
HAL Id: hal-03608579
https://hal.inria.fr/hal-03608579

Submitted on 14 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Phase Task-Based HPC Applications: Quickly
Learning how to Run Fast

Lucas Nesi, Lucas Mello Schnorr, Arnaud Legrand

To cite this version:
Lucas Nesi, Lucas Mello Schnorr, Arnaud Legrand. Multi-Phase Task-Based HPC Applications:
Quickly Learning how to Run Fast. IPDPS 2022 - 36th IEEE International Parallel & Distributed
Processing Symposium, May 2022, Lyon, France. pp.1-11. �hal-03608579�

https://hal.inria.fr/hal-03608579
https://hal.archives-ouvertes.fr

Multi-Phase Task-Based HPC Applications:

Quickly Learning how to Run Fast

Lucas Leandro Nesi

Institute of Informatics, PPGC/UFRGS

Porto Alegre, Brazil

Univ. Grenoble Alpes

Grenoble, France

lucas.nesi@inf.ufrgs.br

Lucas Mello Schnorr

Institute of Informatics

PPGC/UFRGS

Porto Alegre, Brazil

schnorr@inf.ufrgs.br

Arnaud Legrand

Univ. Grenoble Alpes, CNRS,

Inria, Grenoble INP, LIG

F-38000 Grenoble, France

arnaud.legrand@imag.fr

Abstract—Parallel applications performance strongly depends
on the number of resources. Although adding new nodes usually
reduces execution time, excessive amounts are often detrimental
as they incur substantial communication overhead, which is dif-
ficult to anticipate. Characteristics like network contention, data
distribution methods, synchronizations, and how communications
and computations overlap generally impact the performance.
Finding the correct number of resources can thus be particularly
tricky for multi-phase applications as each phase may have very
different needs, and the popularization of hybrid (CPU+GPU)
machines and heterogeneous partitions makes it even more
difficult. In this paper, we study and propose, in the context of a
task-based GeoStatistic application, strategies for the application
to actively learn and adapt to the best set of heterogeneous nodes
it has access to. We propose strategies that use the Gaussian
Process method with trends, bound mechanisms for reducing
the search space, and heterogeneous behavior modeling. We
compare these methods with traditional exploration strategies
in 16 different machines scenarios. In the end, the proposed
strategies are able to gain up to ≈51% compared to the standard
case of using all the nodes while having low overhead.

Index Terms—HPC, Heterogeneous, Task-Based, Distribution,
Load Balancing

I. INTRODUCTION

Resource heterogeneity is a reality in many HPC com-

putational resource providers. It is present intra-node, with

the combination of CPU and accelerators, and also at a

system level, where different computational nodes exist and

can be used together. The Swiss Piz Daint1, the French Jean

Zay2, and the Brazilian SDumont3 are some examples of

the Top500 list [1] supercomputers equipped with multiple

heterogeneous nodes, grouped into two or more partitions.

While supercomputers do have system-level heterogeneity, it

is even more present in the Cloud [2]. Efficiently exploiting

such heterogeneous sets of resources is unfortunately very

challenging for HPC applications.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, the
National Council for Scientific and Technological Development (CNPq), grant
no 141971/2020-7 to the first author, and the projects: FAPERGS (Data
Science – 19/711-6), CAPES/Cofecub (04/2017).

1https://www.top500.org/site/50422/
2https://www.top500.org/site/50403/
3https://www.top500.org/site/50576/

Traditionally, HPC applications are developed directly with

relatively low-level APIs like MPI and CUDA, which makes

it very hard to obtain good and portable performance. Indeed,

HPC applications often comprise several computational phases

that may have very different resource requirements. Using

the same rigid block-cyclic distributions across all application

phases often incur spurious communication overheads (e.g.,

when the number of nodes is a prime number) and often

complicate load balancing. It is thus common to use different

distributions [3], [4] and try to overlap the phases as much

as possible to improve the overall application performance,

but this remains very difficult without resorting to a higher-

level programming paradigm. This complexity has motivated

the adoption of the task-based programming paradigm in

which the application is structured as a Directed Acyclic

Graph (DAG) of tasks. A runtime then schedules the tasks

dynamically to computational resources based on performance

models and the system state. This separation of concerns

allows to easily implement flexible data distribution [5] and

generally leads to better performance.

Although the task-based paradigm largely mitigates commu-

nication overhead, unforeseen effects (e.g., network contention

or complex inter-node synchronizations) remain possible and

particularly hard to model, especially when trying to exploit

heterogeneous sets of nodes. In this context, finding an ade-

quate number of computational nodes to use for each phase

can be particularly challenging to anticipate. Thus, methods

that dynamically learn and adapt to such complex scenarios

and improve performance over time are desirable.

In this paper, we study and propose, in the context of a task-

based iterative multi-phase GeoStatistic application, strategies

for the application to actively learn and adapt to the best set of

heterogeneous nodes it has access to. We model the application

with a Gaussian-Process (GP), which provides us with a

surrogate to guide the exploration and optimization. During the

execution, the application can query the surrogate to determine

which action to take to adapt itself to the available computing

resources. Experimental results are gathered using real and

simulation environments with heterogeneous machines setups.

The main contributions of this paper are the following.

(i) We analyze this problem’s main characteristics (structure

and noise) and explain why generic optimization and learning

techniques are likely to fail. This analysis motivates the design

of specific variations of a reinforcement learning technique

based on Gaussian-Process. To quickly learn, we also take

particular care in the initialization (the exploration in the

first iterations) and propose a bound mechanism to discard

bad cases and reduce the search space. (ii) We conduct

a comprehensive performance evaluation with 16 different

heterogeneous machines and workloads that compare the

proposed solutions with other generic optimization methods

(Brent, Bandits, GP-UCB). Among these various methods, we

show that our carefully designed GP-based optimization is

the only robust and parsimonious method to quickly reach

the optimal configuration in a wide variety of scenarios. This

contribution includes an external interactive tool to illustrate

how off-the-shelf strategies behave for a particular setup and

iteration4. (iii) A real implementation of the method to enable

the application to adapt during execution, demonstrating the

low overhead of the methods.

The rest of the paper is structured as follows. Section II

describes the structure and complexity of the selected applica-

tion and the used runtime. Section III presents the challenges

of selecting the best number of heterogeneous nodes with

real data. Section IV presents standard exploration strategies

and the different strategies based on the GP-UCB mechanism

but tailored to the problem. Section V presents the experi-

mental methodology, including real experiments, simulations,

and the computation of the results. Section VI presents the

experimental evaluation of the proposed strategies, including

a detailed step-by-step analysis, an overview of the results

in all 16 different scenarios, and the strategy cost overhead

evaluation. Section VII presents related work in searching

for the best types of machines or resources to optimize an

application. Finally, Section VIII concludes this paper with

a discussion and further considerations of investigation. A

public companion5 contains the software modifications, data,

and instructions to reproduce our results.

II. EXAGEOSTAT: A MULTI-PHASE TASK-BASED APPLIC.

A Task-Based application is described as a directed acyclic

graph of tasks and their dependencies. They are constructed

in a declarative manner [6], with no assignment of where

and when the tasks or communications (dependencies) will

execute. A runtime schedules the tasks dynamically based

on the system state. Out of the many available runtimes,

this work uses StarPU [7] because it allows transparent data

redistribution by simply informing the new data locations. All

data blocks used by tasks need to be registered using the

StarPU API and defining a node that owns it.

StarPU can work using Sequential Task Flow (STF) [8],

where tasks are submitted sequentially, and a DAG is gener-

ated dynamically on execution time. A task will execute on the

node that owns the data blocks they write. StarPU can schedule

4Publicly available at: https://adaphetnodes.shinyapps.io/shiny/
5https://gitlab.com/lnesi/ipdps22

tasks using performance models that assume a similar duration

for a given task type input size. Also, outlier tasks (that may

present abnormal duration in relation to the task type mean)

are handled by the StarPU scheduler on each node. During

the submission of tasks, it is possible to inform the runtime

about data movement, causing the following submitted tasks

to change their execution node accordingly. These movements

can reflect new distributions, application-tailored, and can use

more or fewer nodes. The StarPU runtime will move all

the data to the right place asynchronously overlapping with

computation. Consequently, calling the communication library

or creating a synchronous point for such data movement is

unnecessary. Similarly, the task-based paradigm enables the

asynchronous execution of different application phases.

ExaGeoStat [9] is a StarPU-enabled application that allows

the prediction of missing observations. The goal is to model

spatial data (X,Z), where X are locations and Z observa-

tions. This process requires the iterative optimization of the

covariance kernel hyper-parameter θ by maximizing the log-

likelihood. At each main loop iteration, the application goes

through the following five phases: (i) Generation of the Σθ

covariance matrix (ii) Cholesky Factorization of Σθ using

the Chameleon library [10], (iii) Solve, (iv) Determinant, and

(v) Dot product. However, the two most significant phases are

Generation and Factorization. Figure 1 (Generated by StarVZ

[11], [12]) depicts three iterations of ExaGeoStat where the

x-axis is the time, and the y-axis has the aggregated resource

type utilization per node. The different colors correspond to

different phases: the yellow ones are the generation, while

the green ones are the tasks the factorization, a small number

of tasks in gray correspond to the other three phases. The

phases can use different distributions and can overlap as any

spurious synchronization is removed thanks to the task-based

programming and other optimizations [4].

Fig. 1. Three iterations of ExaGeoStat: the first using a small amount of
homogeneous nodes for both phases. The second increasing the number
of nodes (with CPU-only nodes) and using all for both generation and
factorization, the third restricting the factorization to the eight fast nodes.

ExaGeoStat’s iteration phases have very different computa-

tional requirements and resource affinities. While generation

only runs on CPUs, the Cholesky factorization can exploit

GPUs to accelerate the application. Moreover, the factorization

cost is stationary across iterations, as it is only based on

the matrix size, and the generation cost is mostly constant

between iterations when using adequate parameters. However,

the distribution of multiple phases for a given number of

resources is not trivial. A recent work [4] demonstrates that

resource heterogeneity can improve performance by using

nodes more suitable to each phase. This strategy is depicted

in Figure 1, where the generation phase ends earlier on the

second iteration, but excessive communication or critical-path

problems slow down factorization. However, iteration three,

using all nodes for generation and only the eight faster nodes

for the factorization, presents the best makespan. The work

also relies on a linear program (LP) to determine the ideal

number of tasks each node should receive, considering a

specific amount of nodes to use. This LP also serves as

a makespan lower bound and is used in this work. The

final distribution for each phase is based on heterogeneous

methods [13], [14]. For iterative multi-phase applications such

as ExaGeoStat, it is interesting to have nodes that will only

be used for some phases, like the generation, and not for the

other ones.

However, using a different number of nodes for inter-

leaving phases may cause unforeseen network contention

and heterogeneous distributions problems (see Section III

for further details). It is also unsatisfactory and costly to

manually discover how such a complex application would

behave for a certain number of nodes, hardware, and workload.

Consequently, it is desirable that this application adapts to any

HPC system without extensive analysis or complete executions

of all possible configurations. Automatic adaptation for these

setups is key to achieving portable performance. Therefore,

our goal is to design a method that learns the best set of

nodes to use for each application phase during runtime. The

method could exploit the application’s iterations to explore

different configurations and find the best number of nodes to

use per application phase, considering a regular iteration cost

on the same number of resources. Many applications have this

structure of stable iterations (stationary workload) but whose

total duration is difficult to anticipate in some setups, as some

phases scale well while others do not. For the usage of other

runtimes, a feature of moving data arbitrarily during execution

time based on the dynamic choice of the strategy is required.

III. VARYING HETEROGENEOUS NODES PER PHASE

Estimating the ideal number of nodes to use per phase is

a complex process [4], and not only because adding infinite

nodes is not the ideal situation. A perfect duration modeling

would require anticipating the stochastic behavior of the

scheduler, the network conditions, and the distribution’s issues.

It seems unfeasible to anticipate every possible condition.

Figure 2 provides three representative examples of the Exa-

GeoStat iteration duration (Y-axis) depending on the number

of factorization nodes it uses (X-axis). The application uses

all the nodes in the generation step for all scenarios as this

phase is embarrassingly parallel. In the figure, the nodes in

the X-axis are sorted by computational power, meaning that

we always use the fastest nodes in the set. The nodes are

organized in three categories, Large (L), Medium (M), and

Small (S), depending on the computing capability of each

category (Further described in Table II and Section VI-A),

as depicted by the vertical black lines showing when the

categories change. The dark blue line corresponds to the lower

bound provided by the LP. The yellow and green vertical

bars represent the duration of the asynchronous generation

and factorization phases. In all cases, the granularity of the

workloads is large enough to exploit parallelism in all nodes

and present a similar resource usage behavior as in Figure 1.

It is possible to observe that these are complex scenarios.

In all of these cases, using all nodes for all phases is sub-

optimal. The main behavior observed is that the addition of

new nodes usually forms convex-like shapes. In the beginning,

adding new nodes is beneficial by having more processing

power. However, there is a point where adding new nodes

is no longer useful, and there are some scenarios where the

network could get overwhelmed. In these setups with a limited

network, the performance starts to deteriorate. Furthermore,

there are scenarios with significant breaks, usually related

to the heterogeneity and the distribution shape. Sometimes,

adding a slow node (especially CPU-only ones), like in sce-

nario (p), creates a critical path that may degrade the overall

performance. The observation noise is generally the same for

all number of nodes, with few outliers. Some scenarios like

(i) have small breaks related to the distribution. Adding new

nodes may cause the reorganization of the partition structure,

creating more communications and synchronizations.

IV. EXPLORATION STRATEGIES

In the case of the studied application, ExaGeoStat, although

computation phases can partially overlap thanks to the fine-

grain dependencies expressed in StarPU, an iteration (the

evaluation of the likelihood of a given value of θ) cannot

start before the previous one is completely finished. At each

iteration, the application may thus select a different subset

of nodes and use the iteration duration as our minimization

target. Instead of exploring all possible nodes permutations,

it can choose n between 1 and N nodes to use and pick the

n fastest nodes since trading a slow node for a fast one is

always detrimental. Therefore, our search space consists of

the number of nodes per phase. Although this search space is

discrete, it is visible from Figure 2 that there is an underlying

continuous structure. This section presents common methods

to explore and optimize such search space.

A. Naive Heuristics

For comparison purposes, we implement two simple naive

heuristics. First, a simple divide and conquer dichotomy (DC)

to carry out a recursive binary search over the space. At each

step of the exploration, the search space is divided in two, and

(c) SD 10L−10S 128

6 8 10 12 14 16 18 20

0

20

40

Number of factorization nodes

T
im

e
 [

s
]

(i) G5K 6L−30S 101

2 6 10 14 18 22 26 30 34

0

10

20

Number of factorization nodes

(p) SD 64L−64S 128

10 23 36 49 62 75 88 101 114 127

0

10

20

30

Number of factorization nodes

Factorization Generation Real Measuraments LP Prediction

Fig. 2. Behavior using different heterogeneous nodes setups (Table II) by varying the number of factorization nodes.

the middle point of each division is measured. The method

selects the division that has a lower makespan as the new

search space. This simple heuristic will converge quickly and

pick the right point in simple low variance curves. Second, a

heuristic that assumes that the best candidate is to use all the

machines. The heuristic walks from the rightmost option to the

left, while the left point presents a lower measurement (Right-

left). The method works when the curve is also well-behaved

(without huge discontinuities), and the excessive number of

resources creates extra overhead on the rightmost options.

B. Classical continuous minimization approaches

Another subset of strategies is the ones for classical continu-

ous optimization. The simplest algorithms use gradient, which

is unavailable. Yet, the problem’s search space may have local

minima. Since there is only one dimension in our context, a

sensible choice is the Brent algorithm, which combines the

bisection method, the secant method, and inverse quadratic

interpolation. It is also available on R’s optim [15]. We

also tried multi-dimension algorithms like Nelder-Mead and

BFGS with no better results. We also investigated Stochastic

Approximation [16] and Simulated Annealing (SANN from

optim), but they achieved bad results because they are not

parsimonious, so we refrain from reporting them.

C. Multi-armed bandits

Multi-armed bandits are a Reinforcement Learning frame-

work that models K possible unrelated choices [17]. Each

choice has its distribution and variance. The goal is to maxi-

mize its total reward,
∑T

t=1 y(nt), where y(n) is the (stochas-

tic) reward of step t (in our case, the opposite of the duration of

an iteration when using nt nodes). The difference between the

cumulative reward from choosing the best action upfront is the

regret. To minimize regret, one should balance exploration (to

discover the best action) and exploitation (selecting the best

action to improve the overall reward). A no-regret strategy

(i.e., whose regret is O(log(T)), the optimal bound) consists

in using the Upper-Confidence-Bound (UCB) algorithm [18]

that selects the action which maximizes the mean empirical

reward plus an upper bound that increases over time:

xt+1 = argmax
x∈A

µt(x) + c
√

ln t/Nt(x) (1)

µt(x) is the mean reward measured so far for action x, c is

a adjustment constant, Nt(x) is the number of times action

x was selected. Best actions are often selected while less

promising actions are not taken frequently but have their

upper confidence bound component increased so that they are

eventually selected again after some time.

In our case, each action corresponds to a number of nodes.

However, the fact that a similar number of nodes lead to

similar performance is not exploited, making large setups have

large search spaces that will require a long time to explore. To

speed up the exploration, it is natural to consider a restricted

version (UCB-struct) that will only look at multiple complete

groups of homogeneous nodes. For example, in a setup with

five machines of group A, five of B, and five of C, the only

options are 5, 10, or 15 nodes. If the best action is outside

these choices, it will never reach the optimal configuration.

D. Gaussian Process

The Gaussian Process [19] or Kriging is a surrogate model

that assumes a form of smoothness over the data. It uses an

Multivariate Normal Distribution (MVN) to model possible

realizations over observations. The assumption is we’re trying

to optimize a function f , which is unknown, and which is

assumed to have been drawn at random from the set of smooth

functions, f ∼ GP . Furthermore, this is a noisy scenario

so f(x) cannot be directly observed, all we have is noisy

observations y(x) = f(x) + ǫ with ǫ ∼ N (0, σ2
N). Then,

based on a set of t observations Dt = {xi, yi} and given

the smoothness of the function which stems from the GP

assumption, it is possible to compute µt(x) = E[f(x)|Dt] and

σt(x) =
√

V ar[f(x)|Dt] with standard kriging R libraries.

After the generation of the surrogate model, it can be used

to select an action to take. This decision needs to consider

the predicted mean of the location, its confidence interval, and

the exploration and exploitation trade-off. A possible approach

with the same kind of no-regret properties as UCB is to use

GP-UCB [20] where the following equations (with β growing

logarithmic with iterations) will give the choice:

xt+1 = argmax
x∈A

µt(x) + β
1/2
t σt(x) (2)

Figure 3 illustrates such a process. The red line is the cos
function representing a true unknown function that GP wants

to model. The black points are real random measurements

taken in the function, which will be used as the GP’s input.

The black line is the predictive mean provided by the GP,

while the gray area inside the dashed black lines represents

the 95% confidence interval. The mean prediction is very

close to the real function in the neighborhood of measured

points. Coordinates that do not have measurements have more

uncertainty, but the true cos function indeed lies in the 95%

confidence region. The red cross is the next point to be

evaluated, as it represents the most promising point while

considering the current uncertainty.

−2

−1

0

1

2

0π 0.5π 1π 1.5π 2π 2.5π 3π 3.5π 4π

x

y

Fig. 3. An example of the GP fit with eight measurements over cos function.

The GP puts a probability distribution over smooth functions

through a covariance function (typically the exp function),

which is commonly parameterized as:

Σ(x, x′) = α exp

{

−||x− x′||

θ

}

(3)

It has parameters α, and θ that GP-UCB assumes are known.

In practice, they are often estimated from the data with an ML

approach (as in ExaGeoStat), but with little data, this can be a

problem as with bad luck, the algorithm may be overconfident.

Likewise, σN is generally estimated from the data.

In practice, when using GP and building surrogates, it is

common to initialize the process with a uniform quasi-random

design (e.g., LHS, maximin), where the xi are uniformly

spread over the space as it allows a reasonable estimation

of the hyper-parameters. However, this would be too costly

in our case, and we need a more parsimonious approach.

Therefore, the model selects the actions of the first iterations

following a simple procedure. The first iteration will always

choose the action with N nodes, which is the application’s

default behavior. Using all the available nodes would pro-

vide the best performance in ideal circumstances. Then, to

obtain as much information as possible, standard Bayesian

optimization approaches would select the left-most point, i.e.,

the configuration which uses the minimal number of nodes,

which may not be a good idea from an application makespan

perspective. Finally, it selects the middle of these two points

for the subsequent two iterations.

Any new measurement will bring some information about

f but also about α, θ, and σN . Measuring the same location

several times provides a lot of information about σN . In our

case, for example, σN is estimated as follows. We consider

S = {x ∈ D|n(x) > 1}, then σ2
N can be estimated

by (
∑

x∈S

∑

y(x)∈D(y(x)− ȳ(x))2)/(
∑

x∈S n(x)− 1). Con-

versely, measuring two points next to each other provides

mostly information about α and θ.

The version so far described is GP-UCB, and it is reason-

able when we do not know a priori the shape and the noise

is roughly the same regardless of x. However, the f function

may have discontinuities (see Figure 2(p)), and the functions

are not entirely random as they have a general shape, more or

less decreasing than increasing (see Figure 2).

The standard GP has no particular trend, which explains

why in Figure 3 it naturally reverts to 0. If we know something

about the shape of f , it should be put in the trend µ(x) =
∑

i γigi(x) where gi is a basis function and γi the coefficients.

But again, the more unknown parameters, the more complex

the model and the more measurements we will have to do to

reduce uncertainty and explore instead of exploit. In our case,

measuring two points far away from each other gives a lot of

information about γ if we have a linear model.

So we exploit the properties of our scenario. First, the results

indicate that the trend of the observations follows a pattern of

1/x+x. This follows the intuitive view that the makespan will

decrease every time a new node is added. However, adding

a new node may cause more communications, and therefore

there is an overhead associated with it. However, the 1/x
parameters are not very useful as this part is already well

estimated in the LP. So another approach is to use the LP as

a baseline and use the GP to model the overhead with respect

to the LP. In this sense, the trend will be linear x, as the

LP captures the 1/x behavior. Second, bound the exploration

with the LP results. Considering that the first iteration uses

all the machines, some configurations with very few resources

cannot provide better results when comparing a theoretical

lower bound (LP) to the actual first iteration makespan. In

G5K 6L-15S or SD 64L, the most left points are inevitably

higher than using all nodes as predicted by the linear program.

To find the most adequated left-point, the method uses the

linear programming bound and find the lower nl that satisfy

LP(nl) < f(N). The bound given by the linear program is

optimistic and does not consider communications nor critical

path. The approach excludes all the points where the linear

programming bound is higher than using all the nodes. This

will limit the search space and avoid bad actions.

Finally, the model so far is still imperfect because they are

too smooth. Indeed, some scenarios present a discontinuity

of the performance when a new group of machines is used.

Although the GP-UCB will eventually explore all x after a

very long time, a strong smoothness assumption may prevent

finding optimal configuration shortly. This situation is some-

times caused by abrupt changes in the partition distribution or

because of the critical path. The new nodes may be so less

powerful than the others that the few data blocks that they

receive may cause a synchronous critical path. Many other

tasks may have to wait for it, causing a global slowdown. In

the case of Cholesky, giving a block of coordinate (i, j) to a

node will cause a synchronous sequence of min(i, j) dgemm
tasks on that particular node. This can take some time if the

node does not have GPUs.

To model such discontinuities, we introduce dummy vari-

ables [21] to the trend model for each group of homoge-

neous machines. In this way, the trend will be given by

x +
∑

g∈G dg(x) where dg(x) will be 1 if the node x is

present on group g and 0 otherwise. The dummy variable

allows us to indicate where discontinuities may appear and

generally allow to pool, which is good to estimate parameters.

However, this model may get overconfident when the number

of measurements is low, given a bad estimate for θ. To

overcome this, we set θ to 1 and α to the sample variance.

Because this model adds new variables, it requires more initial

points for the first fit. Then, each group (after the leftmost

point) will have its last point measured once. If this point is

already measured, we choose to evaluate the next point. The

last group (using all the machines) is already measured and

skipped. This is GP-discontinuous. All of the GP versions

are implemented using the R package DiceKriging [22].

E. Summary of Strategies

All presented strategies will behave differently in this partic-

ular problem. Table I presents a list of all discussed algorithms

with expected behavior. Our expectations, considering the

technical aspects of the algorithms, are that DC, Right-left,

and Brent were not resilient to noise and so can be misled

by the measurements in this problem. UCB would require

a full exploration of the search space, which can be bad in

applications with few iterations, and because some configu-

rations are particularly bad. UCB-struct will only search a

fraction of the possibilities. In this way, if the best case is not

one of them, it will never discover it. GP-UCB does not use

the problem particularities and insights to improve its model,

which leads to the exploration of bad configurations and lower

confidence when finding discontinuities. GP-discontinuous is

our proposed version that uses knowledge of the problem to

solve some of the earlier issues discussed.

TABLE I
SUMMARY OF EXPLORATION STRATEGIES AND EXPECTED BEHAVIOR

Algorithm Resilient to noise Optimal Fast

DC ×
Right-left ×
Brent ×
UCB × ×
UCB-struct × (limited exploration) ×
GP-UCB × ×
GP-discontinuous × × ×

V. METHODOLOGY

Two performance evaluation methods have been used in

this work. First, we use real executions in real environments,

running ExaGeoStat to solve the used workload entirely and

forcing the exploration of all possible number of nodes sets for

the factorization phase. These measures enable the estimation

of the true variability of the application and the system.

Second, we rely on simulations of ExaGeoStat with StarPU-

SimGrid, whose accuracy has been shown in [5], [23] but

which we also consistently checked.

Using simulation allows us to quickly and accurately es-

timate the response of ExaGeoStat even for platforms that

are not directly available or would be very time and re-

source consuming. However, with the default StarPU-Simgrid

configuration, the time for a given iteration and number of

nodes is deterministic. Therefore, the simulation evaluation of

each configuration is augmented 30 times, assuming a normal

distribution with a standard deviation of 0.5s (computed from

the real experiments). Real experiments and simulations are

marked in the title of each configuration in Figure 5.

The evaluation of the exploration strategies proposed in

Section IV also has been conducted using two complementary

techniques. First, to obtain a fast and fair comparison, we used

all the iteration durations obtained through real experiments

or simulation and resampled them in R every time an action

was chosen. This way, all exploration strategies are compared

with the exact same iteration durations (see the Shiny app4),

and their comparison can be made reliable from a statistical

point of view. Finally, we also implemented the GP strategies

directly in ExaGeoStat, which lets it control the number of

nodes it uses. All the possible distributions were precomputed

and are accessed when an action is chosen. With this second

approach, it is possible to measure the computational cost

overhead of the methods, as discussed in Section VI-E.

VI. EXPERIMENTAL EVALUATION

A. Hardware and Software Description

The computational nodes used in the experiments are from

Grid5000 (G5K) and the Santos Dumont supercomputer (SD),

as shown in Table II with CPUs and GPUs. In Grid5000, the

Chetemi and Chifflet network is a 10Gb/s Ethernet, while the

Chifflot interconnection is a 25Gb/s Ethernet. A 2x100Gb/s

Ethernet network connects both partitions. In Santos Dumont,

an Infiniband FDR 56Gb/s network interconnects all the nodes.

TABLE II
COMPUTATIONAL NODES USED IN THE PERFORMANCE EVALUATION

Site Machine CPU GPU

S G5K Chetemi 2x Xeon E5-2630 v4 –
M G5K Chifflet 2x Xeon E5-2680 v4 2x GTX 1080
L G5K Chifflot 2x Xeon Gold 6126 2x Tesla P100

S SD B715 2 x Xeon E5-2695v2 –

M SD B715-GPU6 2 x Xeon E5-2695v2 1xK40
L SD B715-GPU 2 x Xeon E5-2695v2 2xK40

The experiments use ExaGeoStat on commit 9518886 of

its public repository, with other software dependencies present

as submodules of the same commit. The StarPU version is the

master branch commit 015357bd with the NewMadeleine

library [24] commit d6542d72 and backend. ExaGeoStat and

Chameleon have modifications to accept custom distributions,

asynchronous behavior, and the GP method7. The experiments

use the 96100 (101×101 blocks) and the 122880 (128×128

blocks) matrices from the ExaGeoStat samples.

6Artificial machine to increase heterogeneity by only using one GPU.
7Available in the paper’s companion: https://gitlab.com/lnesi/ipdps22

1 2 1

Number of times each configuration was selected:

0

10

20

30

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of factorization nodes

T
im

e
 [
s
]

Iteration 5

(A) GP−UCB − G5K 2L−6M−6S 101

1 1 1 2 1 1

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of factorization nodes

Iteration 8

1 1 1 1 2 8 2 1 1 1

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of factorization nodes

Iteration 20

2 1 1 9 6
75

2 1 1 1

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of factorization nodes

Iteration 100

1 1 1 2 1 10

10

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

T
im

e
 [
s
]

Iteration 8

(B) GP−UCB − G5K 6L−30S 101

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

Iteration 20

1 1 1 2
53

3 1 1 3 4 2 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

Iteration 100

1 3 2 10

10

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

T
im

e
 [
s
]

Iteration 8

(C) GP−discontinuous − G5K 6L−30S 101

1 1 6 1 1 1 1 1 1 1 1 2 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

Iteration 20

1 1
83

2 1 1 1 1 1 1 1 1 2 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of factorization nodes

Iteration 100

Legend Real Behavior Next Action Measurements Predictive Mean + UCB LP Prediction LP ErrorLegend Real Behavior Next Action Measurements Predictive Mean + UCB LP Prediction LP Error

Fig. 4. Step-by-Step of (A) GP-UCB in G5K 2L-6M-6S 101, (B) GP-UCB in G5K 6L-30S 101, and (C) GP-discontinuous in G5K 6L-30S 101. The
numbers indicated in the bottom of each graph indicates the number of times a given configuration has been selected so far.

B. Depicting the GP exploration/exploitation step-by-step

Figure 4 (A) illustrates the step-by-step process of the GP-

UCB on the G5K 2L-6M-6S 101 scenario. The graphs show

different iterations and the corresponding GP estimation. For

each iteration, the solid red line with error bars shows the real

data for each action with a 99% confidence interval. The blue

lines show the LP estimation. The black line is the GP mean

prediction, and the black dashed lines are the UCB component.

The large red cross is the next action to take based on the

current situation. The bottom of each graph shows the number

of measurements taken with that number of nodes.

At Iteration 5 in Figure 4 (A), because of the experimental

design’s first points, there are two areas without measurements

with a lot of uncertainty in the surrogate model. This area is

further reduced, as shown in Iteration 8 when middle points

were evaluated. At Iteration 20, there is already a convergence

on finding the best points (action six or seven, which are

very similar). This behavior is maintained until Iteration 100.

However, it is interesting to note that GP-UCB keeps exploring

as actions 5 and 6 continue to be evaluated sometimes but that

some actions (10, 12, 13) are not even tried as they would

clearly provide bad performance. In this simple scenario, the

GP-UCB is enough to find the best configuration without

assessing all the possible search space.

However, the GP-UCB does not behave so well in the

scenario G5K 6L-30S 101 as shown in Figure 4 (B). There

is a lot of uncertainty on Iterations 8 and 20 because the

measurements scale is large, and the curve has some disconti-

nuities that mislead the smooth GP and overestimate the scale

parameters α and θ. Although it does find the best option by

Iteration 100, it has explored all the points. Applying the most

elaborate version, GP-discontinuous, solves these problems as

shown in Figure 4 (C). One addition to the plot is the purple

line which represents the difference between the real data and

the LP. At Iteration 8, it is possible to check how this GP

version models the discontinuities with the dummy variables.

The model presents two distinctive curves, one until action six,

and another after it, which is a very flat line on this iteration.

On Iteration 20, the local minima zone from actions 10− 14
is already evaluated, improving the model accuracy. At this

iteration, the surrogate model includes all the real values on its

UCB component. On Iteration 100, it does find the best action

(a) G5K 2L−4M−4S 101 (Real)

2 3 4 5 6 7 8 9 10

0

10

20

30

Number of factorization nodes

T
im

e
 [

s
]

(b) G5K 2L−6M−6S 101 (Real)

2 4 6 8 10 12 14

0

10

20

30

Number of factorization nodes

(c) SD 10L−10S 128 (Real)

6 8 10 12 14 16 18 20

0

20

40

Number of factorization nodes

(d) SD 3L−8M−10S 101 (Simul)

2 5 8 11 14 17 20

0

20

40

60

Number of factorization nodes

(e) G5K 2L−6M−15S 101 (Simul)

2 5 8 11 14 17 20 23

0

10

20

30

Number of factorization nodes

T
im

e
 [

s
]

(f) G5K 2L−6M−15S 128 (Simul)

2 5 8 11 14 17 20 23

0

20

40

60

Number of factorization nodes

(g) G5K 5L−6M−15S 101 (Real)

3 6 9 12 15 18 21 24

0

10

20

Number of factorization nodes

(h) SD 10L−10M−10S 128 (Real)

5 8 11 14 17 20 23 26 29

0

20

40

60

Number of factorization nodes

(i) G5K 6L−30S 101 (Simul)

2 6 10 14 18 22 26 30 34

0

10

20

Number of factorization nodes

T
im

e
 [

s
]

(j) G5K 2L−6M−30S 101 (Simul)

2 6 10 14 18 22 26 30 34 38

0

10

20

30

Number of factorization nodes

(k) SD 10L−40S 101 (Simul)

2 7 12 17 22 27 32 37 42 47

0

20

40

60

Number of factorization nodes

(l) SD 3L−8M−50S 128 (Simul)

2 9 16 23 30 37 44 51 58

0

50

100

150

200

Number of factorization nodes

(m) SD 64L 128 (Real)

10 17 24 31 38 45 52 59

0

10

20

30

Number of factorization nodes

T
im

e
 [

s
]

(n) SD 15L−60S 101 (Simul)

2 10 18 26 34 42 50 58 66 74

0

20

40

60

Number of factorization nodes

(o) SD 15L−60S 128 (Simul)

2 10 18 26 34 42 50 58 66 74

0

50

100

150

Number of factorization nodes

(p) SD 64L−64S 128 (Simul)

10 23 36 49 62 75 88 101 114 127

0

10

20

30

Number of factorization nodes

Real Measuraments LP Prediction Nodes Factorization=Generation

Fig. 5. Behavior using different heterogeneous nodes setups (Table II) by varying the number of factorization nodes.

without needing to measure all the points, skipping most of

the right zone after action 20.

C. Behavior on different setups

The behavior of the problem can be further studied in setups

formulated by varying the machines of Table II. Figure 5

presents the behavior (performance when adding nodes) of

16 setups in a similar way of Figure 2. One difference is the

addition of a yellow line that shows the rigid situation where

the same number of nodes is used for both the generation and

the factorization steps. These setups present all the shapes

we found even in situations not reported. Some scenarios

present a very smooth behavior, like cases (a), (b), (e), (f),

(m). Most of them are scenarios on G5K that have a limited

network compared to SD. Another behavior is the presence of

discontinuities when a new group of machines is introduced,

like cases (d), (g), (h), (k), (l), (n), (o), (p). In these cases,

adding a very slow node (CPU-only) caused problems on the

critical path. Finally, some situations had small breaks related

to the heterogeneous partition of that specific number of nodes

(and occurring inside groups of the same types of machines),

like cases (c), (e), (f), (g), (i), (j), (p).

D. Results Overview: GP and existing Exploration Strategies

Figure 6 depicts a performance evaluation overview of all

studied exploration strategies with all scenarios. Each colored

line is a group of strategies where the points are the makespan

mean of 30 executions after 127 iterations. The top dashed

horizontal line describes the performance when using all

nodes, and the bottom one is the best option when knowing the

best configuration upfront. The percentage for each strategy is

the acceleration with respect to using all the machines. In what

follows, we discuss the scenarios referencing Figures 5 and 6.

The UCB and Right-Left perform poorly in more than half

of the scenarios. UCB requires a full exploration that degrades

the overall performance. Typically bad configurations for this

strategy have a large number of nodes or should use most

nodes. In scenario (o), it is worse than using all the nodes

(UCB point is above the top dashed line) because of inevitable

bad points exploration. Moreover, Right-Left fails because it

does not explore enough and may get stuck in local minima.

For example, in Figure 5 (p), using all 128 factorization

nodes is better than using 127, so it never explores the best

action, which is 64. In (a), variability plays a role, and some

Right-Left executions presented better results than others. The

algorithm often stops too soon by bad luck because it is not

resilient to variability.

15.3%
15.6%

15.6%
15.5%

5.4%
14.3%

13.3%

27.1%
28.4%

28.2%
27.1%

4%
25.3%

21%

27.4%
28.8%

30.7%
25.5%

0.3%
22.7%

31.8%

3.5%
3.8%

6.1%
−0.5%

1.5%
−12.1%

0%

14%
13.9%

14.1%
14.1%

6%
12.8%

12.8%

15.3%
16.6%

15.1%
15%

0.8%
14.4%

14.6%

25.4%
24.9%

25.4%
23.8%

−0.1%
19.7%

17.5%

4.1%
9.5%

30%
8.8%

−0.4%
8%

31.6%

15.7%
16.7%

16.6%
15.7%

3%
15.5%

17.3%

25.6%
22.8%

25.4%
22.9%

0%
21.5%

25.8%

−3.4%
−1.8%

16.2%
4.8%

−0.4%
2.5%

17%

−1.9%
−1.4%

15.2%
−6.3%

−0.3%
−6.9%

16%

19.2%
18.5%

19.2%
14.8%

0.1%
14.2%

18.9%

17.5%
17.2%

17.6%
13.8%

−0.3%
13%

17.8%

−4%
−1.9%

−0.8%
−17.8%

−0.3%
−18.7%

−1.5%

50%
50.6%

51.2%
39.1%

0.5%
17.4%

53.4%

(m) SD 64L 128 (Real) (n) SD 15L−60S 101 (Simul) (o) SD 15L−60S 128 (Simul) (p) SD 64L−64S 128 (Simul)

(i) G5K 6L−30S 101 (Simul) (j) G5K 2L−6M−30S 101 (Simul) (k) SD 10L−40S 101 (Simul) (l) SD 3L−8M−50S 128 (Simul)

(e) G5K 2L−6M−15S 101 (Simul) (f) G5K 2L−6M−15S 128 (Simul) (g) G5K 5L−6M−15S 101 (Real) (h) SD 10L−10M−10S 128 (Real)

(a) G5K 2L−4M−4S 101 (Real) (b) G5K 2L−6M−6S 101 (Real) (c) SD 10L−10S 128 (Real) (d) SD 3L−8M−10S 101 (Simul)

DC

Right−Left
Brent

UCB

UCB−stru
c

GP−UCB

GP−discontin DC

Right−Left
Brent

UCB

UCB−stru
c

GP−UCB

GP−discontin DC

Right−Left
Brent

UCB

UCB−stru
c

GP−UCB

GP−discontin DC

Right−Left
Brent

UCB

UCB−stru
c

GP−UCB

GP−discontin

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

4000

5000

0

500

1000

1500

2000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

0

500

1000

1500

2000

2500

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

0

500

1000

1500

2000

0

1000

2000

3000

0

1000

2000

3000

0

500

1000

1500

2000

0

500

1000

1500

T
im

e
 [

s
]

Heuristics Classical opt Multi−armed GP

Different scenarios (30 repetitions)

Fig. 6. Comparison of different methods in 16 scenarios. The Y-axis is the meantime of 30 executions after 127 iterations. The X-axis is the strategies, and
each color is a different group of strategies. The number above the X-axis inside the plot is the percentage of gain compared with the standard approach of
using all nodes (The top dashed line).

The simple divide and conquer (DC) algorithm does per-

form very well sometimes, finding the best option. Indeed,

using this simple heuristic in most of the Figure 5 curves will

work correctly. However, the variability of the measurements

may trick the decisions, and in some scenarios like that of

Figure 6 (n), it may perform very well or very badly depending

on the observations. In these scenarios, making a wrong

decision in any division moment may be enough to never find

the best number of nodes. As shown in Figure 5 (n), the best

point is in the left, but the method will never explore it if the

right side is chosen in the first division.

The Brent strategy also does perform very well in a lot

of scenarios, but in ones with discontinuity like Figure 5 (k),

(n), and (o), it may not explore enough and get tricked into

a local minimum. In such scenarios, because of the scale of

the x-axis, it may only try points after the addition of one

group of homogeneous machines. The Figure 5 (n) does have

a large plateau corresponding to the 60 nodes of that group.

Also, it is subject to the variability of the measurements, like

in Figure 6 (e), (i), and (l). In these scenarios, it is possible

to check that not all executions found the best number of

nodes (the confidence interval is larger), resulting in a larger

makespan in some executions.

The GP-UCB approach works well in more or less half

of the scenarios. It does not always find the best option or

requires a full exploration of the search space, as discussed

in Section VI-B. It presents good acceleration in Figure 6 (a),

(b), (c), (e), (f) and (j), which do not present discontinuities

and have a small search space. However, scenarios like (k), (l),

(m), (n), and (o) indicate that the GP requires extra modeling

to handle more complex situations.

However, the GP-discontinuous performs very well in all

scenarios. The introduction of trend, search space limits, and

dummy variables allows quickly and dynamically reaching the

optimal configuration with a very limited overhead compared

to the lower bound obtained with a static clairvoyant choice.

An example is Figure 4 (C), that presents the state of the

GP-discontinuous strategy in (i). After the 20 iterations, the

method already identified the optimal number of nodes, and

that the surrogate model has a very good estimate of the

response of the whole system as it comprises most of the

(true) red line without having ever explored large regions of

the space.

UCB-struct also performs very well in almost all scenarios.

It has a minimal number of possible actions to check, and its

algorithm is resilient to variability. Also, usually selecting few

multiple groups of homogeneous machines is, or close to, the

best option to take. However, there are scenarios where the

best action to take is far from those points, and because this

strategy would never explore or know these points, it cannot

find them. Examples are Figure 6 (a), (e), and (j). In these

scenarios, the optimal choice (Figure 5) does not correspond

to any of the vertical lines that mark the groups’ transitions.

In short, the GP-discontinuous present good results in all

scenarios, up to 51.2% speedup as shown in Figure 6 (p). In

scenarios where using all the nodes is the best option (e.g., (l)),

the final performance compared to using all notes is superior

to -1%, meaning that the exploration overhead is low. All these

results corroborate with the Table I expectations.

E. GP Computation Overhead Evaluation

The performance gains of using an exploration strategy

should be smaller than the overhead of its computation. Fig-

ure 7 shows the overhead of the GP-discontinuous strategy on

the scenario (b) G5K 2L-6M-6S, with ten repetitions of a real

experiment running the GP online. Each black point represents

the average overhead for that iteration. The overhead per

iteration is almost constant in this model. The first iteration is

longer than the others, and the successive four iterations are

less expensive, as they do not perform the GP’s computations.

In the sixth and subsequent iterations, the DiceKriging package

is called, resulting in a constant duration. The final overhead

per iteration is negligible (0.04s – 0.06s) compared to the

typical iteration total duration (10s – 30s). The cost is thus not

of great concern compared to the risk of missing a learning

opportunity.

Fig. 7. Overhead of GP in function of iterations.

VII. RELATED WORK

Some works study the problem of optimizing the best num-

ber of nodes for an HPC application and also describe related

issues similar to the ones in Section III that corroborates to

the problem. Applications such as Deep Neural Networks may

present many challenges when strong scaling it on homo-

geneous nodes [25]. The issues range from communication

overhead to the number of parallel operations. The number of

nodes choice can also play an essential role in the performance

and energy considerations. In some applications, it is possible

to use more homogeneous nodes with slower frequencies and

different voltages and improve performance while reducing

energy consumption [26].

A study for HPC checkpoint fault-tolerant environments

[27] also shows convex-like curves for makespan as a function

of the number of homogeneous processes. They use Newton’s

Method to find the best number of processes to use. In another

work [28], the authors used the GP to search for the best ho-

mogeneous cloud instance for a given application considering

performance and cost. They restrict to very specific (powers of

2 from 1 to 32) subsets of homogeneous nodes. In all of these

works, the focus was on using homogeneous resources, while

this paper focuses on using heterogeneous resources together

and considering iterative multi-phase applications such as

ExaGeoStat.

VIII. DISCUSSION AND CONCLUSION

This paper proposes and analyzes different exploration

methods to find the best collection of heterogeneous nodes

for an HPC application phase. The ExaGeoStat application

we consider, with partial phases overlapping and multiple

specialized distributions, had already been very optimized for

heterogeneous resources [4]. However, determining the ideal

number of nodes per phase was an open and challenging

problem. Indeed, the network and the distribution of data over

heterogeneous nodes may cause unpredictable and unexpected

behavior during the execution of the application on a particular

number of nodes. The application should thus explore various

configurations and adapt online to discover the optimal subset

of nodes for a given scenario.

Our results show that an informed Gaussian-Process-based

reinforcement learning strategy can quickly find the best

configuration of the main phase (factorization). The superior

approach, GP-discontinuous, uses bounding mechanisms to

filter the search space, model the difference of the makespan

to a lower bound (and already have some knowledge of the

scenario), and use dummy variables and a linear trend to

model discontinuities caused by the distributions. This method

provided the consistent best results on all 16 studied scenarios.

Another (simpler) method that performs particularly well is

UCB-struct which only considers specific points. However,

this method will not always find the best configuration, as it

is constrained not to search all the space but only the multiple

complete homogeneous groups. In the end, using all the nodes

for the generation phase and only a learned subset for the

factorization provided up to 51.2% speedup compared to using

all the nodes for both phases.

For most scenarios, using all the machines for the first

(generation) phase is the best option. However, one of the

investigated scenarios shows that using too many nodes for the

generation can also result in a slowdown. Figure 8 presents the

iteration duration (as a colored gradient) when varying both the

number of generation nodes and the number of factorization

nodes for (f) G5K 2L-6M-15S 128. In this scenario, using 10

generation nodes and 8 factorization nodes is better than using

all 23 generation nodes (23/9) by 1.1 seconds (≈3% less). In

this type of situation, the problem should then be explored

in both dimensions. Although the GP exploration should

gracefully extend to more dimensions, we believe the gain

will be limited in practice.

Future work includes the modeling of the 2D space con-

sidering both phases, as there are some scenarios that using

all the nodes for the generation also degrades performance

Fig. 8. Iteration makespan with different number of generation and factor-
ization nodes.

(as shown in Figure 8). In this situation, the number of

possible actions increases. Moreover, further investigation is

required to propose or adapt the GP strategies to non-stationary

scenarios. Also, dynamically adapting methods can play a role

in other applications’ parameters. For example, ExaGeoStat

can run the factorization with mixed precision blocks. The

application could dynamically adjust the number of diagonals

that use each precision in a trade-off between accuracy and

performance. Finally, we intend to evaluate other iterative

multi-phase applications.

ACKNOWLEDGEMENTS

Some experiments were carried out using Grid’5000, sup-

ported by a scientific interest group hosted by Inria and

including CNRS, RENATER and several Universities as well

as other organizations (https://www.grid5000.fr). The authors

acknowledge the National Laboratory for Scientific Comput-

ing (LNCC/MCTI, Brazil) for providing HPC resources of

the SDumont supercomputer, which have contributed to the

research results reported in this paper (http://sdumont.lncc.br).

REFERENCES

[1] J. J. Dongarra, H. W. Meuer, E. Strohmaier et al., “Top500 supercom-
puter sites,” Supercomputer, vol. 13, pp. 89–111, 1997.

[2] E. Roloff, M. Diener, L. Gaspary, and P. Navaux, “Exploring Instance
Heterogeneity in Public Cloud Providers for HPC Applications,” in
Proceedings of the 9th International Conference on Cloud Computing

and Services Science - CLOSER. SciTePress, 2019, pp. 210–222.
[3] J. Herrmann et al., “Assessing the cost of redistribution followed by

a computational kernel: Complexity and performance results,” Parallel

Computing, vol. 52, 2016.
[4] L. L. Nesi, A. Legrand, and L. M. Schnorr, “Exploiting system level

heterogeneity to improve the performance of a geostatistics multi-phase
task-based application,” in 50th International Conference on Parallel

Processing, ser. ICPP. New York, NY, USA: ACM, 2021.
[5] L. L. Nesi, L. M. Schnorr, and A. Legrand, “Communication-aware load

balancing of the LU factorization over heterogeneous clusters,” in 26th

IEEE International Conference on Parallel and Distributed Systems,

ICPADS 2020. Hong Kong: IEEE, 2020, pp. 54–63.
[6] J. J. Dongarra et al., “With extreme computing, the rules have changed,”

Computing in Science & Engineering, vol. 19, no. 3, p. 52, 2017.

[7] C. Augonnet et al., “StarPU: A unified platform for task scheduling on
heterogeneous multicore architectures,” Concurrency and Computation:

Practice Experience, SI: EuroPar’09, vol. 23, pp. 187–198, 2011.

[8] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Implementing
multifrontal sparse solvers for multicore architectures with sequential
task flow runtime systems,” ACM Tr. Math. Softw., vol. 43, no. 2, 2016.

[9] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes,
“Exageostat: A high performance unified software for geostatistics on
manycore systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 12, pp. 2771–2784, 2018.

[10] E. Agullo et al., “Faster, cheaper, better – a hybridization methodology
to develop linear algebra software for GPUs,” in GPU Computing Gems,
W. mei W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2.

[11] V. Garcia Pinto et al., “A visual performance analysis framework for
task-based parallel applications running on hybrid clusters,” Concur-

rency and Computation: Practice and Experience, vol. 30, no. 18, p.
e4472, 2018.

[12] L. L. Nesi, S. Thibault, L. Stanisic, and L. M. Schnorr, “Visual
performance analysis of memory behavior in a task-based runtime on
hybrid platforms,” in 2019 19th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019, pp.
142–151.

[13] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix multipli-
cation on heterogeneous platforms,” IEEE Trans. Parallel Distributed

Systems, vol. 12, no. 10, pp. 1033–1051, 2001.

[14] O. Beaumont, A. Legrand, F. Rastello, and Y. Robert, “Static LU decom-
position on heterogeneous platforms,” Int. Journal of High Performance

Computing Applications, vol. 15, pp. 310–323, 2001.

[15] R Core Team, R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria,
2021. [Online]. Available: https://www.R-project.org/

[16] H.-F. Chen, Stochastic approximation and its applications. Springer
Science & Business Media, 2006, vol. 64.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[18] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235–256,
2002.

[19] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design, and

Optimization for the Applied Sciences, ser. Chapman & Hall/CRC Texts
in Statistical Science. United States: CRC Press, 2020.

[20] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proceedings of the 27th International Conference on International

Conference on Machine Learning, ser. ICML’10. Madison, WI, USA:
Omnipress, 2010, p. 1015–1022.

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to

statistical learning. Springer, 2013, vol. 112.

[22] O. Roustant, D. Ginsbourger, and Y. Deville, “DiceKriging, DiceOptim:
Two R packages for the analysis of computer experiments by kriging-
based metamodeling and optimization,” Journal of Statistical Software,
vol. 51, no. 1, pp. 1–55, 2012.

[23] L. Stanisic et al., “Faithful performance prediction of a dynamic task-
based runtime system for heterogeneous multi-core architectures,” Conc.

Comp.: Pract. Exp., vol. 27, no. 16, pp. 4075–4090, 2015.

[24] A. Denis, “Scalability of the NewMadeleine Communication Library for
Large Numbers of MPI Point-to-Point Requests,” in 19th Int. Symp. in

Cluster, Cloud, and Grid Comp. IEEE, 2019, pp. 371–380.

[25] J. Keuper and F.-J. Preundt, “Distributed training of deep neural net-
works: Theoretical and practical limits of parallel scalability,” in 2nd

WS on Machine Learning in HPC Environments, 2016, pp. 19–26.

[26] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, “Analyzing the energy-time trade-
off in high-performance computing applications,” IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no. 6, pp. 835–848, 2007.

[27] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC Fault-Tolerant
Environment: An Analytical Approach,” in 2010 39th International

Conference on Parallel Processing, 2010, pp. 525–534.

[28] V. Rosario, T. Camacho, O. Napoli, and E. Borin, “Fast and low-cost
search for efficient cloud configurations for hpc workloads,” in Anais

do XXII Simpósio em Sistemas Computacionais de Alto Desempenho.
Porto Alegre, RS, Brasil: SBC, 2021, pp. 144–155.

