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Motivation: The increasing availability of metabolomic data and their analysis are
improving the understanding of cellular mechanisms and how biological systems
respond to different perturbations. Currently, there is a need for novel computational
methods that facilitate the analysis and integration of increasing volume of available data.

Results: In this paper, we present TOTORO a new constraint-based approach that
integrates quantitative non-targeted metabolomic data of two different metabolic states
into genome-wide metabolic models and predicts reactions that were most likely active
during the transient state. We applied TOTORO to real data of three different growth
experiments (pulses of glucose, pyruvate, succinate) from Escherichia coli and we
were able to predict known active pathways and gather new insights on the different
metabolisms related to each substrate. We used both the E. coli core and the iJO1366
models to demonstrate that our approach is applicable to both smaller and larger
networks.

Availability: TOTORO is an open source method (available at https://gitlab.inria.fr/erable/
totoro) suitable for any organism with an available metabolic model. It is implemented in
C++ and depends on IBM CPLEX which is freely available for academic purposes.

Keywords: metabolomics, metabolic networks, transient state, metabolic perturbation, omics integration

1 INTRODUCTION

The increasing availability of metabolomic data and their analysis are currently enhancing our
knowledge on diverse biological mechanisms and elucidating how cells and organisms respond to
different perturbations (Sevin et al., 2015). Metabolomics can be used to obtain a metabolic profile
that characterizes the physiological response of a cell, tissue or organism to a stress or to a general
perturbation (Roessner and Bowne, 2009), and experiments ranging from shorter-term responses
(such as stress response programs) to longer-term responses (such as acclimation) are broadly
available for diverse species. Different network-based strategies for metabolomic data analysis
have been recently reviewed in (Perez de Souza et al., 2020) and amongst others, such strategies can
be used to establish associations between metabolites or to integrate them into metabolic
pathways.
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Metabolic profiles are often analyzed and interpreted with the
help of bioinformatic software such as METEXPLORE (Cottret et al.,
2018; Frainay et al., 2019), METABOANALYST (Xia et al., 2015;
Chong et al., 2018) or 3OMICS (Kuo et al., 2013) that can

identify the set of metabolites with a significant change in
their concentration. The metabolomic data are projected on
the annotated metabolic pathways in order to highlight the
processes that may be linked to the observed changes. The

FIGURE 1 | TOTORO method explained. (A) TOTORO is able to integrate a metabolic model with metabolomic data in order to predict active reactions during the
transient state between two conditions (or simply after a perturbation). The inputs of TOTORO are an SBML metabolic model, and a list of intervals for the difference in
concentration (Δ) for each measured metabolite. In the metabolic model panel, grey circles depict metabolites and arrows depict reactions. In the metabolic data panel,
accumulated metabolites are depicted in red circles, depleted metabolites are depicted in blue circles. The method TOTORO then requires two additional user-
defined parameters to fine tune the results, namely λ and ϵ. TOTORO provides as output the predicted variation of metabolites and reactions that were most likely active
between the two states in each enumerated solution as well as metric files grouping all enumerated solutions. In the figure, reaction occurrence is depicted as a
percentage in all enumerated solutions. (B) The fine-tuning of parameters λ and ϵ are provided within a toy network, in which active reactions are showed in orange and
dashed arrows indicate several reactions in a row. When we don’t allow an accumulation of non-measured metabolites (ϵ = 0), the method will try to connect the input
deltas of distant and possibly unrelated metabolites; and in the case exchange reactions are not blocked, the method will most likely propagate the accumulation or
depletion towards outside of the boundaries of the model. When accumulation is allowed (ϵ > 0) a low lambda (λ = 0.1) will favor solutions in which fewer non-measured
metabolites accumulate or deplete, and will include a larger number of reactions within the solutions. As we raise the parameter lambda (λ = 0.9), we favor local and
smaller solutions.
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aforementioned software also try to integrate different kinds of
omic data (such as transcriptomic, metabolomic or proteomic
data) in order to give a deeper understanding of the studied
mechanisms (Cambiaghi et al., 2017). Different approaches were
reviewed in (Rosato et al., 2018; Ivanisevic and Want, 2019;
Stanstrup et al., 2019) and software for the enrichment analysis of
metabolomic data were evaluated and their results compared in
(Marco-Ramell et al., 2018). However, metabolic pathways have
subjective definitions and can differ between databases
(Ginsburg, 2009). Additionally, this kind of analysis can make
it hard to identify the connections between metabolites since they
can be part of many pathways and it is thus possible to miss paths
which traverse several biological pathways.

Another approach is to use graph-based methods that allow to
consider the whole metabolism as an integrated system focusing
on the parts that are connecting the metabolites of interest.
Usually, these methods rely mainly on the network structure,
chemical information and on an input list of metabolites (Frainay
and Jourdan, 2017). Another example can be seen in (Acuña et al.,
2012; Milreu et al., 2014), with the enumeration of metabolic
stories. A metabolic story is defined by the authors as the set of
reactions that summarize the flow of matter from a set of source
metabolites to a set of target metabolites and is characterized as a
maximum directed acyclic subgraph connecting the metabolites
of interest. One of the drawbacks of this approach is that a
metabolic story is acyclic and thus, it is not possible to obtain sets
of reactions that contain cycles. Nevertheless, cycles are common
in metabolic networks and this assumption does not reflect
reality. Additionally, the method does not take into account
the stoichiometry of the reactions, which can lead to a set of
unfeasible reactions in practice.

Metabolite concentrations have also been used to assess the
responses to small perturbations in the context of constraint-based
models (Palsson, 2000; Covert and Palsson, 2003; Klamt et al.,
2014), and has been reviewed in detail by (Topfer et al., 2015).
While standard flux balance analysis (FBA) tries to predict the flux
distribution for one specific steady-state condition, dynamic FBA,
as described in (Mahadevan et al., 2002), has been extensively used
in smaller models to predict the evolution of the fluxes and of the
metabolite concentrations over time. In (Reznik et al., 2013), the
authors provide a method derived from the classical FBA
framework, and showed that the variables of the dual problem
(the so-called shadow prices, which correspond to the sensitivity of
FBA to imbalances in the flux) can indicate if a metabolite is a
growth-limiting metabolite in FBA. In (Bordbar et al., 2017) the
authors describe the unsteady-FBA method (uFBA), created to
integrate dynamic time-course metabolomics with a constraint-
based metabolic model, allowing a bypass into the steady-state
assumption for intracellular metabolites that are measured. In
(Rohwer and Hofmeyr, 2008; Christensen et al., 2015), methods
are presented to identify regulatory metabolites and paths by
varying in silico their known concentrations in a measured
steady-state using supply-demand analysis. Therefore, these
methods are based on the response of an organism to a
relatively small perturbation and on the influence of the
metabolite concentrations on the reaction rates of the system to
return to the original equilibrium.

In this paper, we focus not on the metabolite pools in one
condition but on the difference of the obtained measurements
between two conditions, which could be measured either within
shorter or longer timeframes, depending on the biological
question to be addressed. We also do not need neither
comprehensive time-course datasets nor coupled data from the
relative expression of genes or proteins, which are much harder to
obtain. Our main hypothesis is that the difference of metabolite
pools between two metabolic states can provide information on
the transient state, that is, on the transition between the two
measured conditions.

Similar problems have been studied in the literature. In (Sajitz-
Hermstein et al., 2016), the authors provide a method (IREMET-

FLUX) to integrate relative metabolomic measurements in order to
make predictions about differential fluxes. They use a constraint-
based approach which minimizes the distance between the two
flux vectors of the two different states based on the ratio between
the measured metabolite concentrations in both conditions. For
both states, steady-state is assumed for the flux vectors. However,
the authors identify differential fluxes between the two conditions
whereas we aim at finding reactions that are likely active during
the transient state. In (Case et al., 2016), the authors investigated
reachability problems in chemical reaction networks. Given two
different states of the network, the goal is to identify a path that
leads the network from the first state to the second one. They
prove that this problem can be solved in polynomial time.
However, they also discuss that a variant of this problem in
which the maximum size of the path is fixed is more difficult to
solve. Our approach overcomes this limitation at the same time
that it minimizes the number of active reactions in the solutions,
since we are interested in identifying only the parts of the network
that are potentially active during the transient state. Even though
other methods could be adapted to answer this problem, our
objective is much simpler, requiring less computational
complexity. By reformulating our problem in a simpler way
we can also address larger genome-scale metabolic models,
instead of focusing on smaller portions of the metabolism
(e.g., core models).

We use constraint-based modeling to enumerate sets of
reactions that explain the changes in concentrations for some
measured metabolites, i.e., how the system moved from a state to
another. We implemented our approach in a software we called
TOTORO (for “Transient respOnse to meTabOlic pertuRbation
inferred at the whole netwOrk level”), that is publicly available at
https://gitlab.inria.fr/erable/totoro, along with the test datasets
presented in this study. It is implemented in C++ and depends on
IBM CPLEX which is freely available for academic purposes. We
also tested our method with data from pulse experiments with
different carbon sources (glucose, pyruvate and succinate) in
Escherichia coli.

2 METHODS

A metabolic network can be represented as a weighted directed
hypergraphH(V,R,S) where V is the set of vertices,R the set of
hyperarcs and S the stoichiometric matrix representing weights
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on the hyperarcs. Each c ∈ V represents a metabolite of the
network and each hyperarc r ∈ R a reaction that connects two
sets of disjoint metabolites Subsr, Prodr with Subsr, Prodr ⊆ V. To
each hyperarc, a set of weights is associated representing the
stoichiometric coefficients of the metabolites participating to the
corresponding reaction. These weights are given by the
stoichiometric matrix S which is a m × n matrix where each
column represents a reaction and each row a differentmetabolite. It
contains the stoichiometric coefficients which are positive if a
metabolite is produced by a reaction and negative if it is consumed.

The set X ⊆ V contains all measured metabolites. The
metabolomic data is given as a list which, for each measured
metabolite inX, contains an interval. This interval describes by how
much the internal metabolite concentration changed between two
different states. Usually, small deviations for the measurements are
available which can be used to calculate the minimum and the
maximum possible difference between the internal metabolite
concentrations. Furthermore, all reversible reactions of the
network are split into forward and backward reactions.

We are interested in solving the following problem: Given a
network H and a list containing the changes for some metabolite
concentrations before and after a perturbation, we want to
identify sets of reactions that were involved in diverting the
system from the initial state before the perturbation to the
state after the perturbation (Figure 1A). Here, we present a
constraint-based approach to solve this problem where the
change of concentrations (Δ) between two states is represented
as an interval.

2.1 Core Method
The variation of the concentrations in time of the metabolites inX
can be written as:

dX

dt
� (S · v)X. (1)

In this equation, v is a flux vector and the (·)X operator means that
only the entries of the vector corresponding to the metabolites in
X are taken into account. We use [X]t to denote the concentration
for the metabolites in X at time point t. Considering two points t0
and t1 in time and ΔX � [X]t1 − [X]t0, one can write:

ΔX � S · φ. (2)
In this case, each entry of the vector φ can be interpreted as the
overall number of moles that passed through the reaction j during
the time interval [t0, tf] which corresponds to the area under the
reaction rate curve in this time interval:

φj � ∫
t1

t0

vj(t) · dt. (3)

Due to biological and technical variability that can arise from
different replicates of the same experiment, we assume that the
measured variations in concentrations of the metabolites in X are
represented by an interval rather than using a fixed number:

ΔX � [Δmin
X , Δmax

X ]. (4)

Furthermore, for the non-measured metabolites, we do not know
if their concentration changed or not. Therefore, similarly to the
approach of UFBA (Bordbar et al., 2017) and their ‘node relaxation’
to allow for changes in non-measured metabolites, we assume
that a variation (ϵ) is possible for all non-measured
metabolites �X � V\X:

Δ �X � [ϵmin, ϵmax]. (5)
Based on these assumptions, we can model the production or
consumption of metabolites between two states by the following
constraints:

Δmin ≤S · φ≤Δmax

0≤φj ≤ uj ∀j ∈ R. (6)

All φj are positive and have an upper bound uj. We have that Δmin

is a vector composed of Δmin
X and ϵmin while Δmax is composed of

Δmax
X and ϵmax.
As showed above, in our formulation, the variable φ can only be

zero or have a positive value. For this, we use an additional
constraint as explained in Section 2.2 in order to prevent both
forward and reverse senses of reversible reactions from being picked
in any given solution. However, this means that we do not know if
the activity of the corresponding reactionwas increased or decreased
during the shift compared to the initial steady state. We only know
that if φj is zero in the solution, reaction j is proposed as inactive
during the shift while if φj has a non-zero value, reaction j is
proposed as active during the shift. Hence, we are only interested in
the reactions that have a non-zero φ because we want to identify the
part of the metabolic network that was active during the metabolic
shift. These reactions are represented by the support of the vector φ.

2.2Minimizing the Number of Reactions and
the Variation of the Concentrations for the
Non-Measured Metabolites
Since the number of possible paths that can explain the measured
metabolic shifts can be very large, we will focus on finding the
smallest solutions with regard to the number of active reactions that
still explain themetabolic shift. This corresponds to the parsimonious
assumption that the fewest possible resources are used or the smallest
changes are made. Thus, we are interested in identifying minimum
sets of reactions that play amajor role in themetabolic shift. For each
reaction j, a binary variable yj is then introduced that is set to zero if
and only if the corresponding φj is zero and therefore, the reaction is
not part of the solution. In this way, these variables will correspond to
the support vector ofφ and it will be sufficient tominimize their sum:

yj � 0 ↔ φj � 0 ∀j ∈ R
yj ∈ {0, 1}. (7)

Additionally, to prevent that both a reaction j and its reversible �j
can be picked at the same time for one solution, the following
constraint is used:

yj + y�j ≤ 1 ∀(j, �j) ∈ R. (8)
Tominimize the number of reactions that are part of the solution,
the objective function is written as:

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8154764

Galvão Ferrarini et al. Totoro for Identifying Active Reactions

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


min∑
m

j�1
yj. (9)

However, we are not only interested in minimizing the number of
reactions in the solution but also in minimizing the variation in
concentration for the non-measured metabolites �X. Since the
measured compounds are usually the more important ones for
analyzing the biological experiment, it is reasonable to aim for
solutions where other compounds do not accumulate or deplete a
lot. This leads to the following minimization:

min∑
i∈ �X

| S · φ( )i|. (10)

On the other hand, we are trying to explain as much change in the
concentration as possible for the measured metabolites:

max∑
i∈X

| S · φ( )i|. (11)

To combine both ideas in one objective function, a weight λ is
used for both objectives:

min λ∑
m

j�1
yj + (1 − λ)∑

i∈ �X

| S · φ( )i| − (1 − λ)∑
i∈X

| S · φ( )i|. (12)

The value for λ should lie between 0 and 1. Finding a good balance
between these two objectives can be challenging but necessary to

identify meaningful biological solutions (for a schematic
representation of TOTORO, see Figure 1A). A toy network
example is provided in Figure 1B to show the influence of
parameters λ and ϵ on the solutions. This will be further
discussed in the following sections.

Summing up, the mixed-integer linear program (MILP) that is
implemented in our software TOTORO is the following:

minφ,y λ∑
m

j�1
yj +(1−λ)∑

i∈ �X

| S ·φ( )i| −(1−λ)∑
i∈X

| S ·φ( )i|
s.t Δmin≤S ·φ≤Δmax

0≤φj≤uj ∀j ∈R
yj � 0↔φj � 0 ∀j ∈R
yj +y�j≤1 ∀(j,�j) ∈R
yj ∈ {0,1};λ ∈ (0,1);uj,φj ∈R.

(13)

2.3 Enumerating Different Solutions
To enumerate different solutions, once a solution is found, it must
be excluded for the next iteration. Two solutions are different if
they do not contain the same reactions. We are using the following
constraint where y* is a previously found solution vector:

∑
j∈R: yj*�1

yj ≤ ∑
m

j�1
yj* − 1. (14)

FIGURE 2 | Expected active reactions for different pulse experiments. These essential reactions along with their expected directions are highlighted in orange
whereas other non-essential reactions (but which nonetheless could be chosen) are depicted in grey. Each pulse is indicated by the short red arrow (Glc: glucose; Pyr:
pyruvate and Suc: Succinate). During the glucose pulse, the glycolysis reactions (depicted in green) should be active in order to generate ATP from the hydrolysis of
glucose. On the other hand, the pyruvate and succinate pulse experiments should show gluconeogenesis activation (also depicted in green but in the opposite
sense), generating glucose-6-phosphate from these two carbon sources. Furthermore, the TCA cycle (depicted in blue) can be fed from pyruvate during the pyruvate
and glucose pulses. During the succinate pulse, the overflow in the TCA cycle should lead to the production of pyruvate with a subsequent activation of gluconeogenesis
to produce biomass precursors. The pentose phosphate pathway (depicted in purple) is most likely active in all pulses in order to generate biomass precursors; however,
since this pathway is a mere interconversion of carbohydrates, there is no particular expectation as to the actual direction of these reactions.
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This prevents that the exact same combination of reactions gets
chosen again. Afterwards, we can solve the updated MILP again
to compute a different solution. We repeat this process until no
more new solutions can be found or until a desired number of
solutions has been computed.

2.4 DealingWith Source/Sink Reactions and
Non-Measured Metabolites
Source and sink reaction (i.e., reactions that have only products or
only substrates) of the network should be blocked to avoid that
changes in the concentration are just transferred outside of the
network where they cannot be taken into account by the objective
function. However, no information is lost if source and sink
reactions are blocked. If the substrates of a sink reaction are
accumulated or the products of a source reaction are depleted
in a solution, this indicates that the corresponding source/sink
reaction is active. Their use is limited by the chosen ϵ but it can be
set to a very low or large value to imitate an infinite source or sink.
Hence, specific sources or sinks can be added to the problem by
specifying a large negative Δmin or a large positive Δmax for certain
metabolites, but the method will remain robust to small variations,
as long as the range of this parameter remains within a similar
order of magnitude of the values of the measured metabolites.

However, if the minimization of the number of active reactions is
prioritized (λ ≈ 1) and the value of ϵ for the non-measured
metabolites is higher than the one for the measured metabolites,
the changes in concentration of themeasuredmetabolites can simply
be distributed to (accumulated on or taken from) the nearby non-
measured metabolites (Figure 1B, ϵ > 0, λ = 0.9) and prevents that
larger sub-hypergraphs are chosen (which would instead connect
several measured metabolites and explain how the depletion of one
measuredmetabolite leads to the accumulation of another measured
metabolite, or vice-versa). However, this can be addressed by
decreasing the value of λ in the objective function and thereby
givingmore weight to the portion of the function that minimizes the
accumulation in non-measured metabolites Figure 1B, ϵ > 0, λ =
0.1). This should result in solutions that are larger but that connect
the measured metabolites better than when only the number of
reactions is minimized. Furthermore, based on other experimental
data, the user might choose smaller values of ϵ, or constrain it to the
highest measured metabolite to further restrict the accumulation/
depletion of the non-measured metabolites.

3 RESULTS

To evaluate our approach, we used data from different pulse
experiments with different carbon sources in E. coli as presented
in (Taymaz-Nikerel et al., 2013). The authors measured the internal
concentrations for several metabolites for a glucose baseline and for
glucose, pyruvate and succinate pulse experiments. These data were
used to apply the method on the E. coli core model (Orth et al.,
2010) and the E. coli iJO1366 model (Orth et al., 2011) available
from the BiGG database (King et al., 2015b). The E. coli core model
consists of 72 metabolites and 95 reactions, the E. coli iJO1366
model of 1,805 metabolites and 2,583 reactions.

We were interested in the difference between the glucose baseline
and the pseudo-steady state which was achieved in about 30–40s after
each pulse. In (Taymaz-Nikerel et al., 2013), the authors provided the
internal concentrations for the baseline, including the deviations for
their measurements and the fold changes for the three different
pseudo-steady states which we used to calculate the internal
concentrations for each pseudo-steady state. In (Taymaz-Nikerel
et al., 2013), deviations for the measured concentration of the
glucose baseline are given that were derived from several replicates
of the same experiment. We used them to be able to calculate the
minimum difference Δmin

X and maximum difference Δmax
X in the

concentrations between the glucose baseline and each pseudo-steady
state. A detailed explanation can be found in the Supplementary
Material Section S1.1. The calculatedΔmin

X andΔmax
X for all three pulse

experiments can be found in the Supplementary Tables S1–S3.
We used all measured metabolites that are present in the

network and that had a significant change in their concentration
as input. It should be noted that a change for each given
metabolite must be either positive or negative. For further
details, see the Supplementary Material Section S1.1.

Furthermore, source and sink reactions cannot be chosen as
part of the solution and therefore glucose, pyruvate and succinate
were added as sources for the corresponding pulse experiments.
Oxygen was added as another source because in (Taymaz-Nikerel
et al., 2013), the authors identified increased oxygen uptake rates
during the pulse experiment. To allow unlimited growth, the
biomass was added as sink.

The expected active reactions in the core metabolism of E. coli
are displayed in Figure 2 for each pulse experiment.

3.1 E. coli Core Model
At first, the method was applied using the E. coli core model. To
better understand how the different parts of our model impacted
the solutions, we did several runs with different values for λ (0.1,
0.5, and 0.9) and ϵ (5 and 10) for each pulse experiment. Although
a single solution should be enough to identify some pathways
responsible for the shift, we wanted to see if we could also obtain
alternative pathways. Furthermore, we wanted to investigate how
the solutions evolve when they are slightly suboptimal. For each
different parameter setting, 100 different solutions were therefore
enumerated. The results are displayed using Escher (King et al.,
2015a) in the Supplementary Figures S1to S18.

In general, we could observe that solutions with λ = 0.1 were
preferable since usually the goal is to have a final solution which is
overall more connected. In this way, we were able to extract
connected sub-hypergraphs that resemble complete biological
pathways which played a role during the metabolic shifts. This
was the case for all three pulse experiments. A higher λ led to
solutions that were less connected since the optimizer prioritizes
solutions with fewer active reactions, and depending on the case, it
might be harder to interpret these solutions biologically.
Nevertheless, the user is able to fine-tune the number of
reactions in the final solution and the degree of connectivity (for
instance, if the goal is to highlight only parts of the complete
metabolic network instead of finding a connected sub-hypergraphs).

By adjusting the parameters λ and ϵ, TOTORO could propose
connected sub-hypergraphs for all three pulse experiments. The
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predicted solutions did not use co-factors as shortcuts through
the network. We therefore did not modify our method further to
treat co-factors separately.

3.1.1 Pyruvate Pulse
For the pyruvate pulse, we expected that the activity of the TCA
cycle would increase and that reactions for gluconeogenesis would
be active (see Figure 2). Both observations could be reproduced
with a λ = 0.1 (see Figure 3 for a comparison of the values of λ),
while higher values of lambda constrained the solutions locally
around the measured metabolites. For λ = 0.9, neither the TCA
cycle nor the gluconeogenesis pathway were proposed to be active.
Setting λ to 0.5 already improved the results: the TCA cycle was
proposed as active but the complete gluconeogenesis pathway was
only recovered in less than 50% of the solutions.

The four measuredmetabolites citrate, isocitrate, L-malate and
fumarate had positive input deltas and could thus be used as
sinks. The results showed how the TCA cycle can be fed from
pyruvate either by the phosphoenolpyruvate carboxylase (PPC)
or by the combination of pyruvate dehydrogenase (PDH) and
citrate synthase (CS). Furthermore, the pathway from pyruvate to
glucose 6-phosphate (G6P) was active in 100% of solutions for λ =
0.1. The pathway from pyruvate to G6P contains nine reactions
including seven reversible ones: glucose-6-phosphate isomerase
(PGI), fructose-bisphosphate aldolase (FBA_R), triose isomerase
(TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPD),
phosphoglycerate kinase (PGK), phosphoglycerate mutase
(PGM) and enolase (ENO). Especially here, it is important to
state that all these reversible reactions were predicted in the
correct direction going from pyruvate towards G6P. The core

FIGURE 3 | E. coli core model - Results for Gluconeogenesis and TCA Cycle in the pyruvate pulse (red arrow in Pyr) with ϵ = 5 and varying λ (0.1, 0.5, and 0.9). The
metabolites that were given as input are highlighted in blue if the corresponding input deltas were below zero and red if they were above zero. Reactions that are
highlighted in orange were chosen in almost all of the enumerated solutions, while light yellow corresponds to very few occurrences (less than 5%). Reactions in gray
were not chosen in any solution. The expected reactions of the gluconeogenesis and part of the TCA cycle are active in all 100 solutions for λ = 0.1. The reversible
reactions of the gluconeogenesis were chosen in the correct direction. For simplicity reasons, side compounds and cofactors were excluded from the figure.
Abbreviations for metabolites: G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FDP, fructose-biphosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; Lac,
lactate; For, formate; Mal, malate; Fum, fumarate; Cit, citrate; Icit, isocitrate; Glu, glutamate; Gln, glutamine; Abbreviations for reaction names (_R indicates the reverse
direction of a reversible reaction within the original model): G6PDH2r, glucose 6-phosphate dehydrogenase; PGI, glucose-6-phosphate isomerase; FBP, fructose-
bisphosphatase; FBA_R, fructose-bisphosphate aldolase; TPI, triose-phosphate isomerase; GAPD, glyceraldehyde-3-phosphate dehydrogenase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PPS, phosphoenolpyruvate synthase; LDH, D-lactate dehydrogenase; PFL, pyruvate
formate lyase; PPC, phosphoenolpyruvate carboxylase; PDH, pyruvate dehydrogenase; CS, citrate synthase; ACONTa, Aconitase (half reaction A); ACONTb, Aconitase
(half reaction B); ICDHyr, Isocitrate dehydrogenase; AKGDH, 2-Oxoglutarate dehydrogenase; SUCOAS, Succinyl-CoA synthetase; SUCDi, Succinate dehydrogenase;
FUM, fumarase; MDH, malate dehydrogenase; ICL, isocitrate lyase; MALS, malate synthase; GLUDy, glutamate dehydrogenase; GLUSy, glutamate synthase; GLUN,
glutaminase.
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network results can be seen in Supplementary Figures S1–S6,
with varying λ and ϵ. These figures were created using Escher
(King et al., 2015a).

We do not fix the objective value in our optimization problem
after obtaining the first solution but in every iteration, the
minimization problem is solved again after excluding the newly
found solution. This means that the next solution can have the
same objective value but it is also possible that the objective value is
worse than in the previous iteration. In this particular case, the
100th solution had an objective value that was only 5.5%worse than
the objective value of the first solution (see Table 1) which shows
that, as concerns optimality, all 100 solutions were very similar.
They also had very similar active reactions. Comparing the 100
enumerated solutions for λ = 0.1 and ϵ = 5, a total of 43 reactions
with a specific directionwere chosen in all solutions. Out of these 43
reactions, 24 were chosen in every solution (including reactions in
the TCA cycle and the gluconeogenesis pathway). This means that
certain core pathways were consistently picked also in slightly
suboptimal solutions. Looking at only the ten best solutions, already
38 out of the 43 reactions were identified. The missing reactions
were mostly part of the pentose phosphate pathway which also
contains reactions that were part of the solution only in a few cases.
Even with only ten solutions, we were able to obtain the alternative
pathways feeding the TCA cycle (PPC/PDH). This indicates that it
is not necessary to enumerate a large amount of solutions to get
significant results and to identify alternative biological pathways.

To check the robustness of the method against small
perturbations, we tested within the pyruvate pulse the results
of TOTORO for the values of λ = 0.1 and 0.9, excluding one
metabolite at a time, recomputing the results, and computing
the distances to the results on the complete metabolite set for
reaction occurrence (in terms of absolute difference of
occurrences). Overall, the results for both λ = 0.1 and 0.9
differed from less than 5% to around 20%. In general, the
results were robust (< 10% in average distance) for 70–80% of
the metabolites tested (with λ = 0.1, and 0.9, respectively), but we
noticed that excluding metabolites with a higher neighborhood
connectivity (such as glutamate and glutamine) had a greater
impact on the final results. These results show that even though
the distances were small, the amount of information provided by
different metabolites varied widely.

Moreover, we tested 10 random sets of measured metabolites
(Supplementary Tables S4, S5), with a varying number of

excluded metabolites to detect at which point the method
would not behave as with the complete dataset. In accordance
with the previous results for single exclusions, and within the tests
with less than 50% of the measured metabolites excluded, the
smallest distance (≈ 10%) to the complete results came from a
random dataset which included glutamate, glutamine and
pyruvate (to ensure the carbon source uptake). As expected,
when more than 50% of the measured metabolites were
excluded, we detected a much higher difference (≈ 40%)
between the results from the complete dataset and those from
the random datasets.

3.1.2 Glucose Pulse
For the glucose pulse, we expected that reactions that are part of the
glycolysis pathway would be active as they convert glucose into
pyruvate generating energy. Consequently, the TCA cycle should
also be fed (see Figure 2). For λ = 0.9 and 0.5, the active reactions
proposed by TOTORO were disconnected and it was not possible to
identify active pathways. We believe that the results coming from
this pulse were less insightful since the bacteria were already grown
in glucose prior to the pulse, which in turn might be a reason why
the changes in metabolites were not as informative as the other
pulses. This was for the most part corrected if more metabolites
were added as input to TOTORO when using the complete network
as presented in Section 3.2. This also shows the importance of
careful experimental design and how subtle perturbations may
generate results that are not always homogeneous.

Even for λ = 0.1 and ϵ = 5, only disconnected parts of the
network were active (see Supplementary Figure S9). Since we
were interested in testing the method to obtain more connected
sub-hypergraphs, we decided to fine-tune the solutions by
lowering the value of ϵ as much as possible. The result for ϵ =
2 and 1.2 can be found in Supplementary Figures S10, S11,
respectively. Lowering the value of ϵ to 1.1 rendered the
underlying optimization problem infeasible. For ϵ = 1.2, we
got solutions that linked intermediate metabolites of the
glycolysis pathway to the TCA cycle through the PPC
reaction. In some solutions, the TCA cycle was also fed by
PDH and CS to account for the accumulation of citrate. As
previously mentioned, when the solutions are disconnected and
this is unwanted, decreasing the value of ϵ can sometimes help to
obtain more connected solutions. However, this should be used
carefully in order to avoid linking unrelated and distant
metabolites, which might not be meaningful biologically.

The 100 solutions were very similar (λ = 0.1, ϵ = 1.2). They
accounted for a total of 47 reactions (with distinct directions) and
30 of these appeared in all solutions. Similarly to the pyruvate
pulse, the difference in these solutions were mostly based on a few
reactions that are not part of the main pathways (glycolysis/TCA
cycle). One critical observation is that the D-glucose transport
reaction (GLCpts) was not part of every solution although glucose
should be used as important source. As previously mentioned, the
bacteria were already grown in glucose prior to the glucose pulse,
which is possibly a reason why glucose was already internalized
prior to the initial pulse. When comparing the objective values for
these 100 solutions, the absolute difference between the first
solution and the 100th one was similar to the one observed

TABLE 1 | Comparison of different objective values for the best runs for each
experiment. Since we are not fixing the objective value of the first solution in
our optimization problem, the objective values for the subsequent solutions can be
worse. In this table, we are comparing the difference in the objective values
between the first solution and the 100th solution. In addition to the absolute
differences, also the percentage of how much the objective value worsened
compared to the first solution is displayed. The underlying optimization
problem is a minimization problem. Therefore, smaller objective values are
better.

Pulse experiment 1st sol. 100th sol. Abs. diff. %

Pyruvate (λ = 0.1, ϵ = 5) −32.139 4 −30.663 5 1.48 5.5
Glucose (λ = 0.1, ϵ = 1.2) 5.383 0 6.558 2 1.18 21.8
Succinate (λ = 0.1, ϵ = 5) −158.177 0 −157.576 0 0.60 0.4
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for the pyruvate pulse (see Table 1). However, proportionally this
value was 21.8% worse than for the first solution. When we
repeated the run for λ = 0.1 and ϵ = 1.2 with 50 iterations, the
D-glucose transport reaction was part of 42 solutions. For ten
iterations, this reaction was picked in all ten solutions. Hence, the
glucose transport reaction was active in solutions with the best
objective values. This showed that although the solutions
remained very similar, there was a decline in their quality.
And similarly to the pyruvate pulse, we saw that it is not
necessary to enumerate a large amount of solutions.

3.1.3 Succinate Pulse
After the succinate pulse, part of the TCA cycle should always be
active. Furthermore, the gluconeogenesis pathway should be
active to produce G3P and glucose-6-phosphate from
succinate. Again, the results for λ = 0.5 and 0.9 led to smaller
solutions that were more disconnected (see Supplementary
Figures S13–S16). Therefore, we focused on the analysis of
the results for λ = 0.1 (see Supplementary Figures S17, S18).
For both ϵ = 5 and 10, succinate entered the TCA cycle and turned
into oxaloacetate. TOTORO proposed two possibilities to output the
excess of the TCA cycle: Either phosphoenolpyruvate (PEP) was
produced by PEP carboxykinase (PPCK) or by PEP synthase
(PPS) using pyruvate as intermediate substrate. Subsequently,
PEP was, as expected, transformed to G3P. The lower right part of
the TCA cycle predicted as active can be explained by the fact that
the concentration of L-glutamate decreased and the
concentration of citrate increased. The active reaction in this
part connected these two metabolites. Furthermore, reactions of
the pentose phosphate pathway were proposed as active and the
biomass precursors R5P, E4P, and G3P were produced.

The results for ϵ = 5 and 10 were very similar. For example, one
difference was that for ϵ = 10, the reverse D-lactate
dehydrogenase (LDH) was predicted to be active in 56
solutions which led to a small accumulation of D-lactate. It
does make sense biologically because in general, D-lactate is
one of the main products of the fermentation but we do not
have the measurements for the concentration of D-lactate for this
pulse experiment to actually verify this observation. However, in
total, the differences were negligible and in contrast to the glucose
pulse, the parameter ϵ had a lower impact on the outcome.

Again, the core reactions of all 100 solutions were very similar.
In total, 41 reactions (with distinct directions) appeared in all 100
solutions (for λ = 0.1, ϵ = 5). We observed that 22 of these were
always active (mostly in the gluconeogenesis pathway and part of
the TCA cycle). The objective values for all 100 solutions were
extremely close (see Table 1).

3.2 E. coli iJO1366 Model
Based on the results for the E. coli core model, we only did runs
with λ = 0.1 for the E. coli iJO1366 model. The inputs were
updated because this network contains more metabolites and
therefore, more measured metabolites could be added. The
amount of iterations was decreased to ten because the runtime
in the larger network is significantly higher and we had already
established in the core model that it was not necessary to
enumerate a larger amount of solutions. To decrease the

runtime for each solution, CPLEX was configured differently.
The relative MIP gap tolerance was set to 0.05 which means that
the solver will stop an iteration if a solution is found that is within
5% of the optimal. This allows for a faster result and we could see
in the core model that the first 100 solutions tended to be very
similar. This means that even if we are enumerating slightly
suboptimal solutions, we should be able to compute solutions that
are very similar to the actual optimal solution. If the 5% limit is
not reached after 48 h, the iteration is stopped. Thememory usage
of CPLEX was limited to 10 GB.

The runtime for the different pulse experiments differed a lot.
The results for the pyruvate and glucose pulses were computed on
a cluster. For the pyruvate pulse, the 5% limit was reached only in
three iterations (see Supplementary Table S6). All other
iterations were stopped after 48 h. However, all solutions
obtained were within 7% of the optimum. Thus, we still took
them into account when analyzing the predicted active reactions.
In none of the iterations for the glucose pulse, the 5% limit was
reached. The obtained solutions were within 8.5% of the optimal
value (see Supplementary Table S7).

In contrast to the pyruvate and the glucose pulses, the 5% limit
was reached in all iterations for the succinate pulse and
computing all ten solutions took less than 5 min on a personal
machine (2.90 GHz Intel i7-7820HQ CPU, 16 GB RAM). This
shows that the constraints describing the input deltas in theMILP
have a large influence on the difficulty of the optimization
problem, and thus also on the runtime.

However, although the obtained solutions were suboptimal,
the active reactions predicted by TOTORO for the core metabolism
were similar to the best results of the E. coli core model for all
three pulse experiments. For instance, in the pyruvate pulse
results, out of 12 reactions in the TCA cycle within the large
network, 8 were also present in the core model. In total, 5 were
chosen in 100% of the solutions in the same direction in both core
and large networks. The complete network was also able to
correct the only inconsistency within the TCA cycle for the
core network: the direction of the reaction ICDHyr, which
shows the advantage of relying on complete networks
whenever available. For the glycolysis/gluconeogenesis
pathways, out of 12 reactions, 9 were also included in the core
model. In total, 6 reactions were chosen in 100% and 1 in more
than 80% of the solutions in the same direction in both networks.
TOTORO predicted as active for pyruvate, glucose and succinate (in
at least 1 solution) a total of 221, 284, and 189 reactions
respectively. Moreover, 52% of the reactions were chosen
across all iterations in the pyruvate pulse dataset, 81% in the
succinate pulse dataset and 62% in the glucose pulse dataset.

The additional measurements that were added as input deltas
for the large network were mostly amino acids (see
Supplementary Tables S1–S3). In (Waschina et al., 2016), the
authors show for the example of amino acid production in E. coli
how the production cost for individual amino acids can depend
on the available carbon source, and reactions close to the entry
point of the carbon source might have considerably higher fluxes.
A schematic representation of this is provided in Figure 4A.
Indeed, from the experimental data, alanine and valine only
accumulated during the pyruvate pulse, and were depleted
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with the other two carbon sources. Pyruvate is a direct precursor
for valine production. We therefore expected that reactions of the
alanine and valine biosynthesis should play a greater role in the
predicted results for pyruvate compared to the other two pulses.
TOTORO predicted an activation of the pathway from pyruvate to
alanine and valine, which resulted in the accumulation of these
amino acids (Figure 4B). In accordance with the predictions in
(Waschina et al., 2016), another example is the accumulation of
threonine during the succinate pulse. Threonine and succinate
are closely connected, and TOTORO predicted active reactions
leading to its biosynthesis and accumulation in the succinate
pulse (Figure 4B). Compared to the results for succinate, TOTORO
predicted more active reactions consuming threonine during the
glucose pulse, and no reactions producing it in the pyruvate pulse,
resulting in the depletion of this amino acid with those carbon
sources. Moreover, only during the glucose pulse, phenylalanine
was accumulated, and TOTORO proposed the complete pathway
for the phenylalanine biosynthesis as active when compared to
the pyruvate and succinate pulses (Figure 4B), in accordance
with the predictions in (Waschina et al., 2016) of lower cost to
produce this amino acid with glucose as carbon source.

4 DISCUSSION

TOTORO was able to predict expected pathways as active based on
the differences in the measured concentrations for some internal
metabolites for both the E. coli core and complete models. We
show that in general, it is preferable to use smaller values of λ (e.g.,
λ = 0.1) though the method is not critically sensible to this setup,
being robust to small perturbations. However, it is worth noting
that a higher λ can lead to smaller solutions which might be
biologically irrelevant. Here, we focused in extracting connected
sub-hypergraphs that explained the changes in concentration
between two different conditions. We also show that a reduction
of ϵ can also be used to obtain more connected solutions.
However, there might be situations where the user might be
interested in only local changes around the measurements. In this
context, it might be advantageous to choose higher values for λ
and ϵ. We did not encounter problems specific to co-factors
which is a known problem when looking for shortest paths in
metabolic networks. This is probably due to the fact that we are
not only minimizing the number of active reactions in the
solutions but also focusing on the changes in the metabolite

FIGURE 4 | Amino acid biosynthesis in the E. coli iJO1366 model. (A) Schematic representation of carbon sources with closely related amino acids. Glycolysis/
Gluconeogenesis in green; TCA cycle in blue and Pentose Phosphate Pathway in purple. (B) TOTORO results explaining the accumulation of valine (Val) and alanine (Ala) in
the pyruvate (Pyr) pulse; accumulation of phenylalanine (Phe) from the glucose (Glc) pulse and accumulation of threonine (Thr) from the succinate (Succ) pulse. For
simplicity reasons, side compounds and cofactors were excluded from the figure. Dashed arrows indicate several reactions from the shikimate and chorismate
pathways. Abbreviations for reaction names are as follows: VALTA, valine transaminase; VPAMTr, valine-pyruvate aminotransferase; CHORM, chorismate mutase;
PPNDH, prephenate dehydratase; PHETA1, phenylalanine transaminase; ASPTA, aspartate transaminase; ASPK, aspartate kinase; ASAD, aspartate-semialdehyde
dehydrogenase; HSDy, homoserine dehydrogenase; HSK, homoserine kinase; THRS, threonine synthase; THRD_L, L-threonine deaminase.
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concentrations. By splitting reversible reactions, TOTORO was able
to predict distinct directions for them.

Both in the core network and in the larger network, we were
able to recover biologically meaningful pathways. Additionally,
although the larger network contains more reactions and we
added more input deltas, the predictions for the core metabolism
of E. coliwere fairly similar to the results for the core network.We
also showed a particular case in which the perturbation was
subtle, and the results from the complete model were more
insightful than the ones from the core model. It must be
however noted that the predictions do depend on the
measured metabolites. If for large parts of the network, no
metabolite concentrations are measured, TOTORO will likely not
be able to find active pathways for these parts of the network.

Moreover, we could also see that it is not necessary to
enumerate a high number of solutions which is especially
important when larger networks are used and the runtime of
TORORO increases. We enumerated 100 different solutions for the
core network. However, in our case, the enumerated solutions
were very similar and a large amount of reactions appeared in all
100 solutions. Therefore, already one (or few) solution(s) would
have been sufficient to infer the most important reactions that
were proposed to be active.

5 CONCLUSION

In this paper, we presented TOTORO, a method that identifies
active reactions during the transient state based on the differences
in the concentrations for some measured metabolites from two
different conditions and we showed its prediction power on the
example of different pulse experiments in E. coli. It is important to
note that even though we provided several biologically trivial
results, TOTORO only used metabolomic data as basis for these
predictions, without any other source of bias such as defined
metabolic pathways. Our method was also able to handle full
networks which take into account model stoichiometry, and we
did not perform any type of filtering for cycles, reversible
reactions or co-factors.

With the current technologies, it gets more common to have
different kinds of data available which creates a need for methods
that combine, for instance, metabolomic, transcriptomic and
proteomic data. We have recently developed a method for
integration of metabolic networks and transcriptomic data
(Pusa et al., 2019) and we intend in the future to adapt our
approaches to be able to integrate multiple kinds of omic data,
similarly to what was proposed in (Pandey et al., 2019) for
thermodynamic, transcriptomic and metabolomic data, and in
(Kleessen et al., 2015) for transcriptomic and metabolomic data.

On a larger scale, it might be interesting also to consider whether
some measures used in (hyper)graph theory such as connectivity
or (hyper)path length might be related to the parameters used
and thus provide an automatic and perhaps more reliable way of
setting them. Notice that achieving this would be even more
challenging in the case of hypergraphs for which such measures
might have to be adapted.
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