
HAL Id: hal-03609893
https://hal.inria.fr/hal-03609893

Submitted on 16 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

RTGEN : A Relative Temporal Graph GENerator
Maria Massri, Zoltan Miklos, Philippe Raipin, Pierre Meye

To cite this version:
Maria Massri, Zoltan Miklos, Philippe Raipin, Pierre Meye. RTGEN : A Relative Temporal Graph
GENerator. DATAPLAT workshop at the EDBT/ICDT 2022 Joint Conference, Mar 2022, Edinburgh,
United Kingdom. �hal-03609893�

https://hal.inria.fr/hal-03609893
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RTGEN : A Relative Temporal Graph GENerator
Maria Massri1, Zoltan Miklos2, Philippe Raipin1 and Pierre Meye1

1Orange Labs, Cesson-Sévigné, France
2University of Rennes CNRS IRISA, Rennes, France

Abstract
Graph management systems are emerging as an efficient solution to store and query graph-oriented data. To assess the
performance and compare such systems, practitioners often design benchmarks in which they use large scale graphs. However,
such graphs either do not fit the scale requirements or are not publicly available. This has been the incentive of a number of
graph generators which produce synthetic graphs whose characteristics mimic those of real-world graphs (degree distribution,
community structure, diameter, etc.). Applications, however, require to deal with temporal graphs whose topology is in
constant change. Although generating static graphs has been extensively studied in the literature, generating temporal
graphs has received much less attention. In this work, we propose RTGEN a relative temporal graph generator that allows the
generation of temporal graphs by controlling the evolution of the degree distribution. In particular, we propose to generate
new graphs with a desired degree distribution out of existing ones while minimizing the efforts to transform our source graph
to target. Our proposed relative graph generation method relies on optimal transport methods. We extend our method to also
deal with the community structure of the generated graphs that is prevalent in a number of applications. Our generation
model extends the concepts proposed in the Chung-Lu model with a temporal and community-aware support. We validate
our generation procedure through experiments that prove the reliability of the generated graphs with the ground-truth
parameters.

Keywords
Temporal graphs, Graph generation, Optimal transport

1. Introduction
Graphs are the most natural model to describe real world
interactions and are currently used in a myriad of appli-
cation domains such as citation [1], transportation [?],
and sensor networks [2] to cite just a few. These graphs
are managed by a graph management system whose per-
formance is usually evaluated through graph-centered
benchmarks that address different performance metrics
such as ingestion throughput, space usage and query
execution time. In this context, practitioners refer to real-
world and synthetic graphs to use in the benchmarks.
Indeed, available graph generation techniques fill the
gap between real and synthetically generated graphs by
trying to mimic the characteristics of real graphs such as
controlling the degree distribution [3, 4, 5, 6, 7, 8]. Besides,
a number of existing graph generators are community-
aware in the sense that they group vertices that are more
densely connected between each other than they are
with the rest of the graph, in separate or overlapping
sub-graphs called communities [9, 10, 11].

Real graphs, however, are dynamic [12] such that their
topology is subject to continuous changes. In this context,
a new emphasis is being placed to support time as a first

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
" maria.massri@orange.com (M. Massri); zoltan.miklos@irisa.fr
(Z. Miklos); philippe.raipin@orange.com (P. Raipin);
pierre.meye@orange.com (P. Meye)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

class citizen in graph management systems [13, 14, 15,
16]. Most of these systems rely on real-world temporal
graphs to evaluate their proposed methods. Real-world
graphs, however, do not often fit the scale requirements.
Therefore, practitioners must rely on a temporal graph
generator that is able to produce large scale graphs whose
evolution correlates with that of real world temporal
graphs. To tackle this challenge, we proposed RTGEN:
a relative temporal graph generator that produces large
scale temporal graphs by controlling a number of key
features that characterises the evolution of real-world
graphs. That is, our generation procedure, controls the
evolution of the degree distribution by extending a very
common generation technique [17] referred to as the
Chung-Lu model with temporal and community-aware
support.

We model a temporal graph by a sequence of snapshots
𝑆 = {𝐺0, . . . , 𝐺𝑁} where 𝐺𝑖 is the graph snapshot at
timestamp 𝑡𝑖 and characterized by a degree distribution
that is generated from sampling user-defined temporal
parameters. Having this, our relative graph generation
procedure consists of transforming 𝐺𝑖−1 into 𝐺𝑖 by ap-
plying a stream of atomic graph operations with respect
to the desired degree distribution at time instants 𝑡𝑖−1

and 𝑡𝑖. Based on the fact that a strong correlation exists
between successive snapshots [18, 19, 20], we propose
to minimize the number of graph operations that have
to be applied in order to transform a graph snapshot
into its successor. The main idea consists of minimizing
the distance between degree distributions of successive

mailto:maria.massri@orange.com
mailto:zoltan.miklos@irisa.fr
mailto:philippe.raipin@orange.com
mailto:pierre.meye@orange.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

snapshots. We achieve this goal by relying on an optimal
transport solver which provides a transportation plan ca-
pable of transforming a "mass" from source distribution
to target distribution with a minimum of work. In order
to apply the obtained transportation plan, we proposed a
straightforward generalization of the well-known Chung-
Lu’s model, also known as the CL model, that was first
discussed in [21] and formalized in [17, 22]. We choose to
extend this model for the reasons of simplicity and scal-
ability. We also extended the CL model to partition the
graph into ground-truth communities that coexist with
the aforementioned time-dependent degree distribution.
Our contributions are validated through experimental
results showing the evolution of the degree distribution
and community structure with respect to ground-truth
input parameters.

The rest of the paper is organized as follows, Section
2 provides an overview of the generation procedure. Sec-
tion 3 introduces the baseline generation procedure of the
CL model. Section 4 describes the proposed community-
aware extension of the CL model. Section 5 presents
a detailed description of the proposed generation pro-
cedure. Section 6 provides an experimental evaluation
of the synthetically generated temporal graphs. Section
7 describes the related work. Section 8 concludes the
work.

2. Overview
In this section, we describe the overall generation pro-
cedure. Given the characteristics of a series of graph
snapshots, our relative generation procedure produces
the series of graph snapshots {𝐺1, . . . , 𝐺𝑛} whose char-
acteristics approximate the given ones. These graph snap-
shots are relatively computed by applying a number of
graph updates on each snapshot in order to produce its
successor snapshot. To clarify, we apply a number of
graph updates on a graph snapshot 𝐺𝑖−1 to produce an-
other graph snapshot 𝐺𝑖 whose characteristics approx-
imate the given parameters assigned for the 𝑖th graph
snapshot.

Formally, we define a graph snapshot 𝐺𝑖 valid at a
time instant 𝑡𝑖 as the tuple {𝑉𝐺𝑖 , 𝐸𝐺𝑖 , 𝜑𝐺𝑖 ,𝑀𝐺𝑖}where
𝑉𝐺𝑖 is the set of vertices, 𝐸𝐺𝑖 is the set of edges, 𝜑𝐺𝑖

is a degree distribution and 𝑀𝐺𝑖 is the density commu-
nity matrix. For instance, we consider 𝜑𝐺𝑖 of the form
{(𝑥𝐺𝑖

1 , 𝜔𝐺𝑖
1), . . . , (𝑥𝐺𝑖

𝑛 , 𝜔𝐺𝑖
𝑛)} as a discrete distribution

over N where 𝑥𝐺𝑖
𝑗 refers to the degree of a node and 𝜔𝐺𝑖

𝑗

refers to the total number of vertices in the graph whose
total number of edges is equal to 𝑥𝐺𝑖

𝑗 . A density commu-
nity matrix 𝑀𝐺𝑖 defines the community structure of the
generated graphs, each element 𝑚𝑢𝑣 of which is equal
to the density of edges between the source community
𝑐𝑢 and the target community 𝑐𝑣 .

Given the number of vertices in each graph snap-
shot 𝑘𝑖 ∈ {𝑘1, . . . , 𝑘𝑛}, a stochastic community
matrix 𝑀 and a sequence of degree distributions
{𝜑1, . . . , 𝜑𝑛}, we generate a sequence of graph snap-
shots {𝐺1, . . . , 𝐺𝑛} such that each snapshot 𝐺𝑖 is
relatively generated by transforming 𝐺𝑖−1. This
transformation is based on morphing the 𝜑𝐺𝑖−1 =

{(𝑥𝐺𝑖−1
1 , 𝜔

𝐺𝑖−1
1), . . . , (𝑥

𝐺𝑖−1
𝑛 , 𝜔

𝐺𝑖−1
𝑛)} into 𝜑𝑖 =

{(𝑥𝑖
1, 𝜔

𝑖
1), . . . , (𝑥

𝑖
𝑘, 𝜔

𝑖
𝑘)} and preserving the community

structure that is represented by the stochastic commu-
nity matrix 𝑀 such that 𝑀𝐺𝑖−1 = 𝑀𝐺𝑖 = 𝑀 . Note
that each element 𝑚𝑢𝑣 of M is equal to the probability
of edge creation between the source and target commu-
nities 𝑐𝑢 and 𝑐𝑣 . Figure 1 illustrates the relative graph
generation procedure. Each graph snapshot 𝐺𝑖 is rela-
tively generated by transforming its ancestor 𝐺𝑖−1. This
transformation is based on computing a transportation
matrix 𝑇 that minimizes the cost of morphing 𝜑𝐺𝑖−1

into 𝜑𝑖. The computation of the transportation matrix
reduces to an optimal transport problem. Based on the
computed transportation matrix, each vertex belonging
to the graph 𝐺𝑖−1 is assigned with a linkage or break-
age probability to indicate the probability of adding or
removing an edge. This phase is followed by creating or
removing edges to or from the graph 𝐺𝑖−1 to produce
the graph 𝐺𝑖. These graph updates follows the linkage
or breakage probabilities assigned for each of the ver-
tices. Finally, the graph 𝐺𝑖 is computed by applying
the generated updates on 𝐺𝑖−1. Note that, the genera-
tion procedure depicted in this Figure shows a simplified
scenario where the number of vertices does not change.
However, if that number changes, a phase consisting of
the addition or deletion of vertices should precede the
computation of the transportation matrix to assure the
following constraint:

𝑘∑︁
𝑠=1

𝜔𝐺𝑖
𝑠 =

𝑚∑︁
𝑡=1

𝜔𝑖
𝑡, ∀1 ≤ 𝑖 ≤ 𝑛

This constraint implies that the sum of weights of distri-
butions 𝜑𝐺𝑖 and 𝜑𝑖 should be equal.

3. Graph generation with given
expected degree distribution

In this section, we describe the generation procedure of
random static graphs with a given degree distribution.

Random graphs were introduced by Erdős and Rényi
[23]. The popularity of this model, also known as the 𝐸𝑅
model, stems from its simple generation procedure that
consists of generating a number of vertices and connect-
ing them by an edge after picking each endpoint with a
fixed probability 𝑝. However, this model produces graphs
whose degree distribution follows a binomial distribution

Figure 1: Relative graph generation procedure.

with a mean degree equals to (𝑁−1)𝑝 where 𝑁 is the to-
tal number of vertices. Hence, it fails to mimic real-world
graphs that usually follow a power-law degree distribu-
tion. To tackle this limitation, the edge configuration
model [24] consists of generating a random graph whose
degree distribution matches, approximately, a given de-
gree distribution. That is, each vertex is assigned with a
number of stubs equal to its desired degree that is drawn
independently from the given degree distribution. Hav-
ing this, pairs of stubs are linked randomly forming edges
between their endpoints. Although this technique ap-
proximately matches any given degree distribution, a
relaxed version known as the Chung-Lu model was in-
troduced in [21]. This model consists of generating a ran-
dom graph that approximately matches a given degree
distribution relying on a simple generation procedure
that can be considered as a variant of the 𝐸𝑅 model. For
simplicity, we will refer to this model as the CL model in
the following description.

Consider the degree distribution 𝜑 as the input param-
eter to the CL model and the undirected, unweighted and
unlabeled graph 𝐺 = {𝑉,𝐸, 𝜑𝐺} as the output where
𝜑𝐺 denotes the degree distribution of 𝐺, 𝑉 and 𝐸 de-
note the set of vertices and edges, respectively. Having
this, the CL model produces a graph 𝐺 such that 𝜑𝐺 is
an approximation of 𝜑. The main idea is to pick each
endpoint of an edge with a certain probability such that,
at the end of the generation procedure, the total number
of incident edges to each vertex is close to its assigned
degree. Hence, the starting phase consists of assigning
each vertex 𝑣𝑖 ∈ 𝑉 with a degree 𝑑𝑣𝑖 and a linkage
probability 𝑝𝑣𝑖 ∝ 𝑑𝑣𝑖 . Considering that 𝐷 is the sum of
the degrees extracted from 𝜑, we define the CL linkage

probability 𝑝𝑣𝑖 in the following Equation:

𝑝𝑣𝑖 =
𝑑𝑣𝑖
𝐷

(1)

Subsequently, a linkage phase consists of picking |𝐸| =
𝐷
2

pairs of vertices to connect such that for a sufficiently
large |𝐸| the random variable denoting the degree of
vertex 𝑣𝑖 is Poisson distributed with a mean equals to
𝑑𝑣𝑖 . Iterating the linkage phase |𝐸| times where an edge
is equally likely to be chosen in both directions for undi-
rected graphs, the insertion probability of an edge con-
necting vertex 𝑣𝑖 and vertex 𝑣𝑗 is 𝑝𝑣𝑖𝑣𝑗 = 2𝑝𝑣𝑖𝑝𝑣𝑗

𝐷
2

.
The edge insertion probability can be rewritten in the
more convenient form:

𝑝𝑣𝑖𝑣𝑗 =
𝑑𝑣𝑖𝑑𝑣𝑗
𝐷

For optimisation sake, we gather all vertices shar-
ing the same degree together in a pool 𝛾𝑑 =
{𝑣𝑖|𝑣𝑖 ∈ 𝑉 ∧ 𝑑𝑣𝑖 = 𝑑} that we use as a subsidiary gen-
eration component. Each vertex in a pool is equally likely
to be chosen assuring that the aforementioned linkage
probability 𝑝𝑣𝑖 is not affected for a sufficiently large num-
ber of vertices. After the degree assignment phase, ver-
tices are distributed throughout the pools having each
the following linkage probability:

𝑝𝛾𝑑 =
𝑑|𝛾𝑑|
𝐷

Now, instead of picking vertices a pool is first picked
It should be highlighted that self-loops or multi-edges
can be created since each endpoint of an edge is picked
independently. The number of these edges, however, is
independent of the number of vertices and thus can be
neglected for large scale graphs.

4. Community-aware graph
generation with given expected
degree distribution

Although the CL model produces graphs with respect
to a given degree distribution, it is not aware of the
community structure existing in most real-world graphs.
Hence, we propose a community-aware extension of the
CL model based on the stochastic block model (SBM).
Since a community is not quantitatively well defined,
many definitions where provided in literature. Intuitively,
one can consider a community as a subgraph which ver-
tices are more densely connected between each other
than they are with the rest of the graph. Let’s consider
the set of communities 𝐶 = {𝑐𝑖} and suppose that a ver-
tex should belong to one community and edges should
be differentiated into within and between edges:

• Given a community 𝑐𝑖, an edge 𝑒 is called a within
edge if the source vertex∈ 𝑐𝑖 and the target vertex
∈ 𝑐𝑖.

• Given two communities 𝑐𝑖 and 𝑐𝑗 , an edge 𝑒 is
called a between edge if the source vertex ∈ 𝑐𝑖
and target vertex ∈ 𝑐𝑗 or vice versa.

To insure that vertices belonging to a community are
more densely connected to each other than they are with
the rest of the graph, the within and between edge cre-
ation probabilities 𝑝𝑖𝑛𝑐𝑖 and 𝑝𝑜𝑢𝑡𝑐𝑖 of 𝑐𝑖 must satisfy the
condition 𝑝𝑖𝑛𝑐𝑖 > 𝑝𝑜𝑢𝑡𝑐𝑖 , ∀𝑐𝑖 ∈ 𝐶 .

4.1. Stochastic block model
In this section, we formulate the SBM model [9] (also
known as the planted partition model) which is com-
monly used for the generation of random graphs with a
given community structure. Hence, this generation pro-
cedure only considers controlling the community struc-
ture of the graph and overlooks the resulting degree dis-
tribution. The input of the generation procedure is a
stochastic community matrix 𝑀 , each element 𝑚𝑖𝑗 of
which defines the probability of edge creation between
the source community 𝑐𝑖 and the target community 𝑐𝑗 .
The output is a graph 𝐺 = {𝑉,𝐸,𝑀𝐺} where 𝑀𝐺 is
the obtained density community matrix, each element
𝑚𝐺

𝑖𝑗 of which defines the relative edge density between
the source community 𝑐𝑖 and the target community 𝑐𝑗 .
The generation procedure starts with the distribution of
vertices between the planted communities such that each
vertex belongs to a single community. Now, the linkage
probability between a vertex belonging to community 𝑐𝑖
and another vertex belonging to community 𝑐𝑗 is equal to
𝑚𝑖𝑗 . However, the extracted community density matrix
𝑀𝐺 from the resulting graph 𝐺 is an approximation of
𝑀 . That is, each element 𝑚𝐺𝑖𝑗 is binomially distributed
with mean equals to 𝑚𝑖𝑗 and Poisson distributed with
the same mean for a sufficiently large number of edges.

4.2. Stochastic block model with given
degree distribution

In this section, we propose a static graph generation
procedure which controls both the community structure
and degree distribution. Given a degree distribution 𝜑
and a stochastic community matrix 𝑀 , our proposed
model generates a graph 𝐺 which degree distribution 𝜑𝐺

is an approximation of 𝜑 and density community matrix
𝑀𝑔 is an approximation of 𝑀 . In the following, we
provide a description of our generation mechanism that
extends the stochastic block model depicted in Section
4.1.

Since the generated graph 𝐺 is undirected, the matrix
𝑀 is symmetric such that 𝑚𝑖𝑗 = 𝑚𝑗𝑖. Having this, we

define 𝜔𝑖𝑗 = 𝜔𝑗𝑖 = 2𝑚𝑖𝑗 and 𝜔𝑖𝑖 = 𝑚𝑖𝑖. Furthermore,
we assign each community 𝑐𝑖 with a within edge creation
probability 𝑝𝑖𝑛𝑐𝑖 , a between edge creation equal to 𝑝𝑜𝑢𝑡𝑐𝑖

and a probability of edge creation 𝑝𝑐𝑖 such that:

𝑝𝑐𝑖 = 𝑝𝑖𝑛𝑐𝑖 + 𝑝𝑜𝑢𝑡𝑐𝑖 = 𝜔𝑖𝑖 + 0.5

|𝐶|∑︁
𝑗=1,𝑗 ̸=𝑖

𝜔𝑖𝑗 (2)

We define the linkage probability 𝑝𝑣𝑖 of choosing a vertex
𝑣𝑖 belonging to community 𝑐𝑚 as follows:

𝑝𝑣𝑖 =
𝑑𝑣𝑖
𝐷𝑐𝑚

𝑝𝑐𝑚 , 𝑣𝑖 ∈ 𝑐𝑚 (3)

where 𝐷𝑐𝑚 is the sum of the degrees of vertices belong-
ing to community 𝑐𝑚 and 𝑝𝑐𝑚 is the probability of choos-
ing 𝑐𝑚. The linkage probability of a vertex is the product
of the probability 𝑝𝑐𝑚 of choosing the community to
which the vertex belongs and the probability

𝑑𝑣𝑖
𝐷𝑐𝑚

of
choosing the vertex 𝑣𝑖 in that community. Hence, Equa-
tion 3 assures the approximation of the community ma-
trix. However, 𝑝𝑣𝑖 should be equal to

𝑑𝑣𝑖
𝐷

(Equation 1)
to assure the approximation of the degree distribution.
Therefore, we define the following condition in order to
reduce Equation (3) to Equation (1):

𝐷𝑐𝑚 = 𝐷𝑝𝑐𝑚

Now, replacing 𝐷 by 𝐷𝑐𝑚
𝐷𝑝𝑐𝑚

in the original CL linkage
probability (Equation 1) which assures the control of the
degree distribution, we obtain Equation 3 which assures
the control of the community structure. Having this, the
duality of the linkage probability given in Equations (1)
and (3) insures that both requirements are satisfied by
our generation procedure.

For performance amelioration, we consider the selec-
tion of pools rather than vertices such that a pool is local
to one community. That is vertices having the same de-
gree variation and belonging to the same community 𝑐𝑚
are grouped in a pool 𝛾𝑐𝑚

𝑑 = {𝑣𝑖|𝑣𝑖 ∈ 𝑐𝑚 ∧ 𝑑𝑣𝑖 = 𝑑}
such that the probability of a pool selection for edge
insertion is:

𝑝𝛾𝑐𝑚
𝑑

=
𝑑|𝛾𝑐𝑚

𝑑 |
𝐷

4.3. Hierarchical community structure
The specification of the stochastic matrix is not straight-
forward and imposes an exhaustive number of user-
defined parameters. Hence, we define an auto-generative
procedure that fills the matrix with no exogenous effort.
Considering a static graph, we construct a stochastic ma-
trix that reflects a hierarchical community structure with
only two given parameters. In a hierarchical community
matrix, communities recursively embed subsequent com-
munities in a self-similar fashion such that the commu-
nity structure is represented by a hierarchical tree where

each node represents a community. Each non-leaf node
is expanded into 𝑏 other nodes until reaching a desired
tree height ℎ (Figure 2). The ending recursion results in
𝑛𝑐 = 𝑏ℎ leaf-nodes referencing the finest scale communi-
ties having a linkage probability 𝜔𝑖𝑗 proportional to the
distance between 𝑐𝑖 and 𝑐𝑗 . The distance between two
communities, 𝑑(𝑐𝑖, 𝑐𝑗), is equal to the number of hops
traversed in order to reach the least common ancestor of
these communities. In order to satisfy the condition stat-
ing that within edge linkage probability must be higher
than between linkage probability (𝑝𝑖𝑛𝑐𝑖 > 𝑝𝑜𝑢𝑡𝑐𝑖), we define
𝜔𝑖𝑖 as follows:

𝜔𝑖𝑖 = 0.5

𝑛𝑐−1∑︁
𝑗=0,𝑗 ̸=𝑖

𝜔𝑖𝑗 + 𝑘

where 𝑘 is a tunable parameter which calibration steers
the difference between within and between edge densi-
ties. The effect of varying 𝑘 is further highlighted in the
Section 6.

Figure 2: Hierarchical community tree with height ℎ and
branching factor 𝑏.

5. Relative graph generation
In order to control the evolution of the degree distribu-
tion of the generated temporal graphs, we propose in this
section an extension of the CL model that is based on the
optimal transport to compute the minimal distance be-
tween the degree distributions of each pair of successive
graph snapshots.

5.1. Earth mover’s distance
The Earth mover’s distance can be defined as a mea-
sure of distance over a domain 𝐷 between two dis-
tributions of the form {(𝑥1, 𝜔1), ..., (𝑥𝑛, 𝜔𝑛)} where
𝑥𝑖 ∈ 𝐷 and 𝜔𝑖 is the density of 𝑥𝑖. Having this,
the problem reduces to the computation of an optimal
flow (transportation matrix) 𝑇 = [𝑡𝑖𝑗] between two
distributions 𝑃 = {(𝑥1, 𝑝1), ..., (𝑥𝑛, 𝑝𝑛)} and 𝑄 =
{(𝑦1, 𝑞1), ..., (𝑦𝑛, 𝑞𝑛)} such that 𝑡𝑖𝑗 is the mass trans-
ported between 𝑝𝑖 and 𝑞𝑗 which minimizes the overall

cost:

min
𝑇

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑡𝑖𝑗𝑑𝑖𝑗

where 𝑑𝑖𝑗 = 𝑑(𝑥𝑖, 𝑦𝑗) is a measure of distance between
𝑥𝑖 and 𝑦𝑗 . The following constraints must hold for the
optimal flow 𝑇 :

𝑡𝑖𝑗 ≥ 0, 1 ≥ 𝑖 ≥ 𝑛, 1 ≥ 𝑗 ≥ 𝑚

𝑚∑︁
𝑗=1

𝑡𝑖𝑗 ≤ 𝑝𝑖, 1 ≥ 𝑖 ≥ 𝑛,

𝑛∑︁
𝑖=1

𝑡𝑖𝑗 ≤ 𝑞𝑗 , 1 ≥ 𝑗 ≥ 𝑚

Once the optimal flow 𝑇 is found, the EMD between
𝑃 and 𝑄 is computed as follows:

𝐸𝑀𝐷(𝑃,𝑄) =

∑︀𝑛
𝑖=1

∑︀𝑚
𝑗=1 𝑡𝑖𝑗𝑑𝑖𝑗∑︀𝑛

𝑖=1

∑︀𝑚
𝑗=1 𝑡𝑖𝑗

The EMD is fundamental in our generation procedure
since it is used to compute the distance between two
degree distributions as described in the following Section.

5.2. Baseline relative graph generation
In this section, we provide the baseline procedure of
transforming a graph 𝐺 with degree distribution 𝜑 into
𝐺′ with degree distribution 𝜑′ which we refer to as the
Baseline relative graph generation. Note that, we use this
technique for generating temporal graphs such that 𝐺
and 𝐺′ corresponds to successive graph snapshots. For
generalisation purposes, however, we remove the notion
of time in this section. This transformation is enabled by a
set of atomic graph operations including the addition and
deletion of a vertex or an edge. Following the assumption
that temporal graphs gradually evolve, this number of
graph operations between successive snapshots should
be minimized which is assured in our model by applying
an optimal transport method.

Consider the input graph 𝐺 = {𝑉,𝐸, 𝜑} and de-
gree distribution 𝜑′, the generated output graph 𝐺′ =
{𝑉 ′, 𝐸′, 𝜑𝐺′} such that 𝜑𝐺′ is an approximation of 𝜑′.
We define the distance between two degree distributions
𝜑 and 𝜑′ as the earth mover’s distance 𝐸𝑀𝐷(𝜑, 𝜑′).

Consider 𝛿𝑛 = |𝑉 ′| − |𝑉 | as the total number of ver-
tices to be added to or removed from the graph based
on whether 𝛿𝑛 is a positive or negative number, respec-
tively. When adding a new vertex, this vertex is assigned
with a degree equals to 0 and deleting a vertex consists
of removing the vertex with its corresponding incident
edges. This transformation phase assures that 𝐺 and 𝐺′

share the same number of vertices, hence, enables the
transformation of 𝜑 into 𝜑′. In order to morph 𝜑 into
𝜑′, a transportation matrix 𝑇 is computed, where each
row corresponds to a degree 𝑑 in the set of degrees in the
source distribution 𝜑 and each column corresponds to a

degree 𝑑′ in the set of degrees in the target distribution 𝜑′.
Now, each cell consists of the portion of vertices having
a degree 𝑑 for which links are to be inserted or removed
in order to be assigned a total number of edges equals to
degree 𝑑′. That is, a vertex 𝑣𝑖, with a degree 𝑑𝑣𝑖 = 𝑑, will
be assigned a degree variation of 𝛿𝑑𝑣𝑖 = 𝑑′−𝑑 resulting
in a total number of edge insertions and deletions defined
as 𝐷+ and 𝐷−, respectively.
We assign, for each vertex 𝑣𝑖, a linkage probability 𝑝+𝑣𝑖 or
a breakage probability 𝑝−𝑣𝑖 defined as extensions of the
CL linkage probability (1):

𝑝+𝑣𝑖 =
𝛿𝑑𝑣𝑖
𝐷+

, 𝛿𝑑𝑣𝑖 > 0 (4)

𝑝−𝑣𝑖 =
−𝛿𝑑𝑣𝑖
𝐷− , 𝛿𝑑𝑣𝑖 < 0 (5)

We collect vertices sharing the same degree variation
𝛿𝑑 = 𝑑′ − 𝑑 into a linkage pool if 𝛿𝑑 > 0 and in a
breakage pool if 𝛿𝑑 < 0. Consider 𝛾𝑑→𝑑′ = {𝑣𝑖|𝑣𝑖 ∈
𝑉 ∧ 𝛿𝑣𝑖 = 𝑑′ − 𝑑} to be the pool containing vertices
having a degree 𝑑 that should be transformed into 𝑑′. We
compute the probability of picking a linkage or breakage
pool 𝑝+𝛾𝑑→𝑑′

and 𝑝−𝛾𝑑→𝑑′
as follows:

𝑝+𝛾𝑑→𝑑′
=

𝛿𝑑|𝛾𝑑→𝑑′ |
𝐷+

, 𝛿𝑑 > 0

𝑝−𝛾𝑑→𝑑′
=
−𝛿𝑑|𝛾𝑑→𝑑′ |

𝐷− , 𝛿𝑑 < 0

However, breaking an edge might be impossible in situ-
ations where the source degree variation 𝛿𝑑 is negative
and the sum of the negative degree variations of its neigh-
bors is higher than 𝛿𝑑. For the sake of illustration, we
present in Figure 3 a graph in which the number of edges
to remove from a node is higher than the sum of the
number of edges to remove from its neighboring vertices.
That is, the transformation of this graph implies remov-
ing 2 edges from vertex 𝑣1 since 𝛿𝑣1 = −2. However,
the number of the edges that have to be removed from
the neighboring vertices of 𝑣1 is equal to 𝛿𝑣2 = −1 since
𝛿𝑣3 = 0 and 𝛿𝑣4 = 1. To overcome this, we repeat the
morphing procedure until EMD(𝜑, 𝜑′) reaches a desired
threshold. Our simulations have proved that the value
of EMD(𝜑, 𝜑′) converges rapidly towards the minimum
threshold after a tolerable number of iterations. This
statement will be further highlighted in Section 6.

5.3. Relative community-aware graph
generation

A more complex version of the previously described
relative graph generation, consists of preserving the
graph community structure in the transformation proce-
dure. That is, the input of our community-aware relative
graph generator is the graph 𝐺 = {𝑉,𝐸, 𝜑𝐺,𝑀𝐺}, the

Figure 3: Graph representing the case of a non-possible edge
breakage.

desired degree distribution 𝜑 and the stochastic block
matrix 𝑀 . However, the output consists of a graph
𝐺′ = {𝑉 ′, 𝐸′, 𝜑𝐺′ ,𝑀𝐺′} where 𝜑𝐺′ is an approxima-
tion of 𝜑 and 𝑀𝐺′ is an approximation of 𝑀 . Recall that
the generation procedure depicted in section 4.2 produces
a graph with a given expected degree distribution and
stochastic community matrix based on the proposed link-
age probability duality presented in Equations (1) and (3).
Indeed, a relative community-aware graph generation is
based on an extension of the aforementioned duality by
taking into consideration the degree variation of a vertex
instead of the its degree. That is, the following linkage
and breakage probabilities present a straightforward ex-
tension of Equations (4) and (5):

𝑝+𝑣𝑖 =
𝛿𝑑𝑣𝑖
𝐷+

𝑐𝑚

𝑝𝑐𝑚 , 𝑣𝑖 ∈ 𝑐𝑚

𝑝−𝑣𝑖 =
𝛿𝑑𝑣𝑖
𝐷−

𝑐𝑚

𝑝𝑐𝑚 , 𝑣𝑖 ∈ 𝑐𝑚

Where 𝐷+
𝑐𝑚 and 𝐷−

𝑐𝑚 are the total number of edge
insertions and deletions in 𝑐𝑚, respectively. From the
transportation matrix defined in section 5.2, we find
𝑛𝑖𝑗 as the portion of vertices with degree variation
𝛿𝑑 = 𝑑𝑗 − 𝑑𝑖. However, finding the portion 𝑛𝑐𝑚

𝑖𝑗 of
vertices in community 𝑐𝑚 should satisfy three conditions
detailed bellow. Each condition 𝑖 results in a system of
linear equations of the form 𝐴𝑖𝑋 = 𝐵𝑖 where 𝑋 is a
vector composed of 𝑛𝑐𝑚

𝑖𝑗 such that 𝑋 = {𝑛𝑐𝑘
𝑖𝑗 | ∀1 ≤ 𝑖 ≤

|𝜑𝐺| ∧ ∀1 ≤ 𝑗 ≤ |𝜑| ∧ 0 ≤ 𝑘 ≤ |𝐶|} where 𝑛𝑐 is the
total number of communities.

Condition 1: For each community 𝑐𝑚 ∈ 𝐶 , conditions
stating that 𝐷+

𝑐𝑚 = 𝐷+𝑝𝑐𝑚 and 𝐷−
𝑐𝑚 = 𝐷−𝑝𝑐𝑚

must hold, where 𝐷+ and 𝐷− are the total number
of edge insertions and deletions in all communities
of 𝐶 , respectively. Incorporating 𝑛𝑐𝑚

𝑖𝑗 in the previous
condition translates to the following equality:

|𝜑𝐺|∑︁
𝑖=0

|𝜑′|∑︁
𝑗=0

(𝑑𝑗 − 𝑑𝑖)𝑛
𝑐𝑚
𝑖𝑗 = (

|𝜑𝐺|∑︁
𝑖=0

|𝜑′|∑︁
𝑗=0

(𝑑𝑗 − 𝑑𝑖)𝑛𝑖𝑗)𝑝𝑐𝑚

where 𝜑𝐺 and 𝜑′ are the source and target degree distri-
butions.

Condition 2: This condition states that the sum of
all portions of vertices with degree variation 𝑑𝑗 − 𝑑𝑖
∀𝑑𝑗 ∈ 𝜑𝑡 in 𝑐𝑚 should be equal to the portion 𝑛𝑐𝑚

𝑖 of
vertices in 𝑐𝑚 having a degree 𝑑𝑖 resulting in the follow-
ing equality:

𝑚∑︁
𝑗=0

𝑛𝑐𝑚
𝑖𝑗 = 𝑛𝑐𝑚

𝑖

Condition 3: This condition states that the por-
tion 𝑛𝑖𝑗 of vertices with degree variation 𝑑𝑗 − 𝑑𝑖 in
the graph must be equal to the sum of all portions 𝑛𝑐𝑚

𝑖𝑗

∀𝑐𝑚 ∈ 𝐶.
𝑛𝑐∑︁

𝑐𝑚=0

𝑛𝑐𝑚
𝑖𝑗 = 𝑛𝑖𝑗

By solving the concatenated system of equations obtained
from the previous conditions 𝑐𝑜𝑛𝑐𝑎𝑡(𝐴1, 𝐴2, 𝐴3)𝑋 =
𝑐𝑜𝑛𝑐𝑎𝑡(𝐵1, 𝐵2, 𝐵3), we find the vector 𝑋 , hence the
values of 𝑛𝑐𝑚

𝑖𝑗 . Pools are created on a local basis in each
community such that vertices with the same degree vari-
ation 𝛿𝑑 = 𝑑′− 𝑑 and belonging to the same community
𝑐𝑚 are collected in a single pool 𝛾𝑐𝑚

𝑑→𝑑′ . We compute
the probability of picking a linkage or breakage pool
𝑝+𝛾𝑑→𝑑′ ,𝑐𝑚

and 𝑝−𝛾𝑑→𝑑′ ,𝑐𝑚
as follows:

𝑝+𝛾𝑑→𝑑′ ,𝑐𝑚
=

𝛿𝑑|𝛾𝑐𝑚
𝑑→𝑑′ |

𝐷+
, 𝛿𝑑 > 0

𝑝−𝛾𝑑→𝑑′ ,𝑐𝑚
=
−𝛿𝑑|𝛾𝑐𝑚

𝑑→𝑑′ |
𝐷− , 𝛿𝑑 < 0

Algorithm CRGG depicts the relative community aware
graph generation procedure. The input parameters are
the graph snapshot 𝐺, desired degree distribution 𝜑, den-
sity community matrix 𝑀 , threshold of the EMD dis-
tance between 𝜑𝐺 and 𝜑, maximum number of repeti-
tions 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 and the current number of repetitions
𝑐𝑢𝑟_𝑖𝑡𝑒𝑟. Whereas, the output is a new graph snapshot
𝐺′. Note that, the value of 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟 is equal to 0 in the
first iteration. The transportation matrix 𝑇 is computed
using the function getTransportMatrix by taking the
degree distributions 𝜑𝐺 and 𝜑 as input. The function
getVector, computes 𝐴 and 𝐵 based on the Conditions
1, 2 and 3 and solves the system of equations defined by
𝐴𝑋 = 𝐵 to find the vector𝑋 . The total number of edges
to add (𝐷+) and delete (𝐷−) are then computed based on
the transporation matrix 𝑇 . The function getCDFComs
computes the cumulative distribution function 𝑐𝑑𝑓𝐶𝑜𝑚
based on the density community matrix𝑀 . Then, vectors
𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+ and 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠− representing the cumulative
density functions of the linkage and breakage pools and a
list of logs (graph updates) 𝐿 are initialized. The function
getCDFPools is used to compute the cumulative distri-
bution functions 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+ and 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠− based on
the probabilities 𝑝+𝛾𝑑→𝑑′ ,𝑐𝑚

and 𝑝−𝛾𝑑→𝑑′ ,𝑐𝑚
. The process

of adding and removing edges is repeated 𝐷+ and 𝐷−

times, respectively. In each iteration, communities 𝑐𝑛 and
𝑐𝑚 are picked based on 𝑐𝑑𝑓𝐶𝑜𝑚𝑠 and vertices 𝑛𝑖 and
𝑛𝑗 are picked using 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+[𝑛] and 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−[𝑚].
Now, an addition or deletion graph update between the
chosen vertices is added to the list of logs using functions
addEdge and removeEdge whether the vertices where
chosen from the linkage or breakage pools. However,
breaking an edge might be impossible in some situations
as shown in Figure 3. In such a use case, no graph update
is added to the list of logs 𝐿. Finally, the EMD distance
𝜖 is computed between the obtained degree distribution
𝜑′
𝐺 and the desired one 𝜑. If 𝜖′ is higher than 𝜖 and

the number of repetitions 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟 has not yet reached
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, the same algorithm is repeated on the newly
computed graph snapshot 𝐺′. The computation stops
when 𝜖′ is lower than or equal to 𝜖 or the number of
repetitions has already been reached.

Algorithm 1: CRGG

Input: 𝐺 = {𝑉,𝐸, 𝜑𝐺,𝑀𝐺}, 𝜑, 𝑀 , 𝜖,
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟

Output: 𝐺′ = {𝑉 ′, 𝐸′, 𝜑𝐺′ ,𝑀𝐺′}
1 𝑇 ← getTransportMatrix(𝜑𝐺, 𝜑) ;
2 X← getVector(𝜑𝐺, 𝜑, 𝑇 , 𝑀) ;
3 (𝐷+, 𝐷−)← getNumberOfEdges(T) ;
4 𝑐𝑑𝑓𝐶𝑜𝑚← getCDFComs(𝑀) ;
5 (𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+, 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−)← initCDFPools ;
6 𝐿← 𝑖𝑛𝑖𝑡𝐿𝑜𝑔𝑠()
7 for 𝑐𝑚 ∈ 𝐶 do
8 (𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+𝑐𝑚, 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−𝑐𝑚)←

getCDFPools(𝑋 , 𝑐𝑚) ;
9 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+[𝑚]← 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+𝑐𝑚 ;

10 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−[𝑚]← 𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−𝑐𝑚 ;

11 for 𝑖← 0 𝑡𝑜 𝐷+ do
12 (𝑐𝑛, 𝑐𝑚)← chooseComs(𝑐𝑑𝑓𝐶𝑜𝑚) ;
13 (𝑛𝑖, 𝑛𝑗)← chooseVertices(𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+[𝑛],

𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠+[𝑚]) ;
14 𝐿.addEdge (𝑛𝑖, 𝑛𝑗) ;

15 for 𝑖← 0 𝑡𝑜 𝐷− do
16 (𝑐𝑛, 𝑐𝑚)← chooseComs(𝑐𝑑𝑓𝐶𝑜𝑚) ;
17 (𝑛𝑖, 𝑛𝑗)← chooseVertices(𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−[𝑛],

𝑐𝑑𝑓𝑃𝑜𝑜𝑙𝑠−[𝑚]) ;
18 𝐿.removeEdge (𝑛𝑖, 𝑛𝑗) ;

19 𝐺′ ← applyLogs(𝐺, 𝐿) ;
20 𝜖′ ← getEMD(𝜑, 𝜑′

𝐺) ;
21 if 𝜖′ ≥ 𝜖 ∧ 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 then
22 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟 ← 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟 + 1 ;
23 𝐺′ ←

𝐶𝑅𝐺𝐺(𝐺′, 𝜑,𝑀, 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) ;

24 else
25 return 𝐺′ ;

10

8

Tim
est

amp

6

4

2

0100

80

60

Degree

40

15000

10000

5000

0

20

N
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

Figure 4: Gaussian degree distribution
of a growth only graph

10

8

Tim
est

amp

6

4

2

0100

80

60

Degree

40

0

4

2

10

8

6

20

×10
4

N
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

Figure 5: Gaussian degree distribution
of a graph with edge deletions

10

8

Tim
est

amp

6

4

2

060

40Degree

20

6

4

3

5

1

0

2

0

×10
4

N
u
m
b
e
r

o
f

o
c
c
u
r
r
e
n
c
e
s

Figure 6: Zipfian degree distribution
of a growth only graph

5.4. Accuracy of the generation
procedure

In order to measure how far the characteristics of the
generated graphs are from the ground truth parameters,
we define two distance metrics 𝜀𝑑 and 𝜀𝑐.

The first metric 𝜀𝑑 measures the inaccuracy of approx-
imating the degree distributions of the generated graphs
with the given sequence of degree distributions. That
is, it measures the root mean square of the EMD dis-
tances between each degree distribution 𝜑𝑖 in the given
sequence {𝜑1, . . . , 𝜑𝑛} and its corresponding degree dis-
tribution 𝜑𝐺𝑖 in the sequence {𝜑𝐺1 , . . . 𝜑𝐺𝑛} extracted
from the generated graphs. Having this, 𝜀𝑑 is computed
as follows:

𝜀𝑑 =

√︀∑︀𝑛
𝑖=1(𝐸𝑀𝐷(𝜑𝑖, 𝜑𝐺𝑖))

2

𝑛

Whereas, the second metric 𝜀𝑐 measures the inaccuracy
of approximating the community density matrix of the
generated graphs with a given stochastic matrix. That
is, it measure the root mean square of the difference be-
tween the Frobenius norms of the given stochastic matrix
𝑀 and the stochastic matrix 𝑀𝐺𝑖 extracted from every
generated graph snapshot. Having this, 𝜀𝑐 is computed
as follows:

𝜀𝑐 =

√︀∑︀𝑛
𝑖=1(𝐹 (𝑀)− 𝐹 (𝑀𝐺𝑖))

2

𝑛

where 𝐹 (𝑀) is the Frobenius norm of the stochastic
community matrix 𝑀 . We recall that the Frobenius norm
of a matrix 𝐴 of dimensions (𝑛,𝑚) is defined as follows:

𝐹 (𝐴) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

|𝑎𝑖𝑗 |2

6. Experimental evaluation
We conducted a number of experiments to validate the
efficiency of our generator RTGEN. We also provide an in-
sight on how changing the input parameters can steer the

characteristics of the generated temporal graphs. Note
that the source code of RTGEN is publicly available1.
Besides the source code, we also provide the instruc-
tions describing how to use the tool to generate temporal
graphs. For instance, users can pass the input parame-
ters to describe the desired sequence of degree distribu-
tions or stochastic community matrix and the format of
the generated output files to RTGEN using a terminal
command. RTGEN proposes two output types: snapshot-
based and event-based. The snapshot based type consists
a sequence of graph snapshots represented each in a sep-
arate file. Whereas, the event-based type, consists of
generating the sequence of graph updates (events) that
we applied between successive snapshots to transform
one snapshot into the next one.

6.0.1. Experimental setup

The experiments were conducted on a single machine
equipped with Intel(R) Core(TM) i5-8350U CPU @
1.70GHz 1.90 GHz, 16 GB memory and 500 GB SSD.
We used Go 1.17.5 and Python 3.8.0. Besides, we referred
to the optimal transport solver proposed in [25]. The
graphs shown in this section are visualized using Gephi
tool [26] which offers network visualization facilities and
community detection algorithms [27].

6.0.2. Preliminaries

In the following experiments, we refer to two types of
common degree distributions: Gaussian 𝑓𝐺 and Zipfian
𝑓𝑍 that are defined as follows:

𝑓𝐺(𝑥) =
1

𝜎
√
𝜋
𝑒−

1
2
(𝑥−𝜇

𝜎
)2

𝑓𝑍(𝑥) =
1

(𝑥+ 𝑣)𝑠
𝑥 ∈ [0, 𝑑𝑚𝑎𝑥]

We consider a special case where the value of a parameter
𝑥 ∈ N in iteration 𝑖 depends on the its value in the
previous iteration 𝑖 − 1 such as 𝑥𝑖 = 𝑥𝑖−1 + 𝛿𝑥 such

1https://github.com/MariaMassri/RTGEN

that 𝜇𝑖 = 𝜇𝑖−1+𝛿𝜇. This is applied on the parameters of
the degree distributions 𝜇, 𝜎, 𝑑𝑚𝑎𝑥, 𝑠, 𝑣 and 𝑛 denoting
the total number of vertices. That is, 𝛿𝑛 denotes the
number of vertices to be added or removed from the graph
in the relative generation process. Note that, RTGEN
also generates the first snapshot which implies that the
parameters of the degree distribution of the first snapshot
should be given.

6.1. Controlling the evolution of the
degree distribution

In this experiment, we show the evolution of the degree
distribution of a sequence of graph snapshots generated
with the relative generation procedure given a set of input
parameters. Hence, we consider Gaussian and Zipfian
degree distributions with different parameters and plot-
ted the obtained degree distributions in Figures 4, 5 and
6. Figure 4 shows the evolution of the degree distribution
of a generated sequence of 10 graph snapshots given the
following parameters: {𝑛0 = 10𝐾, 𝜇0 = 30, 𝜎0 =
2, 𝛿𝑛 = 10𝑘, 𝛿𝜇 = 5, 𝛿𝜎 = 0.1}. By setting 𝛿𝜇
to 5, we increase the average degree by 5 between each
pair of snapshots. This indeed, can model a growth-only
graph where the average edge degree tend to regularly
increase as the time elapses.
However, some real-world graphs are not growth-only
in the sense that they are subject to edge deletions. This
is indeed the case of human-proximity or transportation
graphs where an important number of short-term con-
nections is only valid during peak hours. To model this
characteristic, RTGEN also supports edge deletions. The
evolution of the degree distribution with edge deletions
is presented in Figure 5. Let the following parameters
define the evolution of degree distribution for 𝑖 ∈ [0, 4]:
{𝑛0 = 1𝑀, 𝜇0 = 60, 𝜎0 = 4, 𝛿𝑛 = 0, 𝛿𝜇 =
5, 𝛿𝜎 = 0} Whereas the following parameters de-
fine its evolution for 𝑖 ∈ [5, 9]: {𝑛0 = 10𝐾, 𝜇0 =
80, 𝜎0 = 2, 𝛿𝑛 = 0, 𝛿𝜇 = −5, 𝛿𝜎 = 0}. In-
deed, setting 𝛿𝜇 to −5 indicates that the average degree
decreases by a value of 5 between each pair of successive
graph snapshots.
Since real-world temporal graphs usually exhibit a power
law degree distribution, we also generated graphs with
an evolutionary Zipfian degree distribution composed
of 10 graph snapshots as shown in Figure 6. For this
generated temporal graph, we set the following param-
eters {𝑛0 = 50𝑘, 𝑠0 = 2.5, 𝑣0 = 10, 𝑑0𝑚𝑎𝑥 =
10, 𝛿𝑛 = 50𝑘, 𝑠 = 0, 𝛿𝑣 = 0, 𝛿𝑑𝑚𝑎𝑥 = 5}.
By setting parameter 𝛿𝑑𝑚𝑎𝑥 to 5, we consider that the
maximum degree of nodes increases by a value of 5 be-
tween each pair of successive snapshots. Whereas, the
value of 𝛿𝑛 indicates that 50𝑘 new nodes join the graph
between successive snapshots. These parameters reflect
the growth of a large number of real-world temporal

graphs where new nodes join the graph and new connec-
tions are created as the time elapses.

6.2. Controlling the community structure
of the generated graphs

In this experiment, we show the generated community
structure with different parameters of the stochastic com-
munity matrix and the effect of varying parameter 𝑘 of
the hierarchical tree. As described in Section 4.3, RTGEN
is capable of auto-generating the stochastic community
matrix representing a hierarchical community structure.
Consider a stochastic community matrix generated by set-
ting 𝑏 = 4 and ℎ = 2. As depicted in Equation 2, one can
tune the parameter 𝑘 in order to control the within and
between edge densities. Hence, we select three different
values of 𝑘 in {2, 4, 8}. Furthermore consider, 𝑛 = 1000
to be the total number of vertices and parameters 𝜇 = 30
and 𝜎 = 2 to be the parameters of a Gaussian distribu-
tion. Note that, in this experiment, we generate a single
graph snapshot relying on the generation procedure pro-
posed in Section 4.2. The generated graphs are shown in
Figures 7a, 7b and 7c using the Gephi tool. It can be no-
ticed that the difference between the within and between
edge densities is proportional to 𝑘 since 𝑘 ∝ 𝑝𝑖𝑛𝑐𝑖 − 𝑝𝑜𝑢𝑡𝑐𝑖

where 𝑝𝑖𝑛𝑐𝑖 and 𝑝𝑜𝑢𝑡𝑐𝑖 are the within and between linkage
probabilities of a community 𝑐𝑖. Furthermore, Figure 8
presents the modularity in function of parameter 𝑘 which
we vary from 0 to 32. The modularity is a measure to
quantify the goodness of community structure. Its for-
mula compares, for all the communities, the fraction of
edges that falls within the given community with the
expected fraction if edges were distributed at random.
It is clear from the results that the modularity increases
with the increase of 𝑘. This is justified by the fact that
𝑘 is proportional to the difference between within and
between edge linkage probabilities 𝑝𝑖𝑛𝑐𝑖 − 𝑝𝑜𝑢𝑡𝑐𝑖 .

6.3. Generating graphs with deletions
between snapshots

As mentioned in Section 5, the relative graph genera-
tion procedure may incur a number of edge deletions.
This can be cumbersome when the number of edges to
delete for a given vertex is higher than the total sum of
edges to delete from its neighboring vertices. We solve
this problem by repeating the generation process until
reaching an acceptable error threshold that is defined by
the EMD between the obtained and desired degree dis-
tributions. Figure 12 shows the variation of the number
of iterations and the execution time of the generation
process in function of the threshold error defined by the
EMD. The obtained results show that our generation pro-
cedure converges rapidly to a tolerable threshold. That
is, a threshold equals to 0.001 can be reached with only 7

(a) k=2 (b) k=4 (c) k=8

Figure 7: A visualization of the generated graphs with a hierarchical
community structure with parameters: 𝑏 = 4, ℎ = 2, 𝑐 = 4 and a varying 𝑘.

Figure 8: Modularity value in function
of parameter 𝑘 ranging from 0 to 32.

Figure 9: Execution time in
function of the number of edges.

Figure 10: 𝜀𝑑 in function of the
number of edges.

Figure 11: 𝜀𝑐 in function of the
number of edges.

Figure 12: The variation of the number of iterations and
execution time in function of the EMD.

iterations. By comparing the execution time of 1 iteration
and 7 iterations, we can notice that the difference is lower
than the execution time of a single iteration. Indeed, the
execution time resulting from repeating the generation
is lower than the first iteration since the majority of mod-
ifications are added in the first iteration and only the
remaining vertices whose linkage probability does not
satisfy the sum of the linkage probabilities of its neigh-
boring vertices are considered in the next iteration. Note
that these results are obtained from the generation of two
successive snapshots with the following input parameters
of a Gaussian degree distribution: {𝑛0 = 500𝑘, 𝜇0 =
60, 𝜎0 = 2, 𝛿𝑛 = 0, 𝛿𝑚𝑢 = −30, 𝛿𝜎 = 0}.

6.4. Accuracy of the generation
procedure

We quantify the accuracy of the generated graphs with
the given parameters by computing the distance met-
rics 𝜀𝑑 and 𝜀𝑐 defined in Section 5.4. We generated
a sequence of 𝑛 = 5 snapshots with the following
parameters of Gaussian degree distribution: {𝑛0 ∈
{10𝑘, 100𝑘, 500𝑘, 1𝑀}, 𝜇0 = 30, 𝜎0 =
2, 𝛿𝑛 = 0, 𝛿𝜇 = 10, 𝛿𝜎 = 0}. Besides, we con-
trolled the community structure by fixing the following
parameters of a hierarchical tree: ℎ = 2, 𝑏 = 2, 𝑐 =
4, 𝑘 = 0.

Figures 9, 10 and 11 plot the execution time, value of
𝜀𝑑 and 𝜀𝑐 in function of the total number of created edges
from applying the Gaussian distribution whose parame-
ters are given above. It is clear that the execution time
increases with the number of the generated edges. The
distance metric, however, decreases implying that RT-
GEN approximates more accurately the given sequence
of degree distribution and community structure as the
total number of edges grows.

7. Related work
Synthetic graphs are important for developing bench-
marks for assessing the performance of graph-oriented
data platforms, when real graphs are not publicly avail-

able or expensive to obtain. This has been the incentive
to design models and generators, which are very use-
ful for evaluating the efficiency of graph management
techniques as storage, query evaluation, indexing, parti-
tioning, etc.

An extensive work has been posited for the genera-
tion of static graphs. For instance, a special emphasis
has been placed to control the degree distribution of the
generated graphs. In this context, many graph genera-
tors were designed such as RTG [3], RMAT [4] and its
generalisation Kronecker [5] producing only Power-Law
distributions. Since real-world graphs are not limited
to power-law distributions, BTER [6] and its extension
Darwini [7] and GMark [8] produce graphs with any user
defined distribution.

Another graph generation model producing a given
degree distribution is the CL model, forming the basis
of the RTGEN tool. This model can be regarded as a
successor of the Erdos-Rényi model [23] that is designed
for the generation of random graphs and a variant of
the edge configuration model of Newman et al. [24].
It was extensively discussed and reused [17, 28, 29, 30].
We choose to extend this model for its simplicity and
scalability.

Besides, a number of existing graph generators are
community-aware in the sense that they collect vertices
that are more densely connected between each other
than they are with the rest of the graph, in separate or
overlapping subgraphs called communities [9, 10, 11].
Although these generators preserve a given community
structure, they fail to produce a graph with respect to a
given degree distribution. In this paper, we overcome this
limitation by allowing not only the generation of a given
community structure but also a given degree distribution.

Despite the extensive work posited on the genera-
tion of non-temporal graphs, the generation of tempo-
ral graphs has received much less attention. For in-
stance, DANCer [31] is capable of generating temporal,
community-aware property graphs. It separates opera-
tions performed on communities (macro operations) from
operations performed on vertices and edges (micro opera-
tions). ComAwareNetGrowth [32] is a community-aware
graph generator that is capable of creating growth only
graphs. APA (Attribute-Aware Preferential Attachment)
[33] is a graph generator capable of creating growth-only
property graphs based on a non-conventional triangle
closing. Instead of closing a triangle based on a uniform
probability given as an input parameter, their proposed
model consists of closing a triangle based on the simi-
larity between the candidate edge’s endpoints. While
GMark [8] generates static graphs, EGG (Evolving Graph
Generator) [34] proposes an extension including evolv-
ing properties attached to each vertex. EGG, however,
disregard the topological changes to the network and
narrow the temporal evolution of the graph to property

updates. DSNG-M (dynamic social network generator
based on modularity) [35] is a graph generator that is
capable of generating temporal graphs by flipping the
direction of edges of a given graph in order to satisfy a
randomly chosen modularity value assigned to a single
graph snapshot.

Some of the aforementioned graph generators produce
temporal graphs with properties on nodes or vertices,
which we do not address in this paper. None of them,
however, allows the control of the evolution of the degree
distribution given ground truth parameters that describe
this evolution. This challenge lead to the elaboration of
the RTGEN tool that allows the approximation of any
given sequence of degree distributions that describes the
evolution of the graph. We firmly believe, that the degree
distribution is a key feature that characterizes graphs,
hence, it should not be disregarded in graph generation
tools.

8. Conclusion
In this paper, we addressed the generation of temporal
graphs that represents a critical challenge in the design
of benchmarks specific for evaluating temporal graph
management systems. That is, we proposed RTGEN, a
temporal graph generator that produces a sequence of
graph snapshots whose community structure and evolu-
tion of the degree distribution results from approximating
user defined parameters. This generation procedure con-
sists of relatively generating a graph snapshot from a
previous one by applying a number of atomic graph op-
erations. Our generation technique relies on an Optimal
transport solver to approximate a user-defined sequence
of degree distributions while minimizing the number of
operations needed to transform one snapshot into its
successor. We conducted a number of experiments that
validated the efficiency and accuracy of our generation
procedure. In the future, we are planning to include a
dynamic community structure to RTGEN. Indeed, the
communities found in real-world graphs are subject to
splits, merges, shrinks or expansions which should also
be modelled in synthetic graphs.

References
[1] J. R. Clough, T. S. Evans, Time and citation net-

works, arXiv preprint arXiv:1507.01388 (2015).
[2] M. D. Mueller, D. Hasenfratz, O. Saukh, M. Fierz,

C. Hueglin, Statistical modelling of particle number
concentration in zurich at high spatio-temporal res-
olution utilizing data from a mobile sensor network,
Atmospheric Environment 126 (2016) 171–181.

[3] L. Akoglu, C. Faloutsos, Rtg: a recursive realistic
graph generator using random typing, in: Joint

European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2009,
pp. 13–28.

[4] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-mat: A
recursive model for graph mining, in: Proceedings
of the 2004 SIAM International Conference on Data
Mining, SIAM, 2004, pp. 442–446.

[5] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Falout-
sos, Z. Ghahramani, Kronecker graphs: An ap-
proach to modeling networks, Journal of Machine
Learning Research 11 (2010) 985–1042.

[6] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, A
scalable generative graph model with community
structure, SIAM Journal on Scientific Computing
36 (2014) C424–C452.

[7] S. Edunov, D. Logothetis, C. Wang, A. Ching, M. Ka-
biljo, Darwini: Generating realistic large-scale so-
cial graphs, arXiv preprint arXiv:1610.00664 (2016).

[8] G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher,
A. Lemay, N. Advokaat, gmark: Schema-driven
generation of graphs and queries, IEEE Transac-
tions on Knowledge and Data Engineering 29 (2016)
856–869.

[9] P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic
blockmodels: First steps, Social networks 5 (1983)
109–137.

[10] B. Karrer, M. E. Newman, Stochastic blockmodels
and community structure in networks, Physical
review E 83 (2011) 016107.

[11] B. Kamiński, P. Prałat, F. Théberge, Artificial bench-
mark for community detection (abcd): Fast ran-
dom graph model with community structure, arXiv
preprint arXiv:2002.00843 (2020).

[12] P. Holme, Modern temporal network theory: a
colloquium, The European Physical Journal B 88
(2015) 234.

[13] E. Pitoura, Historical graphs: models, storage, pro-
cessing, in: European Business Intelligence and Big
Data Summer School, Springer, 2017, pp. 84–111.

[14] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, E. Chen, W. Chen, Immortal-
graph: A system for storage and analysis of tempo-
ral graphs, ACM Transactions on Storage (TOS) 11
(2015) 1–34.

[15] U. Khurana, A. Deshpande, Storing and analyz-
ing historical graph data at scale, arXiv preprint
arXiv:1509.08960 (2015).

[16] M. Haeusler, T. Trojer, J. Kessler, M. Farwick,
E. Nowakowski, R. Breu, Chronograph: A ver-
sioned tinkerpop graph database, in: International
Conference on Data Management Technologies and
Applications, Springer, 2017, pp. 237–260.

[17] F. Chung, L. Lu, The average distances in random
graphs with given expected degrees, Proceedings of
the National Academy of Sciences 99 (2002) 15879–

15882.
[18] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R.

Spillane, J. Vijayan, J.-H. Hwang, W.-S. Han, The
g* graph database: efficiently managing large dis-
tributed dynamic graphs, Distributed and Parallel
Databases 33 (2015) 479–514.

[19] M. Then, T. Kersten, S. Günnemann, A. Kemper,
T. Neumann, Automatic algorithm transformation
for efficient multi-snapshot analytics on temporal
graphs, Proceedings of the VLDB Endowment 10
(2017) 877–888.

[20] C. Ren, E. Lo, B. Kao, X. Zhu, R. Cheng, On querying
historical evolving graph sequences, Proceedings
of the VLDB Endowment 4 (2011) 726–737.

[21] W. Aiello, F. Chung, L. Lu, A random graph model
for power law graphs, Experimental Mathematics
10 (2001) 53–66.

[22] F. Chung, L. Lu, Connected components in ran-
dom graphs with given expected degree sequences,
Annals of combinatorics 6 (2002) 125–145.

[23] P. Erdos, A. rényi on random graphs i, Publ. Math.
Debrecen 6 (1959) 290–297.

[24] M. E. Newman, D. J. Watts, S. H. Strogatz, Random
graph models of social networks, Proceedings of the
national academy of sciences 99 (2002) 2566–2572.

[25] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya,
A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud,
H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet,
A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard,
A. Tong, T. Vayer, Pot: Python optimal transport,
Journal of Machine Learning Research 22 (2021)
1–8. URL: http://jmlr.org/papers/v22/20-451.html.

[26] M. Bastian, S. Heymann, M. Jacomy, Gephi: an open
source software for exploring and manipulating
networks, in: Third international AAAI conference
on weblogs and social media, 2009.

[27] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefeb-
vre, Fast unfolding of communities in large net-
works, Journal of statistical mechanics: theory and
experiment 2008 (2008) P10008.

[28] F. Chung, F. R. Chung, F. C. Graham, L. Lu, K. F.
Chung, et al., Complex graphs and networks, 107,
American Mathematical Soc., 2006.

[29] A. Pinar, C. Seshadhri, T. G. Kolda, The similarity
between stochastic kronecker and chung-lu graph
models, in: Proceedings of the 2012 SIAM Interna-
tional Conference on Data Mining, SIAM, 2012, pp.
1071–1082.

[30] M. Winlaw, H. DeSterck, G. Sanders, An in-depth
analysis of the chung-lu model, Technical Report,
Lawrence Livermore National Lab.(LLNL), Liver-
more, CA (United States), 2015.

[31] O. Benyahia, C. Largeron, B. Jeudy, O. R. Zaïane,
Dancer: Dynamic attributed network with com-

http://jmlr.org/papers/v22/20-451.html

munity structure generator, in: Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, 2016, pp. 41–44.

[32] F. Gursoy, B. Badur, A community-aware network
growth model for synthetic social network genera-
tion, arXiv preprint arXiv:1901.03629 (2019).

[33] A. Aghasadeghi, J. Stoyanovich, Generating evolv-
ing property graphs with attribute-aware preferen-
tial attachment, in: Proceedings of the Workshop
on Testing Database Systems, 2018, pp. 1–6.

[34] K. Alami, R. Ciucanu, E. M. Nguifo, Synthetic graph
generation from finely-tuned temporal constraints.,
in: TD-LSG@ PKDD/ECML, 2017, pp. 44–47.

[35] B. Duan, W. Luo, H. Jiang, L. Ni, Dynamic social
networks generator based on modularity: Dsng-
m, in: 2019 2nd International Conference on Data
Intelligence and Security (ICDIS), IEEE, 2019, pp.
167–173.

	1 Introduction
	2 Overview
	3 Graph generation with given expected degree distribution
	4 Community-aware graph generation with given expected degree distribution
	4.1 Stochastic block model
	4.2 Stochastic block model with given degree distribution
	4.3 Hierarchical community structure

	5 Relative graph generation
	5.1 Earth mover's distance
	5.2 Baseline relative graph generation
	5.3 Relative community-aware graph generation
	5.4 Accuracy of the generation procedure

	6 Experimental evaluation
	6.0.1 Experimental setup
	6.0.2 Preliminaries
	6.1 Controlling the evolution of the degree distribution
	6.2 Controlling the community structure of the generated graphs
	6.3 Generating graphs with deletions between snapshots
	6.4 Accuracy of the generation procedure

	7 Related work
	8 Conclusion

