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Abstract

The limited memory of GPUs induces serious problems in the training
phase of deep neural networks (DNNs). Indeed, with the recent tremen-
dous increase in the size of DNN models, which can now routinely include
hundreds of billions or even trillions of parameters, it is impossible to
store these models in the memory of a GPU and several strategies have
been devised to solve this problem. In this paper, we analyze in detail
the strategy that consists in offloading the weights of some model layers
from the GPU to the CPU when they are not used. Since the PCI bus
bandwidth between the GPU and the CPU is limited, it is crucial to know
which layers should be transferred (offloaded and prefetched) and when.
We prove that this problem is in general NP-Complete in the strong sense
and we propose a lower bound formulation in the form of an Integer Linear
Program (ILP). We propose heuristics to select the layers to offload and
to build the schedule of data transfers. We show that this approach allows
to build near-optimal weight offloading strategies on realistic size DNNs
and architectures. Keywords: Training of DNNs, Scheduling, Offloading
Strategies

1 Introduction
Training of Deep Neural Networks (DNNs) is a computationally and memory
intensive operation. From a computational point of view, there are many parallel
strategies that allow to distribute the computation over several resources. These
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strategies exploit the possibility to distribute the data and treat it over several
resources (data parallelism) or the DNN itself (model parallelism) or to partition
the data tensors along other dimensions (tensor parallelism, filter parallelism,...).

However, contrary to the case of typical HPC applications, such as linear
algebra kernels, the nature of the dependencies between the tasks prevents in
general to distribute among participating resources the memory necessary to
store the intermediate produced data (activations), the model parameters and
the optimizer states. For example, in the data parallel approach [28, 6], the same
model is replicated on all participating nodes even if the activations are actually
distributed. In the model parallel approach [26, 16, 17], on the contrary, the
weights are well distributed between the different resources, but to be efficient,
the model parallel approach must be pipelined like in Pipedream [16, 3]. In
turn, pipelined strategies require to store several models: the number of models
to store, which could be large in Pipedream [16], has been reduced to two in [17]
or to a constant number using a different approach in [14]. Pipedream strategies
also require to significantly increase the amount of activations to store, as shown
in [3].

In practice, memory needs are a major reason for the renewal of GPUs and
being able to decrease memory requirements can therefore help to limit the
carbon impact, since in data centers, the carbon impact associated with the
production of computational resources is often more significant than the impact
associated with energy consumption [9] during the exploitation phase. These
memory requirements come from both the data and the models. Indeed, high
dimensional data have a direct impact (usually proportional) on the size of the
activations. In addition, the use of deeper models with more parameters has
in general an impact on both the size of the model and the number of the
activations. Obviously, high dimensional data and deeper neural networks have
in general a positive impact on the accuracy, so that it is crucial in practice to
design strategies limiting the memory size required on a computational node
without changing the model or the data and thus the performance of the model.

Historically, minimizing the memory consumption induced by activations
was the first active research axis, because in vision networks, the memory con-
sumption related to activations was the most significant. Strategies based on re-
materialization [8, 12, 10] and offloading [25, 13, 1] of activations have been pro-
posed, as well as the combination of these two approaches [2]. Re-materialization
consists in deleting some activations from memory during the forward phase and
recomputing them when needed during the backward phase, which corresponds
to trading memory for computation. Offloading consists in offloading activa-
tions from the (small) GPU memory to the (large) CPU memory during the
forward phase, and to prefetch them back during the backward phase.

Recently, minimizing memory consumption induced by model size and op-
timizer states has received more attention, especially due to the explosion of
model sizes. For example, in Natural Language Processing (NLP), it is not un-
common to see models with billions parameters [7, 20, 5]. A typical example of
such large models is GPT-3 [5], which contains 175 billion parameters, which is
about 650 GB using 32-bit floating point numbers for the weights, not counting
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activations and optimizer states. As there is no GPU with such a memory size
and as model parallelism increases the cost of storing activations as soon as
more than a few tens of nodes are used [3], it is therefore necessary to rely on
strategies to save the memory induced by model parameters.

In the literature, this problem has been addressed in several papers [21, 19,
15]. In these works, the objective is to train the largest possible model, thus to
keep in the GPU memory, for each computational task related to a given layer
(either forward or backward), only the data that is absolutely necessary for this
task. These very aggressive optimization approaches typically lead to keeping
all the weights (except those currently used) and all the states of the optimizer
in the memory of the CPU, and to transfer the weights (when they are needed)
from the CPU to the GPU and the gradients (as soon as they are computed)
from the GPU to the CPU. This approach naturally leads to a very intensive use
of the PCI bus, whose bandwidth can then become the limiting factor [15]. In
the present paper, we consider the problem from an optimization point of view,
focusing on the case where the training is performed on a single GPU. More
precisely, we try to solve the following problem: given a set of layers defined
by their sizes and processing times (forward and backward), given a PCI bus
bandwidth and given a memory size, what is the strategy that minimizes the
training execution time? Determining such a strategy requires solving both a
selection problem (which layers should be transferred) and a scheduling problem
(at what time should the transfers to and from the GPU be performed).

The paper is organized as follows. After a review of related works limited
to weight offloading strategies (a more complete survey on memory saving tech-
niques can be found in Chapter 2 of [23]) in Section 2, we present the model
in Section 3 and complexity results in Section 4. Algorithms to solve the se-
lection problem and the scheduling problems are presented in Section 5. To
evaluate the quality of the proposed strategies, a lower bound based on Integer
Linear Programming (ILP) is established in Section 6 and we rely on a set of
simulations for transformer-based models in Section 7. Concluding remarks and
perspectives are given in Section 8.

2 Related works
The methods either targeting the offloading of activations [22, 25, 1, 2], or of
any tensor [13, 27, 11]. can be adjusted (though heuristically) to deal with
weights in the similar way as activations. The latter group can be directly
applied to weights. In [13, 11], the tensors that will not be needed for the
longest time are preferred candidates for offloading. Similarly to our approach,
AutoSwap [27] relies on priority scores for choosing the best candidates for
offloading, though it is limited to the case of only one memory peak, which is
enough for activation offloading, but not for weigths. The schedule of transfers
is performed in a similar way for all above methods: offloading is performed as
soon as possible and prefetching as late as possible, trying to avoid the idle time
before the operation requiring the prefetched data. Despite their universality,
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Figure 1: Data dependencies induced by the training phase of Sequential DNNs

these methods have a few disadvantages: in particular, they do not fully consider
benefits of weight offloading during the backward phase contrary to the present
paper.

Several recent works focus on offloading strategies of DNN weights during
the training phase to limit memory consumption. The first strategy is proposed
in [19] which presents the L2L (Layer-to-Layer) algorithm that we use as a basis
for comparison in the Section 7. For a graph typically consisting of a sequence of
encoders, a synchronous parameter-server, stored on the CPU, allows to keep a
copy of the model weights and to keep on the GPU only the encoder that is being
used. A strategy allowing to adapt the size of the mini-batch is then proposed,
which allows to use the biggest possible mini-batch given this systematic strategy
of layer offloading. Closed-form formulas allowing to estimate the training time
(for all identical layers) are proposed. This strategy was then refined in ZeRO-
offload [21].

Recently, in [15], the authors observed that approaches such as L2L [19] or
Zero-Offload [21] generate, despite the optimizations proposed in [21], a very
important data traffic on the PCI bus between the CPU and GPU. As its band-
width is limited, it can become the bottleneck and significantly slow down the
whole training process. For this purpose, it is proposed to offload only some
layers, the layers from de first half being arbitrarily chosen in [15]. Our contri-
bution in the present paper is based on the same idea, with a formalization of
the optimization problem which consists in determining which layers to offload
and when to do it. For this, we rely on the simplified model of [19] and we leave
for future work the consideration of the optimizer states performed in [21].

3 Model
In this paper, we focus on the case of a DNN that can be written as a sequence of
layers (in practice, each layer may consist of arbitrarily complex computations).
DNNs are trained using forward-backward propagation that is used to compute
gradients of the loss (error of the model) with respect to weights, which are
later used by optimization algorithms such as Stochastic Gradient Descent. One
elementary iteration of this algorithm is described in Figure 1: it consists in a
traversal by a mini-batch (a set of training samples, e.g. images, text sequences)
of the different layers of the DNN, to compute the loss and then to backpropagate
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the gradients to update the network weights. We do not go into the details of
the computations that can be found in [4], but it is important for us to study
the dependencies and memory requirements at each step. In practice, the loss
related operation takes very little time and does not incur additional memory
costs. For simplicity, in the rest of the paper we neglect this operation and
consider that BL comes right after FL.

Memory usage of operations The standard practice is to compute all gradi-
ents during the forward-backward propagation, and then update all the weights
in an optimization step. This means that the weight wi of a given layer is used
in three occasions during a training step: forward of layer i (Fi), backward of
layer i (Bi), and for the update of wi in the optimization step. We propose
to perform the update of wi during backpropagation, as soon as its gradient is
computed, which obviously saves memory.

As a result, each operation Fi takes as input ai−1 and produces ai, which
will be used by Fi+1 and Bi+1. Each operation Bi takes as input ai−1 and
δi and produces δi−1, while updating weights wi of layer i from the following
sequence of operations that are considered atomic:

• gradient δwi is computed from ai−1 and δi; once this operation is per-
formed ai−1 can be deleted from memory, but wi must remain.

• δi−1 is computed from δi and wi; once this operation is performed δi can
be removed from the memory, but wi and δwi must remain in memory.

• new wi is computed from old wi and δwi; then δwi can be removed from
memory (and wi can be offloaded), but δi−1 must remain in memory to
be passed to Bi−1.

In this paper, we assume that activations ai are kept in memory from Fi

until Bi+1, so that when computing Bi, all activations |aj |, 0 ≤ j ≤ i− 1 must
reside in memory. We further assume, as in the literature [4], that |δi| = |ai|
and |wi| = |δwi|.

During Bi, the memory peak is reached when δi−1 is computed. We denote
MFi and MBi the memory occupation during Fi and Bi (without counting the
weights wj related to other layers j 6= i, that can potentially be offloaded and
no longer reside in memory). These values are given by:

MFi = |wi|+
∑
k≤i

|ak| and MBi = 2|wi|+
∑
k≤i

|ak|. (1)

Weight offloading We focus on the possibility to offload the weights (wi)
from the GPU memory to the CPU memory. We assume that there is a full-
duplex communication link between the GPU and the CPU with bandwidth β,
which means that we can at the same time offload a layer from the GPU and
prefetch another one from the CPU. In any case, the communication buffers on
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Figure 2: Instance used in the NP-completeness proof of Theorem 1. Node size
represents operation times: for ui = 0, for ui = 1; the size of the weights is
represented by node thickness and written above.

the GPU are reserved from the beginning of a prefetch operation and until the
end of an offload operation.

Given that wi is only needed for Fi and Bi, we can save memory by (a)
offloading wi after Fi and prefetch it before Bi; or (b) offloading wi after Bi

and prefetch it before Fi. In the following, we denote by offloading a weight wi

the action of sending wi to the memory of the CPU, and deleting it right after.
By contrast, the uploading operation consists in sending wi to the CPU without
deleting it on the GPU afterwards.

The problem comes however with an additional complication: only Bi modi-
fies the value of wi. This means that it can be beneficial to upload wi in advance
before the Fi operation (for example to benefit from an under-utilized commu-
nication link), and to delete it only after the Fi operation. It also means that
between two Bi operations (on two successive batches), if wi is offloaded after
Bi, it is useless to offload it again after Fi, since that would mean rewriting
the same value of wi in the CPU memory. Therefore, it is possible that one
offload operation corresponds to two prefetch operations, leading to what we
call discounted communications. To the best of our knowledge, this discount
possibility is not considered in other related works, and we show in Section 7
that it actually significantly improves the performance of the training phase.

We are interested in solving the following problem:

Problem 1 (OFF (L,MGPU, β)). Consider a training phase with L-layers net-
work. The operation time of forward and backward phase of the i-th layer is
denoted as uFi

and uBi
. Given a GPU with memory MGPU and bidirectional

bandwidth β between the GPU and main memory, is there a schedule of upload-
ing, delete and prefetching operations so that the training phase can be performed
with an execution time at most T?

4 Complexity Results
Theorem 1. OFF (L,MGPU, β) is NP-complete in the strong sense.

Proof. OFF (L,MGPU, β) clearly belongs to NP: given a schedule of all opera-
tions and communications, one can check in polynomial time that the execution
is valid and fits within the execution time T .
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set Si for 1 ≤ i ≤ m

wi for i = 2k, 1 ≤ k ≤ m

being offloaded

being prefetched

Figure 3: Instance and schedule used in the NP-completeness proof of Theo-
rem 1.

We prove that this problem is strongly NP-hard and therefore NP-complete
by a reduction from the 3-partition problem: given a set of integers {x0, x2, . . . , x3m−1}
such that

∑
i xi = mV , decide whether it is possible to partition it into m parts

{S1, . . . , Sm} so that for any j ≤ m, |Sj | = 3 and
∑

i∈Si
xi = V . This problem is

known to be NP-complete in the strong sense. Given an instance of 3-partition,
we build the following instance of Problem 1:

• L = 5m, β = V, MGPU = mV + V, T = 2m

• uFi = 0 and |ai| = 0 for all i, except uF2m = m

• uBi
= 0 and |wi| = V for i = 2k − 1, k ∈ {1, . . . ,m}

• uBi
= 1 and |wi| = 0 for i = 2k, k ∈ {1, . . . ,m}

• uBi
= 0 and |wi| = xi−2m for 2m+ 1 ≤ i ≤ 5m

We claim that this instance can be scheduled in time T = 2m if and only if the
3-partition instance is positive.

Let us first assume that there exists a solution to the 3-partition instance,
i.e. sets (Sj)1≤j≤m such that

∑
i∈Sj

xi = V , and let us build a feasible schedule,
as described on Figure 3.

Before F1, the GPU memory contains all wi for i ≤ 2m, thus the available
memory is MGPU −

∑2m
i=1 |wi| = V . The forward operations for the first 2m
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layers take no time. With V free memory at the beginning of F2m, prefetching
wi+2m for i ∈ S1 and offloading w1 can start simultaneously. After 1 time unit,
both transfers are over since |w1| =

∑
i∈S1
|wi+2m| = V . Prefetching wi+2m for

i ∈ S2 and offloading w3 can thus start immediately. By the end of F2m, all wi

for i > 2m are prefetched into memory and all w2k−1 for k ≤ m are offloaded.
With wi for i > 2m in the memory and V free memory for the gradient,

F2m+1 to F5m and B5m to B2m+1 can also be performed in no time. After
the end of B2m+1, the free memory is given by MGPU −

∑5m
i=2m+1 wi = V .

During B2m, w2m−1 is prefetched, and wi+2m for i ∈ S1 is offloaded, which
allows B2m−1 to start without delay. This pattern is repeated until B1. After
B1, all wi for i ≤ 2m are in the GPU memory, and deleting δw1 provides
V free memory. A new cycle can start from there. In this schedule, all the
offloading and prefetching are overlapped with the computations, which yields
an execution time for one cycle of uF2m

+
∑m

k=1 uB2k
= 2m.

Let us now assume that there exists a valid schedule of duration T = 2m, i.e.
without any idle time on the processing device. Since the operation time between
F2m+1 and B2m+1 is 0, all wi for i > 2m have to be saved in memory before
starting F2m+1 to avoid idle time. The memory usage is then

∑5m
i=2m+1 |wi| =

mV . If any w2k−1 for k ∈ {1, . . . ,m} is also saved in memory, the usage would
be mV +V and there will be no space for the gradient computed by backwards.
Therefore, all w2k−1 for k ∈ {1, . . . ,m} must be offloaded before F2m+1.

To start B2m−1 immediately after B2m, w2m−1 has to be prefetched, and
there should be at least V free memory for the gradient δw2m−1. Given the state
at the end of B2m+1 described above, the schedule needs to prefetch w2m−1
within time uB2m

, and free enough memory to make room for δw2m−1. Denote
W the amount of memory offloaded during B2m. The memory constraint to
start B2m−1 without delay implies that W ≥ V , and the bandwidth limitation
implies that W ≤ V . Together, we have W = V , which means that there exists
a set S1 such that

∑
i∈S1
|wi+2m| = V, i > 2m. By repeating the same reasoning,

we can find m subsets Sj such that
∑

i∈Sj
|wi+2m| = V , which gives a solution

to the 3-partition problem and completes the proof.

This proof actually shows a stronger result: even if the set of weights to
offload is given, finding an optimal schedule is still NP-complete. Indeed, in the
above instance, the set of weights to offload provides no information about how
to solve the 3-partition instance.

5 Greedy algorithm
We now propose a greedy algorithm to solve OFF (L,MGPU, β). The algorithm
works in two phases: a selection phase to find which weights will be offloaded,
and a schedule phase, which computes how to interleave the prefetching and
offloading operations with F and B operations during the training cycle of one
batch.
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Selection phase As mentioned in section 3, there are two options for offload-
ing the weight of a layer k: (a) between Fk and Bk; or (b) between Bk and
Fk. We use (k, d) to represent the offloading choices, where d = 1 represents
choice (a) and d = 0 represents choice (b). A solution of the selection algo-
rithm consists of the set of offloading choices (k, d) with k ∈ {1, . . . , L} and
d ∈ {0, 1}. For an offloading choice (k, d), we say that it covers all the op-
erations that are performed while wk is no longer in memory, without taking
into account the time taken by the communications: the choice (k, 1) covers
Fk+1, . . . , FL, BL, . . . , Bk+1, while (k, 0) covers Bk−1, . . . B1, F1, . . . Fk−1).

Our algorithm for the selection phase is based on a scoring function which
estimates the benefit associated to an offloading choice. The algorithm maintains
a value Eo for each operation o (where o ∈ {F1, . . . , FL, BL, . . . , B1}), equal to
the excess memory usage during operation o. Initially, the algorithm assumes
that no weight is offloaded, i.e. Eo = Mo +

∑
i |wi| − MGPU, where Mo is

defined by eq. (1). An offloading choice (k, d) reduces the excess memory usage of
operation o bymin(Eo, |wk|), and its benefit is defined as the total memory saved
over all operations o covered by this choice. The cost of an offloading choice wk

is simply the associated communication cost, equal to twice the size |wk| since
it needs to be communicated back and forth. The profit of an offloading choice
is then defined as the ratio between its benefit and its cost.

There is one special case for the offloading cost: if one choice (k, d) has
already been selected for one layer, then using to the discount opportunity
described in section 3, selecting the other choice (k, 1 − d) only induces one
communication. In that case, the cost is halved, and the profit is thus twice as
large.

At the beginning, we assume that all the weights are kept in memory for
every operation. As long as the maximum memory cost exceeds the available
memory of GPU, the most profitable offloading choice is selected. The updated
excess memory costs Eo will change the benefits of each choice for the next run.
The resulting algorithm is described in Algorithm 1.

Scheduling phase Once the offloading choices have been selected, another
greedy algorithm is used to build an actual schedule. Our algorithm relies on
simple ordering rules: prefetching operations are performed in the order in which
the data is required: if both wi and wi+1 are offloaded after the forward phase,
wi+1 will be prefetched before wi since it will be needed in the backward phase
earlier. Offloading operations are performed in First-In-First-Out (FIFO) order,
which means that data produced earlier is offloaded first. There is an exception
to this: Fk does not change wk, and thus does not produce data to be offloaded.
So if (k, 1) is selected in Algorithm 1, it is possible to schedule the corresponding
communication before the forward operation. However, this is not required and
we use this possibility on a best-effort basis.

Given these rules, our scheduling algorithm described in Algorithm 2 per-
forms each operation as soon as possible. In general, an operation needs to wait
for three events: (1) its input data is available (2) its resource is available (either
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Algorithm 1 Greedy Selection Algorithm
Input: Cost of each operation, memory usage of each layer
Output: selection of which layer weights to offload
for all operations o ∈ {F1, . . . , loss,Bloss, . . . , B1} do

Eo =
∑

i |wi|+Mo −MGPU

while maxo(Eo) > 0 do
for all choices (k, d) not yet selected do

S ← set of operations covered by (k, d)
if (k, 1− d) is chosen then

profit(k, d) = ·
∑

o∈S min(Eo, |wk|)/|wk|
else

profit(k, d) = 1
2

∑
o∈S min(Eo, |wk|)/|wk|

Select the choice (k, d) = argmaxk,d profit(k, d)
S ← set of operations covered by (k, d)
Recompute Eo for all o ∈ S: Eo ← max{Eo − |wk|, 0}

the GPU for a computing operation, or the corresponding communication link)
(3) enough memory is available on the GPU (not applicable for an offloading
operation). We say that an operation is feasible at time t if constraint (3) is
satisfied. Algorithm 1 ensures that with our ordering rules all operations even-
tually become feasible. In Algorithm 2, Prek and Offk denote prefetch and
offload operations of wk, Tava(·) denotes the available time of a communication
link and Tend(·) denotes the ending time of an operation in Algorithm 2.

The scheduling process performs the operations in the order BL, . . . , B1, fol-
lowed by F1, . . . , FL. With this order, it is easier to perform the early, best-effort
scheduling of the offloading operations associated with a forward operation, as
mentioned above: while the communications related to the backward operations
are scheduled, we can keep a waiting listWL of best-effort offload opportunities,
and schedule them whenever the communication link is available. However, the
scheduling algorithm needs to know which data have already been offloaded or
prefetched at the start of Bl. With our ordering rules, we can try all possibili-
ties by selecting a cutoff point in the sequence of communication operations that
needs to be performed, assuming that all communications before the cutoff have
been performed. Algorithm 2 returns the solution with the smallest execution
time among all possibilities.

The time complexity of this greedy algorithm is O(L3). In practice, it takes
less than 1 minute to find a solution for a DNN with up to 128 layers.

6 Lower bound
In this section, we present an original Mixed Integer Linear Programming formu-
lation for the OFF (L,MGPU, β) problem. Given the difficulty of the problem,
we do not propose an exact formulation, but one that provides a valid lower
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Algorithm 2 Greedy Scheduling Algorithm
for all cutting points in the sequence of communications do

Assume communications before the cutting point are performed before BL

for k in [L, . . . , 1] do
if (k, 1) has been selected then . Bk needs Prefetch

Schedule Prek at time max(Tava(Pre), earliest time when Prek is
feasible)

Schedule Bk at time max(Tend(Prek), Tend(Bk+1))
if (k, 0) has been selected then . Bk needs Offload

while Tend(Bk)− Tava(Off) > mink′∈WL |wk′ | do
Offload min |wk′ | from WL, without deleting it from GPU

Schedule Offk at time max(Tend(Bk), Tava(Off))
else

if (k, 1) has been selected then . Fk needs Offload
Append k to WL . WL is initially empty

for k in [1, . . . , L] do
if (k, 0) has been selected then . Fk needs Prefetch

Schedule Prek at time max(Tava(Pre), earliest time when Prek is
feasible)

Schedule Fk at time max(Tend(Prek), Tend(Fk−1))
if (k, 1) has been selected then . Fk needs Offload

if wk is not yet in CPU memory then
Schedule Offk at time max(Tend(Fk), Tava(Off))

else
Delete wk from GPU memory at time max(Tend(Fk),

Tava(Off))
Finish communications before the cutting point

return the solution with lowest execution time
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bound on the makespan: the result of this MILP is not a schedule, because it
satisfies only a subset of the constraints of OFF (L,MGPU, β). This lower bound
will be used in Section 7 to evaluate the quality of the schedules produced by
the algorithms of Section 5 and the algorithms of the literature.

We number the operations from 1 to 2L, starting from BL, so that the L-th
operation is B1, Fi is the (L + i)-th operation, and Bi is the (L − i + 1)-th

operation. In the following, we use
←→∑b

j=a to denote a sum from operation a to

operation b, potentially cycling back to 1 if b < a: in that case,
←→∑b

j=aXj =∑2L
j=aXj +

∑b
j=1Xj .

For each operation j, our formulation considers the interval between the start
of operation j and the start of the next operation. Let us define the following
continuous variables:

• for all i, Oi,j represents the amount of data from wi offloaded from GPU
to CPU (note that this transfer does not change the GPU memory used)

• for all i, Pi,j represents the amount of data from wi prefetched from CPU

• for all i, Di,j represents the amount of data from wi deleted from the GPU

• idlej represents the idle time after operation j

In addition, for each layer i we define three binary variables, that encode
offloading choices:

• D
(1)
i = 1 if wi is removed from memory between Fi and Bi (similar to the

choice (i, 1) in Algorithm 1), and 0 otherwise.

• D
(0)
i = 1 if wi is removed from memory between Bi and Fi (similar to the

choice (i, 0) in Algorithm 1), and 0 otherwise.

• O∗i = 1 if wi is offloaded at some point, and 0 otherwise.

The constraints of our formulation can be classified in four groups:

Idle time. We make sure the communications are finished before going to the
next operation, with a special case to ensure that the transfer of wi does not
take place during its backward:

∀j, uj + idlej ≥
∑
i

Oi,j/β and uj + idlej ≥
∑
i

Pi,j/β (2)

∀i, idleL−i+1 ≥ Oi,L−i+1/β (3)
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Memory constraints. Between operations j and j+1, (Pi,j−Di,j) indicates
the change in memory usage associated with wi. We define mi,k as the memory
usage of wi at the beginning of operation k. Since wi is completely in GPU
memory before Bi, we get mi,(L−i+1) = |wi|. We can thus deduce mi,k =

|wi|+
←→∑k−1

j=L−i+1 Pi,j −Di,j . Recall that the memory peak during operation k
is Mk, as defined by eq. (1). The global memory constraint is given by

∀k,
∑
i

mi,k ≤MGPU −Mk (4)

Validity constraints. We ensure that the cycle is stable, and that wi is
completely in GPU at the start of Fi (operation L+ i):

∀i,
2L−1∑
j=0

Pi,j −Di,j = 0 and
L+i−1∑

j=L−i+1

Pij −Dij = 0 (5)

Additionally, we write constraints on wi at the beginning of every operation k to
ensure that the amount of prefetched data is not higher than the deleted data,
and that no data is lost when deleting from GPU memory:

∀i, k,
k−1←→∑

j=L−i+1

Pi,j −Di,j ≥ 0 and

k−1←→∑
j=L−i+1

Oi,j + Pi,j −Di,j ≥ 0 (6)

Binary constraints. Finally, we add constraints to ensure that the weight of
a given layer is either deleted/offloaded completely, or not at all.

∀i,
2L∑
j=1

Oi,j = |wi|O∗i (7)

∀i,
L−i←→∑

j=L+i

Di,j = |wi|D(1)
i and

L+i−1∑
j=L−i+1

Di,j = |wi|D(0)
i (8)

Obviously, any solution to OFF (L,MGPU, β) can be transformed into a set
of variables that fulfill these contraints. We thus obtain the following lower
bound:

Theorem 2. The optimal execution time T ∗ of problem OFF (L,MGPU, β) is
not smaller than the optimal value of the MILP defined by:

min
∑
j

uj + idlej

s.t. eqs. (2) to (8)
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Note that the opposite is not true: it is not clear that any solution to this
MILP can be turned into a valid solution of OFF (L,MGPU, β). Indeed, the
memory constraints (4) are only expressed at the beginning of each operation,
instead of during the while interval from the beginning of an operation to the
next. The solution of the MILP therefore only provides a lower bound, not the
optimal value of OFF (L,MGPU, β).

7 Simulation results
To estimate time and memory costs when training GPT-2 and Bert models,
we rely on the hyper-parameters from Megatron-LM [24]. We test both DNNs
with a number of layers varying from 36 to 144 and batch sizes of 16, 32 and 64.
For both models, we use the hidden size of 3072 and 24 attention heads. The
number of parameters ranges from 4.2B to 16.4B. For a batch size of 16, about
20MB of activations are saved in GPU memory per layer, while about 1GB
to 2GB intermediate activations will be recomputed for each layer during the
backward. The execution times for the simulations are experimentally obtained
on a GPU V100 with 16GB memory. Since a large memory is needed to store
the intermediate activations generated in each transformer block, MGPU used
for simulation is smaller than 16GB and depends on the batch size. IBM ILOG
CPLEX [18] is used to find the solution for the ILP as described in Section 6.

7.1 Results
Table 1 provides the simulation results using the measurements from real ma-
chines. The lower bound defined in Section 6 gives no idle time in all settings.
Our greedy algorithm defined in Section 5 shows about 1% of overhead with
respect to the lower bound. It demonstrates a significant improvement com-
pared to the overhead of L2L [19], which is 10% to 50% larger than the lower
bound. The performance of L2L highly depends on the processing times, that
are approximately linear with respect to the batch size. We also notice that
offloading weights more than once does not bring a significant change to the
performance of the greedy algorithm in these simulations.

7.2 Bandwidth
To study the effect of bandwidth, another set of simulations has been performed
for different values of β. The results with the ILP show almost no idle time when
the bandwidth is higher than 4GB/s. The comparison between blue and green
plots shows that our greedy algorithm is very close to the lower bound for a
given bandwidth. The L2L plot indicates that L2L always causes a reduction
in throughput compared to our greedy algorithm, less significant when both
algorithms need long transfer times. Also, we notice that Greedy* is always
slower than Greedy, which means that the discount is useful, especially for cer-
tain bandwidth ranges. In some cases, not considering the discount opportunity
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Model Duration (ms)
Network Depth Batch_size

∑
j uj ILP Greedy L2L Greedy*

GPT-2 74 64 47421 47421 47493 52707 47493
GPT-2 56 64 35553 35553 35625 39542 35625
GPT-2 38 64 23694 23694 23838 26387 23838
GPT-2 74 32 23697 23697 23769 28983 23769
GPT-2 56 32 17762 17762 17834 21751 17834
GPT-2 38 32 11840 11840 11948 14533 11948
GPT-2 74 16 11612 11612 11684 16898 11715
GPT-2 56 16 8697 8697 8769 12686 8800
GPT-2 38 16 5794 5794 5902 8487 5934
Bert 144 64 34486 34486 34499 38379 34499
Bert 96 64 22965 22965 22978 25577 22978
Bert 144 32 17443 17443 17483 21336 17483
Bert 96 32 11617 11617 11657 14230 11657
Bert 144 16 9090 9090 9183 12983 9215
Bert 96 16 6058 6058 6085 8670 6085

Table 1: The bidirectional bandwidth is 12GB/s for both prefetch and offload.
Greedy* represents the Greedy algorithm while weights are not only offloaded
once.

can induce up to 5 times more idle time.

8 Conclusion
In this paper, we consider GPU memory savings during training, by using the
possibility to store the network layers in the CPU memory when they are not
used. We propose a sophisticated model for the memory associated with the
storage of layer weights, which takes into account all opportunities to save mem-
ory: by updating weights as soon as possible and by performing only one offload
per forward/backward cycle. We have established the NP-completeness of the
layer selection and transfer scheduling problem, and we have proposed an effi-
cient heuristic to solve it in practice. The perspectives opened by this work are
numerous. The extension to the offloading of optimizer states and activations
are natural perspectives, as well as the possibility to perform weight updates
on the CPU. Moreover, the proposed strategy is more efficient when the batch
size is large, which suggests combining it with re-materialization approaches to
increase the batch size.
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Figure 4: To study the effect of bandwidth, we use the same measurement
showed in Table1, while the bandwidth varies from 0.5,1,2,4,8 and 12GB/s.
The batch size is chosen as 32 or 64.
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