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Abstract
Distributed applications are part of our everyday lives, but
too often their good operation depends on central servers, all
potential points of failure and performance bottlenecks. De-
signing systems for fully distributed communications how-
ever still requires porting common mechanisms needed for
feature-rich modern applications such as user rights differen-
tiation, multiple administrators, and end-to-end encryption.
We propose a distributed access control mechanism for col-
laborative applications by relying on conflict-free replicated
data types (CRDT), and design an access control policy CRDT
able to support Google Docs and POSIX file systems as ex-
ample of distributed applications. To enforce that policy, we
outline a generic data model, examine different conflict reso-
lution strategies at the data and policy levels, and consider a
novel approach towards conflicts between data and policy
operations.

CCSConcepts: •Computingmethodologies→Distributed
algorithms; • Security and privacy → Access control; •
Human-centered computing→ Synchronous editors;
Asynchronous editors.

Keywords: distributed algorithms, access control, CRDT
(Conflict-free Replicated Data Type), real-time collaborative
editors, POSIX

1 Introduction
Collaborative applications are ubiquitous. Despite the varied
execution environments required by modern usage, their
operation often relies on a handful of centralized services,
limiting their resilience upon the failure of one of these ser-
vices. To alleviate that risk, systems need to be designed for
decentralized operation. CRDTs [9] provide a framework to
design data structures that can be replicated across multi-
ple replicas and updated independently and concurrently
without coordination to converge to a given state.

A distributed application, be it a distributed file system or
a collaborative editor, needs to provide mechanisms to pre-
vent unauthorized access or modification – namely, access
control. In order to achieve high availability and low latency
at a global scale, access rights have to be replicated. Modi-
fications on the data can be done concurrently with policy
modifications, hence requiring an access control CRDT that
deals with both data and policy modifications.

The dynamic nature of a group, with administrators and
members changing over time, is likely to produce conflicts
in the definition of the rights assigned to a user for a given
resource. Most systems that deal with concurrent data and
policy modifications are so far limited to a single, fixed ad-
ministrator per document [3]. In [10] authors explores con-
current policy and data operations conflict resolution in the
presence of multiple administrators for a data store by pre-
serving two properties: all policy operations are applied on
all replicas before applying the subsequent data operations ;
and in the presence of concurrent policy modifications, the
most restrictive policy is kept. However, it does not con-
sider scenarios in which the order of execution of policy
and data operations might lead to a divergent data state. In
[12] authors examine potential data leakage (rights conflict
resolution favoring accessibility) or undue loss of access (res-
olution favoring confidentiality) introduced by concurrent
access policy changes. They outline the need not only for
flexible data models, but also for flexible resolution strategies.
However, they do not further explore concurrent data and
access policy changes.

Automatic conflict identification and repair tools [2] often
do not take into account implicit relations between the mul-
tiple CRDTs involved for each of the data types exchanged
within complex applications. More critically, they do not
consider an overarching access control policy CRDT that
integrates with the implicit dependency of data operations
to the access policy in which they are created.

In this paper we illustrate by means of examples the chal-
lenges faced by replication algorithms for obtaining consis-
tency over both data and access control policies in distributed
applications such as Google Docs and POSIX file systems.
We provide a CRDT-based solution for consistency mainte-
nance over access control policies. We give an overview of
our proposed solution for the composition of the CRDT on
access control policies with a CRDT on data.

The paper is organised as follows. In Section 2 we start by
modeling access control policies in collaborative applications
such as Google Docs. In Section 3 we present our solution
to resolve conflicts between policy operations. Next, in Sec-
tion 4 we present our solution for maintaining consistency
over both data and access control policies. Section 5 shows
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how our solution can be adapted for POSIX file systems. Fi-
nally, in Section 6 we present concluding remarks and some
directions for future work.

2 Access control policies model
Depending on the application that needs to be modeled, the
data model and conflict resolutions vary in complexity. We
can however define a baseline with collaborative editing
applications like Google Docs, as they govern limited data:
a document, and possibly comments. It features dynamic
members and administrators. Administrators (called editors
with the exception of the fixed owner) hold all rights over the
data. Other users can be given a write access, but otherwise
have a read access.

In our baseline data model, access control lists (ACLs) are
represented by a Map of users to a Set CRDT of their roles,
following a Role-BasedAccess Control [8]model. ThisMap is
responsible of managing a user’s rights and transitions from
a set to another upon each policy modification. Since there is
a total order among roles being able to modify the managed
data or its access control policy, a simple modelization can
be given mapping resolution priority to role hierarchy. This
allows to define transition semantics where, in the above
example, a user being restricted from read would also lose
all other rights (including admin), since it is the lowest in
the total order of roles.
This diverges from using a Set of object-user or object-

object relations represented as relation tuples, as seen in
projects like Google Zanzibar [7]. It is already an opinionated
data model, with groups, objects and namespaces – arguably
making a complex ableit conveniently flexible proposition.
However, Zanzibar’s reliance on Spanner, a database that pro-
vides external consistency and snapshot reads with bounded
staleness assigning each ACL write a microsecond times-
tamp through True Time API [4], makes this proposition
unsuitable for our purpose.

When receiving a third-party operation – and depending
on the nature of the action and CRDT concerned – the imple-
menter can check against the Access Control Policy whether
this operation can be locally executed. Namely it compares
the roles needed for the operation execution with the ones
currently possessed by the user emitting the operation in
the user Map, for instance by using a function analogous to
hasRights in the OR-Set CRDT Algorithm 1 in appendix.

3 Conflicts resolution for policy operations
Like other CRDTs, our Access Control CRDT relies on con-
flict resolution strategies between two operations on that
datatype. We chose a simplification of potential conflict res-
olutions, by assuming an operation emitted by a user with
a higher role will prevail. This relies on roles being totally
ordered, or otherwise mapped on a linear priority scale in
order to decide between merge conflicts. In the use case of

Google Docs notably, there can be found a total order that
could be mapped to a priority in conflict resolutions of policy
modifications, as roles bearing administrator rights are the
owner and editor roles:

𝑜𝑤𝑛𝑒𝑟 > 𝑒𝑑𝑖𝑡𝑜𝑟︸              ︷︷              ︸
administrators

> 𝑤𝑟𝑖𝑡𝑒𝑟 > 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑒𝑟 > 𝑣𝑖𝑒𝑤𝑒𝑟︸                                   ︷︷                                   ︸
users

The owner role is unique to the data initial creator and is
immutable, while editor can be assigned by any administra-
tor to any user. Two concurrent policy updates performed
by different administrators might incur conflict (see Exam-
ple 3.1). In the rights representation above, we could expand
the implicit roles of an administrator to contain all those of a
regular user. In this case administrator operations would con-
flict with regular user ones when any policy change occurs
on a same target.

In case of conflicting operations by two users of the same
priority, a finer strategy must be devised for the system to
converge. Typically, a strategy favors either accessibility (by
resolving in favor of opening rights that give access to data),
confidentiality (by resolving in favor of restricting these
rights) while preserving integrity - preventing unauthorized
modifications, as shown late in Example 3.2.

Notations used in the following examples and their figures
are found in Table 1.

Term Usage

S𝑥 Subject/group member of reference 𝑥
A(O) Right to administer, corresponds to owner role
A Right to administer, corresponds to editor role
W Right to write, corresponds to writer role
R Right to read , corresponds to viewer role
OP𝑥 Operation of reference 𝑥
d data
→ × Operation got discarded on arrival
𝜖𝑖 epoch of reference 𝑖

Table 1. Nomenclature of symbols used in figures

Example 3.1. In Figure 1a, 𝑂𝑃1 and 𝑂𝑃2 are concurrently
emitted respectively by 𝑆1 and 𝑆2, two administrators as
stated by the policy part of the initial state box on the top
left hand corner. Since they are both targeting 𝑆3’s rights, and
since rights in our use case are totally ordered and contain
the rights below them, 𝑂𝑃1 (setting the editor/A role to 𝑆3)
and 𝑂𝑃2 (setting off the reader/R role to 𝑆3) are clearly in
conflict. As 𝑆1 is an owner among administrators, 𝑂𝑃1 will
take priority over 𝑂𝑃2, and thus 𝑂𝑃2 is discarded.
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Example 3.2. In Figure 1b, 𝑆1 is not an owner anymore, but
a regular editor. As such, a conflict resolution strategy re-
liant on other attributes must be used. In the confidentiality-
favoring strategy used here, the lesser of two right sets is
kept – that is to say, 𝑂𝑃2.

(a) resolution based on emitter role priority

(b) resolution based on confidentiality

Figure 1. Comparison of policy conflicts, with different
strategies, in the context of Google Docs’s policy model.

4 Interactions between policy and data
operations

Conflicts between data operations can be resolved by means
of a data specific CRDT such as LogootSplit for sequence-
based data underlying real-time collaborative editing [1].
Conflicts between policy-modifying operations can be re-
solved by means of the CRDT proposed in Algorithm 1 in
appendix. However, combining CRDTs for data with CRDTs
for policies raises several challenges. Conflicts between two
concurrent operations based on diverging policies cannot
be safely resolved. Both policy operations and data opera-
tions need to rely on the result of a conflict resolution of the
closest policy operation before them (parent policy). Multi-
ple mechanisms can freely be chosen from, but we devise a
reference – named epoch [6] – to that parent operation. The
reference is sent along each operation. We can then use it
to resolve conflicts down the chain of dependent operations,
based on the assumption that each operation can be undone

and conversely redone. For this, each CRDT involved (policy
and data) must possess two functions: (i) undo where descen-
dants of a parent operation are also invalidated and their
changes reverted, (ii) redo where operations ignored or un-
done but still kept within the log are reestablished along with
their parent [13, 14]. This allows to reason about document
operations without costly vector clocks whose size grows
quadratically with the number of participants in a dynamic
collaboration group. Instead, all operations are referring to
an epoch created by the most recent previous operation that
changed the access control policy. The epoch doesn’t grow in
size, but merely refers to a parent operation that last changed
the policy.
Via this backtracking mechanism, we can apply conflict

resolution decisions to batches of operations a posteriori, as
in Example 4.1, where operations based on later epochs are
undone or kept in batches as their parent operation conflict
gets resolved. In the scope of collaborative applications, ACL
changes can be infrequent, but only conflicting policies can
lead to lots of undo/redo, bounded by their epoch.

Example 4.1. In Figure 2, we show a typical situation in a
distributed setting. In Figure 2a, messages emitted coherently
by either 𝑆1 or 𝑆2 arrive in different order and thus bear a
different final state once received on 𝑆3. The context in which
authorization of each operation is checked is not consistent
across sites 𝑆1/𝑆2/𝑆3. Using our proposed epoch mechanism
(here added to the bottom of the state box), we expect to be
able to backtrack the state of rights, thus recreating a context
for authorization checking of operations. In our case, 𝑂𝑃3
and 𝑂𝑃5 are unaffected by the conflict, but still subject to
trickle-down effects of the conflict resolution of their parent.
We can represent it as a graph (see Figure 2b), with epochs
done in parallel as branches that can be dealt with in batch.

While the order of operations on the document does not
matter, these operations must be performed against a ver-
sion of the access policy that matches the desired access
control context. In practice, this translates into a limitation
of commutativity requiring the operation that created the
referenced epoch to be applied before applying the desired
operation. And since operations are using their closest par-
ent as epoch value instead of their most meaningful parent, it
is not a semantically accurate description of an operation’s
access control context, but rather a lowest common denomi-
nator to solve conflicts across branches. Children operations
are systematically affected by the resolution of their parent,
even when they aren’t reliant on its policy changes.

We note that while data and policies are expected to con-
verge, epochs are not. Subjects are free to choose a parent
epoch among the branches they aggregated at their replica.
However, without a mechanism deciding which epoch to
choose, replicas will not emit new operations with one spe-
cific epoch. A replica at which multiple concurrent – but
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(a) multi-conflicting scenario

(b) corresponding operation hierar-
chy with epochs

Figure 2. Example of conflict between two concurrent pol-
icy modifications, and potential divergence on a third site
without epoch policy-causality preservation.

non-conflicting – epochs exist needs to define its next policy-
modifying operation on multiple epochs, i.e. the last ones of
each branch.

5 Modeling complex systems: POSIX
A wide range of user applications expect some strong invari-
ants to model key functionalities, and while we previously
identified a baseline application (Google Docs) to model our
initial CRDT, a more realistic degree of invariant complexity
lies in the case of POSIX. We thus follow this standard to
explore the flexibility of using our CRDT modelisation on
systems which rely on strong invariants.
We consider a simplified POSIX model in Algorithm 2

in appendix, where a list of files, groups and users is ad-
ministered by the access control policy CRDT, mimicking
a file system without directories for the sake of a minimal
example. We need to transform our data model to include
the notion of groups, and switch our representation of users
having roles to that of groups and files listing their users
and their rights. To that end we use a Set of users, a Map
of groups each pointing to a Set of users, and comprised at
least of the sudoers group with at least one user. The list of
files is represented as a Map to an ad hoc File CRDT, which

lists each permission field (owner, group, mask, other), the
entities behind the owner and group fields, and a data field.
Contrary to simpler models, a part of the ACL is co-located
with the data.

Since all the information required to solve potential con-
flicts is present within the Access Control CRDT at merge
time, the same aforementioned strategies can be developed.
However, new implicit conflict origins need to be considered
for resolution, as simply having divergent groups or owner
field values is not enough. As exampled by [11], changing
an owner and the permission associated to it concurrently is
not typically located on the same field – and thus not dealt
by the same CRDT. However our CRDT encompasses both,
and should declare it a potential conflict, as the intent of
changing the owner was done in a context where its permis-
sions would have been different. The same can be said of
group members, the group field, and its permissions.

6 Conclusion
By laying the base for a minimal Access Control CRDT, as
well as mechanisms to deal with conflicts not only inter-
policy CRDT, but also between policy and data CRDTs, our
model proves flexible enough to replicate two archetypal
cases for decentralized applications: Google Docs, and POSIX
ACLs. We argue that our model thus encompasses a wider
array of applications than ad hoc models.

We plan to enhance our model along multiple axes, first by
providing the formal model for its convergence when dealing
with epochs, but also by taking into account its fitness with
other implicit conflicts arising from end-to-end encryption.
We then intend to integrate it on our real-time collaborative
editor MUTE [5].
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Appendix
Weprovide themodified state-basedOR-Set CRDTs enhanced
with support of user rights checks.

Algorithm 1 CRDT for Google Docs Access Control
1: payload set 𝑆 , set 𝑇 ⊲ set of triples: element identifier 𝑒 ,

unique tag 𝑢, rightset 𝑟
2: initial ∅,∅
3: payload epoch 𝜖

4: initial /

5: query contains (element 𝑒) : boolean 𝑏
6: let 𝑏 = (∃𝑢 : (𝑒,𝑢, 𝑟 ) ∈ 𝑆)

7: query get (element 𝑒) : rightset 𝑟
8: let 𝑟 = (𝑟 |∃𝑢𝑋 : (𝑒,𝑢, 𝑟 ) ∈ 𝑆, 𝑆 :=

{𝑢1, 𝑢2, ...𝑢𝑋 }, 𝑢𝑋−1 ⇒ 𝑢𝑋 )

9: update add (element 𝑒 , rightset 𝑟 )
10: pre hasRights() sufficient
11: let 𝑢 = unique() ⊲ unique() returns a unique value
12: 𝑆 := 𝑆 ∪ {(𝑒,𝑢, 𝑟 )}

13: update remove (element 𝑒)
14: pre contains(𝑒)
15: pre hasRights() sufficient
16: let 𝑅 = {(𝑒,𝑢, 𝑟 ) |∃𝑛 : (𝑒,𝑢, 𝑟 ) ∈ 𝑆}
17: 𝑆 := 𝑆 \ 𝑅
18: 𝑇 := 𝑇 ∪ 𝑅

19: query hasRights (role = admin) : boolean 𝑏
20: pre contains(𝑒 ′)
21: let 𝑟 ′ = get (𝑒 ′).𝑟
22: let 𝑏 = 𝑟 ′ ≥ role ⊲ by default, only admins can

modify the policy

23: compare (A, B) : boolean 𝑏
24: let 𝑏 = ((𝐴.𝑆 ∪𝐴.𝑇 ) ⊆ (𝐵.𝑆 ∪ 𝐵.𝑇 )) ∩ (𝐴.𝑇 ⊆ 𝐵.𝑇 )𝑆

25: merge (𝐵) :
26: 𝑆 := (𝑆 \ 𝐵.𝑇 ) ∪ (𝐵.𝑆 \𝑇 )
27: 𝑇 := 𝑇 ∪ 𝐵.𝑇

https://doi.org/10.5555/2387880.2387905
https://doi.org/10.18420/ecscw2017_p5
https://doi.org/10.18420/ecscw2017_p5
https://doi.org/10.5555/3358807.3358811
https://doi.org/10.5555/3358807.3358811
https://doi.org/10.1109/2.485845
https://doi.org/10.1007/978-3-319-46598-2_6
https://doi.org/10.1145/3447865.3457970
https://doi.org/10.1145/3447865.3457970
https://doi.org/10.1007/978-3-030-91014-3_1
https://doi.org/10.1007/978-3-319-19129-4_16
https://doi.org/10.4230/LIPIcs.OPODIS.2019.14


PaPoC ’22, April 5–8, 2022, RENNES, France Pierre-Antoine Rault, Claudia-Lavinia Ignat, and Olivier Perrin

Algorithm 2 CRDT for POSIX Access Control, extending
Algorithm 1
1: payload map 𝑆 , set 𝑇𝑠 ⊲ map of triples: element

identifier 𝑒 , unique tag 𝑢, rightset 𝑟
2: initial ∅,∅
3: payload map 𝐺 , set 𝑇𝑔 ⊲ map of groups, each listing

users’ element identifier
4: initial {𝑠𝑢𝑑𝑜𝑒𝑟𝑠},∅
5: payload epoch 𝜖

6: initial /

7: update addUser (element 𝑒 , rightset 𝑟 )
8: pre hasRights(𝑠𝑢𝑑𝑜𝑒𝑟𝑠) sufficient
9: let 𝑢 = unique() ⊲ unique() returns a unique value
10: 𝑆 := 𝑆 ∪ {(𝑒,𝑢, 𝑟 )}
11: update removeUser (element 𝑒)
12: pre contains(𝑒)
13: pre hasRights(𝑠𝑢𝑑𝑜𝑒𝑟𝑠) sufficient
14: let 𝑅 = {(𝑒,𝑢, 𝑟 ) |∃𝑛 : (𝑒,𝑢, 𝑟 ) ∈ 𝑆}
15: 𝑆 := 𝑆 \ 𝑅
16: 𝑇𝑠 := 𝑇𝑠 ∪ 𝑅

17: update addGroup (group 𝑔)
18: pre hasRights(𝑠𝑢𝑑𝑜𝑒𝑟𝑠) sufficient
19: let 𝑢 = unique()
20: 𝐺 [𝑔] := {𝑢}
21: update removeGroup (group 𝑔)

22: update addUserToGroup (element 𝑒 , group 𝑔)
23: pre hasRights(𝑠𝑢𝑑𝑜𝑒𝑟𝑠) sufficient
24: let 𝑢 = unique()
25: 𝐺 [𝑔] := 𝐺 [𝑔] ∪ {(𝑢, 𝑒)}

26: update changeFileOwner (file 𝑓 , element 𝑒)
27: update changeFileGroup (file 𝑓 , group 𝑔)
28: update changeFileOwnerPermission (file 𝑓 , int 𝑖)
29: update changeFileGroupPermission (file 𝑓 , int 𝑖)
30: update changeFileOtherPermission (file 𝑓 , int 𝑖)
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