.

Exemple 4.13 (Law9) For illustration, we consider the special case of the generalized
Pareto (GP) distribution defined by the formula (4.5), where µ = 0, σ = 1 and γ = +0.5.

Exemple 4.14 (Law10) The Laplace distribution with with location parameter µ ∈ R
and scale parameter σ > 0 has probability density function defined for x ∈ R by

f (x;µ,σ ) =
1
2σ

exp
{
−
|x −µ|
σ

}
. (4.12)

For illustration, we use the special case where µ = 0 and σ = 1.
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Exemple 4.15 (Law11) The log-gamma distribution with shape parameter α > 0 and
rate parameter β > 0 has probability density function defined for x > 0 by

f (x;α,β) =
βα

Γ (α)
(logx)α−1

xβ+1
, (4.13)

where Γ (·) is the gamma function defined by the formula (4.11). For illustration, we use
the special case where α = 2 and β = 5.

Exemple 4.16 (Law12) The log-logistic distribution with shape parameter α > 0 and
rate parameter β > 0 has probability density function defined for x > 0 by

f (x;α,β) =
β
α

(
x
α

)β−1[
1+

(
x
α

)β]2 . (4.14)

For illustration, we use the special case where α = 2 and β = 5.
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Table 4.3: Table of estimated GEV distribution parameters obtained from the Procedure 3.2 when Stage 5-b)
is considered in the Routine procedure. Upper bounds of return levels x̂(T ) associated with some return periods
expressed in terms of numbers of observations are provided. The threshold û is the quantile of observations
whose order is 1− 1/̂ i. The true values γ of shape parameters and the true values x(T ) of return levels for the
considered probability distributions (Law7 to Law12) are also included.

Law7 Law8 Law9 Law10 Law11 Law12

γ̃ 0.1789 0.2592 0.6005 0.1159 0.2250 0.2024
σ̃ 1.1883 3.6889 18.4688 1.1385 0.9442 1.1981
µ̃ 4.5262 10.8452 36.1206 4.8954 4.5283 6.3007

î 306.4062 332.8750 362.2812 318.6250 253.5938 315.0312
û 4.5917 10.5808 34.0217 4.8447 4.4318 6.1480

θ̂ 0.9682 0.9296 0.9135 0.9978 1.0000 0.9379

γ̂ 0.1543 0.2236 0.5181 0.1000 0.1941 0.1747
γ 0.2000 0.2000 0.5000 0.0000 0.2000 0.2000

σ̂ 1.1951 3.7593 19.4997 1.1388 0.9442 1.2137
µ̂ 4.5647 11.1169 7.8373 4.8978 4.5283 6.3781

x̂ (N ) 10.0498 30.1492 208.1962 9.5580 9.5654 12.1054
x (N ) 9.6776 26.5479 198.0000 8.5172 10.4989 12.6189

x̂ (10N ) 15.7351 54.4942 691.8872 13.7433 15.1797 18.4288
x (10N ) 15.5469 45.0000 630.4555 10.8198 17.2416 20.0000

x̂
(
102N

)
23.8110 95.0651 2282.6604 18.9869 23.9285 27.8422

x
(
102N

)
24.7710 74.2447 1998.0000 13.1224 28.1539 31.6979

x̂
(
103N

)
35.3275 162.9328 7526.2429 25.5856 37.6029 41.9100

x
(
103N

)
39.3418 120.5943 6322.5553 15.4249 45.7852 50.2377

x̂
(
104N

)
51.7568 276.5054 24814.2307 33.8932 58.9824 62.9418

x
(
104N

)
62.4045 194.0536 19997.9999 17.7275 74.2292 79.6214

x̂
(
105N

)
75.1954 466.5695 81813.6499 44.3526 92.4098 94.3858

x
(
105N

)
98.9372 310.4787 63243.5541 20.0301 120.0545 126.1915
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Table 4.4: Table of estimated GEV distribution parameters obtained from the Procedure 3.2 when Stage 5-a)
is considered in the Routine procedure. Upper bounds of return levels x̂(T ) associated with some return periods
expressed in terms of numbers of observations are provided. The threshold û is the quantile of observations
whose order is 1− 1/̂ i. The true values γ of shape parameters and the true values x(T ) of return levels for the
considered probability distributions (Law7 to Law12) are also included.

Law7 Law8 Law9 Law10 Law11 Law12

γ̃ 0.3753 0.4531 0.7829 0.2732 0.4984 0.4513
σ̃ 1.6278 4.2128 21.9332 1.5411 1.3648 1.7179
µ̃ 4.7236 11.2787 36.7877 5.0421 4.9624 6.5281

î 374.0000 380.2812 382.8125 379.0000 384.4688 382.5312
û 4.8475 11.0994 35.3485 4.9810 4.9448 6.4474

θ̂ 0.9952 0.8907 0.8926 1.0000 1.0000 0.8918

γ̂ 0.3145 0.3797 0.6560 0.2289 0.4176 0.3781
γ 0.2000 0.2000 0.5000 0.0000 0.2000 0.2000

σ̂ 1.6307 4.4397 23.9739 1.5411 1.3648 1.8091
µ̂ 4.7313 11.7794 39.3944 5.0421 4.9624 6.7301

x̂ (N ) 14.0337 40.2524 309.6191 12.4884 14.3332 18.2591
x (N ) 9.6776 26.5479 198.0000 8.5172 10.4989 12.6189

x̂ (10N ) 29.5948 97.0075 1408.1295 22.4252 34.9974 41.1678
x (10N ) 15.5469 45.0000 630.4555 10.8198 17.2416 20.0000

x̂
(
102N

)
61.5682 232.5681 6373.8328 39.1797 88.8666 95.6852

x
(
102N

)
24.7710 74.2447 1998.0000 13.1224 28.1539 31.6979

x̂
(
103N

)
127.5021 557.4062 28856.9081 67.5508 229.7221 225.8481

x
(
103N

)
39.3418 120.5943 6322.5553 15.4249 45.7852 50.2377

x̂
(
104N

)
263.5156 1336.0503 130668.9829 115.6126 598.1366 536.7186

x
(
104N

)
62.4045 194.0536 19997.9999 17.7275 74.2292 79.6214

x̂
(
105N

)
544.1048 3202.5367 591720.7691 197.0350 1561.7716 1279.2000

x
(
105N

)
98.9372 310.4787 63243.5541 20.0301 120.0545 126.1915
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Figure 4.11: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law7.

Figure 4.12: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law7.
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Figure 4.13: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law8.

Figure 4.14: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law8.
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Figure 4.15: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law9.

Figure 4.16: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law9.
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Figure 4.17: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law10.

Figure 4.18: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law10.
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Figure 4.19: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law11.

Figure 4.20: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law11.
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Figure 4.21: GEV model (Procedure 3.2 + Stage 5-b)) for return levels upper bounds estimation of Law12.

Figure 4.22: GEV model (Procedure 3.2 + Stage 5-a)) for return levels upper bounds estimation of Law12.
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5.1 Operating framework

We consider the pairs of longitudinal and lateral coordinates associated with the horizontal
localization components of a vehicle. These errors are derived from the Ford autonomous
vehicle dataset which can be freely downloaded at https://avdata.ford.com/downloads/.
Data are collected by a fleet of Ford autonomous vehicles at different days and times during
2017-2018. The vehicles traversed an average route of 66 km in Michigan that included a
mix of driving scenarios such as the Detroit Airport, freeways, city-centers, university campus
and suburban neighbourhoods, etc. These experiments were carry out in various weather,
lighting, construction and traffic conditions in dynamic urban environments. To get more
details about the Ford autonomous vehicle datasets, visit the website https://avdata.ford.
com/. A complete description of the collected datasets can be found in [1]. The seasonal
variation consists of sunny, cloudy, fall and snow whereas the driving scenarios include freeway,
residential, overpass, airport, bridge, tunnel, construction and vegetation. The raw dataset is
divided into six parts or Logs, each part containing the driving weather and environmental
conditions as shown in the Figure 5.1.
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Figure 5.1: Overview of the driving scenarios.

5.2 Data and goals

Let E be the random variable associated with the localization error of a vehicle defined by

E =
√
(XG −XL)2 + (YG −YL)2, (5.1)

where (XG,YG) and (XL,YL) are the random variables associated with coordinates of the true
and predicted positions which are technically called Ground-truth Pose and Localized Pose,
respectively. The box plots and the density plots of errors provided in Figure 5.2–5.3 give a
complete view of how the observations of theses errors are distributed across the six driving
contexts and the overall driving scenario designated as Log0. It is clear from these plots that
the distributions of errors are asymmetric and right-tailed. In addition, the mean values of
errors are greater in contexts Log1 and Log2 than in contexts Log4, Log5 and Log6. Numerical
statistics which summarize these errors are gathered in Table 5.1. The goal is to estimate the
upper bounds of the errors that can be obtained if the experiment in each context is repeated
up to 105 times.
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Figure 5.2: Box plots of errors E calculated by the formula (5.1) for each driving context or scenario.

Figure 5.3: Density curves of errors E calculated by the formula (5.1) for each driving context scenario.
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Table 5.1: Basic summary statistics of errors E calculated by the formula (5.1) for each driving context
including those of the overall scenario Log0. The standard deviation (sd), the mean absolute deviation (mad)
as well as the skewness (skew) of errors are included.

Log0 Log1 Log2 Log3 Log4 Log5 Log6

n 100197 15674 21176 18021 14332 18158 12836
mean 0.0587 0.0820 0.0785 0.0582 0.0421 0.0443 0.0371

sd 0.0470 0.0494 0.0544 0.0540 0.0292 0.0288 0.0281
median 0.0457 0.0770 0.0701 0.0434 0.0366 0.0386 0.0299

mad 0.0355 0.0518 0.0545 0.0293 0.0222 0.0250 0.0240
min 0.0003 0.0006 0.0005 0.0003 0.0004 0.0003 0.0004
max 0.4462 0.2914 0.4137 0.4462 0.2742 0.2154 0.1992

range 0.4459 0.2908 0.4132 0.4459 0.2738 0.2151 0.1988
skew 1.9292 0.7937 1.1784 2.9410 1.9422 1.2521 1.5674

kurtosis 6.3444 0.5942 2.5278 12.0772 6.9300 2.0367 3.3751

5.3 Main results

To archived our main goals, we apply the strategy described in Chapter 3 to the sequence of
error from each driving context. More precisely, this strategy consists of the Procedure 3.2
using Stage 5-b) in the Routine procedure. The estimated GEV model parameters along
with the upper bounds for return levels of interest are provided in Table 5.2. It is worth
noticing that for the overall driving scenario Log0, only the 10,000 largest values of errors
are fed to the considered strategy. These GEV distributions for return levels upper bounds
estimation are validated by the diagnostic plots of Figures 5.4–5.10 in which theoretical and
empirical quantiles of excesses over high thresholds are compared. At glance, one can observe
the following results.

• The GEV distributions of errors are bounded in the contexts Log1 and Log2 since their
shape parameters are smaller than zero.

• The GEV distributions of errors are heavy tailed in the contexts Log3 and Log4 since
their shape parameters are positive and far from zero.

• The GEV distributions of errors are light tailed in the contexts Log5, Log6 and Log0
since their shape parameters are positive and close to zero.

• The dependency between large errors are strong in each driving context since the related
extremal indexes are very close to zero.

It follows from the return levels provided in Table 5.2 that the amplitudes of errors depend
on driving contexts. For instance, the errors which occur in average once every 105 times
the experimentation period are at the scale of meter when driving in contexts such as Log1,
Log2, Log4, Log5 and Log6 while these errors are at the scale of decameter when driving in
contexts such as Log3. One can say that the results on Log3 are a bit exceptional compared
to those on other driving contexts. In such a case, we suggest reapplying the procedure for
over-estimating return levels on a time series of longer size. This obviously implies increasing
(doubling, tripling, etc.) the duration of the experiments. It is worth doing this additional
work in order to validate or reject the exceptional character of the results.



52 5.3. Main results

Figure 5.4: Diagnostics related to the GEV model for return levels upper bounds estimation in Log1.

Figure 5.5: Diagnostics related to the GEV model for return levels upper bounds estimation in Log2.
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Figure 5.6: Diagnostics related to the GEV model for return levels upper bounds estimation in Log3.

Figure 5.7: Diagnostics related to the GEV model for return levels upper bounds estimation in Log4.
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Figure 5.8: Diagnostics related to the GEV model for return levels upper bounds estimation in Log5.

Figure 5.9: Diagnostics related to the GEV model for return levels upper bounds estimation in Log6.
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Figure 5.10: Diagnostics related to the GEV model for return levels upper bounds estimation in the overall

driving scenario called Log0.
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Table 5.2: Table of estimated GEV distribution parameters obtained from the Procedure 3.2 when Stage 5-b)
is considered in the Routine procedure. Upper bounds of return levels x̂ associated with some return periods
are provided. Here, the driving duration T is expressed in minutes and the threshold û is the quantile of
observations whose order is 1− 1/̂ i..

Log1 Log2 Log3 Log4 Log5 Log6 Log0

γ̃ -0.2121 -0.1746 0.3721 0.2008 0.0196 0.1028 0.0524
σ̃ 0.0655 0.0768 0.0390 0.0314 0.0350 0.0329 0.0457
µ̃ 0.1740 0.1681 0.0896 0.0761 0.0774 0.0599 0.2387

î 559.3125 574.3125 520.3750 467.0000 511.8438 361.4375 307.1875
û 0.2657 0.3461 0.4035 0.1953 0.1625 0.1661 0.4074

θ̂ 0.2272 0.0581 0.1578 0.1862 0.0730 0.0668 0.0778

γ̂ -0.1830 -0.1507 0.3211 0.1732 0.0169 0.0887 0.0452
σ̂ 0.0478 0.0467 0.0776 0.0440 0.0368 0.0435 0.0523
µ̂ 0.2573 0.3404 0.1932 0.1388 0.1713 0.1627 0.3637

duration (T ) 13.2644 17.9206 15.2506 12.1287 15.3665 10.8627 84.7935

x̂ (T ) 0.3762 0.4702 0.7022 0.3432 0.3063 0.3446 0.5600
x̂ (10T ) 0.4255 0.5233 1.5304 0.5696 0.3987 0.4979 0.7093

x̂
(
102T

)
0.4576 0.5607 3.2597 0.9055 0.4942 0.6852 0.8742

x̂
(
103T

)
0.4786 0.5871 6.8807 1.4059 0.5936 0.9148 1.0570

x̂
(
104T

)
0.4924 0.6058 14.4646 2.1516 0.6968 1.1965 1.2598

x̂
(
105T

)
0.5015 0.6190 30.3488 3.2628 0.8042 1.5421 1.4849



6. Conclusions

In this work, we have proposed an original strategy based on an algorithmic approach to
construct estimators for upper bounds of return levels associated with continuous random
variables and stationary processes.

We have demonstrated the theoretical validity of this strategy and we have proposed a
diagnostic test that must be carried out to assess the quality of these estimators since the
true stationary process from which the data come is generally unknown in practice.

We have automated all the stages of this strategy into an intuitive and interactive web
application which is fast even for very long time series.

We plan to extend this work in the design of a similar approach suitable to construct
estimators for the upper bounds of return levels associated with two dependent continuous
random variables.
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