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Abstract. The Coq Platform is a continuously developed distribution
of the Coq proof assistant together with commonly used libraries, plug-
ins, and external tools useful in Coq-based formal verification projects.
The Coq Platform enables reproducing and extending Coq artifacts in
research, education, and industry, e.g., formalized mathematics and ver-
ified software systems. In this paper, we describe the background and
motivation for the Platform, and outline its organization and develop-
ment process. We also compare the Coq Platform to similar distributions
and processes in the proof assistant community, such as for Isabelle and
Lean, and in the wider open source software community.

Keywords: Coq · proof assistants · software engineering · software de-
livery · reproducible builds.

1 Introduction

The Coq proof assistant [10] provides a formal language to write datatypes, func-
tions, and theorems, together with an environment for semi-interactive develop-
ment of machine-checked proofs. Typical applications of Coq are in formalization
of mathematics [16] and formal verification of software [19,1].

The Coq Platform (Platform for short) is a continuously developed distribu-
tion of Coq together with many commonly used Coq libraries and Coq plugins.
The Platform also provides several external tools, e.g., for proof search and au-
tomation [12] and build management [14]. In addition to the latest version of
Coq, each Platform release supports several previous Coq versions. Thanks to
Coq’s code compatibility policy, this ensures that both new and legacy Coq-
based artifacts in research, education, and industry can be reliably reproduced,
and when necessary, upgraded and extended.

In this paper, we describe the background and motivation for the Platform,
which arguably traces its origin to a collection of standalone libraries (“Contribs”)
from 1993. We then outline the Platform’s organization and development pro-
cess. Through the adoption of Coq Enhancement Proposal (CEP) 52 in 2021 [27],



2 K. Palmskog, E. Tassi, and T. Zimmermann

Platform development has become an integrated part of the development process
of Coq itself, with Coq core team members comprising half the Platform team.
The Platform also provides release coordination for projects in the Coq ecosys-
tem, both explicitly by asking maintainers for Platform project releases, and
implicitly by new Platform releases prompting releases of non-Platform projects.

Finally, we compare the Platform to similar initiatives for reliably reproduc-
ing software artifacts, both in the proof assistant community and in the wider
open source software community. Our description and comparisons are based on
Platform release 2022.01.0 [4], which provides Coq versions 8.12 to 8.15, along
with up to 50 curated and tested packages for each version.

2 Coq Overview

Coq is a proof assistant based on type theory, implemented mainly in the OCaml
programming language. Coq was first publicly released in 1989, and is currently
maintained as open source software on GitHub [5]. To end users, Coq provides
an environment for purely functional programming, along with facilities for spec-
ification, reasoning, and proof checking. Coq consists of several parts:

– Coq’s surface-level language is the vernacular, which is an extensible lan-
guage of commands written as a sequence of sentences. Commands can be
queries into definitions, declarations of new definitions (e.g., of functions or
datatypes) using the Gallina language, or proof tactics to run.

– Coq elaborates user-written vernacular into a logical formalism, which is
an extension of the Calculus of Inductive Constructions [11], a powerful
foundational theory of dependent types.

– After elaboration, Coq’s kernel certifies that a term has a proposed type. For
example, a type may be the statement of a theorem, and the term its proof.

Both Coq’s elaborator and kernel can take significant time to execute for
some vernacular code, e.g., due to long-running custom tactics that build terms
or heavy use of Coq’s built-in proof search methods. Moreover, Coq tactic com-
mands (proof scripts) are seldom written to explicate the intuition behind proofs.
Consequently, a user may not be convinced that a formal Coq proof (term) of a
statement (type) exists unless it is reproducible locally. Hence, a typical mode
of use of Coq is to check publicly available vernacular code related to specific
applications in mathematics and computer science.

However, Coq code usually depends on many third-party libraries in addition
to Coq’s own standard library (Stdlib). For example, Stdlib contains formaliza-
tions of natural numbers, integers, and real numbers, but formalizations of float-
ing points and regular expressions are found in other libraries [13,2]. Similarly,
the built-in proof automation is often supplemented by tactics defined in plugins.

The Platform provides a way to install Coq and a curated selection of such
libraries and plugins in a controlled way. Notably, the Platform provides the
CompCert C compiler [19], the Verified Software Toolchain [1], and their de-
pendencies, enabling formal verification of functional correctness of C programs
down to the instruction set architecture (ISA) level in Coq.
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Coq’s code compatibility policy. Vernacular code that can be fully checked (com-
piled) on a Coq major version, e.g., 8.11, is not guaranteed to work on the next
major version, e.g., 8.12. However, since 2015, Coq development follows a com-

patibility policy [9,29] which makes compilation errors for legacy code on new
versions predictable in most cases. The policy essentially says that:

– It should be possible to be compatible with two successive major versions.
– Features should be deprecated in one major version before removal.
– Developers should provide an estimate of the required effort to fix a project

with respect to a given change in Coq.
– Breaking changes should be clearly documented in the public release notes,

along with recommendations on how to fix a project if it breaks.

This means, for example, that a Coq artifact compatible with Coq 8.13 can
with reasonable effort be made compatible first with 8.14 and then 8.15, using
detailed instructions from deprecation warnings and release notes.

3 Platform Usage

Since 2021, the Platform is the recommended way to install Coq on Coq’s web-
site [8], since the Platform can accommodate a large range of use cases across
variants of Windows, macOS, and Linux:

– Binary installers are the simplest and fastest way for a new user to get a
working installation of Coq together with many third-party packages. How-
ever, its main limitation is that it is not customizable, i.e., users cannot
change the set of packages available to them.

– Interactive scripts provide a cross-platform solution to get Coq and third-
party packages installed with the opam package manager [23], by handling
the installation of any required system dependencies and running the appro-
priate opam commands. After basic installation, users can customize the set
of available packages (and their versions) by using opam directly.

Hence, as long as people using the scripts are not editing the resulting set of
packages, the Platform provides a reliable cross-platform solution for ensuring
that people running different operating systems get the same set of Coq package
versions. This can simplify the life of professors teaching Coq to their students,
but also of scientific reviewers trying to reproduce a Coq artifact. However, com-
patibility between packages is only assured when using Platform release package
versions. Customizing package versions may lead (back) to “dependency hell” [1].

4 Platform History and Goal

4.1 Coq Contribs and the Coq opam archive

Coq Contribs (CCs), which are a collection of standalone libraries and plugins
for Coq, have been around since 1993 [29]. CCs followed a model where the
author of a Coq artifact hands over all maintenance to Coq developers.
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CCs were always available for public download, but the repository hosting
them was private in the sense that no contributor other than the Coq develop-
ers had write access (thus, excluding the original author). Consequently, active
projects lived outside of this walled garden, possibly leading to split evolution.

Around 2013, Thomas Braibant came up with the idea of using OCaml’s
package manager, opam [23], for Coq packages. This idea was implemented one
year later by Guillaume Claret and the second author of this paper in the form
of the Coq opam archive on GitHub [6] and the Coq Package Index [7], which
together have supplanted the (now stale) CCs. Officially adopting a package
manager greatly simplified the distribution of libraries from Coq users to other
Coq users, and currently the Coq opam archive hosts thousands of packages, in-
cluding most of the current Platform packages. The remaining Platform packages
are hosted in the general OCaml opam archive.

4.2 Coq’s Windows installer

Historically, Coq has primarily been developed for Unix-like operating systems,
and its implementation language OCaml has had limited Windows support. As
a result, it was always necessary to provide a pre-built Windows installer.

In 2017, Michael Soegtrop started to include third-party Coq packages into
the Windows installer to encourage evaluation and eventually adoption of Coq
in industry. He also started to distribute the sources that were used to build the
installer for reproducibility (and licensing) concerns. This augmented installer
received positive feedback, in particular from non-academic users. In fact, many
users would not consider using any library not part of the installer—both due
to installation difficulty and the risk of unavailability for new Coq versions.

In 2019, following various discussions and experimentations, Soegtrop an-
nounced the Platform project at a meeting of Coq developers in Nantes, and
published the first revision of its charter [24]. This charter was inspired by pre-
vious work on the Windows installer, but extended its scope to also support
macOS and Linux and include additional packages.

Up until the release of Coq 8.12 in summer 2020, the Coq release process
included the task of building the Windows installer and a macOS dmg archive.
The effort of this task had grown considerably over time, and the skills and
motivation needed in order to fix related problems were not abundant in the Coq
core team (from which the Coq release managers are chosen). In addition, the
fact that the Windows installer shipped with several external packages created a
synchronization problem, since Coq developers had to select compatible versions
of some packages before the corresponding Coq release.

At the time when Coq 8.13 was supposed to be released, in January 2021,
the Coq scripts to build binary installers were not functional any more, while
the Platform installers were functional. As a result, 8.13 was the first release
of Coq where binary packages were built using the Platform. These events led
to the publication of CEP 52 [27] by the second author, which documents how
the release of Coq and the release of the Platform is currently organized; this is
described in detail in Section 5.1.
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4.3 Platform goal and problems addressed

The current goal of the Platform is to provide a distribution for developing
and teaching with Coq that is operating-system independent, dependable, easy

to install, and comprehensive. As part of the process of achieving this goal, we
believe the Platform can partially address a number of long-standing problems
that we have experienced in the Coq community and ecosystem:

Release coordination. Coq libraries may not provide releases for a new Coq
version. By being included in the Platform, project maintainers are incen-
tivized to provide releases and can more easily collaborate with Coq devel-
opers and users to support new Coq versions.

Compatibility. Coq libraries and plugins may not provide mutually compatible
releases. In the Platform, packages are continually tested for compatibility,
and Platform releases do not include mutually exclusive packages.

Build automation. Many Coq projects do not use best practices for Coq build-
ing and testing, and may not work across different operating systems. The
Platform can help disseminate knowledge of such practices, and tests its
packages on several operating systems.

Reproducibility of research artifacts. Coq research artifacts have histori-
cally been distributed as opaque vernacular file collections (e.g., tarballs)
without explicit Coq version compatibility. By advising authors to target
and document a specific Platform release, scientific venues can ensure Coq
artifact reproducibility.

Upgrade paths between Coq versions. Coq users may hold off upgrading
to a new Coq version because one of the libraries they depend on is not
available. The Platform aims to provide an upgrade path from one Coq
version to another with a consistent collection of packages that should only
increase over time. To ensure this, authors of packages that join the Platform
must agree to a form of social contract, which, e.g., entails making timely
releases and collaborating with the Platform maintainers to solve user issues.

5 Platform Development and Organization

5.1 Platform development and release process

Ever since the adoption of CEP 52, the release processes of Coq and the Platform
(and its binary installers) follow approximate 6-month cycles and are handled
separately, by different, possibly overlapping, teams. This simplifies the tasks of
Coq release managers, who can focus on the piece of software they know best.

The work of the Coq Platform team begins when the Coq core team publishes
a new major Coq version release candidate, on top of which the Platform can
then be built. When the new stable Coq version is finalized a few weeks later,
it is not announced to the user community; this happens only when the Coq
version becomes included in a Platform release.

In order to produce a new Platform release, maintainers of Platform pack-
ages need to be involved. As soon as a Coq release candidate is published, it
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is made available in a development-only opam repository, and corresponding
Docker images are built to facilitate compatibility testing in continuous integra-
tion workflows. The maintainers of packages that are part of the Platform are
informed by the Platform team that a new release is happening and that their
participation is needed to determine the version of their package that will be
included. Based on the tests performed on the Platform (see Section 5.3), they
may be informed that a certain package version or commit is already compatible,
or that there are no known compatible version of their packages. In both cases,
they should decide which version they would like to have included, and make a
new package release if needed. So far, for three Platform releases, the community
of package maintainers has been responsive to this call, accepting the proposed
version or providing a new working version in a matter of weeks, although, for a
few large and complex packages, the Platform team had to assist the developers.

5.2 Platform versioning scheme and organization

During the process of adopting CEP 52, it was decided that the Platform would
use a calendar-based versioning scheme, independent of the Coq versions it in-
cludes, to reflect that the Platform is a distribution, not only of Coq, but also of
many other packages that have their own release cycle. Since September 2021,
this has allowed an additional (technical and organizational) change in the way
the Platform is maintained and published. Instead of being tied to a specific Coq
version, Platform releases now include several “package picks”, and the user can
decide which one to install by selecting the appropriate binary installer, or the
appropriate option in the interactive scripts.

This change serves several purposes. From the user point of view, old package
picks are still available in the next versions of the Platform, and thus users
can always rely on the latest version. The interactive scripts make it possible
to install several picks in parallel, and thus, this provides a smooth upgrade
experience from one pick (and one Coq version) to the next. From the Platform
maintainers’ point of view, this allows maintaining several Coq versions and
package picks as part of a single branch, and thus to factorize any improvements
to the infrastructure, but also any fixes that are independent of the Coq version
(for instance, when a new Cygwin version or Ubuntu Linux version introduces
changes that break the compilation of Coq dependencies, such as OCaml).

5.3 Platform continuous integration and delivery

The Platform repository uses GitHub Actions for continuous integration and
delivery (CI/CD). Initially, CI/CD only built binary installers for Windows.
Then, it was then extended to build the MacOS dmg and finally a Snap package
for Linux. CI/CD is also used to test the interactive installers. The Platform
finally includes a “smoke test kit”, a test suite that runs after exercising the
binary installers. The test suite checks that Coq and all included packages can be
actually loaded and used, which can catch problems in the installers themselves.
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CI was also greatly simplified when the same branch and scripts were able
to support multiple package picks. The CI configuration files are thus factorized
as well, and rely on the common “matrix” feature to test multiple picks.

Finally, users have used the CI/CD setup to build custom Platform installers,
typically to override package versions and include extra packages for teaching
purposes. By forking the repository, performing changes to the package pick
definitions, and then letting CI run (in their fork or in a draft pull request
on the main repository), they can produce binary installers for all the major
operating systems, without needing to have these systems at hand.

6 Platform Role in the Coq Ecosystem

Historically, CCs served several roles at once: distribution of third-party devel-
opments to the users, long-term maintenance, and testing. In the Coq ecosystem
as of early 2022, these roles have been split into three parts:

Coq Package Index. The main channel for distributing third-party Coq pack-
ages is using the opam-based Coq Package Index. In contrast to CCs, the
source code for a package in the index is under the full control of its authors.

Coq-community. Useful packages may stop being maintained by their original
authors, e.g., when produced for a research paper or as part of a PhD thesis.
When this happens, interested users can carry on maintenance by adopting
the package in the Coq-community organization on GitHub [3]. As of 2022,
Coq-community hosts around 60 projects maintained by around 30 people;
around 20 projects are former CCs.

Coq’s CI test suite. Coq developers test their changes to Coq against a test
suite consisting of many (actively maintained) external projects. When they
decide to merge a change that breaks a project in this suite, they write
compatibility fixes for this project and submit it to the project’s maintainers.
This means that, in practice, Coq developers still participate to the long-
term maintenance of some important Coq packages. However, they are only
responsible for producing compatibility fixes, but the roadmap and evolution
of the packages and their release schedule still remain under the control of
their original authors (or current maintainers).

In this context, the role of the Platform is not only to provide a convenient
way to install Coq along with packages found on the Coq Package Index, but also
to curate generally useful packages whose maintainers agree to the Platform’s so-
cial contract. The coordination signals transmitted by Platform releases also help
the Coq ecosystem catch up to new versions more quickly than previously, when
few packages were compatible with a new Coq version following its release [17].

As Coq projects evolve, they may become incompatible with other (depen-
dent) projects, e.g., due to breaking changes that are difficult to accommodate.
Since maintainers of such projects have committed to long-term Platform in-
clusion, they have an incentive to find solutions to these issues together with
Platform maintainers, e.g., through the introduction of new packages that facil-
itates slow-paced user migration away from a legacy package.
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7 Comparisons

7.1 Ecosystem-specific platforms and distributions

The Coq Platform is comparable to many similar software “platforms” and dis-
tributions which it takes inspiration from (e.g., the Haskell Platform, the Scala
Platform, and TeXLive). These distributions are all centered around the concept
of making it easier to access a collection of third-party packages and providing
a “batteries included” experience to beginners.

However, while some distributions such as TeXLive have been largely success-
ful, some others have not: the Haskell Platform was deprecated in 2022. Many
technical and social factors can enter into consideration and result in eventual
failure or success, and the reasons why the Haskell Platform was deprecated are
not documented. Nevertheless, the Haskell ecosystem has another similar main-
tained solution for providing packages with compatible versions: Stackage [26].
Similarly to the Coq Platform, Stackage is based on a social contract [25].

7.2 Linux distributions

Linux distributions provide consistent sets of packages for important software
suites, including proof assistants such as Coq, and sometimes also libraries. How-
ever, in rapidly evolving ecosystems, it quickly becomes impossible to provide
a large set of compatible libraries without coordination with their maintainers.
When coordination mechanisms are put in place (such as with the Coq Plat-
form, or with Stackage), this can provide ways for distribution maintainers to
provide a larger set of packages, by relying on the documented sets of compati-
ble versions. This is why Linux distributions virtually always provide a package
for TeXLive. Similarly, we expect that (if there was enough interest for Coq li-
braries), distribution maintainers could provide packages matching the content
of the Platform. We aim to provide documentation to facilitate this endeavor.

7.3 Isabelle and the Archive of Formal Proofs

The Isabelle generic proof assistant, and in particular its Isabelle/HOL instan-
tiation, are the basis for the Archive of Formal Proofs (AFP) [15]. Entries to
the AFP are submitted by authors and then reviewed both on content and using
technical criteria. Updates to AFP entries are primarily done by Isabelle develop-
ers when code breaks due to Isabelle evolution, rather than by the authors of the
entries. While some Coq developers participate in Platform maintenance, they
normally only update projects that are in Coq’s CI test suite; not all Platform
projects are in this test suite, and it contains many non-Platform projects.

The focus in the Platform is on including generally useful libraries, plugins,
and tools—not novel research artifacts that are a focus of the AFP. Coq research
artifacts can instead be submitted to the Coq opam archive. However, the Coq
opam archive maintainers only perform minimal reviewing and updating of sub-
mitted packages. Each Platform release includes several Coq versions, while the
AFP works with a single Isabelle version at any given time.
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7.4 Lean and mathlib

The Lean prover [21,22] has similar foundations to Coq, but its development and
ecosystem is differently organized in several important ways. In contrast to Coq,
where developers provide upgrade paths between versions, Lean 3 and Lean 4 are
to a large extent incompatible; support for porting code is nevertheless provided
by tools developed in the Lean user community [18].

Lean has a single significant large library, mathlib [28], that contains an ex-
tensive collection of formalized mathematics and is actively developed in a single
repository on GitHub [20]. The monorepository approach used for mathlib comes
with several advantages, not least of which are avoiding version management.
Coq projects must continually decide whether they should do a release compat-
ible with a new Coq version, while mathlib is continually compatible with the
latest release of Lean 3. The switch of mathlib from Lean 3 to Lean 4 is expected
to happen atomically, rather than using versioning as for Coq libraries.

Thanks to the cross-platform binary format for compiled code used by Lean,
mathlib can be easily distributed both in source and binary form, which generally
leads to a faster setup than for comparable Coq libraries which are compiled from
source. However, we believe the operating-system-specific binary distributions of
the Platform have comparable ease of use.

8 Conclusion

In this paper, we presented the history, current state, and organization of the
Coq Platform, the official distribution of the Coq proof assistant, and its aim to
improve Coq-based artifact reproducibility and solve other coordination prob-
lems in the Coq ecosystem.

In recent years, venues such as POPL, IJCAR, FLOC and ETAPS have seen
an increasing number of submissions supported by Coq artifacts. In specialized
conferences such as CPP and ITP, nearly all submissions come with a proof
assistant artifact as their main contribution, many of which use Coq. We believe
that current standards for evaluating such artifacts are too low even at CPP and
ITP. In particular, there is no strict requirement for the artifact to be reproduced
by the reviewers. In fact, the program committee chairs are usually more than
happy if one reviewer (out of typically three) manages to do it, since recreating
an environment where the artifact can actually be inspected can be extremely
difficult and time consuming.

The Platform will hopefully make the task of evaluating Coq artifacts easier
and quicker, not only in specialized venues, but also in broader ones where
program committee members may have less Coq experience.

Acknowledgements We are grateful to Michael Soegtrop, all members of the
Coq Team, and the developers of all Platform packages. We also thank the Lean
community for feedback.
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