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Abstract—Container technology has become a very popular
choice for easing and managing the deployment of cloud ap-
plications and services. Container orchestration systems such
as Kubernetes can automate to a large extent the deploy-
ment, scaling, and operations for containers across clusters
of nodes, reducing human errors and saving cost and time.
Designed with “traditional” cloud environments in mind (i.e.,
large datacenters with close-by machines connected by high-speed
networks), systems like Kubernetes present some limitations in
geo-distributed environments where computational workloads are
moved to the edges of the network, close to where data is being
generated/consumed. In geo-distributed environments, moving
around containers, either to follow moving data sources/sinks
or due to unpredictable changes in the network substrate, is
a rather common operation. We present MyceDrive, a stateful
resource migration solution natively integrated with the Ku-
bernetes orchestrator. We show that geo-distributed Kubernetes
pod migration is feasible while remaining fully transparent to
the migrated application as well as its clients, while reducing
downtimes up to 7x compared to state-of-the-art solutions.

Index Terms—Stateful Migration, Kubernetes, Geo-
Distributed, Containers

I. INTRODUCTION

A leading design principle of modern cloud computing
systems is that cloud resources should be treated as cattle
rather than pets. In other words, cloud resources such as virtual
machines and containers (the cattle), and the applications
they contain should be designed so they may fail and be
easily replaceable with other ones, without impacting the
overall system (the herd). This design principle has proven
to be extremely successful for guaranteeing the robustness
and stability of many cloud platforms such as the popular
Kubernetes container orchestration platform [1].

However, this principle is often interpreted in an excessive
fashion such as “containers must remain totally stateless” or
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“any management action performed on a container turns it into
a pet” [2]. On the contrary, an arguably rational management
of “cattle” resources may be to care for them and maximize
their usefulness, while keeping in mind that they should not
create service disruption in case they die – for instance,
because of a crash of the server which runs them.

One topic in which “rational” management of container
resources may provide tangible benefits without violating the
pet/ cattle principle is the choice of which server should be
used to execute a given container. In geo-distributed environ-
ments such as fog computing platforms, every server may be
installed in a different location, and each container may need
to run in a specific server [3]. When runtime conditions such
as user location change, it may become useful to migrate the
concerned container to another location.

For example, Augmented Reality based on mobile devices
enables the creation of games such as escape rooms and
seeking treasures within an entire city [4]. These kinds of
games require very tight interactions between the players’
devices and the game application. As the players move within
the city, it becomes necessary to migrate the application with
its full state to servers ideally reachable from the user device
through a single network hop. However, to maintain game
continuity, it is also important to reduce the downtime during
which the game is unresponsive while being migrated.

This paper presents MyceDrive, a pod migration tech-
nique integrated within the Kubernetes container orchestration
system. Following the pet/cattle analogy, MyceDrive avoids
killing a healthy running pod and waiting for Kubernetes to
restart a new one when it is, instead, possible to migrate it
to a different server. Migration is totally transparent to the
application running inside the pod as well as the clients having
open TCP connections to the migrated pod. MyceDrive relies
on DMTCP [5] to checkpoint the container’s memory state and
open network connections at the migration time, and to resume
this saved state in the new pod. MyceDrive integrates in regular
Kubernetes deployments with no need for any specific CPU
architecture, OS, kernel modules or hypervisor.

MyceDrive is designed to operate in geo-distributed envi-
ronments where each server is placed in a different location,



and network links between servers may be slow. Even in such
difficult operating conditions, we show in our evaluations that
it introduces low service downtimes during pod migration, up
to 7x faster than state-of-the-art technologies.

This paper is organized as follows: Sections II and III
present the technical background and related work. Section IV
discusses design and implementation. Section V evaluates
MyceDrive and, finally, Section VI concludes.

II. BACKGROUND

a) Kubernetes: Kubernetes is a container orchestration
platform that automates the deployment, scaling, and manage-
ment of containerized applications in large-scale computing
infrastructures such as a cluster and a datacenter [6]. It relies
on container runtime systems such as Docker, and it is in
charge of creating, deploying, and running containers within
a group of server machines.

A Pod is the smallest scheduling unit in Kubernetes. It
consists of one or more containers and possibly data volumes.
Kubernetes guarantees that the containers which belong to a
pod execute in the same machine and share the same set of
resources such as a single private IP address within the cluster.

Following the cattle principle, a pod is expected to be mortal
and may fail at any time. By default, when a pod stops, its data
volumes are deleted, and its private IP address is recycled to
be assigned to a new pod. Declaring the pod as a StatefulSet
makes these resources persistent, so a newly created pod may
later re-attach to them.

To make a set of Pods available from the outside world, a
Service acts as a single public network interface that creates
internal networking routes to the concerned pods [7].

A Deployment describes the desired state of an application.
The Deployment Controller is in charge of monitoring the
actual application state and of resolving any discrepancy
between the desired and the observed state, for example, by
adding or removing application pods [8]. Deployments may be
updated by their administrators at any time, which typically
triggers the Deployment Controller to create or delete pods.

b) DMTCP: DMTCP (Distributed MultiThreaded
CheckPointing) is a user-level checkpointing package for
distributed applications [5]. It can checkpoint a group of
processes and later recreate them. DMTCP works in user
space and requires no modification to the processes’ binary
nor the Linux kernel.

Snapshotting a group of processes requires one to start a
DMTCP Coordinator on the host machine, and then launch the
concerned processes by replacing their startup command with
as “dmtcp_launch [command]”. The dmtcp_launch
prefix registers the process with the coordinator and wraps
some of the application’s library and system calls to track the
creation of new threads or processes, OS resources such as
locks and open files, and network sockets.

When the coordinator receives a snapshot request, it creates
a consistent dump of the concerned processes’ memory and
OS resources into a single gzipped file that can later be used to
restart the running application in the same or another machine.

III. RELATED WORK

a) Kubernetes-based migration: In Kubernetes, the sim-
plest way to migrate a running pod is to stop it, then redeploy
a new one in a different server. The disk state of the deleted
pod may be preserved by declaring it as a StatefulSet and by
re-attaching the preserved data volume in the newly-created
pod [6]. The StatefulSet requires the declaration of at least one
PersistentVolume that is used to keep the disk state. The new
pod may be accessed by its users using the same IP address as
the old one by exposing the pod using a Kubernetes Service.
From Kubernetes’ point of view, this fully respects the “cattle”
principle as the migration procedure treats pods as disposable
units which may be deleted and replaced at any time.

However, from the application’s point of view, this mi-
gration procedure presents two major weaknesses. First, it
requires the application to be designed in such a way that
it immediately dumps its entire runtime state to disk upon
receiving the SIGTERM signal. Any unsaved state (e.g., a
variable maintained in memory) cannot be recovered after
migration. This is a significant issue considering that most
workloads in Kubernetes exploit standard third-party software
such as Redis, Postgres and, ElasticSearch [9] which may or
may not have this capability.

Second, stopping a running pod at a random time implies
breaking the open TCP connections between the pod and its
end-users at the time of the migration. This means that pod
migration is visible from the external world, and possibly
creates inconsistencies between the clients and the server pod
because the clients have no way of determining whether their
latest request could be executed before the pod failure [10].

In geo-distributed environments, simply re-attaching a disk
volume after pod migration would imply long-distance re-
mote access to the migrated pod’s data, which may negate
the benefits of the migration in the first place. Incremental
volume checkpoint techniques may be used to improve the
speed of geo-distributed data volume migration [11]. In this
paper, we do not address this topic and instead focus on the
complementary problem of migrating other pod resources such
as memory state and networking connections.

b) LXD container migration: LXC is the native con-
tainer runtime system in Linux environments. Its improved
version called LXD supports container migration either by
using built-in libraries [12], [13] or by relying on CRIU
(Checkpoint/Restore In Userspace) [14], [15].

c) CRIU-based migration: CRIU is a Linux kernel mod-
ule to snapshot and later restart the contents of a container’s
memory pages, open files, etc [16]. The snapshot does not
contain the entire container image but only the modifications
within. It is, therefore, necessary to have the same image
in the destination node to restart from the snapshot. The
container stays unavailable while being snapshot and during
state transfer until a new container is created.

Multiple migration systems exploit CRIU. For instance, it
is used to migrate MPI applications to improve workload
resilience to anticipated hardware failures [17]. Docker-based



edge computing environments may also be used for check-
pointing, suspending, and potentially migrating long-running
blocking FaaS functions [18]. Finally, H-Container migrates
containerized applications across computing nodes of different
ISA architectures by adapting LLVM using CRIU [19].

The work in [20] proposes Redudancy Migration to re-
duce the migration downtime by buffering incoming network
packets during migration and replaying them on the migrated
container. This allows one to avoid the necessary time for
client machines to detect packet loss and retransmit. This
work shows that container migration does not necessarily
imply breaking open TCP connections at the migration time.
However, it relies on the active participation of client nodes
to update their routing rules during migration. Conversely, we
aim at making migration fully transparent for the client nodes.

Although CRIU has been used in multiple container mi-
gration systems, it features two significant limitations which
impact all migration techniques based on it. First, CRIU is a
Linux kernel module that requires modifying the OS of the
cluster’s server machines. It supports only a small number
of kernel versions, particularly on ARM processors, which
may create conflicts with other platform requirements. Second,
CRIU is currently not able to checkpoint and recreate open
network connections transparently to the clients. This implies
that open network connections to client machines are necessar-
ily broken upon container migration. Finally, no CRIU-based
container migration is currently available for Kubernetes as an
integrated tool for pod migration.

d) DMTCP-based migration: To our best knowledge,
we are the first to exploit DMTCP for migrating containers,
as DMTCP’s original motivation is to provide fault-tolerance
properties to running processes. Compared to CRIU, DMTCP
has two main advantages. First, it runs entirely in userspace
and is therefore agnostic to the Linux kernel version. Second,
it can checkpoint and recreate network socket state, which
give us the opportunity to maintain open connections with the
clients machine during migration.

IV. SYSTEM DESIGN

Migrating a Kubernetes pod from one server to another
is conceptually very simple. In principle, one simply needs
to stop and checkpoint the memory state and system-level
resources of the “source” pod, transfer the checkpoint data
to the destination server, then restart a new pod from this
checkpoint. We do not address the migration of the pod’s disk
volumes as this was the topic of a separate paper [11].

As illustrated in Figure 1, MyceDrive’s architecture is
composed of two elements. First, an Execution Agent (EA) is
integrated into every application container. It controls the con-
tainer’s lifecycle, such as triggering a checkpoint and restarting
from a saved checkpoint. Second, a Migration Coordinator
(MC) is deployed out of the application pod (for example,
in the server running the Kubernetes Control Plane). It is
in charge of interacting with the Kubernetes API to start or
finish pods and coordinating the migration by sending requests
to the EA. To issue checkpoint and restart commands, the
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Fig. 1: MyceDrive System architecture.

1 containers:
2 - name: nginxcontainer
3 image: enrichednginx
4 ports:
5 - containerPort: 80
6 volumeMounts: # Shared volume with DMTCP binaries
7 - name: dmtcp-shared
8 mountPath: /dmtcp
9 env: # Environment variables with EA's configuration

10 - name: MIGR_COOR
11 value: coord.api # hostname to reach the coordinator API
12 - name: START_UP
13 value: "/usr/sbin/nginx -g 'daemon off;'"
14 # Application startup command to be wrapped by DMTCP
15 lifecycle:
16 # End script to make sure the checkpoints are created
17 preStop:
18 exec:
19 command: [ "./end_container" ]
20 - name: dmtcpcontainer
21 # Container running dmtcp_coordinator
22 image: dmtcp:dev
23 env:
24 - name: DMTCP_CHECKPOINT_DIR
25 value: /dmtcp/checkpoints
26 volumeMounts: # Shared volume with the DMTCP binaries
27 - name: dmtcp-shared
28 mountPath: /share

Listing 1: Pod specification file to enable MyceDrive.

EA interfaces with a lightweight DMTCP container which
runs the dmtcp_coordinator in charge of managing every
application process and creating the checkpoint.

A. Execution Agent

To support migration, pods must include an EA in each
container and an additional DMTCP container per pod. This
way, every process gets started using the dmtcp_launch
command. This can be done with a few simple modifications
in the pod specification file, as illustrated in Listing 1.

When a container starts, it executes an “entry point” script
in charge of spawning one or more processes within the
container. This entry point is included in the container image
together with all the files needed to execute it. To allow
DMTCP to checkpoint these processes, we need to start them
using the DMTCP wrappers. Lines 2-5 of the pod specification
request the creation of a container running an enriched version
of the standard Nginx image. This can be done by exploiting
the layered structure of Docker container images [21]. Instead
of modifying the container image, we create an additional



layer containing the dmtcp_launch entry point script that
overrides the original one.

To execute DMTCP in the application containers, we need
to make DMTCP’s binaries and libraries available in these
containers. This applies to every application container within
the pod, as well as the additional DMTCP container. Unfor-
tunately, this represents a total size of about 200 MB. We
prefer not adding these files in the image layer itself as this
would unnecessarily increase the image size and potentially
slow down the pod deployment process. Instead, we group the
necessary files in a read-only data volume that is pre-staged
in the worker node and mounted by every concerned process.
Lines 6-8 in the pod spec request this volume mount in the
dmtcpcontainer container.

The new container entry point is a generic script that must
be able to wrap any created process. It, therefore, needs
configuration containing the list of processes it should start and
the address of the Migration Controller where these processes
should connect. Lines 10-14 of the pod spec provide these
configurations. The EA uses line 13 to start the container
application process. It then remains inactive until requested
to checkpoint the pod.

The application containers need to issue the checkpointing
command when requested to do so. To maintain the consis-
tency of the pod state before and after migration, the check-
pointing operation and the container shutdown must be issued
atomically. This is done by triggering the end_container
command as the last operation to be executed before the
container stops. This command creates the checkpoint and
informs the MC that it can be transferred to the destination
node. Lines 15-19 specify this.

The final part (lines 20-28) requests the creation of the
container running the DMTCP coordinator. Similar to the
application container, this container mounts the read-only
volume with access to the DMTCP binaries and libraries.

When the pod starts, it creates the nginx and the dmtcp
containers with their respective volume mounts and entry
points. The entry point of the nginx container starts nginx
using the dmtcp_launch wrappers which register details
about the process with the MC such as the process name,
status, and meta-data. Any further process forked by the
application process automatically inherits the same wrappers.

B. Migration Controller

Migrating a pod requires one to coordinate multiple actions
to be performed in the source and destination nodes. We also
need to preserve the information about the migration, pod
status, and meta-data despite the fact that the pod is about to
be deleted. This is the role of the Migration Controller (MC).

The MC is a REST API which needs to run in one node of
the Kubernetes cluster. A single MC deployment can manage
an entire Kubernetes cluster regardless of the number of pods.
It provides the following methods:
register registers a new application container. The MC distin-

guishes normal containers being started within a pod from
migrated containers by comparing the container’s labels and

whether the container is marked for migration with a list of
already-registered containers.

remove removes a registered container, receiving as argument
the container name and labels. It returns whether this
container is used in migration or not, informing if it should
create a checkpoint or proceed with termination.

migrate initiates a pod migration. It receives as parameters
the source node, the destination node, a Kubernetes label
used to constrain the choice of node where the new pod
must be started, and the labels of the application deployment
and names of its containers.

copy notifies the MC that a checkpoint is ready to be moved.
The MC then uses the Kubernetes copy routine to move the
checkpoint between containers, and returns a confirmation
that the checkpoint was correctly transmitted.

Pod migration may be requested by the users or administrators
by calling the migrate method of the MC.

C. Keeping network connections open

Making pod migration transparent to the client processes
requires maintaining open network connections across the
migration operation. This essentially requires three properties:
(i) preserving the TCP socket state such as port numbers, TCP
sequence numbers and buffered incoming/outgoing packets;
(ii) routing packets from/to the client machines without chang-
ing the pod’s public IP address; and (iii) reducing the migration
downtime as much as possible to avoid connection timeouts.

Preserving socket state: DMTCP was designed to check-
point not only individual processes but also entire distributed
applications such as MPI, which maintain long-lived net-
work connections between the processes. Contrary to CRIU,
DMTCP checkpoints socket state in the same way it check-
points file descriptors, pipes, signal handlers and semaphores.

Maintaining network routes: Kubernetes dynamically as-
signs a unique private IP address to every running pod. Since
the source pod is still running when creating the destination
pod, it is impossible to give the new pod the same private
IP address as the old one. On the other hand, Kubernetes
Services enable users to provide a stable public IP address
that acts as a load-balancer for a group of pods. Services are
not implemented using a proxy process but as a set of network
routing rules injected in the kernel of all worker nodes in the
cluster. When a Service detects a change in the set of pods,
it triggers a corresponding reconfiguration of these internal
routes. As illustrated in Figure 2, we place the pods to be
migrated behind a Service that ensures that client machines
can keep communicating with the new pod using the same
public IP address as the old pod.

Reducing the downtime: A Kubernetes service must first
detect the creation of the new pod before a notification can be
issued to request the creation of new internal network routes.
It may therefore take up to 10 to 30 seconds before new
networking routes are created. This creates long downtimes
as perceived by the clients, and it possibly breaks networking
connections due to TCP timeouts.
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Fig. 3: Pod migration process.

Instead of waiting until the Service discovers the new pod,
we thus explicitly notify the Service via the K8s API by
updating its labels, forcing an immediate update of the entire
Service. However, there remains a period of time when both
pods co-exist, and incoming network traffic may be routed
to one or another. Therefore, the EA in the source node
also injects a temporary route so any traffic received by the
source pod gets re-routed to the new pod (see Figure 2). This
temporary route is removed after the source pod has been
deleted and internal routes have been re-established.

D. Migration coordination

Figure 3 illustrates the different actions that are required to
migrate a pod after the migrate method of the MC is called.

The first step of the migration procedure is dedicated to
preparing the migration as well as ensuring that Kubernetes

creates the destination pod in the chosen destination node: we
update the labels attached to the Kubernetes Deployment to
specify that only two nodes (the source and destination nodes)
are acceptable to run pods of this application, and by adding
an anti-affinity rule which states that the pods should be placed
in different machines.

We then update the Deployment a second time to request
the creation of a new pod replica for this application. Because
of the placement constraints, Kubernetes can only choose
to deploy this new pod in the destination node. The new
pod starts its DMTCP container as well as its application
container(s). The entry point of the application container(s)
registers the containers with the MC. The register method
identifies that this is a migrated container because it already
has a registered container under the same ID. It then blocks
the call until a snapshot has been created and copied to the
destination node, which effectively delays the launch of the
application container.

Third, the MC triggers the network route updates by re-
questing the source node to inject a temporary route to the
destination node and by updating the Service, so it immedi-
ately notices the new pod. Up until this point, the source pod
keeps running normally.

Fourth, the MC requests the K8s API to terminate the source
pod. This triggers the end script to be executed. The script
calls the remove method in the MC, and detects if it should
snapshot the pod before terminating or if this is a normal
pod termination that does not require a snapshot. Once the
snapshot has been created and compacted, the EA notifies the
MC, which then initiates the copy of this checkpoint from the
source to the destination node via the K8s API.

Finally, the MC’s register method returns the check-
point name and authorizes the target pod’s entry point to restart
the application containers from the checkpoint.

V. EVALUATION

A. Experimental setup

We evaluate this work using a fog computing testbed
composed of five Raspberry Pi (RPI) single-board computers
model 3 B+ with quad-core 1.2 GHz CPU, 1 GB of RAM
and a 32 GB micro-SD storage card. This type of machine
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TABLE I: Functional comparison.
Myce-

K8s CRIU Drive

Stateful migration 8 4 4
Supports any kernel version 4 8 4
Maintains open network connections 8 8 4
Transparent migration for the application 8 4 4
Transparent migration for the clients 8 8 4
Uses unmodified application images 4 4 8

is frequently used to prototype fog computing platforms [22],
[23], [24] The RPIs use the HypriotOS Linux distribution,
Kubernetes 1.16 and Docker 19.03.5.

To compare MyceDrive-driven and CRIU-driven migration,
we organize the infrastructure with four workers nodes and
a control plane node. As illustrated in Figure 4, two work-
ers run Kubernetes while two others have only Docker and
CRIU. The control plane node is used to coordinate migration
either between the two Kubernetes nodes using MyceDrive, or
between the two Docker nodes using CRIU. The two sets of
worker nodes use slightly different Linux kernel configurations
because CRIU and Kubernetes require the usage of mutually-
incompatible kernel modules.

Although MyceDrive can handle multiple pod migrations
simultaneously, for the sake of evaluation, we perform a single
pod unit migration at a time.

B. Comparison and metrics

We compare three different migration techniques using three
real-world applications.

a) Migration techniques: We contrast MyceDrive with
two other techniques. First, K8s migration consists of simply
requesting the Kubernetes API to terminate the running pod
and to create a new one in the selected node.

The second migration technique relies on CRIU to migrate
Docker containers. We use the same hardware, system-level,
and application-level configurations as for the experiments
based on Kubernetes. The main exception is that CRIU re-
quires a different set of Linux modules that had to be built
separately. We also do not include the additional image layer
required by MyceDrive, considering that CRIU migration does
not require this layer. Finally, since DMTCP compresses its
checkpoints, we compress CRIU checkpoints as well.

Note that these three container migration techniques are
not functionally equivalent. As illustrated in Table I, K8s
migration is stateless as it stops the application in the source

pod before restarting it in the destination. The only way to
preserve the state is to request the application to save its state
to the disk when being stopped. Migration is therefore not
transparent for the application. This technique does not allow
one to maintain open network connections during migration,
and therefore, it is not transparent for the clients. On the other
hand, CRIU-based migration checkpoints the application’s
memory state. CRIU imposes strong constraints on the choice
of Linux kernel and modules. It also does not maintain open
network connections. Its migration is therefore transparent for
the application but not for the clients. Finally, MyceDrive
is the only migration scheme that combines all these good
properties at once. On the other hand, it requires creating
modified container images with the additional DMTCP layer.

b) Available bandwidth: In a geo-distributed environ-
ment, the servers are located close to the end-users but
necessarily far from one another. We evaluate migration with
limited available bandwidth between the nodes using typical
values found in real-world edge computing environments [25],
reshaped using the Linux tc (traffic control) command.

c) Migrated applications: We base our evaluation on
three representative applications of fog workloads [26]. The
first one is based on MongoDB whose storage engine uses
both in-memory and disk storage. We exercise it using a single
client that acts as a sensor producing temperature readings in
Celsius with a timestamp. The randomly generated data are
produced every 1 ms, and then inserted into the database.

The second application is a Redis in-memory data store that
we exercise using the same workload as for MongoDB.

Lastly, we use the Mosquitto MQTT message broker with
a producer and a consumer that simulate a sensor producing
data and an application processing them. We use the same data
generated for the other applications.

All three applications maintain and frequently update a
majority of their state in main memory, which constitutes the
most difficult scenario for stateful container migration. They
also maintain long-lived open network connections to their
clients, which implies that breaking network connection is
treated as a server failure and has a strong negative impact
on client-perceived QoS.

d) Evaluation metrics: Migration is typically evaluated
using two main metrics. Migration time is defined as the entire
duration from the moment migration is initiated by the admin-
istrator until the last operation is complete. Migration time
includes the duration of operations such as pulling container
images, exposing services, etc. This metric is important for the
administrators as it defines the duration of a complex recon-
figuration which may require additional resources compared
to simply running containers.

The second metric is downtime, which measures the time
during which the container does not serve any client workload.
We measure downtime from the clients’ point of view by
checking if the application is reachable and whether it answers
client requests. Downtime is important for the application and
its clients as it defines the time during which the application
is not performing its normal operations.



TABLE II: Checkpoint sizes in original and compressed size.
Migration CRIU MyceDrive K8s
technique

MongoDB 41 MB (6.9 MB) 3.1 MB (2.1 MB) –
Mosquitto 38.2 MB (5.9 MB) 3.2 MB (3 MB) –

Redis 18.5 MB (5.1 MB) 1.8 MB (1.7 MB) –

C. Migration performance

Figure 5a shows the migration time for every applica-
tion and tool over different bandwidth conditions. CRIU has
the longest migration time when running MongoDB and
Mosquitto applications, followed by MyceDrive and then
K8s. In all these cases, migration time decreases when more
bandwidth is available between the nodes. For Redis, the
migration times follow the same pattern using CRIU-based
migration, but they remain mostly constant for the other two
migration techniques, with large standard deviations in the
case of MyceDrive. This indicates that migration time is
dominated by factors other than the memory snapshot transfer.
We believe this is due to deploying the target pod before
transferring the snapshot.

Figure 5b presents the migration downtimes as perceived
by the clients. In CRIU-based migration, the downtimes are
mostly equal to the migration times because all migration
operations occur while the migrated container is stopped. On
the other hand, we observe that downtimes are significantly
smaller in the case of MyceDrive. This is due to the fact
that MyceDrive delays the termination of the source pod as
long as possible until the snapshot has been created. Also, the
strategies for keeping network connections open discussed in
Section IV-C reduce the downtime as perceived by the clients.

In the case of Redis, MyceDrive observes a very low
downtime compared to the migration time. This is consistent
with the observation that migration time is dominated by the
image download and starting operations rather than snapshot
transfer. There as well the available network bandwidth does
not have a significant influence on downtimes.

Finally, K8s migration produces the shortest downtimes.
However, K8s migration is stateless, so no memory snapshot is
copied during migration. K8s migration requires developers to
redesign their applications to be able to lose their memory state
with no ill effect, which can often be a difficult operation [27].

The two stateful migration techniques experience significant
downtime reduction when more network bandwidth is avail-
able. Greater bandwidth ensures faster interactions between
the servers and reduces the time needed to copy the snapshots
from the source to the destination server. Table II shows the
respective uncompressed and compressed checkpoint sizes:
DMTCP generates smaller snapshots, even though CRIU snap-
shots seem to obtain better compression ratios.

MyceDrive’s downtimes vary largely from one application
to another. The main factor determining downtime is the
compressed snapshot’s size, combined with the available net-
work bandwidth to transfer the snapshot. The largest DMTCP
snapshot belongs to Mosquitto, which also happens to have

the largest downtimes combined with the greatest variability
due to different available bandwidths.

D. Resource usage
Pod migration is a complex operation that requires the

system to convey additional tasks while continuing to process
its normal workload. We now evaluate the additional resource
usage caused by migration, compared to K8S as the baseline
of resource usage for managing pods and containers. We
measure CPU and memory usage using the dstat tool.
This section reports only the resource usage measured during
migration with 3000 kbps available bandwidth, as there was no
meaningful difference with the other evaluated bandwidths.

Figure 6a shows the average CPU usage of each node during
migration, in every possible scenario with the three migration
techniques and the three evaluated applications. Node1 has
the highest CPU utilization in all scenarios, as it runs the
control plane responsible for managing the migration. CRIU
performs container migration from Node2 to Node5. We can
see an increase of about 2.5% CPU usage in those nodes
whenever the migration is triggered. On the other hand, K8s
and MyceDrive migrate pods from Node3 to Node4. We
can see an increase of CPU usage in the order of 4% to
5% during migration, with no significant difference between
K8s and MyceDrive. We conclude that this is the normal
CPU cost of starting and stopping Kubernetes pods, and that
MyceDrive does not generate any significant increase in CPU
usage compared to K8s. Finally, we note that the CPU usage
remains identical regardless of the application.

Figure 6b shows the additional memory usage compared
to running regular containers or pods without migration. We
can see that Node1 bears the greatest cost, with an addi-
tional 94 MB when migrating the Mongo application using
MyceDrive. Other applications observe similar numbers. This
is the memory footprint of the MC to manage migration
within a Kubernetes cluster. On the other hand, CRIU-based
migration does not require a complex migration controller and
can be scripted instead, resulting in a lower memory footprint
in Node1. Finally, K8s migration incurs the lowest memory
consumption as no additional software needs to be deployed in
the control plane node to organize migration. MyceDrive also
generates a slightly greater memory usage in the worker nodes
involved in the migration, which corresponds to the memory
footprint of the EA attached to every pod.

We conclude that MyceDrive incurs almost no additional
CPU costs compared to CRIU and K8s migration, and that the
memory footprint of the MC and the EAs remain reasonable.

VI. CONCLUSION

Migration is an essential functionality in large-scale virtu-
alized platforms. It is difficult in particular in geo-distributed
environments because limited network capacity between the
nodes slow down the migration operations and potentially
impose unacceptably long downtimes.

We proposed MyceDrive, which implements stateful and
fully transparent container migration in geo-distributed envi-
ronments. MyceDrive is integrated with Kubernetes and can
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Fig. 6: Resource usage during migration using 3000 kbps bandwidth.

be used to migrate entire Kubernetes pods rather than single
containers. We showed that, although the total pod migration
times are similar to those achieved by CRIU-based migration,
it exhibits downtimes up to 7x shorter than those from CRIU.

This work demonstrates that the pet/cattle principle does not
necessarily impose terminating a perfectly running pod and
restarting a new one from scratch elsewhere when workload
relocation becomes necessary. Instead, it is perfectly possible
to migrate pods from one node to another without requiring
the application to shut down. Good shepherds care for their
cattle, and they migrate their herds from one pasture to another
when the seasons change.
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