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Fig. 1. We introduce a neural rendering method that allows interactive navigation in a scene with dynamically changing properties, i.e., viewpoint, materials

and geometry position and full global illumination effects. With our Active Exploration we can train a neural network efficiently to learn global illumination for

all the configurations of these variable properties, allowing interactive rendering at runtime. Left to right: ground truth path traced images; our prototype

interactive neural renderer, running at 4-6 fps with a variation of each scene and the variable parts of the scene depicted in red; each variable property (light

intensity, camera position, object rotation, etc.) is controlled by an interactive slider (please see video).

Neural rendering algorithms introduce a fundamentally new approach for

photorealistic rendering, typically by learning a neural representation of

illumination on large numbers of ground truth images. When training for a

given variable scene, i.e., changing objects, materials, lights and viewpoint,

the space D of possible training data instances quickly becomes unman-

ageable as the dimensions of variable parameters increase. We introduce a

novel Active Exploration method using Markov Chain Monte Carlo, which

explores D , generating samples (i.e., ground truth renderings) that best help

training and interleaves training and on-the-fly sample data generation. We

introduce a self-tuning sample reuse strategy to minimize the expensive step

of rendering training samples. We apply our approach on a neural generator

that learns to render novel scene instances given an explicit parameterization
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of the scene configuration. Our results show that Active Exploration trains

our network much more efficiently than uniformly sampling, and together

with our resolution enhancement approach, achieves better quality than

uniform sampling at convergence. Our method allows interactive rendering

of hard light transport paths (e.g., complex caustics) – that require very high

samples counts to be captured – and provides dynamic scene navigation and

manipulation, after training for 5-18 hours depending on required quality

and variations.
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1 INTRODUCTION

Neural rendering is an exciting emerging alternative to traditional

physically-based rendering; Initial attempts [Ren et al. 2013] were

restricted to indirect light with static geometry, while more recent

methods [Eslami et al. 2018; Granskog et al. 2020] are trained on
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large numbers of rendered images for variable scenes, i.e., with

changing objects, materials, lights and viewpoint. Other recent so-

lutions learn encodings of appearance or lighting [Baatz et al. 2021;

Nalbach et al. 2017; Zhu et al. 2021], again training on rendered

images. Uniformly sampling the space of these path-traced images

is expensive; in the case of a high-dimensional space D contain-

ing all the possible configurations of a variable scene, it quickly

becomes unmanageable. To address this limitation, we introduce

an Active Exploration strategy, that guides sampling to parts of the

space D that are most challenging for neural rendering.

We demonstrate the efficiency of our Active Exploration approach

on a neural renderer, by training a generator network that can in-

teractively render global illumination with dynamic modifications

(moving viewpoint, lights, objects etc.). Training time varies from

minutes to hours, depending on the scene variability, complexity

and available hardware. To represent a variable scene (see Fig. 1), we

use an explicit representation with a vector 𝑣 of variable parameters

that precisely define an instance of the possible scene configura-

tions in D , enabling fine control of each parameter and interactive

rendering.

We interleave training with on-the-fly generation of the data it

needs. Uniformly sampling the space of parameters to generate the

data for training does not allow the network to achieve satisfactory

visual quality, especially when increasing the dimensions of D,

because in many cases light transport has hard, localized effects

that have low probability of being observed.

Our Active Exploration method finds samples best suited for

training but also locally explores these regions ofD which is crucial

in our context especially for enabling high resolution training (6.2),

compared to Active Learning (see Sec. 2). For this we use a Markov

Chain Monte Carlo (MCMC) approach, with small and large steps

and a custom acceptance policy.

Despite our focused Active Exploration, training data generation –

i.e., ground truth path-tracing – is still expensive; it is thus beneficial

to reuse such rendered samples during training. For best results,

we introduce a self-tuning sample reuse strategy that optimizes the

probability for training sample reuse, further reducing training time.

Active Exploration, together with sample reuse and resolution

enhancement allow us to train our neural renderer network very

efficiently. In contrast, uniform sampling converges to a low quality

solution, while our guided exploration of the training space allows us

to significantly improve visual quality, especially for reflections and

hard light paths. Therefore our renderer is well suited for interactive

rendering of effects such as complex caustics or specular-diffuse-

specular paths, that are not handled by other real time methods.

In summary our contributions are:

• A novel Active Exploration approach, interleaving training

with on-the-fly generation of training data, together with an

adaptively increasing resolution method.

• A self-tuning sample reuse approach, further optimizing train-

ing time and storage.

• A neural renderer that allows direct control of parameters

for global illumination and interactive inference, based on an

explicit scene parameterization.

We demonstrate our system that allows interactive modifications

of lighting, geometry, materials and viewpoint (at 4-6 fps in our

prototype Python implementation, see Fig. 1 and video). We will

provide all source code and data on publication.

2 RELATED WORK

We review the most closely related work in traditional and neural

rendering, and discuss some aspects of deep learning that inspired

our Active Exploration and training sample reuse methods.

2.1 Traditional Global Illumination

Monte Carlo methods, and in particular path-tracing and variants,

are now the standard method for realistic, physically-based render-

ing, used extensively in industry [Keller et al. 2015]. In this paper

we use the modern GPU-accelerated Mitsuba 2 path tracer [Nimier-

David et al. 2019] for generation of training data.

Markov Chains are used extensively in Monte Carlo rendering

since they converge to generating samples according to their impor-

tance by only evaluating the contribution of each path. Veach and

Guibas [1997] used Metropolis Sampling to explore the space of all

possible paths. Kelemen et al. [2002] later applied the same sampling

in the space of random numbers that create the paths instead of

the paths themselves, i.e., in Primary Sample Space. The space of

random numbers that we use to create each scene instance during

the data generation of neural rendering has many similarities with

this approach: They are both in general high dimensional and for

both importance is distributed unevenly in pockets of each space.

Also related to our method is the work by Bitterli et al. [2019] that

combines a simple path tracing integrator with MCMC by using

the random seeds of high variance paths as starting points for the

Markov Chains.

Numerous methods have been developed for interactive global il-

lumination approximations [Ritschel et al. 2012]. These methods are

typically approximations either of light transport, e.g., simulating

only one bounce of indirect lighting [Ritschel et al. 2009] or limit-

ing light transport to a subset of possible paths (e.g., diffuse-only

[Nichols et al. 2009]). Dynamic scenes (moving objects or lights)

are rarely treated in such methods, e.g., the method of Majercik et

al. [2019], that is limited to diffuse scenes.

One popular approach is the use of light probes [Greger et al. 1998;

McGuire et al. 2017; Rodriguez et al. 2020], and in some cases limited

dynamic behavior is possible (e.g., dynamic lights [Silvennoinen

and Lehtinen 2017]). Seyb et al. [2020] provides a solution for a

scene with variations – or tunable parameters – using extensive

precomputation, demonstrating the importance of this use case

in production. For such methods, overall accuracy often depends

on probe density and limitations of the probe representation and

reconstruction method, and they are usually restricted in the type

of light transport supported (e.g., diffuse only). In contrast, we learn

complete light transport for a variable scene, avoiding the explicit

representation and reconstruction of lighting at test time and using

Active Exploration to find the most useful ground truth, fully path-

traced samples.
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Recent hardware advances, and in particular ray-tracing hard-

ware [Benty et al. 2020; Burgess 2020] open a new horizon for in-

teractive global illumination, including resampling algorithms that

greatly accelerate real-time rendering of very complex, dynamic

direct lighting [Bitterli et al. 2020]. Nonetheless, complex global

light transport paths are hard to compute on-the-fly, suggesting that

precomputation-based solutions could be combined with real-time

ray-tracing for future interactive Global Illumination algorithms.

In the results (Sec. 7) we show examples of difficult light transport

configurations that can be rendered interactively with our method.

2.2 Neural Rendering

Using neural networks for rendering is a rapidly growing research

topic with applications in many different contexts. The area is vast;

we briefly review a few representative papers, and refer the reader

to a survey [Tewari et al. 2020] for more information.

The most widespread usage of neural rendering has been in the

context of inverse problems, i.e., capturing and rendering real scenes.

Even though we treat only synthetic scenes, the methodologies de-

veloped in this context can be applied in our case. Methods vary from

3D reconstructed geometry-aware solutions for rendering [Hedman

et al. 2018; Riegler and Koltun 2020] or multi-plane methods [Srini-

vasan et al. 2019] to continuous volumetric representations [Milden-

hall et al. 2020]. SIREN [Sitzmann et al. 2020] uses sinusoidal acti-

vation functions that greatly improve reconstruction quality. Such

view-synthesis methods are restricted to the lighting condition at

capture. More recent methods allow modification of lighting di-

rectly [Philip et al. 2019], and a recent method represents materials,

geometry and lighting to estimate and modify lighting [Srinivasan

et al. 2021]. X-Fields [Bemana et al. 2020] also map view, time and

light coordinates for small-baseline camera motion. These methods

use ideas from global illumination methods and have inspired as-

pects of our work, e.g., our choice of the neural network. They focus

mostly on real scenes, while we work exclusively with synthetic
content.

For such synthetic content, there has been significant effort to im-

prove sampling [Müller et al. 2019] or post-process denoising [Bako

et al. 2017; Chaitanya et al. 2017; Gharbi et al. 2019; Işık et al. 2021]

for Monte Carlo global illumination algorithms. Denoising methods

fail to reproduce complex lighting effects (caustics, specular-diffuse-

specular paths) if they do not exist in the noisy input, while our

method can reproduce them at interactive rates in high resolution

(see Sec. 7.2.3). Deep learning methods have been used to improve

importance sampling [Bak 2019; Zheng and Zwicker 2019]. In more

recent work Müller et al. [2019] use a neural importance sampler

that is trained in an online fashion to guide the training, similar

to our exploration scheme. The basic premise for the Noise2Noise

approach of Lehtinen et al. [2018] helps guide the level of image

quality required for our on-the-fly path-traced training data (see

Sec. 4.2)

Our work was inspired by the use of neural networks to replace

or augment rendering with global illumination. In pioneering work,

Ren et al. [2013] learned indirect illumination with dynamic lights

and roughness using neural networks, trained on a fixed set of pre-

computed renderings. While sharing similarities to our method, our

Active Exploration method allows the treatment of more variability

(e.g., moving objects) since it efficiently identifies important samples

as the dimensionality of the training space increases. Our adaptive

resolution approach also allows direct lighting to be learned.

A later solution learned screen-space shading effects [Nalbach

et al. 2017]. More recently, Eslami et al. [2018] train an encoder

decoder network on a variable scene by encoding observations into

a scene representation vector, which is then used to render the scene

from a novel view point. Granskog et al. [2020] expand on this idea

by using buffers to help the network and by enforcing structure on

the neural scene representation. Such representations are compact

compared to traditional representations, such as voxel grids and

point clouds, scaling more gracefully with scene complexity and

size. For Granskog et al. [2020] generating a novel configuration still

requires rendering three observations, i.e., full path-traced images.

The Neural Radiance Cache by Mueller et al. [2021] uses a smaller

neural network with online training, that is used to query indirect

illumination for real-time path tracing. Like denoising methods, it

depends on noisy real-time path tracing that often misses difficult

light transport paths which our method handles well. Hadadan et

al. [2021] propose to minimize the rendering equation residual using

a neural network. Similar to us, they use scene information such

as material parameters and normals to aid the network, but they

cannot handle variable scenes, without retraining, which is the focus

of our method. Additionally, during training they uniformly sample

positions and incoming directions on the scene surfaces, compared

to our Active Exploration.

2.3 Machine Learning

Our on-the-fly data generation, Active Exploration and training sam-

ple reuse approach do not have obvious equivalents in related work

to our knowledge. However, several sub-fields of machine learning

explore ideas with some similarities; we review these briefly.

Active Learning. Parallels can be drawn between our on-the-fly

training data generation and Active Learning, where the data gener-

ation (labeling) is done procedurally to decrease cost. As reviewed by

Settles [2009] in Active Learning an algorithm chooses when a data

sample needs to be labeled, i.e., to be given the ground truth. Active

learning has been applied to convolutional neural networks [Sener

and Savarese 2017] and generative adversarial networks [Zhu and

Bento 2017]. Different metrics can be used to define the importance

of each sample; some are related to our metrics to identify the most

important samples during Active Exploration (Sec. 5.1). Our context

of working with synthetic scenes allows us to expand on Active

Learning and introduce Active Exploration. We not only identify

hard samples for training but we also use mutations to propose new

hard samples which helps with catastrophic forgetting [Kemker

et al. 2018] and overfitting.

Curriculum Learning. Importance sampling methods with Sto-

chastic Gradient descent have been developed under the general

curriculum learning framework [Bouchard et al. 2015]. They learn

the probability distribution of choosing a training sample and use

it for importance sampling. Similarly Hazan et al. [2011] learn a

distribution for picking training data. In contrast to such methods,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.
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Fig. 2. Overview of our approach. Left: During training we define a scene and the set of variable parameters via an xml file resulting in a explicit scene

representation vector 𝑣. Using Active Exploration we guide the configurations of the variable scene towards more difficult instances that are important for

the PixelGenerator network. Right: After 5-18 hours of training – depending on the complexity of the variable parameters and quality required – we can

interactively request any variation of the scene with visual dynamic changes in illumination, move objects, the viewpoint and modify materials.

we know the exact dimensions of our data space and can sample

them at will, making the task easier.

Recent work investigates issues with adaptive sampling, and the

cost of using the ideal target function [Stich et al. 2017], and provide

guarantees about the quality of sampling given limited information

on the gradients. There have been some techniques that use self-

augmentation with synthetic rendering to overcome the lack of

labelled or real-world ground truth data [Kim et al. 2018; Li et al.

2017]; the goal is to match the synthetic and real distributions, which

implies different design choices from our context.

Compared to all these methods the major difference is that we

have a forward problem, and thus have full knowledge of the pa-

rameters that define the space of training data and their dimensions.

We can thus sample any part of this space on-the-fly. This aspect of

the space of training data makes it amenable to an MCMC explo-

ration method, which is not the case of static, pre-captured training

datasets.

Learning andMCMC.MCMCmethods have been used in Bayesian

learning from the early days of neural networks [Neal 1996]. More

recently, Stochastic-Gradient MCMC has been proposed [Welling

and Teh 2011; Zhang et al. 2019] with various applications [Li et al.

2016]. We also use MCMC for deep learning, but in a different

context: since we solve a forward problem and can generate train-

ing samples on-the-fly, we use an MCMC approach inspired by

Metropolis-Hastings to guide the sampling process.

3 OVERVIEW

Our goal is to significantly improve the efficiency of the training

process in neural renderers that are trained on synthetic rendered

data by introducing Active Exploration of the high-dimensional

sample space and re-using these samples. With this scheme we

are able to efficiently train our neural renderer which provides

explicit control of the scene parameters and has constant rendering

performance regardless of the difficulty in the underlying lighting

effect.

We represent the scene variability by an explicit scene parameter

vector 𝑣 (Fig. 2), which defines the space D of all possible configu-

rations of the scene; thus any 𝑣 ∈ D corresponds to an individual

scene configuration. Our goal is to train a network to take a specific

𝑣 and the set of corresponding G-buffer images (normals, albedo,

etc.) as input, and generate full global illumination images (Inference

Time in Fig. 2).

When training the network some visually significant effects are

very localized in the high dimensional space D. Finding sufficiently

useful samples in D to train our network for those effects is very

unlikely using uniform sampling and our limited budget. It becomes

more unlikely as the dimensionality of D grows.

Since we are solving a forward problem, we can generate ground

truth training samples on-the-fly using a fast path-tracer. A training
batch will be 16 samples each consisting of a 32x32 patch of ground

truth, path-traced image, each patch in the batch corresponding to

a different configuration of the vector 𝑣 . Each patch is sampled by

a different Markov Chain and rendered in parallel. Using patches

allows more efficient exploration of D. In terms of pixels generated,

this is equivalent to an image of resolution 128x128.

Even though our path tracer is fast, the cost of generating a train-

ing batch is still high. We thus reuse training samples as much as

possible. We introduce a sample reuse strategy that further improves

the speed of training. Training times vary from 5-18 hours depend-

ing on the complexity of the variable parameters and the quality

required.

Once trained, the generator network allows interactive rendering

of dynamic global illumination effects (Fig. 2, right) for the variable

scene, e.g., interactively navigating in the scene, opening the door,

change lighting etc. (please see video).
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Fig. 3. The explicit scene representation vector 𝑣 that defines this instance

of the variable Cornell box scene.

4 EXPLICIT ENCODING AND ON-THE-FLY DATA

GENERATION

We explain the explicit scene representation, the generator network

and the on-the-fly data generation process, used in our neural ren-

dering algorithm, before presenting the actual Active Exploration

approach in Sec. 5.

4.1 Explicit Scene Representation

Previous methods [Eslami et al. 2018][Granskog et al. 2020] use an

encoder network to create a neural scene representation vector of a

scene configuration (Sec. 2.2).

However, this representation lacks interpretability and editability.

In addition, rendering a new scene configuration requires new ob-

servations (i.e., ground truth renderings) to be generated, since the

parameters of the scene representation have no explicit interpreta-

tion or “meaning”, and thus the renderings are needed to generate

the new neural scene representation vector.

We focus on variable scenes, commonly used in production [Seyb

et al. 2020]. Given that we know explicitly which parts of a scene are

variable and how much they can vary, we avoid training an encoder

network to represent this variability and instead create the scene

representation vector from the scene definition. As a result all fixed

properties are stored in the generator and associated with a set of

inexpensive G-buffers, while scene variability is compactly repre-

sented in the explicit vector. This vector contains the normalized

values of the variable scene parameters for a given scene instance.

Consider a variable Cornell box scene (Fig. 3). Here we vary the

two vertical wall albedos, positions of the boxes and light source

position, and define the ranges of these parameters.

The normalized parameter values make up the explicit scene

representation vector 𝑣 (Fig. 3). The scene representation vector

along with the camera position and lookat vector are repeated along

the width and height dimension to be the same size as the G-buffers,

and also passed to the neural network. Since our generator operates

on a per pixel basis, this repeated vector injects the global scene

information to all pixels.

4.2 Network Architecture, Buffers and Training Data

We optimize a modified PixelGenerator architecture [Granskog et al.

2020; Sitzmann et al. 2019] (a Multilayer Perceptron network with

skip connections) to map the inputs for each pixel to the final pixel

color value. We choose this over a convolutional neural network

such as a UNet since [Granskog et al. 2020] has demonstrated the

PixelGenerator architecture to perform better at upscaling. Unless

stated otherwise, we use 512 hidden features and 8 hidden layers. For

D

𝑣1

𝑣2

𝑣3

Fig. 4. A point 𝑣𝑖 in the data space D defines a scene instance out of all the

possible configurations of the variable scene.

the optimization we use the ADAM [Kingma and Ba 2015] optimizer

with learning rate 1 × 10
−4
.

For the G-buffers, we provide all the information a traditional

path tracer would require to evaluate the rendering equation of path

tracing. The Rendering Equation gives outgoing radiance 𝐿𝑜 :

𝐿𝑜 (𝑥, 𝜔𝑜 ) = 𝐿𝑒 (𝑥, 𝜔𝑜 ) +
∫
Ω

𝐿𝑖 (𝑥, 𝜔𝑖 ) 𝜌 (𝑥,𝜔𝑜 , 𝜔𝑖 ) cos\𝑖 d𝜔𝑖 (1)

with 𝐿𝑒 the emitted radiance and \𝑖 the angle between the surface

normal and the incoming direction 𝜔𝑖 ; We create first-intersection

G-buffers with the world position of the intersection 𝑥 , normal of

the surface 𝑛, reflectance and roughness of the BSDF 𝜌 and out-

going direction 𝜔𝑜 . The normal and material information help the

network understand the existing correlations between these signals

and outgoing radiance 𝐿𝑜 .

We optimize the neural generator to map this input to the value

of the integration over the hemisphere. Emission is also computed

as a first-intersection buffer and is passed through to the output

directly.

The world position 𝑥 conditions all the other inputs since it is

where the integration happens. For this reason we precondition

the PixelGenerator to the position G-buffer by passing it alone

through the first network layer. In subsequent layers all the buffers

are concatenated with the global information of the scene represen-

tation vector and passed to the network; this is similar in spirit to

NeRF [Mildenhall et al. 2020] that inputs only position to the first

layers. We experimented with Fourier features [Tancik et al. 2020],

but this resulted in artifacts due to the noise in the training data.

We show the effect of this choice in Sec. 7.3, Fig. 16.

5 ACTIVE DATA SPACE EXPLORATION

For a given variable scene, we will optimize a neural generator using

on-the-fly synthetic training data; we describe the training process

and loss in Sec. 6. This training data is generated within the space

D of all possible configurations of the scene.

Each point in this space is defined by the values of the scene

variables of the explicit scene representation vector 𝑣 . Since the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.
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scene variables are normalized, the data space D can be seen as a

hypercube, see Fig. 4.

A uniform random sampling of this high-dimensional space con-

verges to a local minimum with low quality (see Sec. 7.3).

Small Step Large Step

U ()Perturb(u )i

Fig. 5. Visualization of the impact of a small and large step on a variable

scene. In small steps (left) minor perturbations are applied – here the light

source, furniture positions and materials have been altered slightly. In large

steps (right), major changes have been applied to the scene (position of

furniture, albedo of objects etc.).

To overcome this difficulty, we propose Active Exploration of

the space D of training samples. The ability to generate on-the-

fly training samples defined by the explicit vector 𝑣 offers great

flexibility, allowing us to interleave sample generation and training.

The high-level goal is to find a sampling strategy that will find

samples in D that maximize the progress of training and locally

explore these pockets of importance. We introduce a MCMC explo-

ration strategy that guides sampling of D, towards scene configura-

tions where the network struggles to recreate global illumination.

MCMC is well suited to searching such high-dimensional spaces,

and has proven its utility both in learning [Welling and Teh 2011]

and illumination [Veach and Guibas 1997].

The Markov Chain is initialized with a state picked uniformly

from the hypercube of the data space u = u0 ∈ D, i.e., a random

configuration of the variable scene. The next proposed state is sam-

pled from the proposal distribution v ∈ 𝑇 (u𝑖 → v). Similar to the

Primary Sample Space exploration [Kelemen et al. 2002] we balance

global and local exploration of the space with large and small steps,

by choosing large steps with probability 𝑝LS. Specifically:

𝑇 (u𝑖 → v) =
{
U() with probability 𝑝LS = 0.3

Perturb(u𝑖 ) else

(2)

5.1 Markov Chain Exploration

The data space D can have arbitrarily high dimension, depending

on how much variability exists in the scene. Our goal is to generate

training samples that follow the distribution of sample importance,

i.e., the impact of the sample on training. In MCMC terminology,

our target function 𝑓 and corresponding target distribution 𝑝 should

be defined so that the sampling process produces samples that max-

imize benefit for training.

The high dimensional space of D, with pockets of importance, is

ideal for a MCMC random walk exploration.

The hypercube of our data space D has a very similar structure

to the primary sample space [Kelemen et al. 2002] and we take inspi-

ration from the exploration choices of that method. The Metropolis-

Hastings algorithm defines a proposal distribution 𝑇 (u𝑖 → v) from
a given state u𝑖 to a proposed state v. The target distribution 𝑝 is de-

fined such that new states should be proposed and accepted for the

Markov Chain to have a stationary distribution (i.e., the distribution

at convergence) proportional to the target function.

Our goal is to define a target distribution that will guide the

training process to samples that accelerate training. Previous work

has suggested different metrics of sample importance [Zhao and

Zhang 2015]. Two common such metrics are the training loss or the

norm of the gradients after a backward pass.

Our experiments showed that if only the loss is used, MCMC

doesn’t take into account where the network can improve the most.

However, the product of the loss and the norm works well, see

Fig. 17. Since we use ADAM [Kingma and Ba 2015], instead of the

norm of the gradients we use the norm of the total step to take into

account the momentum and RMSprop [Tieleman and Hinton 2012].

The small step involves applying normally distributed perturba-

tions to each component of u𝑖 . A visualization of the impact of these

steps on the final rendering is shown in Fig. 5. Since the proposal

distribution is symmetric, meaning 𝑇 (u → v) = 𝑇 (v → u), the ac-
ceptance probability of the proposed state similar to the Metropolis-

Hastings algorithm is:

𝛼 (u𝑖 → v) = 𝑚𝑖𝑛

(
1,

𝑝 (v)
𝑝 (u𝑖 )

)
(3)

The acceptance probability transforms the Markov Chain’s station-

ary distribution to the target distribution. In our case we have a) an

evolving target distribution that b) changes based on the samples

we provide.

In our experiments, the acceptance probability of Eq. 3 does not

converge to the target distribution fast enough, i.e., before it has

changed. For this special case we propose instead a more aggressive

acceptance policy:

𝛼 (u𝑖 → v) =

{
1 if 𝑝 (v) > 𝑝 (u𝑖 )
0 else

(4)

This acceptance probability has the desirable property that the more

we remain in a state the more the target function – which is related

to the error – decreases for this state. If we assume that the network

can represent this state, then it will learn from it, meaning that the

gradients and error will decrease, allowing a new proposed state to

be accepted. If there are states that cannot be represented (e.g., pixel

perfect reflections) the gradients will guide the MCMC towards

states that still have room for improvement avoiding the issue of

getting stuck.

In the initial phase of data generation, known in the literature as

the burn-in phase, the Markov Chain the samples do not follow the

target distribution. To alleviate this issue we use 16 Markov Chains

in parallel, one for each patch rendered, leading to a shorter burn-in

phase. This can be seen in Fig. 6 "MCMC Samples".

We evaluate our proposed acceptance policy and the sample dis-

tribution in a simple scenario shown in Figure 6 and by disabling
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Target

MCMC Samples

Ours

Uniform

Training Iteration

x z

z

x

Predict reflection

Fig. 6. We test our method in this simple example to verify the convergence of the samples generated by Active Exploration. In this scene the variable

parameters are the X-Z placement of a Bunny figure in an empty room (left). We fix the viewpoint to always look into the mirror and ask our generator to

predict the reflection. The Bunny appears in the reflection for only a specific range of X values. We plot the target function (loss times gradients) for different

X-Z values of the Bunny position (the heatmap can be seen as a top down view of the room) through training iterations, on the right. We show that the 2D

histogram of Bunny placement from our Ative Exploration, after a burn in period, starts following the distribution of the target function. As a result the

reflection of the Bunny starts appearing much sooner compared to uniform sample generation.

sample reuse. Here the 2D variable parameter is the position of a

Bunny figure in a room with a mirror at the center of its wall. We

task the generator with predicting the reflection (viewpoint is fixed

to always look into the mirror). For this case the static reflection

of the walls is learned quite easily but the variable reflection needs

the Bunny to be placed in view of the mirror. Our method correctly

does so and leads to its reflection appearing much faster compared

to Uniform sampling.

6 TRAINING AND SELF-TUNING SAMPLE REUSE

For training, we use the combination of 𝐿1 and structural dissimilar-

ity loss, as in Granskog et al. [2020]. Since rendering is still slow it

is beneficial to reuse samples as much as possible. We next discuss

our self-tuning sample reuse and resolution enhancement methods.

6.1 Self-tuning Sample Reuse

Traditional supervised deep learning typically uses a fix sized pre-

computed dataset and runs optimization stepsmany times on batches,

running through the entire dataset several times. Each such run is

referred to as an epoch, resulting in the reuse of each data point

many times.

In our case, we are generating training samples on-the-fly, and

thus we do not have the notion of epochs. However, sample gen-

eration is costly (typically 2.5 sec for the 16 32x32 patches), and it

is thus important to reuse training samples as much as possible, to

speed up training, and also prevent the network from forgetting

over the course of training. We do this by introducing a new self-

tuning sample reuse strategy based on the divergence between the

loss of newly seen data points and those already seen, to achieve a

balance between overfitting and training speed.

Inspired by these observations, we achieve this balance by track-

ing two different losses 𝐿𝑜𝑠𝑠new and 𝐿𝑜𝑠𝑠exist, i.e., the loss of newly

generated, unseen samples and the loss of the previously gener-

ated samples that were already used to train the network. Both are

tracked using an exponential moving average to lessen the effect of

the stochasticity of the optimization process. When 𝐿𝑜𝑠𝑠exist starts

decreasing faster than 𝐿𝑜𝑠𝑠new, thus diverging from it, our model is

starting to over-fit (as new data is performing worse than previously

generated data). In this case we need new samples to augment the

size of our dataset. This can be done by decreasing 𝑝𝑠 , i.e., reusing

with a lower probability.

We start training on-the-fly, generating and storing a new sample

for the first 100 samples. After this short initialization, for each new

step we randomly decide to reuse a previously generated sample,

or generate and store a new one. The decision is made based on a

Bernoulli distribution with a self-tuning probability 𝑝𝑠 over steps 𝑠 ,

representing the probability of reusing a training sample.

We build probability 𝑝𝑠 to satisfy two goals. First we would like

𝑝𝑠 to be as high as possible, so that we save as much computation

as possible. But if it is too high, or even equal to 1, we would over-

fit to the already generated samples and stop exploring the space

of parameters. Thus 𝑝𝑠 should also be sufficiently low to avoid

over-fitting. Over-fitting is usually measured by the difference of

performance of a model between a training and validation dataset.

We propose a mechanism with a single parameter to control 𝑝𝑠 :

𝑝𝑠 = 𝜎 (𝐿𝑜𝑠𝑠exist − 𝐿𝑜𝑠𝑠new + 𝛽) (5)

where 𝜎 represents the sigmoid function and 𝛽 is the parameter

controlling the reuse probability when both losses are equal. This

formulation decreases the probability of reusing a sample when

𝐿𝑜𝑠𝑠exist is lower than 𝐿𝑜𝑠𝑠new. Intuitively the above equation is
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derived by associating the losses to negative log-likelihood of proba-

bility distributions parameterized by the ground truth. More details

can be found in the supplemental materials. Since one component

of the MCMC target function maximizes the loss (see Sec. 5.1) we

use only large step samples to keep track of both 𝐿𝑜𝑠𝑠exist and

𝐿𝑜𝑠𝑠new. In all our experiments 𝛽 is set to 4.6, to have 𝑝𝑠 = 0.99

when 𝐿𝑜𝑠𝑠new = 𝐿𝑜𝑠𝑠exist. When a sample is reused we build a batch

of training images from the stored patches. We use the previous loss

of the sample as a weight, i.e., setting the probability of selecting a

patch proportional to its last recorded loss. We update the weight of

a sample whenever it is reused, using the network loss on that sam-

ple in the current iteration. This allows hard samples to be reused

more often and discards those for which the network performs well,

leading to better adequacy between reuse and MCMC.

6.2 Resolution of Training Images

One of the main advantages of using a PixelGenerator for the gen-

erator architecture, as demonstrated by [Granskog et al. 2020], is its

performance during inference on much higher resolutions than that

used for training. Shading effects that depend heavily on G-buffers

such as textured diffuse materials benefit from buffer upscaling,

providing improved quality. That is less true for high frequency

view dependent effects, such as reflections, that are are typically

small, and band-limited by the resolution of training images. Our

goal is to progressively reduce the area each training sample covers,

allowing the model to gradually focus on such effects.

We adopt a multi-resolution approach to address this. We start

training with 32x32 patches extracted from 128 by 128 pixel images

with a 90
◦
field of view. Note that the MCMC controls the respective

patch position on the image plane and that we only render the patch

pixels. We then progressively increase the resolution of the images

used to select the 32x32 patches; we found that doing so by 4 pixels

every 2000 iterations worked well, all the way up to 600 by 600

which is closer to our target resolution. This shrinks the area of the

patch on the sensor and allows the network to observe finer details

in hard regions, such as reflections, during training. This process

is made possible by the MCMC exploration, due to its ability to

locally explore the scene configuration through the small steps, and

to adapt to this progressive change in resolution. On the other hand,

adopting such a multi-resolution approach with uniform sampling

of D results in worse overall results as it decreases the probability

of observing a given point in the scene. This makes sampling even

less efficient (see Fig. 7) resulting in lower perceived image quality.

We show results for several variable scenes; please see the supple-

mental videos to best appreciate the quality of our results in these

dynamic scenes. We also present comparisons to previous work

and analyze the various design decisions of our solution through

ablations studies and quantitative evaluation.

We have implemented our system in Python interfaced to Mit-

suba 2 [Nimier-David et al. 2019] which we use to render global

illumination and G-buffers. We use between 200 and 24,000 samples

per pixel for ground truth renderings, depending on the scene see

Table 2.

UniformOurs

+Multi-res +Multi-res

Ground Truth

Fig. 7. Ablation study for adaptive resolution MCMC vs Uniform training.

First row: the resolution is always 128x128. Second row: we progressively

focus resolution, improving quality.

We allow transformation of geometry and lights, material editing

and viewpoint changes, including discrete events (e.g., changing

between different materials, objects appearing/disappearing).

Our prototype implementation runs at 4-6 fps at inference/rendering

time (900x900 resolution on a NVIDIA 3090 GPU), allowing interac-

tive exploration of dynamic global illumination in variable scenes

with potential applications in architecture, design, games, etc.

Currently we only show results with a forward path tracer (the

only integrator available in Mitsuba 2). However, our method is

agnostic to the type of integrator and if we used a different renderer,

we could train with bi-directional path tracing, Metropolis or any

other method.

7 RESULTS, ANALYSIS AND COMPARISONS

7.1 Results

We present results of our method on several modified scenes from

the Bitterli dataset [Bitterli 2016]; the viewpoint is variable in all 7

scenes except Sphere Caustic, Figures 1 and 8.

For the Bathroom scene, we added a showerdoor with variable

roughness; additional variables are the intensity and position of the

light source (total 8 dimensions). For the Living Room scene, we

added blinds on the windows that can open and close; additional

variables include the light intensity (7 dimensions). For the Bed-

room scene, we have simulated variable sunlight with a distant

source coming in through the window (6 dimensions). We present a

modified version of the Veach Door scene, where the variable is the

opening door (6 dimensions). We also have a modified Cornell Box,

Sphere Caustic with variable wall colors and a large sphere that

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.
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Fig. 8. Results of our method for 5 different scenes each with different variations. Note how we can capture view changes (all but row 2) reflections,

approximate caustics, global illumination etc. all at interactive rates. The scene variables include: material albedos and roughness (Sphere Caustic, Bathroom),

moving and rotating objects (Veach Door, Living Room) and time of day Bedroom. Please also see supplemental videos.
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B
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Data Generation + Training Time: 5 hours 11 hours 18 hours Ground Truth

MAPE: 0.137 0.087 0.075

Fig. 9. Results of our method after increasing hours of training. Depending on the application if speed is valued over quality, our method yields plausible

results after a few hours of training and data generation. For the best quality possible our method requires around 18 hours in the Bedroom scene.

can move in the scene and vary in roughness, for a fixed viewpoint

(11 dimensions). The Spaceship scene contains 3 variable emitters,

2 on the ceiling and one in the cockpit and variable viewpoint (8

dimensions). Finally in the Veach Egg scene we can vary the posi-

tion of the glass egg and the spotlight emitter (9 dimensions). We

show several configurations of each scene in Fig. 8 and Fig. 1 and a

path with variations in supplemental. We train the scenes for 5-18

hours on a single NVIDIA RTX 6000. If training speed is important,

we obtain a reasonable first approximation after a few hours, but

longer training is required if we want to be very close to ground

truth (see Fig. 9).

Different application scenarios have different hardware resources.

If the target platform is a modern desktop computer with a ray

tracing GPU, specular interactions can be traced and not inferred. In

this case our method needs less than an hour for acceptable results

Ground Truth

Data Generation + Training Time:

Ours + Path Tracing

30 minutes

B
ed

ro
om

Fig. 10. When ray tracing hardware is available our method benefits by

tracing all specular bounces during the buffer generation (positions buffer in

inset). This means that with only 30 minutes of data generation and training

our method learns the non specular shading for the Bedroom scene. The

harder high frequency details on the carpet still need full training to appear.

more training is required to achieve the highest possible quality as

seen in Fig. 10.

0.031 0.00230.010.0012

0.079 0.20 0.0245

Ours

0.0141Veach Egg

Sphere Caustic

0.048 0.02200.040.0068Living Room

0.033 0.00890.030.0029Bathroom

0.074 0.05120.050.0149Bedroom

DSSIM MAPE MAE LPIPSScene

Table 1. Quantitative results using 4 metrics for the configuration shown

in Figure 8.

Our solution shows good temporal stability (see supplemental

and video). The results show that we can capture a wide variety

of light transport effects: global illumination (Living Room with

different blind positions; Fig. 8), soft shadows, glossy (or even par-

tially specular) reflections (Living Room, transmission (Bathroom),

caustics, (Sphere Caustic, Spaceship, Veach Egg) etc. A major

strength of our approach is that we can render very hard light paths

with good quality at interactive rates, e.g., the caustic in Spaceship

(Fig. 1, or the shadow from the caustic in Veach Egg, Fig. 15, last

row). The quantitative results in Tab. 1 show that we achieve low

error rates in all scenes.

7.2 Comparisons

The most significant comparison we will present is to Uniform

sampling, since this clearly reveals the advantage of our active

exploration approach. We also compare to Compositional Neural

Scene Representations (CNSR) [Granskog et al. 2020], since we share

similar inputs and some goals. The comparison mainly shows the

benefits of our Active Exploration, explicit scene representation,

and sample reuse in terms of training and inference speed. Finally

a compelling alternative to our method for real time rendering of

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.
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Fig. 11. We compare our active exploration MCMC method vs. Uniform sampling of the space D trained for the same time. We see that Uniform search

running for the same time cannot produce sharp shadows, reflections and caustics.

Table 2. Samples per pixel used for each scene during training.

Sphere Living Bed Veach Bath Space Veach

Scene Caustic Room room Door room ship Egg

spp 200 400 400 600 800 1200 24000

dynamic scenes is Real Time Path Tracing plus denoising. We com-

pare with the state of the art denoising method of [Işık et al. 2021],

further illustrating that our method is one of most efficient solutions

for interactive rendering of hard light transport configurations, that

require a very high sampling rate to be captured by path-tracing.

Ours 0.0116 0.065 0.22 0.0477

0.076 0.07380.25Uniform 0.0147

Living Room
Ours 0.0141 0.079 0.20 0.0245

0.162 0.28 0.0652Uniform 0.0241

Veach Egg

DSSIM MAPE MAE LPIPSScene

Table 3. Quantitative results using 4 metrics for the configuration shown

in Figure 11.

7.2.1 Comparison to Uniform sampling. To evaluate the effect of

MCMC active exploration our first comparison is to a simple uni-

form sampling baseline (in Fig. 11). To simulate uniform sampling,

we replace our MCMCmethod with large steps only, that are always

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2022.
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Granskog et al. 2020Ours

Granskog et al. 2020
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MAPE: 0.082 0.823 0.655

Output

Fig. 12. Same quality (top) and same time (bottom) comparison with Granskog et al. [2020]. We show result of ArchViz for same quality as ours using the

pretrained network provided by the authors in their rendering framework. We also show Living Room for same time as ours by training their method on our

variable scene in our rendering framework. The 3 path traced observations required by Granskog et al. [2020] are shown on the right in both cases.

accepted; note that this baseline includes our sample reuse method,

but not resolution adaptation since it gives worse results (Sec. 7.3).

As we can see, for the same computation time, active exploration

achieves sharper reflections, caustics and shadows, thanks to the

guiding sampling it affords. We tried to obtain equal quality with the

uniform sampling, however this naive approach converges to a low

quality local minimum. The results shown in Fig. 11 were generated

with the best quality this approach could achieve; after this point

in training the loss does not decrease. The videos in supplemental

showcase the improvement Active Exploration provides in all dif-

ferent configurations of the scenes, e.g., the caustics in Spaceship

and Veach Egg, glossy effects in Bathroom, and reflections in Bed-

room or Living Room. In all cases, our method provides sharper

results, generally much closer to the ground truth. This is confirmed

with quantitative analysis in Tab. 3.

We also show quantitative results in Fig. 13 using the Mean Ab-

solute Percentage Error (MAPE), DSSIM [Loza et al. 2006], Mean

Absolute Error (MAE) and LPIPS [Zhang et al. 2018] error metrics

and a graph with the evolution of error over time. Since our main

Veach Door

.014

.012
2 10 18

Bedroom
.018

.014

.010
2 10 18

Hours

Living Room
.030

.024

.018
2 10 18

0.0097

0.0160

0.0458

0.0791

DSSIM MAPE
Ours

D
SS

IM

0.10580.0212

0.0180 0.0892
DSSIM MAPE

0.0135

0.0117 0.0712

0.0752

DSSIM MAPE

Uniform

Ours Uniform

Fig. 13. Quantitative evaluation of our method and ablations compared to

ground truth (graphs start at 2h of training.)

goal is to handle difficult lighting configurations, we select 10 frames

from each path of each scene which correspond to such cases, and
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evaluate our method against ground truth; we show the selected

frames for each scene in supplemental.

7.2.2 Comparison to CNSR. We compare our method to Composi-

tional Neural Scene Representations [Granskog et al. 2020] (CNSR)

using the variable ArchViz scene, the more complex of the two

datasets used in CNSR; Our implementation of this scene has 71

dimensions. For best-effort same quality comparison we use a pre-

trainedmodel provided by the authors. Note that the ArchViz dataset

"consists of variations of a living roomwith a dining area" [Granskog

et al. 2020]. Both the pretrained model of Granskog et al. [2020] and

ours are trained on identical data involving variations of this scene.

We recreated the ArchViz variable scene in our framework as closely

as possible, using publicly available resources [Granskog et al. 2020].

The CNSR pretrained model is trained on a dataset of 9000 sample

points. Each point includes 16 batches of 3 observations at 64x64

resolution and a query image at the same resolution, trained for 1M

iterations.

The high complexity of this scenes’ variations (constrained, spe-

cific configurations, e.g., the teapot appears at a specific position

on the table etc.) challenges our base method; we show results us-

ing 256 features/layer and without resolution enhancement. This

gives blurrier results (on a par with Granskog et al. in terms of

quality) but avoids high frequency artifacts. Our method achieves

same qualitative results with 36 hours of both training and rendering.
In comparison Granskog et al. [2020] needs 11 days of only training
(accounting for hardware differences), and an unspecified amount

of rendering time to generate the data.

We also retrain CNSR on three of our scenes, providing same time

comparisons on Living Room, Bedroom and Veach Door. For this

we used the publicly available code provided by the authors to train

on data generated by our framework. As in the case of the ArchViz

scene we use 16 batches of 3 observations at 64x64 resolution and a

query image at the same resolution to train their model.

The results of the same quality ArchViz and same time Living

Room comparisons with Granskog et al. [2020] are shown in Fig. 12.

Additional examples are shown in the supplementary material. Our

method achieves much sharper results that are significantly closer

to the ground truth.

We want to note that this comparison is provided only as an

indication of the efficiency of our approach, since the goals of the

two methods differ in several ways.

7.2.3 Comparison to ANF. We compare with the recent Affinity of

Neural Features (ANF) denoising method [Işık et al. 2021] in Figure

15. For a fair comparison we take the pretrained model provided

by the authors and fine tune it in each specific scene, using the

authors original implementation. Since our method uses a different

renderer than ANF (Mitsuba 2 vs PBRT v3), we give the same budget

in terms of pixels generated during fine tuning. Also we fine tune

the pretrained ANF model using sequences of 8 frames in random

paths as in the original method. Fine-tuning improves temporal

stability (please see videos), and sometimes improves visual quality

(e.g., sharper results for Spaceship). Finally during inference we

provide an 8 samples-per-pixel (spp) input image along with the all

the buffers required (albedo, depth, etc.).

Our method demonstrates better temporal stability especially in

parts of the scene where the noise in the input is higher such as the

reflections in the Spaceship and Veach Egg scenes. ANF manages

to successfully reconstruct parts of the scene where there is a big

correlation between the input buffers and the final color, such as

diffuse walls in Living Room, and parts where the light effect exists

in the noisy input, highlights on the floor in Living Room. The

limitation of ANF is clear in cases of complex light effects that do

not appear in the noisy input due to the low spp and where the

input buffers do not help, such as the red caustic in Spaceship, the

bottle caustic in Living Room and the complex shadow of the glass

egg Veach Egg.

These effects have significant impact on the observed realism

of the scene. However, they are completely missing from the path-

traced+denoising solution, despite these effects being present in the

ground truth images used for fine-tuning (provided in supplemen-

tal). Quantitative results are shown in Tab. 4; our method outper-

forms Işık et. al. [2021] in Spaceship and Living Room. For Veach

Egg, two metrics give our method lower score, even though we

clearly capture indirect effects that are completely missing in Işık

et. al.

Spaceship

Ours 0.0155 0.047 0.001 0.0176

0.068 0.023 0.0693Işık et al. 2021 0.0461

DSSIM MAPE MAE LPIPSScene

0.067 0.023 0.0659+ Finetuned 0.0483

Living Room

Ours 0.0074 0.051 0.040 0.0287

0.096 0.052 0.0691Işık et al. 2021 0.0164

0.109 0.050 0.0722+ Finetuned 0.0205

Veach Egg

Ours 0.0170

0.071

0.021

0.0758

0.082

0.0765Işık et al. 2021 0.0182

0.081 0.027

0.0844

+ Finetuned 0.0194

0.021

Table 4. Quantitative results using 4 metrics for the configuration shown

in Figure 15.

This illustrates one of the major strengths of our approach: the

only way to render such hard light transport in a path-tracing con-

text is to dramatically increase the number of samples per pixel. In

contrast our method encodes light transport in the neural network

and uses the explicit scene representation vector to get informa-

tion about such effects, such as the position of the glass egg or the

cockpit light. As a result, we achieve interactive rendering with all

effects present for the same training time.

7.3 Evaluation

We first study the effect of the number of variable dimensions, then

present other ablations concerning different design choices of our

method.

Study of number of variable dimensions. We investigate the im-

pact of the number of scene variables on our results. We trained

our method and the uniform approach described above on 5 in-

creasingly variable variants of the Salon scene. The first variant
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Fig. 14. Study of the number of dimensions on the effectiveness of our approach on the Salon scene. Left: we show the difference between the loss using the

uniform approach and our method; the graph starts at 4h of training. In general, the benefit of our method increases with the number and complexity of the

variable elements in the scene, but some elements are more important: despite going from 10 to 25 dimensions the difference of gain between Salon-10-dim and

Salon-25-dim – which only involves albedo changes – is smaller than adding a single important dimension such as light position (difference from Salon-7-dim

to Salon-9-dim. Right, for low dimensions (bottom row, Salon-5-dim) our method slightly improves the glossy highlight on the tv compared to uniform

sampling; however, once the dimensions increase (top row, Salon-10-dim), we capture a lot of effects completely missed by the uniform, namely the tv and

floor glossy highlight as well as the detailed shadows of the teapot on the table.

– Salon-5-dim – only varies viewpoint (5 dimensions), Salon-7-

dim adds a movable set of furniture on the floor (7 dimensions). In

Salon-9-dim the light source moves on the ceiling (9 dimensions).

In Salon-10-dim the roughness of the wooden floor is also vari-

able (10 dimensions). To demonstrate that some variables have a

bigger impact on training time than others, e.g., light source po-

sition compared to changing albedo, we introduce Salon-25-dim

which also varies the albedos of the furniture and walls (25 dimen-

sions). In Fig. 14 we see that while for Salon-5-dim the difference

in validation loss between our method and the uniform sampling is

small, Salon-10-dim demonstrates that the benefit of our method

increases with higher numbers of variable dimensions. For this case,

uniform search almost completely misses the important highlight

on the glossy wooden floor due to the very specific configuration of

parameters that create it. As a result Active Exploration is crucial

for scenes with many variable elements, such as the ones used in

production.

Ablation: preconditioning on position. In Fig. 16 we show the dif-

ference in results between our full method and an ablation where

position is concatenated with all other dimensions and fed directly

to the network. We see clearly that the position preconditioning

greatly improves overall performance. In the Living Room scene

the albedo buffer for the table has high frequency variations due

to the wood texture. Without the preconditioning it is hard for the

PixelGenerator to learn to ignore this information when shading the

caustic and the shadow of the bottle. Quantitative results in Tab. 5

confirm this choice.

Ablation: increasing resolution. We next study the effect of pro-

gressively increasing resolution during training (Sec. 6.2). In Fig. 7,

DSSIM MAPE MAE LPIPSScene

Ours 0.0141 0.079 0.20 0.0245

0.098 0.25 0.03930.0184w/o Preconditioning
Living Room

Table 5. Preconditioning improves the quantitative performance (see also

Figure 16).

we compare to an ablation where we do not increase resolution

during training. We can see that the increase in resolution allows

our active exploration to resolve high frequency effects such as

reflections and shadows (lamp on the left) much more effectively.

The corresponding quantitative results in Tab. 6 confirm the im-

provement in quality.

DSSIM MAPE MAE LPIPSScene

Uniform 0.0241 0.162 0.28 0.0652

0.117 0.05730.38+Multi-res 0.0250

Ours

0.0141 0.079 0.20 0.0245

0.135 0.23 0.05900.0201

+Mutli-res
Living Room

Table 6. Quantitative results illustrating the effect of resolution on error.

Ablation: target function. In Fig. 17 and Tab. 7, we see that us-

ing only the loss for the target function degrades quality, since the

training process gets stuck in local minima. The MCMC finds con-

figurations that cannot be improved anymore, such as the mirror

reflection, and does not accept other states where the network could

still improve, such as the bottle caustic. As a result the latter is

lacking detail.
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Fig. 15. Same time comparison with Işık et al. [2021], fine-tuned on our scenes. Note how our neural renderer captures hard light paths, e.g., caustics

(Spaceship) or even shadows from caustics (Veach Egg) that are almost completely missing from the path-tracing + denoising solution.
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w/o PreconditioningGround Truth Ours

Fig. 16. Position Preconditioning allows the generator to ignore the high

frequencies of the wood texture when it forms the shadows and caustic,

resulting in better quality.

DSSIM MAPE MAE LPIPSScene

Ours 0.0141 0.079 0.20 0.0245

0.085 0.22 0.03060.0149Loss Based
Living Room

Table 7. Quantitative results using 4 metrics illustration the benefit of our

choice of target function (see in Figure 17).

Ground Truth Ours Loss Based

Fig. 17. Use of the loss alone for the target function results in blurrier results.

8 FUTURE WORK, LIMITATIONS AND CONCLUSION

Despite providing interactive global illumination in dynamic scenes,

our method is not without limitations; we discuss these below to-

gether with some avenues for future work before concluding.

Rendering using our unoptimized Python implementation cur-

rently runs at 4-6 fps, including a 15ms overhead for generating

G-buffers in Mitsuba – which could be performed with hardware

acceleration – and an unoptimized inference step. We are confident

that significant speedup can be achieved with further optimization.

We chose to learn all light paths, including mirror reflections. While

we achieve acceptable results in many cases, high-frequency effects

may not be reproduced exactly. However, our approach can be used

in a hybrid setting, using real-time ray-tracing for specular inter-

actions as seen in Fig. 10, overcoming this issue. If the use of path

tracing is not an option, Neural Textures such as the ones used

Ours

C
h
es
s

Ground Truth

Interactive Navigation & Scene Manipulation

Fig. 18. The Chess scene tests the limits of our method with 128 variables.

Each chess piece can be moved on the board, lifted and be captured. Our

method still gives plausible results but is missing some shadows and high-

lights.

in [Thies et al. 2019] could improve reflections in cases where the

G-Buffers do not provide any meaningful information.

Active Learning literature has explored many different metrics

for deciding the value of each sample. In this work we explored two

functions that can be efficiently computed in a single GPU training

scenario but there are alternatives. In a multi GPU training scenario

one option is to use a query by committee. Different copies of the

model could be trained in parallel in each GPU and whenever a large

step is performed all the models could be evaluated on the proposed

state. Using the prediction variance of all the models’ answers can

be a good fit for a target function as it shows there is uncertainty on

what the result should be. Additionally Bayesian Neural Networks

with explicit access to uncertainty metrics could possibly be an

option for our Active Exploration in the future.

One aspect we would like to explore in future work is how to take

into account the importance/difficulty of each scene variable. From

our tests different variables can have different impact on the scene’s

global illumination and can be harder/ easier to represent by the

generator. In general, variables that create or control high frequen-

cies, such as reflections and shadows, are much harder to learn than

variables such as the color of emitters or objects. Explicit injection of

this knowledge using some form of Importance Sampling could help

reduce training times and improve quality. Another property of the

variables that we do not handle explicitly is the difference in their

ranges. Since we normalize each variable the network needs to learn

to scale the normalized values accordingly to match their impact
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on the final rendering. For instance for two rotatable objects that

can be rotated 360
◦
and 15

◦
respectively the network in both cases

will receive values between 0 and 1 even though the first object

will create much higher frequency shadows in that range. Finding a

way to adapt the MCMC mutations to such range differences per

variable could increase the efficiency of Active Exploration.

The types of variables we demonstrated can have a big impact on

the overall appearance of our scenes but they are simple to represent

with a few floats (rotation, translation, roughness etc). In future work

we would like to expand our method to variables that are difficult to

represent such as the parametric deformations in [Sloan et al. 2005].

We believe that finding inventive ways to represent such variability

(such as using the keyframe as a parameter) is a promising avenue

of future research.

We still can require up to 18 hours of training time for a given

scene, depending on the required quality and the number of variable

parameters. As discussed earlier, the network architecture used can

play a significant role in the quality of the results; it is possible

that different architectures will further improve quality and thus

training speed. Another possible extension could be to train with

a set of variable parameters and allow fine-tuning of the network,

e.g., allowing fast addition of a new object etc. Evidently, use of a

faster path-tracer could also accelerate training.

In future work, we believe our Active Exploration approach has

significant promise for any neural rendering method (e.g., [Baatz

et al. 2021]) that trains on synthetic data, allowing potentially sig-

nificant reduction in training time and improvements in quality.

One limitation by design for our method is that we cannot handle

thousands of variables. The scene representation vector is repeated

to match the size of the G-Buffers so that the generator, which

operates on a per pixel basis, is aware of the global state of the

scene. For example, given 5000 variables (such as a variable texture)

we would need to create a tensor of size 128x128x5000 that would

be unmanageable in terms of memory. In such cases there is a need

to encode this information in a different way, possibly through an

encoder neural network. Our method, as shown in Figure 18, can

work with 128 variables with similar training times (18 hours) but

the quality is lower than in simpler scenes (some missing highlights

and shadows).

In conclusion, we introduced a resolution-aware Active Explo-

ration method that guides the sampling of the training data space,

and a self-tuning sample reuse method that enables interleaved

on-the-fly data generation and training.

Our neural renderer, combined with our explicit scene instance

parameterization vector, uses these contributions to capture hard

light transport effects, allowing interactive exploration with full

global illumination, including all light paths.

Using these elements we can render variable scenes after 5-18

hours of training, depending on scene and variation complexity and

the quality required, including indirect lighting, shadows, transmis-

sion, glossy effects etc. Looking forward, we believe that our main

contributions can be used beyond the precomputation scenario pre-

sented here: Active Exploration and self-tuning reuse could be used

for future solutions that can provide data online, e.g., with real-time

path tracing.
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