
HAL Id: hal-03583789
https://hal.inria.fr/hal-03583789v2

Submitted on 17 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Meta-features for AutoML
Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle

Sebag, Marc Schoenauer

To cite this version:
Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle Sebag, Marc Schoenauer.
Learning Meta-features for AutoML. ICLR 2022 - International Conference on Learning Representa-
tions (spotlight), Apr 2022, Virtual, United States. �hal-03583789v2�

https://hal.inria.fr/hal-03583789v2
https://hal.archives-ouvertes.fr

Published as a conference paper at ICLR 2022

LEARNING META-FEATURES FOR AUTOML

Herilalaina Rakotoarison1∗ Louisot Milijaona2∗ Andry Rasoanaivo2

Michèle Sebag1 Marc Schoenauer1

1 TAU, LISN-CNRS–INRIA, Université Paris-Saclay, Orsay, France
2 MISA, LMI, Université d’Antananarivo, Ankatso, Madagascar

ABSTRACT

This paper tackles the AutoML problem, aimed to automatically select an ML
algorithm and its hyper-parameter configuration most appropriate to the dataset at
hand. The proposed approach, MetaBu, learns new meta-features via an Optimal
Transport procedure, aligning the manually designed meta-features with the space
of distributions on the hyper-parameter configurations. MetaBu meta-features,
learned once and for all, induce a topology on the set of datasets that is exploited
to define a distribution of promising hyper-parameter configurations amenable
to AutoML. Experiments on the OpenML CC-18 benchmark demonstrate that
using MetaBu meta-features boosts the performance of state of the art AutoML
systems, AutoSkLearn (Feurer et al. 2015) and Probabilistic Matrix Factorization
(Fusi et al. 2018). Furthermore, the inspection of MetaBu meta-features gives
some hints into when an ML algorithm does well. Finally, the topology based
on MetaBu meta-features enables to estimate the intrinsic dimensionality of the
OpenML benchmark w.r.t. a given ML algorithm or pipeline.

1 INTRODUCTION

Getting the peak performance of an algorithm portfolio on a particular problem instance is acknowl-
edged a main bottleneck in domains ranging from Constraint Programming and Satisfiability to
Machine Learning (Rice, 1976; Hutter et al., 2009; Stern et al., 2010; Kotthoff, 2014; Bergstra et al.,
2011; Feurer et al., 2015; Hazan et al., 2018; Fusi et al., 2018; Yang et al., 2019). Early approaches
have been investigating the use of general performance models (Rice, 1976), estimating a priori the
performance of any algorithm on any problem instance, where each problem instance is described by
a vector of so-called meta-features, and the performance model is learned in this meta-feature space.

In the context of supervised Machine Learning, many meta-features have been manually designed
to describe datasets (Caliński & Harabasz, 1974; Vilalta, 1999; Bensusan & Giraud-Carrier, 2000;
Pfahringer et al., 2000; Peng et al., 2002; Ali & Smith, 2006; Song et al., 2012; Bardenet et al., 2013;
Feurer et al., 2014; 2015; Pimentel & de Carvalho, 2019; Lorena et al., 2019). After a series of
international AutoML challenges, aimed to automating the selection and tuning of ML pipelines1

(Hutter et al., 2019; Guyon et al., 2019), it seems that a general accurate performance model can hardly
be based on these meta-features (Misir & Sebag, 2017) (Section 2): for instance the challenge-winner
AutoSkLearn (Feurer et al., 2015) relies on Bayesian optimization and iteratively learns and exploits
one performance model specific to the dataset at hand; PMF (Fusi et al., 2018) uses a probabilistic
collaborative filtering approach, where the cold-start problem is handled as in AutoSkLearn; OBOE
(Yang et al., 2019) likewise uses a collaborative filtering approach, combined with active learning.

Nevertheless, the definition of good meta-features remains desirable for two reasons. The first
motivation remains to achieve AutoML with a decent performance vs cost trade-off. Relevant
meta-features are expected to define a reliable topology on the dataset space, such that two datasets

∗Equal contribution (herilalaina.rakotoarison@inria.fr and milijaonalouisot@gmail.com).
1An ML pipeline consists of a data preparation stage followed by the model learning stage. Each stage

involves a number of options and a varying number of hyper-parameters, depending on the former selected
options. Terms ML pipeline and ML algorithm will be used interchangeably in the remainder of the paper.

1

mailto:herilalaina.rakotoarison@inria.fr
mailto:milijaonalouisot@gmail.com

Published as a conference paper at ICLR 2022

are close iff the best hyper-parameter configurations for these datasets are close. Such a topology
would support an inexpensive and efficient AutoML strategy: selecting the best hyper-parameter
configurations of the nearest neighbor(s) of the current dataset.
The second motivation is to better understand the dataset space w.r.t. a given ML algorithm, to
estimate its intrinsic dimension and to appreciate the distribution of the ML benchmark suites thereon.

This paper presents the Meta-learning for Tabular Data (METABU) approach, formalizing and
tackling the construction of good meta-features relatively to an ML algorithm A as an Optimal
Transport (OT) problem (Cuturi, 2013; Peyré & Cuturi, 2019). Formally, METABU considers two
representations of the datasets: the basic one consists of 135 manually designed meta-features
(Appendix E). The target one, out-of-reach except for the datasets in the benchmark suite, represents
a dataset as the distribution of the hyper-parameter configurations of A yielding the top performances
for this dataset. Optimal Transport is used to find a linear transformation of the basic meta-features,
such that the resulting Euclidean distance emulates the Wasserstein-Gromov distance (Mémoli, 2011)
on the target representation (Section 3). Overall, Metabu learns once for all new meta-features,
aimed to capture the topology and neighborhoods corresponding to the target representation. These
meta-features can be computed from scratch for each new dataset. This approach contrasts with Yang
et al. (2019) and Fusi et al. (2018) that both require a cold-start phase, launching configurations for
each new dataset and using their performance to find the representation of the new dataset.

The contribution of METABU is threefold. Firstly, the METABU meta-features define an efficient
topology, that can be used to sample the most promising hyper-parameter region for new datasets.
Secondly, the relevance of these meta-features is demonstrated as they can be used as representation
space to initialize AutoSkLearn (Feurer et al., 2014) and PMF (Fusi et al., 2018): the hybrid
approaches AutoSkLearn+METABU and PMF+METABU, are shown to significantly outperform
AutoSkLearn and PMF on the OpenML CC-18 (Bischl et al., 2019) benchmark. Lastly, the approach
provides some hints into the AutoML problem, enabling to estimate the intrinsic dimensionality
(Facco et al., 2017) of the dataset space w.r.t. an ML algorithm: the higher the dimensionality, the
more complex the algorithm. It is interesting to compare the intrinsic dimensions of the OpenML CC-
18 w.r.t. AutoSkLearn (Feurer et al., 2015), SVM (Boser et al., 1992), or Random Forest (Breiman,
2001). Furthermore, the METABU meta-features can be inspected and confirm some "tricks of the
trade" about when an algorithm does well.

The paper is organized as follows. Section 2 briefly discusses related work and introduces OT formal
background for the sake of self-containedness. Section 3 describes the METABU algorithm. In Section
4, the merits of the METABU meta-features are empirically demonstrated on configuration selection
and optimization tasks, comparatively to the state of the art. Lastly, we discuss how the METABU
meta-features provide an interpretable description of the niche of the considered ML algorithms.

2 RELATED WORK AND FORMAL BACKGROUND

AutoML & meta-features Most ML meta-features (Caliński & Harabasz, 1974; Vilalta, 1999;
Bensusan & Giraud-Carrier, 2000; Pfahringer et al., 2000; Peng et al., 2002; Ali & Smith, 2006;
Song et al., 2012; Bardenet et al., 2013; Feurer et al., 2015; 2014; Pimentel & de Carvalho, 2019;
Lorena et al., 2019) have been manually designed to describe supervised datasets based on descriptive
statistics, information theory (quantifying relationships among features/labels), geometrical structure
of the dataset, and landmarking (performance of cheap classifiers such as linear discriminant and
decision trees). In the neighbor fields of Satisfiability or Constraint Programming, circa one hundred
meta-features have also been manually designed (Nudelman et al., 2004; Xu et al., 2008). In contrast
to the efficiency of SAT or CP meta-features however (Kotthoff, 2014), the AutoML search can hardly
rely on the only metric defined from the ML meta-features after (Misir & Sebag, 2017; Muñoz et al.,
2018); in practice, they are often used to initialize the optimization search (Feurer et al., 2015).

Another approach is to learn meta-features, e.g. by making strong assumptions on the performance
model (Hazan et al., 2018) or by leveraging distributional neural networks (de Bie et al., 2019; Maron
et al., 2020). In the latter case, these meta-features are functions of the dataset distribution and consist
of the last layer of a distributional NN trained in view of a particular task. Dataset2Vec (Jomaa
et al., 2021) learns meta-features to detect whether two data patches (subset of samples described
by a subset of features) are extracted from the same whole dataset. OTDD (Alvarez-Melis & Fusi,
2020) uses OT to learn a mapping over the joint feature and label spaces. A significant drawback

2

Published as a conference paper at ICLR 2022

of distributional neural network approaches, limiting their ability to handle general tabular datasets
(with widely varying number of features, missing values, heterogeneous variables) is due to the
shortage of training (meta)-samples. Neural networks notoriously need large amounts of samples
to be efficiently trained, while AutoML benchmarks include less than a hundred datasets. For this
reason, the proposed METABU approach proceeds by building upon existing meta-features.

Optimal Transport Let (Ωx, dx) and (Ωy, dy) denote compact metric spaces, and x and y distri-
butions2 respectively defined on Ωx and Ωy . The search space Γ(x, y) is the space of all distributions
on Ωx × Ωy with marginals x and y. Let the transport cost function c : Ωx × Ωy 7→ IR+ be a scalar
function on Ωx × Ωy

3.

The OT problem consists in finding a distribution in Γ(x, y) yielding a minimal transport cost
expectation (Peyré & Cuturi, 2019); this minimal transport cost expectation defines the Wasserstein
distance of x and y: dqW (x, y) = min

γ∈Γ(x,y)
IE(x,y)∼γ [cq(x, y)]1/q , with q a positive real number, set to

1 in the following.
Another OT-based distance is the Gromov-Wasserstein distance (GW) (Mémoli, 2011), measuring
how well a distribution in Γ(x, y) preserves the distances on both Ωx and Ωy, akin a rigid transport
between both domains: dqGW (x, y) = min

γ∈Γ(x,y)
IE(x,y)∼γ,(x′y′)∼γ [|dx(x, x′)− dy(y, y′)|q]1/q .

The Fused Gromov-Wasserstein (FGW) distance (Titouan et al., 2019) combines both these distances.

Definition 1 The Fused q-Gromov-Wasserstein distance is defined on Ωx × Ωy as follows:

dqFGW ;α(x, y) = min
γ∈Γ(x,y)

(1− α)

 ∫
Ωx×Ωy

cq(x, y)dγ(x, y)

1
q

︸ ︷︷ ︸
Wasserstein Loss

+ α

 ∫
Ωx×Ωy

∫
Ωx×Ωy

|dx(x, x′)− dy(y, y′)|qdγ(x, y)dγ(x′, y′)

1
q

︸ ︷︷ ︸
Gromov-Wasserstein Loss

(1)

α ∈ [0, 1] is a trade-off parameter: For α = 0 (resp. α = 1), the fused q-Gromov-Wasserstein
distance is exactly the q-Wasserstein distance dqW (resp. the q-Gromov-Wasserstein distance dqGW).

The Wasserstein distance and variants thereof have been successfully used to evaluate the "alignment"
among datasets, e.g. between the source and the target datasets in the context of domain adaptation
(Courty et al., 2017) or transfer learning (Alvarez-Melis & Fusi, 2020). FGW distance has been used
to enforce the consistency of the latent space when jointly training several Variational Auto-Encoders
(Xu et al., 2020; Nguyen et al., 2020). METABU will likewise take inspiration from OT to create a
bridge between two representations of the datasets: the basic one, and the target one, critically using
both GW and FGW distances.

3 OVERVIEW OF METABU

Let A and ΘA respectively denote an ML pipeline and its hyper-parameter configuration space;
subscript A is omitted when clear from the context. Space Θ is embedded into the a-dimensional
real-valued space IRa, using a one-hot encoding of Boolean and categorical hyper-parameters. After
describing the principle of the approach, some key issues are detailed: the augmentation of the
AutoML benchmark to avoid overfitting, and the setting of the number d of the METABU meta-
features, estimated from the intrinsic dimensionality of the AutoML benchmark suite.

2Distributions will be denoted in boldface
3When Ωx = Ωy = Ω, unless otherwise stated, the transport cost c(x, y) is the Euclidean distance d(x, y).

3

Published as a conference paper at ICLR 2022

Principle. Intuitively, two representations can be associated with a dataset: The basic represen-
tation x ∈ IRD of a dataset reports the values of the D manually designed meta-features for this
dataset. By construction, it can be cheaply computed for any dataset. The target representation z
of a dataset is the distribution on the space Θ supported by the configurations yielding the best
performances on this dataset. This precious target representation is unreachable in practice, but can
be approached after the performances of the models learned with a number of configurations (aka
configuration performances) have been assessed. In practice, the configuration performances are only
available for a small number n of datasets (more below). The difference between the basic and the
target topologies is depicted on Fig. 1, in Θ space (projected on first two PCA eigenvectors).

Figure 1: Top configurations of datasets
A, B, and C, where B, in orange (resp.
C, in green) is the nearest neighbor of A
w.r.t. target (resp. basic) representation.

In order to build a bridge between both representations,
let us consider an intermediate representation derived
from the target representation, mapping each (zi)1≤i≤n on
some ui ∈ IRd using a distance-preserving projection, e.g.
Multi-Dimensional Scaling (MDS) (Cox & Cox, 2001).
METABU tackles an Optimal Transport problem so as to
learn a mapping ψ : IRD 7→ IRd from the basic representa-
tion on the projected target representation space such that
the ψ(xi)1≤i≤n are aligned with the uis in the sense of
the q-Fused Gromov-Wasserstein distance (Section 2). In
brief, mapping ψ sends the basic meta-feature space on
IRd, such that the Euclidean metric on the ψ(xi) reflects
the Euclidean metric on the uis, itself reflecting the metric
on the target zis. The descriptive features of the ψ(xi),
referred to as METABU meta-features, are meant to both be cheaply computable from the basic
meta-features, and define a Euclidean distance conducive to the AutoML task.

Augmenting the AutoML benchmark. The OpenML CC-18 (Bischl et al., 2019), to our knowl-
edge the largest curated tabular dataset benchmark (that will be used in the experiments), contains
n = 72 classification datasets; the target representation is available for 64 of them. The shortage of
such datasets yields a risk of overfitting the learned meta-features. This challenge is tackled by aug-
menting the OpenML CC-18 benchmark suite, using a bootstrap procedure (Efron, 1979).4 The goal
is to pave the meta-feature space more densely and more accurately than through e.g., perturbing the
basic representation with Gaussian noise (the visualization of the augmented benchmark is displayed
on Fig. 6, Appendix A).

The algorithm The algorithm is provided the p = 1, 000× n training datasets of the benchmark
suite, augmented as described above (pseudo-code in Appendix B). The METABU meta-features are
constructed in a 3-step procedure, illustrated on Fig. 2:

Step 1: Target representation and Wasserstein distance. Considering the i-th training dataset, let
Θi ⊂ T denote the set of hyper-parameter configurations with performance in the top-L known
configuration performances (L = 20 in the experiments).5
The target representation zi of the i-th dataset is the discrete distribution with support Θi. The
distance d1

W (zi, zj) is the 1-Wasserstein distance among distributions (Section 2).

Step 2: Projecting the target representation on IRd. The second step consists in projecting the zis
on IRd, where d is identified using an intrinsic dimensionality procedure (details below), using
Multi-Dimensional Scaling (Cox & Cox, 2001), such that the distance d(ui, uj) approximates the
1-Wasserstein distance d1

W (zi, zj) (Fig. 2, leftmost and second subplots). Note that by construction,
the uis are defined up to an isometry on IRd.

4For each `-size dataset E in the benchmark suite, K = 1, 000 new datasets F1, . . . FK are generated, where
Fi includes ` examples selected in E uniformly with replacement. The basic representation of Fi is computed,
and its target representation is set to that of E.

5Early attempts to define Θi in a more sophisticated way, e.g. using t-test to distinguish the "good"
configurations from the others, led to an uninformative target representation. A tentative interpretation for this
fact is that quite a few OpenML datasets are very easy, leading to retain all configurations for these datasets and
blurring the target representation.

4

Published as a conference paper at ICLR 2022

Metabu Representation

FGW loss (Eq. 2)

Basic RepresentationTarget Representation

E
m

be
dd

in
g

STEP 1

STEP 2

STEP 3

Figure 2: From basic to METABU meta-features using Fused Gromov-Wasserstein. Basic (respectively
METABU) representations are depicted by circles (resp. squares). Target representations are depicted
in the leftmost subplot. Neighbor datasets in the target space have same color in all subplots.

Step 3: Learning the METABU meta-features. Let x = 1
p

∑p
i=1 δxi

denote the uniform discrete
distribution on IRD whose support is the set of p datasets using their basic representations.
Let u = 1

n

∑n
i=1 δui

denote the uniform discrete distribution on IRd whose support is the set of uis
defined above. The METABU meta-feature space is built by finding a mapping ψ from IRD on IRd

that pushes the representation metric on IRd, that is, such that the image of x via ψ is as close as
possible to u, and reflects its topology in the FGW sense (Fig. 2, rightmost and third subplots).

Formally, let ψ]x
def
= 1

p

∑p
i=1 δψ(xi) be the push-forward distribution of x on IRd for a given ψ. The

overall optimization problem is to find a mapping ψ∗ that minimizes the FGW distance between the
u distribution and the push distribution ψ∗#x:

ψ∗ = arg min
ψ∈Ψ

dFGW ;α (ψ]x,u) + λ‖ψ‖ (2)

with λ the regularization weight and ‖ψ‖ the norm of the ψ function. Note that, as u and ψ#x are
distributions on the same space IRd, the transport cost c is the Euclidean distance on IRd.

In the following, only linear mappings ψ are considered for the sake of avoiding overfitting and
facilitating the interpretation of the METABU meta-features w.r.t. the manually designed meta-features.
The norm of ψ is set to the L1 norm of its weight vector.

Taking inspiration from Xu et al. (2020), the efficient optimization of Eq. 2 is achieved using a bilevel
optimization formulation. For a given ψ, the inner optimization problem consists of minimizing
dFGW,α(ψ]x,u) (Eq. 1). This problem is solved using a proximal gradient method (Xu et al., 2019),
along an iterative approach: given an estimation of the transport map γ(t), a sub-problem is defined to
refine γ, it is solved using the Sinkhorn algorithm (Cuturi, 2013), and its solution is used to compute
γ(t+1) (the number of iterations is set to 10 in the experiments).
The outer optimization problem consists of optimizing ψ: The transport matrix γ is treated as a
constant, and the outer objective function (Eq. 2) is solved with ADAM optimizer (Kingma & Ba,
2015) with learning rate 0.01, α = 0.5 and λ = 0.001.

Intrinsic dimension of the space of datasets The main hyper-parameter of METABU is the number
d of meta-features needed to approximate the target representation. Indeed, d depends on the
considered algorithm A: the more diverse the target representations associated with datasets, the
harder the AutoML problem, the higher d needs to be. In the other extreme case (all datasets have
similar target representations), the AutoML problem becomes trivial.

To our best knowledge, measuring the intrinsic dimension of the dataset space w.r.t. a learning
algorithm has not been tackled in the literature. The approach proposed to do so builds on Levina &
Bickel (2005) and (Facco et al., 2017), exploiting the fact that the number of points in a hypersphere
of radius r in dimension d increases like rd. Formally, to each sample x is associated its first and
second nearest neighbors, respectively noted x(1) and x(2) and let µ(x) = d(x,x(2))

d(x,x(1))
be the ratio of

their distances to x. With no loss of generality, the samples are ordered by increasing value of µ (i.e.,
µ(xi) ≤ µ(xj) for all i < j). Let d be the slope of the linear approximation of the 2D curve defined
by {(log(µ(xi)),−log(1− i

m+1), 1 ≤ i ≤ m}. Then d provides a guaranteed approximation of the

5

Published as a conference paper at ICLR 2022

intrinsic dimensionality of the manifold where the xis family lives (Facco et al., 2017).
It is commonplace to say that the good distance between any two items depends on the considered
task. The original approach used in METABU in order to estimate the intrinsic dimensionality of the
dataset space, is to set the distance of two datasets to the 1-Wasserstein distance among their target
representations.

4 EXPERIMENTS

All materials (code, data, and instructions) are made available at https://github.com/luxusg1/metabu.
Runtimes are measured on an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz.

4.1 EXPERIMENTAL SETTINGS

Goals of experiment. The first goal is to assess the dataset neighborhoods induced by the METABU
meta-features (constructed on the top of the manually designed 135 meta-features from the literature)
and the relevance of these dataset neighborhoods w.r.t. the AutoML problem. The performances
are assessed against three baselines: AutoSkLearn meta-feature set (Feurer et al., 2014), Landmark
(Pfahringer et al., 2000) and SCOT (Bardenet et al., 2013) meta-feature sets. All meta-feature sets are
detailed in Appendix E. For Tasks 2 and 3 (see below), an additional baseline is based on the uniform
sampling of the hyper-parameter configuration space, for sanity check.
The second goal of experiments is to assess the sensitivity of METABU w.r.t. its own two hyper-
parameters, the weight α used to balance the importance of the Wasserstein and Gromov-Wasserstein
distances in FGW (Eq. 1), and the regularization weight λ involved in the optimization of ψ (Eq. 2).
The third goal is to gain some understanding of the dataset landscape, and see whether the METABU
meta-features give some hints into when a given ML algorithm or pipeline does well (its niche).

Performance indicators. Three tasks are considered to investigate the relevance of the METABU
meta-features. The performance indicators are measured using a Leave-One-Out process (detailed in
Appendix C).

Task 1: Capturing the target topology. For each test dataset, one considers its nearest neighbors w.r.t.
the target topology (the 1-Wasserstein metric on the target representation), and its nearest neighbors
w.r.t. the Euclidean distance on the METABU and meta-feature sets. The alignment between both
ordered lists is measured using the normalized discounted cumulative gain over the first k neighbors
(NDCG@k) (Burges et al., 2005), with 5 ≤ k ≤ 35. The performance indicator is the NDCG@k
averaged on test datasets.

Task 2: AutoML with no performance model (Initialization). For each test dataset and each meta-
feature set mf , let zmf be the distribution on the considered hyper-parameter configuration space:

zmf =
1

Z

10∑
i=`

exp(−`) z`

where z` is the target representation of the `-th neighbor of the dataset w.r.t. Euclidean distance on the
mf space, and Z a normalization constant. This distribution is used to iteratively and independently
sample the hyper-parameter configurations, and the performances of the learned models are measured.
Letting r(t,mf) denote the rank of the performance associated with meta-feature set mf after t
iterations, the performance curves report r(t,mf) for the METABU and baseline meta-feature sets
(plus a uniform hyper-parameter configuration sampler for sanity check), averaged over the test
datasets.

Task 3: AutoML with performance model (Optimization). AutoML systems based on performance
models cannot be directly compared with METABU as they acquire additional information along
the AutoML search: they iteratively use a performance model to select a hyper-parameter configu-
ration, and update the performance model using the performance of the selected configuration. In
Task 3, the relevance of meta-feature sets is investigated in that they govern the initialization for
AutoSkLearn and PMF performance models. The performance indicator is the rank of the perfor-
mance obtained by AutoSkLearn using METABU meta-features to initialize its performance model,

6

https://github.com/luxusg1/metabu

Published as a conference paper at ICLR 2022

noted METABU+AutoSkLearn (respectively, the rank of the performance of PMF using METABU
meta-features to initialize its performance model, noted METABU+PMF).

The difference between Tasks 2 and 3 can be viewed in terms of Exploration vs Exploitation: getting
a good performance on Task 2 requires to identify a sweet configuration spot for each dataset
(Exploitation). Quite the contrary, getting a good performance on Task 3 requires to identify a
sufficiently good and diverse configuration region, such that the search initialized in this region,
gathering additional information about the performance of new configurations on the current dataset
along time, eventually yields an even better configuration (Exploration).

Benchmarks. The considered AutoML benchmark is the OpenML Curated Classification suite
2018 (Bischl et al., 2019), including 72 binary or multi-class datasets out of which 64 have enough
learning performance data to give a good approximation of their target representation. The perfor-
mance indicators are measured using Leave-One-Out (details in Appendix C). The basic meta-features
are computed for each dataset using the open source library PyMFE (Alcobaça et al., 2020).

METABU is validated in the context of three ML algorithms: Adaboost (Freund & Schapire, 1997),
RandomForest (Breiman, 2001) and SVM (Boser et al., 1992), using their scikit-learn implementation
(Pedregosa et al., 2011); and two AutoML pipelines, AutoSkLearn (Feurer et al., 2015) and PMF
(Fusi et al., 2018). The associated hyper-parameter configuration spaces are detailed in Appendix D.

For Adaboost, RandomForest and SVM, the target representation of each training dataset is based
on the top-20 configurations in OpenML (out of 37,289 for Adaboost, 81,336 for RandomForest
and 37,075 for SVM), initially generated by van Rijn & Hutter (2018). For AutoSkLearn, the target
representation is generated from scratch, running 500 configurations per training dataset and retaining
the top-20. For PMF, the top-20 configurations are extracted from the collaborative filtering matrix
for each training dataset (Fusi et al., 2018).

4.2 COMPARATIVE EMPIRICAL VALIDATION OF METABU

The performances of METABU and the baselines on the three tasks are displayed on Fig. 3. The
overall CPU cost on Task 2 (resp. Task 3) is circa 1,900 (resp. 2,300) hours (full runtimes in Fig. 7).
Appendix H reports the detailed results in Tables 6,7 and 8, indicating the confidence level of the
results after a Wilcoxon rank-sum test for performances and Mann Whitney Wilcoxon test for ranks.

Task 1: Capturing the target topology, Fig. 3a. The results show that the metric based on the
METABU meta-features better matches the target topology than the metric based on the baseline
meta-feature sets, all the more so as the number k of nearest neighbors increases. The higher variance
of NDCG@k for METABU is explained as the metric depends on the meta-feature training, while
the metrics based on the baselines are deterministic. As could be expected, this variance decreases
with k. Despite this variance, METABU significantly outperforms all baselines for all k and all
hyper-parameter configuration spaces.

Task 2: AutoML with no performance model (Initialization), Fig. 3b. All rank curves start at 3,
as five hyper-parameter configuration samplers are considered. For RandomForest, the sampler
based on the SCOT meta-feature set dominates in the first 5 iterations, and remains good at all time;
METABU dominates after the beginning; all other approaches but the uniform sampler yield similar
performances. For Adaboost, the sampler based on the AutoSkLearn meta-feature set dominates
in the first 3 iterations, and METABU is statistically significantly better than all other approaches
thereafter. For SVM, METABU very significantly dominates all other approaches.

Task 3: AutoML with performance model (Optimization), Fig. 3c. In first time steps (left of the
dashed bars), the performance models of AutoSkLearn or PMF are initialized using the performances
of the hyper-parameter configurations sampled as in Task 2; in the following time steps, the hyper-
parameter configurations are sampled using the performance model. The most striking result is
that the METABU+AutoSkLearn rank improves on that of AutoSkLearn (Fig. 3c, left) although they
only differ in the initialization of the performance model, and the AutoSkLearn meta-feature set
is optimized to Task 3. Likewise, the rank of METABU+PMF improves on that of PMF (Fig. 3c,
right). The comparison also involves Random2× and Random4× uniform samplers, respectively
returning the best performance out of 2 or 4 uniformly sampled configurations (Fusi et al., 2018);
METABU+PMF significantly improves on Random4× after the 10th iteration. This suggests that on

7

Published as a conference paper at ICLR 2022

(a) Task 1: Capturing the target topology; the higher NDCG@k, the better.

(b) Task 2: Sampling the hyper-parameter configuration space; the lower the rank, the better.

(c) Task 3: Initializing a performance model to sample the hyper-parameter configuration space.

Figure 3: Empirical assessment of METABU meta-features comparatively to the baselines meta-feature
sets and uniform hyper-parameter sampling (better seen in color).

the OpenML benchmark, the METABU meta-features efficiently enable both to passively sample the
hyper-parameter configuration space, and to retrieve the configurations best appropriate to update the
performance model and explore good regions of the space.

4.3 SENSITIVITY ANALYSIS

Figure 4: METABU: Sensitivity of
NDCG@10 w.r.t. α and λ, compara-
tively to AutoSkLearn (darker is better).

The own two hyper-parameters of METABU are the α
trade-off parameter between Wasserstein and Gromov-
Wasserstein distance (Eq. 1) and the regularization weight
λ (Eq. 2). The sensitivity of METABU w.r.t. both param-
eters is investigated on Task 1, by inspecting the differ-
ence NDCG@10(METABU) - NDCG@10(AutoSkLearn)
for α ranging in {0.1, 0.3, 0.5, 0.7, 0.99} and λ in
{10−1, . . . , 10−4}. The result, displayed in Fig. 4, shows
that the difference is positive in the whole considered
domain, with NDCG@10(METABU) statistically signifi-
cantly better than NDCG@10(AutoSkLearn) according to
Student t-test with p-value 0.05.

Interestingly, a low sensitivity of METABU is observed
w.r.t. the regularisation weight λ, provided that it is small
enough (λ ≤ 10−3). For such small λ values, a low
sensitivity is also observed w.r.t. α in a large range (.3 ≤ α ≤ .7). This result confirms the
importance of taking into account both the Wasserstein and Gromov-Wasserstein distances on the

8

Published as a conference paper at ICLR 2022

target representation space: discarding the former (α ≤ .1) or the latter (α ≥ .99) significantly
degrades the performance, and the performance is stable in the [.3, .7] region.

4.4 TOWARD UNDERSTANDING THE DATASET LANDSCAPE

Figure 5: Comparative importance of
meta-features for RandomForest (x-axis)
and Adaboost (y-axis).

A first original result is to provide a principled estimate
of the intrinsic dimension of the dataset space w.r.t. the
considered ML algorithms. As detailed in Appendix G.1
with a stability analysis, the intrinsic dimension d of the
OpenML benchmark is circa 6 for AutoSkLearn, 8 for
Adaboost, 9 for RandomForest and 14 for Support Vector
Machines. As d reflects by construction how diverse the
datasets are w.r.t. the ML algorithm, it is interesting to
see that the most flexible AutoSkLearn ML pipeline cor-
responds to the lowest intrinsic dimension.
METABU also delivers some insights into what matters in
the dataset landscape, and why a given algorithm should
behave better than another on a particular dataset, as fol-
lows. The images ψ(xi) of datasets according to the
METABU meta-features learned in the context of an algorithm A are processed using PCA, and
the importance of a manually designed meta-feature is measured from the norm of its projection
iA(mf) on the first PCA axis.

Two ML algorithms or pipelines A and B can thus be visually compared, by plotting each meta-
feature as a 2D point with coordinates (iA(mf), iB(mf)). As shown on Fig. 5, with respectively
A set to RandomForest and B to Adaboost, one sees that actually few features matter for both
RandomForest and Adaboost (the features nearest to the upper right corner), mostly the Dunn index
(Dunn, 1973) and the features importance. Some findings reassuringly confirm the practitioner’s
expertise: the percentage of instances with missing values matters much more for Adaboost than
for RandomForest; the class imbalance (ClassProbabilityMax and ClassProbabilityMin) matters for
Adaboost. Complementary results (Appendix G.2) show that the sparsity of the data matters for
Support Vector Machines. Some other findings are less expected, e.g. the importance of the data
density, minimal skewness and kurtosis for AutoSkLearn; these findings are tentatively explained from
the fact that AutoSkLearn includes classifiers such as Linear Discriminant or Logistic Regression.

5 CONCLUSION AND PERSPECTIVES

METABU provides an algorithm-dependent way to achieve AutoML, through learning meta-features
as linear combinations of the manually designed meta-features of the literature, optimized to capture
both the top configurations for the datasets and their topology, via preserving their Wasserstein and
Gromov-Wasserstein distances. The efficiency of the approach is empirically demonstrated as the
METABU meta-features contribute to outperform strong baselines, including AutoSkLearn (Feurer
et al., 2014) and PMF (Fusi et al., 2018).

An interesting side-product of the approach is to shed some light on the complexity of the AutoML
problem, by estimating the intrinsic dimension of the dataset landscape. Surprisingly, this intrinsic
dimension is relatively modest (< 14). While this result is comforting when considering the small
number of datasets in the AutoML benchmarks, it should however be taken with a grain of salt: the
intrinsic dimension might merely reflect the specifics of the OpenML benchmark, as the datasets
might have been selected over the years to provide evidence for the merits of mainstream ML
algorithms while discarding too hard datasets.

A perspective for further research is to assess the validity of the proposed meta-features and the
stability of intrinsic dimensions on other AutoML benchmarks: the underlying question is to which
extent AutoML, too, is prone to overfitting.

Another perspective is to exploit METABU to conduct a comprehensive empirical assessment of a new
algorithm A on a time budget, by alternatively learning the meta-features relative to A, and selecting
the datasets most diverse according to these meta-features, in the spirit of experiment design.

9

Published as a conference paper at ICLR 2022

ETHICS STATEMENT

The approach is not concerned with privacy and confidentiality of the data.
The AutoML goal aims to reduce the computational resources needed to get the peak performance
from an ML portfolio of algorithms or pipelines.

ACKNOWLEDGMENTS

We gratefully thank the anonymous reviewers for their constructive comments and suggestions.

This work, and in particular Herilalaina Rakotoarison, is fully funded by ADEME (#1782C0034)
project NEXT.

This work is also supported by TAILOR, an ICT48 network funded by EU Horizon 2020 programme
GA 952215.

REFERENCES

Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís P. F. Garcia, Jefferson T. Oliva, and André C.
P. L. F. de Carvalho. MFE: Towards reproducible meta-feature extraction. Journal of Machine
Learning Research, 21(111):1–5, 2020.

Shawkat Ali and Kate A. Smith. On learning algorithm selection for classification. Applied Soft
Computing, 6(2):119–138, 2006.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pp. 21428–21439, 2020.

Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michèle Sebag. Collaborative hyperparame-
ter tuning. In Proceedings of the International Conference on Machine Learning (ICML), pp.
II–199–II–207. JMLR.org, 2013.

Hilan Bensusan and Christophe G. Giraud-Carrier. Discovering task neighbourhoods through
landmark learning performances. In Proceedings of the 4th European Conference on Principles of
Data Mining and Knowledge Discovery, pp. 325–330. Springer-Verlag, 2000.

James Bergstra, R. Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems (NIPS), volume 24, 2011.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Manto-
vani, Jan N. van Rijn, and Joaquin Vanschoren. OpenML Benchmarking Suites. arXiv 1708.03731,
2019.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (COLT), pp. 144–152. Association for Computing Machinery, 1992.

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 89–96. Association for Computing Machinery, 2005.

T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics, 3
(1):1–27, 1974.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE Trans. Pattern Anal. Mach. Intell., 39(9):1853–1865, 2017.

T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and Hall, 2001.

10

Published as a conference paper at ICLR 2022

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems (NIPS), volume 26, 2013.

Gwendoline de Bie, Gabriel Peyré, and Marco Cuturi. Stochastic deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the International Conference on
Machine Learning (ICML), volume 97, pp. 1556–1565. PMLR, 2019.

Joseph C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated
clusters. Journal of Cybernetics, 3:32–57, 1973.

B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7:1–26, 1979.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimen-
sion of datasets by a minimal neighborhood information. Scientific Reports, 7(12140), 2017.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using meta-learning to initialize
bayesian optimization of hyperparameters. In Proceedings of the 2014 International Conference
on Meta-Learning and Algorithm Selection - Volume 1201, pp. 3–10, 2014.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems (NIPS),
pp. 2962–2970. 2015.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Nicolo Fusi, Rishit Sheth, and Huseyn Melih Elibol. Probabilistic matrix factorization for automated
machine learning. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengying
Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michéle Sebag, Alexander Statnikov, WeiWei Tu,
and Evelyne Viegas. Analysis of the AutoML challenge series 2015-2018. In AutoML, Springer
series on Challenges in Machine Learning, 2019.

Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral approach. In
International Conference on Learning Representations (ICLR), 2018.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research JAIR, 36:267–306,
2009.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello (ed.), Learning and Intelligent
Optimization, pp. 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning: Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer, 2019.

Hadi S Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2Vec: learning dataset meta-
features. Data Mining and Knowledge Discovery, 35:964–985, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), International Conference on Learning Representations (ICLR), 2015.

Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine, 35
(3):48–60, 2014.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In
L. Saul, Y. Weiss, and L. Bottou (eds.), Advances in Neural Information Processing Systems
(NIPS), volume 17. MIT Press, 2005.

11

Published as a conference paper at ICLR 2022

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and F. Hutter. Boah: A
tool suite for multi-fidelity bayesian optimization & analysis of hyperparameters. arXiv:1908.06756
[cs.LG], 2019.

Ana Lorena, Luís Paulo Garcia, Jens Lehmann, Marcilio de Souto, and Tin Ho. How complex is
your classification problem?: A survey on measuring classification complexity. ACM Computing
Surveys, 52:1–34, 09 2019. doi: 10.1145/3347711.

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric elements.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the International Conference on Machine
Learning, volume 119, pp. 6734–6744. PMLR, 2020.

Mustafa Misir and Michèle Sebag. Alors: An algorithm recommender system. Artificial Intelligence,
244:291–314, 2017.

Mario A. Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces for
machine learning classification. Machine Learning, 107(1):109–147, 2018.

Facundo Mémoli. Gromov–Wasserstein distances and the metric approach to object matching.
Foundations of Computational Mathematics, 11:417–487, 08 2011.

Khai Nguyen, Son Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Improving relational regularized
autoencoders with spherical sliced fused Gromov-Wasserstein. arXiv 2010.01787, 2020.

Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav Shoham. Under-
standing random SAT: beyond the clauses-to-variables ratio. In Mark Wallace (ed.), Proceedings of
the International Conference on Principles and Practice of Constraint Programming (CP), volume
3258 of Lecture Notes in Computer Science, pp. 438–452. Springer, 2004.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Yonghong Peng, Peter A. Flach, Carlos Soares, and Pavel Brazdil. Improved dataset characterisation
for meta-learning. In Steffen Lange, Ken Satoh, and Carl H. Smith (eds.), Proceedings of the
International Conference on Discovery Science, volume 2534 of Lecture Notes in Computer
Science, pp. 141–152. Springer, 2002.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.

Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by land-
marking various learning algorithms. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 743–750. Morgan Kaufmann Publishers Inc., 2000.

Bruno Almeida Pimentel and André C.P.L.F. de Carvalho. A new data characterization for selecting
clustering algorithms using meta-learning. Information Sciences, 477:203–219, 2019.

John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

Qinbao Song, Guangtao Wang, and Chao Wang. Automatic recommendation of classification
algorithms based on data set characteristics. Pattern Recognition, 45(7):2672–2689, 2012.

David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca Pulina, and Armando
Tacchella. Collaborative expert portfolio management. In Maria Fox and David Poole (eds.), AAAI
Conference on Artificial Intelligence. AAAI Press, 2010.

Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal
transport for structured data with application on graphs. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the International Conference on Machine Learning (ICML),
volume 97, pp. 6275–6284. PMLR, 2019.

12

Published as a conference paper at ICLR 2022

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Jan N. van Rijn and Frank Hutter. Hyperparameter importance across datasets. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
2367–2376. ACM, 2018.

Ricardo Vilalta. Understanding accuracy performance through concept characterization and algorithm
analysis. In Workshop on Recent Advances in Meta-Learning and Future Work, 16th International
Conference on Machine Learning, pp. 3–9, 1999.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems (NeurIPS), pp. 3046–3056, 2019.

Hongteng Xu, Dixin Luo, Ricardo Henao, Svati Shah, and Lawrence Carin. Learning autoencoders
with relational regularization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
International Conference on Machine Learning (ICML), volume 119, pp. 10576–10586. PMLR,
2020.

L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm selection for
SAT. Journal of Artificial Intelligence Research (JAIR), 32(1):565–606, 2008.

Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. OBOE: collaborative filtering
for automl model selection. In ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 1173–1183. ACM, 2019.

13

Published as a conference paper at ICLR 2022

Learning Meta-Features for AutoML

Supplementary Material

The supplementary material includes additional details on:

• The augmentation of the OpenML benchmark (Appendix A);
• The pseudo-code of the algorithm (Appendix B);
• The experimental setting, performance indicators and validation procedure (Appendix C);
• The hyper-parameter configuration space (Appendix D);
• The list of basic meta-features and baseline meta-featuresets (Appendix D);
• The details of the computational time (Appendix F);
• The insights into the AutoML problem provided by the approach: intrinsic dimensionality

(Appendix G.1) and visualization of the niches of the considered ML algorithms (Appendix
G.2);

• The detailed results with standard deviation on all three tasks (Appendix H).
• Pairwise comparison of METABU with baseline meta-features (Appendix I).
• Sensitivity analysis of dimension d (Appendix J).
• Performance curves from Task 2 (Appendix K).

A THE AUGMENTED OPENML BENCHMARK SUITE

The visualisation of the augmented benchmark (Fig. 6, projected using tSNE (van der Maaten &
Hinton, 2008) on the basic representation space), shows that the datasets built by bootstrapping
of some initial dataset E form a cluster close to E (as could have been expected as the manually
designed meta-features are stable under small stochastic variations), and separated from the clusters
generated from other datasets, suggesting that the initial benchmark suite only sparsely paves the
basic meta-feature space. Complementary experiments (omitted) with perplexity ranging in [5, 10,
15, 25, 30, 40, 50] show that clusters generated by augmentation of different OpenML datasets keep
staying far apart from one another.

Figure 6: 2-D tSNE Visualisation of the OpenML datasets in basic representation space (legended
with a ?’s) + their boostrapped augmentations. Only few dataset names are present for the sake of
readability.

14

Published as a conference paper at ICLR 2022

B PSEUDO CODE OF METABU

The learning procedure of METABU is described in Alg. 1, detailing the description presented in
Section 3 of the main paper. The density on the hyper-parameter space, used to sample hyper-
parameter configurations for a given dataset depending on the considered meta-features (involved in
Tasks 2 and 3) is presented in Alg. 2.

Algorithm 1: Learning METABU meta-features
Data: Set of n training datasets, each represented with its basic representation (meta-feature

vector) xi and its target representation (set of top 20 hyper-parameters) zi for
i = 1 . . . n.

Result: Embedding layer ψ∗

// Build projected target representation
1 Ci,j ← d2

W(zi, zj) for i = 1 . . . n, j = 1 . . . n; /* Pairwise Wass. Dist. */
2 Estimate intrinsic dimension d from matrix C using (Facco et al., 2017);
3 u←MDS(C, d) ; /* Multidimensional Scaling */

// Learn ψ
4 ψ ← Linear(135, d) ; /* 135 basic meta-features. */
5 x← 1

p

∑n
i=1 δxi

;
6 L ← FGW as defined in Eq. 1;
7 ψ∗ ← ADAM(L, ψ]x,u);

Algorithm 2: Fit_density
Data: Set of n training datasets, each represented with its meta-feature vector xi and its set of

top 20 hyper-parameters Θi for i = 1 . . . n. Test dataset represented with its meta-feature
vector x.

Result: Distribution of configurations z.

1 Order training datasets such that: ||x− x`|| < ||x− x`+1|| for ` = 1 . . . n;
2 z = 1

Z

∑10
i=` exp(−`)

∑
θ∈Θ`

θ;

15

Published as a conference paper at ICLR 2022

C MEASURING PERFORMANCE INDICATORS

As said, the OpenML benchmark includes 72 datasets, with only 64 of them having a target repre-
sentation. The other 8 datasets are too heavy (e.g. ImageNet) to launch the many runs required to
estimate their target representation.

For Task 1, the performance indicator is measured along a Leave-One-Out procedure, with 64 folds:
in each fold, all datasets but one are used to train the METABU meta-features; the NDCG@k is
measured on the remaining dataset. Eventually, the NDCG@k are averaged over all 64 folds.

For Tasks 2 and 3, the performance indicator is likewise measured using a Leave-One-Out procedure
with 64 folds. The difference is that besides the remaining dataset, the 8 datasets with no target
representation at all are also used as test datasets.

In Tasks 2 and 3, the performance associated with a hyper-parameter configuration for a dataset is
computed after training the model on 1 CPU with time budget of 15 mn, with memory less than 8Gb,
using the train/validation/test splits given by OpenML; the validation score is estimated using a 5-CV
strategy.

In Task 2, for each test dataset with basic representation x, and for each set of meta-features:

• The distribution

ztest =
1

Z

10∑
i=`

exp(−`)z`

is defined, with z` the target representation of the `-th neighbor of the considered dataset,
among the training datasets, according to the Euclidean distance based on the meta-features.

• For 1 ≤ t ≤ T , a hyper-parameter configuration is independently drawn from zmf , and a
model is learned using this configuration;

• The performance of this model is measured on a validation dataset;

• The model with best validation performance up to iteration t is retained for each meta-feature
set and its performance on the test dataset is computed;

• The rank r(t, x) is determined by comparing the performance on the test set, of the models
retained for each meta-feature set.

• The performance curve reports r(t, x), averaged over test datasets.

In Task 3, the meta-features are used to initialize the performance model:

• In AutoSkLearn, the performance model for AutoSkLearn is initialized as follows. The
best configurations for the top-10 neighbors of the current dataset are retained and run
on the current dataset; their performance is used to initialize the Bayesian Optimisation
search using the SMAC BO implementation Hutter et al. (2011). These top-10 neighbors
are computed using the Euclidean distance on the meta-feature set. Note that AutoSkLearn
meta-features have been crafted to achieve automatic configuration selection in the context of
the AutoSkLearn pipeline (Pedregosa et al., 2011), thus constituting a most strong baseline
on Task 3.

• For PMF, the best configurations for the top-5 neighbors of the current dataset are likewise
selected; their performance is computed to fill the row of the collaborative matrix associated
to the current dataset, and determine the latent representation of the current dataset. The
probabilistic model learned from the matrix is used to select further hyper-parameter config-
urations; their performances are computed and used to refine the latent representation of the
dataset.

16

Published as a conference paper at ICLR 2022

D THE HYPER-PARAMETER CONFIGURATION SPACES

The hyper-parameters used for Adaboost, Random Forest and SVM and their range are detailed in
Tables 1 and 2. For AutoSkLearn, we only included the list of considered hyper-parameters; their
ranges are detailed in AutoSkLearn (Feurer et al., 2015). The hyper-parameter space used in PMF is
the same as in AutoSkLearn. The METABU implementation uses the ConfigSpace library (Lindauer
et al., 2019) to manage the hyper-parameters.

Classifier HP Range

Adaboost

imputation mean, median, most frequent
n_estimator [50, 500]
algorithm SAMME, SAMME.R

max_depth [1, 10]

RF

imputation mean, median, most frequent
criterion gini, entropy

max_features]0, 1]
min_samples_split [2, 20]
min_samples_leaf [1, 20]

bootstrap True, False

SVM

imputation mean, median, most frequent
C [0.03125, 32768]

kernal rbf, poly, sigmoid
degree [1, 5]
gamma [3.0517578125× 10−5, 8]
coef0 [−1, 1]

shrinking True, False
tol [10−5, 10−1]

Table 1: Hyper-parameter ranges of Adaboost, Random Forest and SVM

17

Published as a conference paper at ICLR 2022

Methods Parameters
balancing strategy
adaboost learning_rate, max_depth, n_estimators

bernoulli_nb fit_prior

decision_tree
max_depth_factor, max_features, max_leaf_nodes,
min_impurity_decrease, min_samples_leaf, min_samples_split,
min_weight_fraction_leaf

extra_trees
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf

gradient_boosting

l2_regularization, learning_rate, loss,
max_bins, max_depth, max_leaf_nodes,
min_samples_leaf, scoring, tol,
n_iter_no_change, validation_fraction

k_nearest_neighbors p, weights
lda tol, shrinkage_factor

liblinear_svc
dual, fit_intercept, intercept_scaling,
loss, multi_class, penalty,
tol

libsvm_svc
gamma, kernel, max_iter,
shrinking, tol, coef0,
degree

mlp

alpha, batch_size, beta_1,
beta_2, early_stopping, epsilon,
hidden_layer_depth, learning_rate_init, n_iter_no_change,
num_nodes_per_layer, shuffle, solver,
tol, validation_fraction

multinomial_nb fit_prior

passive_aggressive average, fit_intercept, loss,
tol

qda reg_param

random_forest
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf

sgd

average, fit_intercept, learning_rate,
loss, penalty, tol,
epsilon, eta0, l1_ratio,
power_t

extra_trees_preproc_for_classification
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf, n_estimators

fast_ica fun, whiten, n_components
feature_agglomeration linkage, n_clusters, pooling_func

kernel_pca n_components, coef0, degree,
gamma

kitchen_sinks n_components

liblinear_svc_preprocessor
dual, fit_intercept, intercept_scaling,
loss, multi_class, penalty,
tol

nystroem_sampler n_components, coef0, degree,
gamma

pca whiten
polynomial include_bias, interaction_only

random_trees_embedding max_depth, max_leaf_nodes, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf, n_estimators

select_percentile_classification score_func
select_rates_classification score_func, mode

Table 2: List of hyper-parameters considered in AutoSkLearn pipeline.

18

Published as a conference paper at ICLR 2022

E LIST OF META-FEATURES

The list of meta-features used in the experiments is detailed in Tables 3 and 4. Meta-features
are extracted with PyMFE (Alcobaça et al., 2020) except for AutoSkLearn, SCOT and Landmark
meta-features which are computed from the AutoSkLearn library.

Meta-features Description AutoSkLearn Landmark SCOT Metabu
best_node Performance of a the best single decision tree node. +
elite_nn Performance of Elite Nearest Neighbor. +

linear_discr Performance of the Linear Discriminant classifier. +
naive_bayes Performance of the Naive Bayes classifier. +

one_nn Performance of the 1-Nearest Neighbor classifier. +
random_node Performance of the single decision tree node model induced by a random attribute. +
worst_node Performance of the single decision tree node model induced by the worst informative attribute. +
one_itemset Compute the one itemset meta-feature. +
two_itemset Compute the two itemset meta-feature. +

c1 Compute the entropy of class proportions. +
c2 Compute the imbalance ratio. +

cls_coef Clustering coefficient. +
density Average density of the network. +

f1 Maximum Fisher’s discriminant ratio. +
f1v Directional-vector maximum Fisher’s discriminant ratio. +
f2 Volume of the overlapping region. +
f3 Compute feature maximum individual efficiency. +
f4 Compute the collective feature efficiency. +

hubs Hub score. +
l1 Sum of error distance by linear programming. +
l2 Compute the OVO subsets error rate of linear classifier. +
l3 Non-Linearity of a linear classifier. +
lsc Local set average cardinality. +
n1 Compute the fraction of borderline points. +
n2 Ratio of intra and extra class nearest neighbor distance. +
n3 Error rate of the nearest neighbor classifier. +
n4 Compute the non-linearity of the k-NN Classifier. +
t1 Fraction of hyperspheres covering data. +
t2 Compute the average number of features per dimension. +
t3 Compute the average number of PCA dimensions per points. +
t4 Compute the ratio of the PCA dimension to the original dimension. +
ch Compute the Calinski and Harabasz index. +
int Compute the INT index. +
nre Compute the normalized relative entropy. +
pb Compute the pearson correlation between class matching and instance distances. +
sc Compute the number of clusters with size smaller than a given size. +
sil Compute the mean silhouette value. +

vdb Compute the Davies and Bouldin Index. +
vdu Compute the Dunn Index. +

leaves Compute the number of leaf nodes in the DT model. +
leaves_branch Compute the size of branches in the DT model. +
leaves_corrob Compute the leaves corroboration of the DT model. +
leaves_homo Compute the DT model Homogeneity for every leaf node. +

leaves_per_class Compute the proportion of leaves per class in DT model. +
nodes Compute the number of non-leaf nodes in DT model. +

nodes_per_attr Compute the ratio of nodes per number of attributes in DT model. +
nodes_per_inst Compute the ratio of non-leaf nodes per number of instances in DT model. +
nodes_per_level Compute the ratio of number of nodes per tree level in DT model. +
nodes_repeated Compute the number of repeated nodes in DT model. +

tree_depth Compute the depth of every node in the DT model. +
tree_imbalance Compute the tree imbalance for each leaf node. +

tree_shape Compute the tree shape for every leaf node. +
var_importance Compute the features importance of the DT model for each attribute. +

can_cor Compute canonical correlations of data. +
cor Compute the absolute value of the correlation of distinct dataset column pairs. +
cov Compute the absolute value of the covariance of distinct dataset attribute pairs. +

eigenvalues Compute the eigenvalues of covariance matrix from dataset. +
g_mean Compute the geometric mean of each attribute. +
gravity Compute the distance between minority and majority classes center of mass. +
h_mean Compute the harmonic mean of each attribute. +
iq_range Compute the interquartile range (IQR) of each attribute. +
kurtosis Compute the kurtosis of each attribute. +
lh_trace Compute the Lawley-Hotelling trace. +

mad Compute the Median Absolute Deviation (MAD) adjusted by a factor. +
max Compute the maximum value from each attribute. +
mean Compute the mean value of each attribute. +

median Compute the median value from each attribute. +
min Compute the minimum value from each attribute. +

nr_cor_attr Compute the number of distinct highly correlated pair of attributes. +
nr_disc Compute the number of canonical correlation between each attribute and class. +

nr_norm Compute the number of attributes normally distributed based in a given method. +
nr_outliers Compute the number of attributes with at least one outlier value. +

p_trace Compute the Pillai’s trace. +
range Compute the range (max - min) of each attribute. +

Table 3: List of meta-features, 1/2

19

Published as a conference paper at ICLR 2022

Meta-features Description AutoSkLearn Landmark SCOT Metabu
roy_root Compute the Roy’s largest root. +

sd Compute the standard deviation of each attribute. +
sd_ratio Compute a statistical test for homogeneity of covariances. +

skewness Compute the skewness for each attribute. +
sparsity Compute (possibly normalized) sparsity metric for each attribute. +
t_mean Compute the trimmed mean of each attribute. +

var Compute the variance of each attribute. +
w_lambda Compute the Wilks’ Lambda value. +
attr_conc Compute concentration coef. of each pair of distinct attributes. +
attr_ent Compute Shannon’s entropy for each predictive attribute. +

class_conc Compute concentration coefficient between each attribute and class. +
class_ent Compute target attribute Shannon’s entropy. +

eq_num_attr Compute the number of attributes equivalent for a predictive task. +
joint_ent Compute the joint entropy between each attribute and class. +
mut_inf Compute the mutual information between each attribute and target. +
ns_ratio Compute the noisiness of attributes. +

cohesiveness
Compute the improved version of the weighted distance,
that captures how dense or sparse is the example distribution. +

conceptvar
Compute the concept variation that estimates
the variability of class labels among examples. +

impconceptvar
Compute the improved concept variation that
estimates the variability of class labels among examples. +

wg_dist
Compute the weighted distance, that captures
how dense or sparse is the example distribution. +

attr_to_inst Compute the ratio between the number of attributes. +
cat_to_num Compute the ratio between the number of categoric and numeric features. +
freq_class Compute the relative frequency of each distinct class. +

inst_to_attr Compute the ratio between the number of instances and attributes. +
nr_attr Compute the total number of attributes. +
nr_bin Compute the number of binary attributes. +
nr_cat Compute the number of categorical attributes. +

nr_class Compute the number of distinct classes. +
nr_inst Compute the number of instances (rows) in the dataset. +
nr_num Compute the number of numeric features. +

num_to_cat Compute the number of numerical and categorical features. +
PCASkewnessFirstPC Skewness of examples on the first principal component +
PCAKurtosisFirstPC Kurtosis of examples on the first principal component +

PCAFracOfCompFor95Per Fraction of component of an overall explained variance of 95% + +
Landmark1NN Performance one nearest neighbor classifier +

LandmarkRandomNodeLearner Performance of decision when considering only one feature +
LandmarkDecisionNodeLearner Performance of decision when considering all features +

LandmarkDecisionTree Performance of decision tree classifier + +
LandmarkNaiveBayes Performance of Naive Bayes classifier + +

LandmarkLDA Performance of LDA classifier + +
SkewnessSTD Standard deviation of feature skewness + +
SkewnessMean Mean of feature skewness + +
SkewnessMax Maximum of feature skewness + +
SkewnessMin Minimum of feature skewness + +
KurtosisSTD Standard deviation of feature kurtosis coefficiants + +
KurtosisMean Mean of feature kurtosis coefficiants + +
KurtosisMax Max of feature kurtosis coefficiants + +
KurtosisMin Mean of feature kurtosis coefficiants + +
SymbolsSum Sum of categorical feature symbols + +
SymbolsSTD Standard deviation of categorical feature symbols + +
SymbolsMean Mean of categorical feature symbols + +
SymbolsMax Max of categorical feature symbols + +
SymbolsMin Min of categorical feature symbols + +

ClassProbabilitySTD Standard deviation of class probabilities + +
ClassProbabilityMean Mean of class probabilities + +
ClassProbabilityMax Maximum of class probabilities + + +
ClassProbabilityMin Minimum of class probabilities + +
InverseDatasetRatio Inverse of dataset ratio + +

DatasetRatio Dataset ratio + +
RatioNominalToNumerical Ratio number of nominal to numerical features + +
RatioNumericalToNominal Ratio numerical to nominal + +

NumberOfCategoricalFeatures Number of categorical features + + +
NumberOfNumericFeatures Number of numeric features + + +
NumberOfMissingValues Number of missing values + +

NumberOfFeaturesWithMissingValues Number of features with missing values + +
NumberOfInstancesWithMissingValues Number of instances with missing values + +

NumberOfFeatures Number of features + + +
NumberOfClasses Number of classes + + + +

NumberOfInstances Number of instances + +
LogInverseDatasetRatio log of the inverse dataset ratio + + +

LogDatasetRatio Log of dataset ratio + +
PercentageOfMissingValues Percentage of missing values + +

PercentageOfFeaturesWithMissingValues Percentage of features with missing values + +
PercentageOfInstancesWithMissingValues Percentage of instances with missing values + +

LogNumberOfFeatures Log number of features + + +
LogNumberOfInstances Log number of instances + +

Table 4: List of meta-features, 2/2

20

Published as a conference paper at ICLR 2022

F COMPUTATIONAL EFFORT

Fig. 7 indicates the runtime6 for pre-processing (extracting the 135 meta-features, top row), and
for training METABU (second row). The training times for learning one model is indicated for
comparison (from row 3 to 5: Adaboost, RandomForest and SVM).

Figure 7: METABU computational effort: average runtime of the meta-feature extraction (in blue)
and METABU training (in orange). The average training time of one hyper-parameter on Adaboost
(green), Random Forest (red) and SVM (purple) pipelines are shown for comparison.

6On Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz.

21

Published as a conference paper at ICLR 2022

G TOWARD UNDERSTANDING THE DATASET LANDSCAPE

G.1 THE STABILITY OF THE INTRINSIC DIMENSION

Dataset Ratio 0.1 0.25 0.5 0.75 1
Adaboost 5.65 (2.74) 6.81 (1.81) 7.14 (1.44) 6.59 (1.29) 6.98
Random Forest 5.33 (2.17) 7.14 (2.18) 7.44 (1.28) 8.48 (1.56) 8.49
SVM 8.56 (2.54) 11.54 (2.71) 12.83 (3.16) 13.99 (2.40) 14.41
AutoSkLearn 5.17 (2.08) 4.47 (1.26) 4.98 (0.95) 5.34 (1.06) 5.51

Table 5: Intrinsic dimension of the dataset space w.r.t. ML algorithms Adaboost, RandomForest,
SVM and AutoSkLearn, depending on the fraction of datasets considered in OpenML

In Table 5, we investigate how the intrinsic dimension varies when considering various numbers of
datasets in OpenML. It is observed that the intrinsic dimension tends to increase with the number of
considered datasets, particularly so for SVM and to a lesser extent for RandomForest. This suggests
that the hyper-parameter configurations investigated in the OpenML benchmark for these algorithms
do not sufficiently sample the (good regions of the) configuration spaces.

G.2 INTERPRETATION: IMPACT OF THE HC META-FEATURES ON THE PERFORMANCE OF THE
LEARNING ALGORITHM

METABU meta-features are built from the initial meta-features using the trained linear mapping ψ,
depending on the current learning algorithm A. Accordingly, the importance of the initial, humanly
defined and interpretable meta-features w.r.t. A can be estimated, shedding some light on which
specifics of a dataset matter in order to give a good/bad performance with A.

The importance of a meta-feature w.r.t. A is estimated as follows. Let U = {ui,j} denote the matrix
made of the multi-dimensional scaling representation of the target representation over all datasets
(section 3.2). Let v denote the first principal component of U and let j∗ be the index of the H column
most contributing to v (j∗ = argmaxj |〈v, h.,j〉|). Then the importance iA(k) of the k-th initial
meta-feature for the A algorithm is defined as the absolute value of ψj∗,k, that is, the weight of the
k-th initial meta-feature to build the most important METABU meta-feature.

This estimate is used to visually appreciate the meta-feature importance w.r.t. two learning algo-
rithms A and B, by depicting each k-th meta-feature in the 2D plane as the point with coordinate
(iA(k), iB(k)). Intuitively, meta-features on the diagonal have the same importance for both algo-
rithms. Meta-features far from the diagonal are much more important for one algorithm than for the
other. The visualization of the meta-feature importance w.r.t. AutoSkLearn and Random Forest is
displayed in Fig. 8, left. Meta-features such as KurtosisMin, LogNumberOfInstances, InverseDatase-
tRatio − all retained as AutoSkLearn meta-features − are critical for AutoSkLearn whereas they
have no impact for RandomForest. Inversely, some features like "pb" (average Pearson correlation
between class and features) matter significantly more for RandomForest than for AutoSkLearn.

Likewise, the meta-feature importance w.r.t. Support Vector Machines and Random Forest is displayed
in Fig. 8, right. The skewness features (mean and std deviation over all attributes) matter significantly
more for Support Vector Machines than for RandomForest. In retrospect, there is little surprise that
the meta-features related to the potential difficulties of inverting the Gram matrix matter for SVM.

Overall, the impact of some meta-features for some learning algorithms is intuitive; it confirms the
practitioner expertise, which is comforting.

22

Published as a conference paper at ICLR 2022

Figure 8: Comparative importance of meta-features for RandomForest Vs AutoSkLearn (left) and
SVM (right). The specific AutoSkLearn meta-features are indicated as their name begins with a
capital letter.

23

Published as a conference paper at ICLR 2022

H DETAILED RESULTS

Detailed results of Task 2 are presented in Table 6 for Random Forest, Table 7 for Adaboost and Table
8 for SVM. We consider the Mann Whitney Wilcoxon test to assess the significance of the rankings.

OpenML Task ID METABU MF AutoSkLearn MF Landmark MF SCOT MF Random1x
Average Rank 2.50 2.97 2.70 2.64 4.17

3 0.993 ±0.000∗ 0.993 ± 0.001 0.993 ±0.000∗ 0.993 ± 0.000 0.993 ± 0.001
6 0.965 ±0.001∗ 0.964 ± 0.001 0.958 ± 0.007 0.964 ±0.002∗ 0.948 ± 0.007

11 0.655 ±0.002∗ 0.657 ± 0.002 0.658 ±0.001∗ 0.656 ± 0.001 0.657 ± 0.002
12 0.964 ±0.002∗ 0.961 ± 0.001 0.965 ±0.001∗ 0.963 ± 0.003 0.961 ± 0.004
14 0.820 ±0.005∗ 0.812 ± 0.004 0.813 ± 0.005 0.814 ±0.003∗ 0.808 ± 0.005
15 0.983 ±0.004∗ 0.982 ± 0.005 0.983 ±0.001∗ 0.981 ± 0.005 0.983 ± 0.004
16 0.955 ±0.007∗ 0.951 ± 0.010 0.958 ± 0.004 0.959 ±0.003∗ 0.950 ± 0.005
18 0.675 ±0.002∗ 0.673 ± 0.005 0.676 ± 0.002 0.678 ± 0.001 0.679 ±0.007∗

22 0.765 ±0.001∗ 0.761 ± 0.004 0.760 ± 0.005 0.769 ±0.003∗ 0.748 ± 0.014
23 0.535 ± 0.004 0.535 ± 0.004 0.541 ± 0.005 0.542 ± 0.008 0.552 ± 0.006
28 0.983 ±0.001∗ 0.982 ± 0.001 0.983 ± 0.000 0.983 ±0.001∗ 0.978 ± 0.001
29 0.884 ±0.006∗ 0.878 ± 0.004 0.882 ±0.007∗ 0.878 ± 0.005 0.882 ± 0.004
31 0.709 ±0.003∗ 0.725 ±0.013∗ 0.716 ± 0.003 0.707 ± 0.010 0.713 ± 0.007
32 0.993 ±0.001∗ 0.992 ± 0.001 0.992 ± 0.001 0.994 ±0.000∗ 0.989 ± 0.000
37 0.811 ±0.003∗ 0.810 ± 0.006 0.812 ±0.005∗ 0.810 ± 0.011 0.808 ± 0.007
43 0.913 ±0.002∗ 0.914 ± 0.002 0.915 ± 0.002 0.917 ±0.001∗ 0.908 ± 0.003
45 0.946 ± 0.001 0.946 ± 0.002 0.947 ± 0.002 0.953 ± 0.004 0.944 ± 0.003
49 0.962 ±0.002∗ 0.965 ±0.002∗ 0.964 ± 0.000 0.963 ± 0.002 0.957 ± 0.005
53 0.780 ±0.009∗ 0.777 ± 0.001 0.786 ±0.006∗ 0.767 ± 0.012 0.768 ± 0.006

219 0.923 ±0.002∗ 0.919 ± 0.009 0.918 ± 0.004 0.923 ±0.003∗ 0.913 ± 0.001
2074 0.891 ±0.001∗ 0.889 ± 0.003 0.889 ±0.002∗ 0.888 ± 0.003 0.880 ± 0.003
2079 0.638 ±0.007∗ 0.628 ± 0.010 0.647 ±0.005∗ 0.639 ± 0.007 0.621 ± 0.009
3021 0.949 ±0.003∗ 0.943 ± 0.004 0.949 ±0.003∗ 0.945 ± 0.005 0.933 ± 0.005
3022 0.962 ±0.003∗ 0.959 ±0.010∗ 0.945 ± 0.017 0.927 ± 0.014 0.906 ± 0.025
3549 0.951 ± 0.015 0.984 ± 0.002 0.967 ± 0.023 0.977 ± 0.007 0.957 ± 0.023
3560 0.253 ±0.006∗ 0.253 ±0.021∗ 0.248 ± 0.017 0.250 ± 0.023 0.241 ± 0.013
3902 0.756 ±0.002∗ 0.754 ±0.009∗ 0.734 ± 0.009 0.743 ± 0.020 0.753 ± 0.007
3903 0.551 ±0.013∗ 0.554 ± 0.003 0.555 ± 0.008 0.557 ±0.010∗ 0.549 ± 0.006
3904 0.602 ± 0.001 0.602 ± 0.003 0.600 ± 0.002 0.606 ± 0.001 0.594 ± 0.002
3913 0.619 ± 0.006 0.616 ± 0.016 0.634 ± 0.013 0.633 ± 0.001 0.609 ± 0.021
3917 0.667 ±0.015∗ 0.677 ±0.009∗ 0.669 ± 0.002 0.672 ± 0.005 0.659 ± 0.004
3918 0.655 ±0.003∗ 0.661 ±0.008∗ 0.651 ± 0.008 0.649 ± 0.006 0.652 ± 0.009
7592 0.778 ±0.002∗ 0.781 ±0.001∗ 0.777 ± 0.003 0.778 ± 0.002 0.777 ± 0.002
9910 0.807 ±0.002∗ 0.809 ±0.002∗ 0.807 ± 0.004 0.805 ± 0.002 0.797 ± 0.007
9946 0.953 ±0.006∗ 0.951 ± 0.007 0.957 ± 0.008 0.962 ±0.011∗ 0.941 ± 0.010
9952 0.890 ±0.001∗ 0.891 ±0.001∗ 0.882 ± 0.007 0.880 ± 0.006 0.878 ± 0.003
9957 0.866 ±0.007∗ 0.864 ± 0.008 0.858 ± 0.002 0.872 ±0.002∗ 0.868 ± 0.005
9960 0.994 ±0.000∗ 0.993 ± 0.000 0.994 ±0.000∗ 0.993 ± 0.000 0.993 ± 0.000
9964 0.927 ±0.007∗ 0.915 ±0.020∗ 0.912 ± 0.014 0.914 ± 0.005 0.891 ± 0.015
9971 0.563 ± 0.018 0.587 ± 0.005 0.584 ± 0.032 0.560 ± 0.020 0.566 ± 0.006
9976 0.845 ±0.007∗ 0.846 ±0.004∗ 0.841 ± 0.010 0.840 ± 0.005 0.842 ± 0.006
9977 0.961 ±0.000∗ 0.960 ± 0.000 0.961 ±0.000∗ 0.961 ± 0.001 0.960 ± 0.001
9978 0.672 ±0.007∗ 0.680 ±0.006∗ 0.671 ± 0.003 0.677 ± 0.009 0.670 ± 0.004
9981 0.926 ± 0.002 0.936 ± 0.011 0.947 ± 0.019 0.943 ± 0.030 0.927 ± 0.022
9985 0.475 ±0.007∗ 0.478 ± 0.004 0.475 ± 0.002 0.479 ±0.004∗ 0.467 ± 0.007

10093 0.983 ±0.001∗ 0.984 ± 0.001 0.988 ± 0.004 0.988 ±0.007∗ 0.987 ± 0.003
10101 0.621 ±0.004∗ 0.611 ± 0.005 0.621 ±0.005∗ 0.616 ± 0.005 0.614 ± 0.003
14952 0.965 ±0.000∗ 0.963 ± 0.002 0.965 ±0.001∗ 0.963 ± 0.001 0.956 ± 0.004
14954 0.844 ±0.022∗ 0.835 ± 0.023 0.853 ±0.009∗ 0.833 ± 0.004 0.799 ± 0.013
14965 0.711 ±0.001∗ 0.712 ±0.002∗ 0.710 ± 0.004 0.710 ± 0.003 0.709 ± 0.002
14969 0.597 ±0.005∗ 0.588 ± 0.007 0.591 ± 0.005 0.595 ±0.002∗ 0.575 ± 0.008

125920 0.598 ±0.010∗ 0.597 ± 0.009 0.600 ± 0.021 0.601 ±0.005∗ 0.589 ± 0.010
125922 0.976 ±0.002∗ 0.976 ± 0.002 0.976 ±0.001∗ 0.973 ± 0.005 0.968 ± 0.004
146195 0.642 ±0.002∗ 0.638 ± 0.004 0.644 ±0.002∗ 0.642 ± 0.002 0.622 ± 0.005
146800 0.971 ± 0.013 0.980 ± 0.009 0.974 ± 0.006 0.986 ± 0.002 0.962 ± 0.010
146817 0.825 ±0.004∗ 0.817 ± 0.009 0.826 ±0.007∗ 0.824 ± 0.012 0.812 ± 0.004
146819 0.861 ±0.014∗ 0.859 ± 0.010 0.861 ± 0.015 0.870 ±0.002∗ 0.869 ± 0.005
146820 0.863 ±0.004∗ 0.855 ± 0.014 0.851 ± 0.018 0.831 ± 0.005 0.855 ±0.010∗

146821 0.971 ±0.001∗ 0.972 ±0.001∗ 0.969 ± 0.002 0.970 ± 0.001 0.971 ± 0.004
146822 0.934 ±0.001∗ 0.932 ± 0.005 0.930 ± 0.006 0.934 ±0.001∗ 0.931 ± 0.004
146824 0.968 ±0.003∗ 0.969 ± 0.001 0.968 ± 0.003 0.969 ±0.002∗ 0.960 ± 0.007
146825 0.294 ±0.509∗ 0.582 ± 0.504 0.293 ± 0.507 0.872 ±0.006∗ 0.869 ± 0.003
167119 0.767 ±0.001∗ 0.764 ± 0.003 0.762 ± 0.003 0.765 ±0.002∗ 0.765 ± 0.000
167121 0.275 ±0.476∗ 0.000 ± 0.000 0.582 ±0.505∗ 0.000 ± 0.000 0.274 ± 0.475
167125 0.921 ±0.000∗ 0.922 ± 0.002 0.924 ±0.003∗ 0.920 ± 0.001 0.899 ± 0.007
167140 0.930 ± 0.004 0.935 ± 0.001 0.933 ± 0.002 0.938 ± 0.001 0.924 ± 0.003
167141 0.834 ±0.002∗ 0.829 ± 0.005 0.833 ± 0.002 0.837 ±0.003∗ 0.832 ± 0.001

Table 6: Comparative learning performances on OpenML datasets over sampling 30 configurations of
the Random Forest pipeline. Performances that are statistically significant compared to the second
best are in bold. Statistically comparable performances are indicated with (∗). Pairwise comparison
and p-value along the iterations are presented in Fig. 9.

24

Published as a conference paper at ICLR 2022

OpenML Task ID METABU MF AutoSkLearnMF Landmark MF SCOT MF Random1x
Average Rank 2.48 2.96 2.89 2.85 3.80

3 0.995 ±0.001∗ 0.994 ± 0.000 0.996 ±0.001∗ 0.994 ± 0.002 0.996 ± 0.001
6 0.970 ± 0.001 0.969 ± 0.002 0.967 ± 0.002 0.972 ± 0.001 0.967 ± 0.005

11 0.928 ±0.083∗ 0.891 ± 0.071 0.914 ± 0.069 0.973 ±0.017∗ 0.920 ± 0.093
12 0.977 ±0.001∗ 0.977 ±0.001∗ 0.976 ± 0.002 0.977 ± 0.001 0.975 ± 0.002
14 0.827 ±0.007∗ 0.829 ± 0.004 0.824 ± 0.006 0.825 ± 0.002 0.829 ±0.004∗

15 0.964 ±0.004∗ 0.962 ± 0.006 0.969 ±0.004∗ 0.967 ± 0.005 0.967 ± 0.006
16 0.963 ±0.001∗ 0.966 ± 0.001 0.967 ±0.003∗ 0.964 ± 0.004 0.961 ± 0.001
18 0.691 ±0.015∗ 0.674 ± 0.003 0.695 ±0.014∗ 0.689 ± 0.012 0.680 ± 0.018
22 0.796 ±0.002∗ 0.800 ± 0.004 0.801 ±0.006∗ 0.794 ± 0.014 0.791 ± 0.005
23 0.572 ±0.009∗ 0.579 ± 0.011 0.582 ±0.015∗ 0.575 ± 0.004 0.581 ± 0.009
28 0.988 ±0.001∗ 0.988 ± 0.001 0.987 ± 0.001 0.989 ±0.001∗ 0.987 ± 0.001
29 0.865 ± 0.006 0.866 ± 0.008 0.875 ± 0.009 0.882 ± 0.006 0.845 ± 0.015
31 0.739 ±0.011∗ 0.726 ± 0.007 0.734 ± 0.011 0.739 ± 0.019 0.740 ±0.014∗

32 0.995 ±0.001∗ 0.997 ±0.000∗ 0.996 ± 0.000 0.996 ± 0.001 0.994 ± 0.001
37 0.790 ±0.005∗ 0.794 ±0.018∗ 0.771 ± 0.008 0.782 ± 0.010 0.784 ± 0.002
43 0.936 ±0.001∗ 0.933 ± 0.003 0.934 ±0.003∗ 0.932 ± 0.004 0.933 ± 0.002
45 0.961 ±0.003∗ 0.951 ± 0.005 0.957 ±0.005∗ 0.954 ± 0.004 0.951 ± 0.003
49 0.993 ± 0.002 0.995 ± 0.002 0.997 ± 0.003 0.987 ± 0.012 0.998 ± 0.002
53 0.808 ±0.005∗ 0.783 ± 0.027 0.804 ±0.003∗ 0.801 ± 0.007 0.801 ± 0.012

219 0.938 ± 0.001 0.937 ± 0.000 0.931 ± 0.006 0.933 ± 0.003 0.924 ± 0.001
2074 0.903 ±0.002∗ 0.902 ±0.001∗ 0.901 ± 0.001 0.901 ± 0.002 0.901 ± 0.001
2079 0.657 ±0.011∗ 0.649 ±0.006∗ 0.648 ± 0.010 0.641 ± 0.007 0.627 ± 0.002
3021 0.955 ±0.005∗ 0.956 ±0.004∗ 0.951 ± 0.003 0.955 ± 0.002 0.953 ± 0.002
3022 0.952 ± 0.020 0.969 ± 0.001 0.966 ± 0.005 0.972 ± 0.002 0.960 ± 0.008
3549 0.988 ±0.002∗ 0.988 ±0.002∗ 0.988 ± 0.001 0.986 ± 0.001 0.985 ± 0.003
3560 0.255 ±0.017∗ 0.241 ± 0.001 0.258 ± 0.020 0.262 ±0.012∗ 0.253 ± 0.002
3902 0.762 ±0.004∗ 0.769 ±0.015∗ 0.754 ± 0.024 0.755 ± 0.012 0.760 ± 0.014
3903 0.604 ±0.027∗ 0.581 ± 0.010 0.575 ± 0.016 0.574 ± 0.015 0.598 ±0.015∗

3904 0.615 ±0.001∗ 0.608 ± 0.006 0.612 ± 0.003 0.613 ±0.002∗ 0.613 ± 0.002
3913 0.665 ±0.037∗ 0.661 ±0.018∗ 0.656 ± 0.011 0.649 ± 0.006 0.659 ± 0.019
3917 0.681 ±0.007∗ 0.682 ± 0.003 0.682 ± 0.008 0.694 ±0.015∗ 0.681 ± 0.009
3918 0.683 ±0.019∗ 0.696 ±0.008∗ 0.688 ± 0.019 0.675 ± 0.018 0.685 ± 0.011
7592 0.798 ±0.005∗ 0.797 ± 0.000 0.796 ± 0.000 0.799 ±0.004∗ 0.798 ± 0.001
9910 0.798 ±0.001∗ 0.796 ± 0.002 0.797 ±0.004∗ 0.797 ± 0.003 0.793 ± 0.005
9946 0.977 ±0.010∗ 0.986 ± 0.003 0.993 ±0.007∗ 0.987 ± 0.011 0.990 ± 0.005
9952 0.899 ±0.004∗ 0.899 ± 0.002 0.900 ± 0.002 0.900 ±0.002∗ 0.896 ± 0.001
9957 0.871 ±0.005∗ 0.871 ± 0.010 0.867 ± 0.006 0.875 ±0.007∗ 0.868 ± 0.003
9960 0.997 ±0.001∗ 0.997 ± 0.001 0.997 ± 0.001 0.997 ±0.001∗ 0.996 ± 0.002
9964 0.932 ± 0.006 0.943 ± 0.003 0.940 ± 0.005 0.937 ± 0.008 0.928 ± 0.005
9971 0.563 ±0.033∗ 0.573 ± 0.042 0.576 ±0.010∗ 0.558 ± 0.007 0.565 ± 0.027
9976 0.846 ±0.003∗ 0.834 ± 0.004 0.844 ±0.008∗ 0.830 ± 0.012 0.833 ± 0.012
9977 0.964 ± 0.002 0.966 ± 0.002 0.964 ± 0.001 0.967 ± 0.001 0.967 ± 0.001
9978 0.699 ±0.026∗ 0.683 ± 0.008 0.696 ±0.021∗ 0.672 ± 0.016 0.692 ± 0.022
9981 0.885 ±0.011∗ 0.890 ± 0.004 0.888 ± 0.004 0.894 ±0.002∗ 0.881 ± 0.003
9985 0.475 ±0.005∗ 0.473 ± 0.005 0.475 ±0.001∗ 0.475 ± 0.002 0.473 ± 0.007

10093 0.997 ±0.003∗ 0.994 ±0.001∗ 0.991 ± 0.003 0.993 ± 0.004 0.994 ± 0.005
10101 0.619 ±0.011∗ 0.615 ± 0.000 0.621 ± 0.002 0.626 ±0.013∗ 0.619 ± 0.009
14952 0.964 ±0.002∗ 0.963 ± 0.001 0.963 ± 0.002 0.963 ± 0.002 0.964 ±0.001∗

14954 0.869 ±0.007∗ 0.881 ±0.018∗ 0.872 ± 0.003 0.868 ± 0.002 0.863 ± 0.010
14965 0.711 ± 0.004 0.715 ± 0.002 0.714 ± 0.003 0.716 ± 0.002 0.714 ± 0.001
14969 0.617 ±0.004∗ 0.606 ± 0.015 0.610 ± 0.000 0.610 ±0.004∗ 0.607 ± 0.012

125920 0.572 ±0.019∗ 0.569 ± 0.015 0.569 ±0.015∗ 0.565 ± 0.005 0.555 ± 0.013
125922 0.992 ±0.001∗ 0.992 ±0.000∗ 0.991 ± 0.000 0.992 ± 0.001 0.989 ± 0.000
146800 0.996 ±0.002∗ 0.996 ± 0.003 0.998 ±0.001∗ 0.997 ± 0.001 0.990 ± 0.004
146817 0.817 ±0.008∗ 0.812 ± 0.005 0.810 ± 0.014 0.821 ±0.007∗ 0.805 ± 0.008
146819 0.797 ±0.029∗ 0.766 ± 0.039 0.782 ± 0.024 0.817 ±0.025∗ 0.806 ± 0.020
146820 0.859 ±0.004∗ 0.859 ± 0.008 0.849 ± 0.006 0.855 ± 0.016 0.860 ±0.002∗

146821 0.980 ±0.015∗ 0.974 ± 0.003 0.979 ± 0.009 0.981 ±0.004∗ 0.970 ± 0.010
146822 0.943 ± 0.000 0.942 ± 0.003 0.945 ± 0.000 0.943 ± 0.004 0.941 ± 0.004
146824 0.977 ±0.001∗ 0.976 ±0.002∗ 0.976 ± 0.002 0.974 ± 0.001 0.972 ± 0.003
167119 0.818 ±0.002∗ 0.816 ± 0.003 0.817 ±0.001∗ 0.815 ± 0.003 0.815 ± 0.001
167125 0.914 ±0.002∗ 0.914 ±0.000∗ 0.910 ± 0.002 0.911 ± 0.002 0.912 ± 0.002
167140 0.954 ±0.005∗ 0.954 ±0.003∗ 0.953 ± 0.002 0.952 ± 0.003 0.948 ± 0.002
167141 0.824 ±0.004∗ 0.823 ± 0.002 0.825 ± 0.003 0.826 ±0.001∗ 0.822 ± 0.003

Table 7: Comparative learning performances on OpenML datasets over sampling 30 configurations
of the Adaboost pipeline. Performances that are statistically significant compared to the second best
are in bold. Statistically comparable performances are indicated with (∗). Pairwise comparisons and
the associated p-value along the iterations are reported in Fig. 10.

25

Published as a conference paper at ICLR 2022

OpenML Task ID METABU MF AutoSkLearn MF Landmark MF SCOT MF Random1x
Average Rank 2.34 2.91 2.97 3.27 3.48

3 0.995 ±0.001∗ 0.993 ± 0.004 0.994 ±0.003∗ 0.982 ± 0.015 0.988 ± 0.001
6 0.827 ±0.253∗ 0.969 ± 0.008 0.973 ±0.000∗ 0.967 ± 0.010 0.937 ± 0.000

11 0.967 ±0.045∗ 0.929 ± 0.060 0.897 ± 0.104 0.996 ±0.007∗ 0.958 ± 0.015
12 0.975 ±0.007∗ 0.980 ± 0.001 0.982 ± 0.002 0.984 ±0.007∗ 0.936 ± 0.018
14 0.857 ±0.029∗ 0.843 ±0.010∗ 0.830 ± 0.018 0.824 ± 0.031 0.839 ± 0.014
15 0.980 ±0.009∗ 0.983 ±0.005∗ 0.980 ± 0.004 0.982 ± 0.006 0.953 ± 0.002
16 0.981 ±0.004∗ 0.979 ± 0.002 0.981 ±0.005∗ 0.981 ± 0.003 0.976 ± 0.011
18 0.728 ±0.013∗ 0.721 ± 0.025 0.736 ±0.010∗ 0.731 ± 0.013 0.717 ± 0.014
22 0.836 ±0.016∗ 0.806 ± 0.001 0.818 ± 0.031 0.807 ± 0.009 0.820 ±0.027∗

23 0.561 ± 0.010 0.601 ± 0.001 0.583 ± 0.028 0.607 ± 0.010 0.585 ± 0.011
28 0.989 ±0.006∗ 0.991 ±0.000∗ 0.988 ± 0.002 0.990 ± 0.002 0.987 ± 0.003
29 0.895 ±0.008∗ 0.893 ± 0.012 0.895 ± 0.016 0.900 ±0.001∗ 0.878 ± 0.003
31 0.756 ±0.017∗ 0.767 ± 0.011 0.780 ±0.012∗ 0.732 ± 0.015 0.757 ± 0.004
32 0.994 ±0.001∗ 0.993 ± 0.005 0.993 ± 0.005 0.996 ±0.001∗ 0.985 ± 0.001
37 0.838 ±0.014∗ 0.841 ± 0.010 0.853 ± 0.008 0.859 ±0.018∗ 0.853 ± 0.015
43 0.932 ±0.004∗ 0.929 ±0.005∗ 0.922 ± 0.011 0.919 ± 0.013 0.917 ± 0.018
45 0.952 ±0.002∗ 0.935 ± 0.004 0.943 ± 0.021 0.945 ± 0.010 0.952 ±0.003∗

49 0.972 ±0.013∗ 0.978 ±0.018∗ 0.950 ± 0.034 0.960 ± 0.035 0.940 ± 0.027
53 0.798 ± 0.059 0.878 ± 0.004 0.869 ± 0.022 0.867 ± 0.016 0.846 ± 0.013

219 0.897 ± 0.035 0.843 ± 0.018 0.938 ± 0.007 0.856 ± 0.053 0.871 ± 0.049
2074 0.905 ±0.011∗ 0.888 ± 0.008 0.905 ±0.012∗ 0.899 ± 0.004 0.887 ± 0.017
2079 0.639 ±0.032∗ 0.578 ± 0.051 0.648 ±0.008∗ 0.631 ± 0.034 0.556 ± 0.023
3021 0.962 ±0.011∗ 0.939 ± 0.017 0.955 ± 0.008 0.889 ± 0.041 0.958 ±0.007∗

3022 0.968 ±0.023∗ 0.980 ± 0.005 0.982 ±0.005∗ 0.966 ± 0.018 0.878 ± 0.085
3549 0.985 ±0.004∗ 0.992 ± 0.000 0.987 ± 0.006 0.992 ±0.002∗ 0.986 ± 0.003
3560 0.235 ±0.002∗ 0.238 ± 0.012 0.213 ± 0.014 0.243 ±0.014∗ 0.191 ± 0.007
3902 0.876 ±0.013∗ 0.829 ± 0.028 0.858 ± 0.010 0.860 ±0.034∗ 0.851 ± 0.017
3903 0.754 ±0.033∗ 0.738 ±0.032∗ 0.676 ± 0.084 0.737 ± 0.026 0.691 ± 0.033
3904 0.642 ±0.016∗ 0.651 ± 0.017 0.655 ± 0.028 0.665 ±0.014∗ 0.664 ± 0.008
3913 0.815 ±0.009∗ 0.833 ±0.018∗ 0.812 ± 0.021 0.790 ± 0.041 0.804 ± 0.019
3917 0.739 ±0.013∗ 0.742 ± 0.020 0.739 ± 0.022 0.736 ± 0.028 0.754 ±0.011∗

3918 0.758 ±0.029∗ 0.736 ± 0.059 0.761 ±0.011∗ 0.732 ± 0.034 0.717 ± 0.033
7592 0.844 ±0.002∗ 0.831 ± 0.004 0.838 ±0.015∗ 0.819 ± 0.009 0.822 ± 0.010
9910 0.798 ±0.003∗ 0.761 ± 0.024 0.774 ± 0.044 0.783 ± 0.017 0.795 ±0.003∗

9946 0.982 ±0.012∗ 0.983 ± 0.005 0.982 ± 0.021 0.994 ±0.010∗ 0.993 ± 0.002
9952 0.894 ±0.006∗ 0.885 ±0.017∗ 0.858 ± 0.031 0.831 ± 0.094 0.877 ± 0.019
9957 0.865 ±0.021∗ 0.849 ± 0.003 0.850 ± 0.011 0.870 ±0.028∗ 0.859 ± 0.017
9960 0.995 ±0.001∗ 0.982 ± 0.017 0.942 ± 0.040 0.989 ± 0.007 0.996 ±0.001∗

9964 0.925 ±0.011∗ 0.939 ±0.020∗ 0.909 ± 0.043 0.924 ± 0.036 0.922 ± 0.010
9971 0.698 ±0.053∗ 0.697 ±0.036∗ 0.674 ± 0.005 0.668 ± 0.006 0.666 ± 0.034
9976 0.756 ±0.121∗ 0.746 ± 0.131 0.746 ±0.125∗ 0.739 ± 0.110 0.670 ± 0.054
9977 0.971 ±0.001∗ 0.948 ± 0.011 0.967 ±0.006∗ 0.936 ± 0.009 0.965 ± 0.002
9978 0.840 ±0.019∗ 0.865 ±0.028∗ 0.865 ± 0.005 0.820 ± 0.053 0.816 ± 0.015
9981 0.980 ±0.009∗ 0.964 ±0.014∗ 0.955 ± 0.017 0.953 ± 0.030 0.888 ± 0.003
9985 0.484 ±0.021∗ 0.475 ± 0.013 0.488 ±0.011∗ 0.461 ± 0.028 0.477 ± 0.018

10093 1.000 ±0.000∗ 0.996 ± 0.001 0.993 ± 0.005 0.994 ± 0.007 0.998 ±0.003∗

10101 0.675 ±0.003∗ 0.685 ±0.021∗ 0.665 ± 0.049 0.661 ± 0.019 0.675 ± 0.047
14952 0.959 ±0.009∗ 0.959 ± 0.003 0.956 ± 0.006 0.949 ± 0.022 0.963 ±0.002∗

14954 0.854 ±0.025∗ 0.844 ±0.027∗ 0.800 ± 0.040 0.814 ± 0.014 0.799 ± 0.027
14965 0.857 ±0.014∗ 0.777 ± 0.072 0.856 ±0.014∗ 0.838 ± 0.015 0.839 ± 0.006
14969 0.545 ± 0.028 0.641 ± 0.014 0.585 ± 0.084 0.546 ± 0.119 0.605 ± 0.004

125920 0.572 ±0.026∗ 0.577 ±0.033∗ 0.535 ± 0.024 0.549 ± 0.050 0.566 ± 0.032
125922 0.997 ±0.001∗ 0.993 ± 0.003 0.996 ±0.002∗ 0.993 ± 0.002 0.987 ± 0.017
146195 0.694 ±0.042∗ 0.616 ± 0.111 0.720 ±0.029∗ 0.551 ± 0.130 0.670 ± 0.048
146800 0.999 ±0.001∗ 0.999 ± 0.002 0.979 ± 0.015 0.999 ±0.001∗ 0.994 ± 0.008
146817 0.795 ± 0.021 0.807 ± 0.019 0.841 ± 0.020 0.808 ± 0.056 0.802 ± 0.036
146819 0.848 ±0.015∗ 0.812 ± 0.039 0.818 ± 0.022 0.824 ± 0.011 0.836 ±0.016∗

146820 0.924 ±0.030∗ 0.919 ± 0.045 0.963 ±0.005∗ 0.875 ± 0.107 0.955 ± 0.008
146821 0.963 ±0.040∗ 0.969 ± 0.021 0.942 ± 0.052 0.990 ±0.010∗ 0.983 ± 0.008
146822 0.927 ±0.012∗ 0.939 ±0.015∗ 0.935 ± 0.008 0.916 ± 0.024 0.926 ± 0.003
146824 0.982 ±0.002∗ 0.968 ± 0.012 0.954 ± 0.033 0.976 ±0.006∗ 0.974 ± 0.008
146825 0.857 ±0.014∗ 0.847 ±0.020∗ 0.828 ± 0.041 0.839 ± 0.022 0.810 ± 0.056
167119 0.890 ±0.006∗ 0.874 ± 0.036 0.882 ±0.026∗ 0.851 ± 0.013 0.872 ± 0.013
167121 0.912 ± 0.025 0.726 ± 0.158 0.619 ± 0.003 0.715 ± 0.180 0.731 ± 0.154
167125 0.897 ±0.005∗ 0.891 ± 0.002 0.889 ± 0.003 0.894 ±0.022∗ 0.884 ± 0.004
167140 0.944 ±0.005∗ 0.942 ± 0.006 0.946 ±0.004∗ 0.931 ± 0.000 0.886 ± 0.009
167141 0.801 ±0.092∗ 0.842 ± 0.031 0.838 ± 0.027 0.818 ± 0.027 0.846 ±0.027∗

Table 8: Comparative learning performances on OpenML datasets over sampling 30 configurations
of the SVM pipeline. Performances that are statistically significant compared to the second best are
in bold. Statistically comparable performances are indicated with (∗). Pairwise comparisons and the
associated p-value along the iterations are presented in Fig. 11.

26

Published as a conference paper at ICLR 2022

I PAIRWISE COMPARISONS

Figs. 9-11 highlight a side-by-side comparison of METABU with each baseline set of meta-features.
These comparisons establish the relative improvement over each baseline, that may be lost in the
general comparison, Fig. 3.

On Random Forest pipeline, METABU meta-features perform on par with SCOT meta-features.
Whereas its improvement over Landmark MF is only significant between the (approximately) 8th and
23rd iteration, METABU consistently outperforms Random and AutoSkLearn meta-features along the
iterations.

Figure 9: Pairwise comparison of METABU with baseline meta-features on Random Forest pipeline.
Left: the average ranks. Right: the p-value assessing the statistical significance of the ranks according
to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold
p-value=0.05.

27

Published as a conference paper at ICLR 2022

On Adaboost, METABU meta-features perform similarly as Landmark meta-features. Interestingly,
METABU always has a better average rank than the baselines except for the first two iterations of
the AutoSkLearn baseline. It is seen that the p-value is most generally below the threshold .05,
establishing the statistical significance of the rank performance.

Figure 10: Pairwise comparison of METABU with baseline meta-features on Adaboost pipeline. Left:
the average ranks. Right: the p-value assessing the statistical significance of the ranks according
to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold
p-value=0.05.

Lastly, the gaps in performance for SVM are striking. METABU meta-features consistently outperform
all the baselines meta-features with high confidence.

28

Published as a conference paper at ICLR 2022

Figure 11: Pairwise comparison of METABU with baseline meta-features on SVM pipeline. Left:
the average ranks. Right: the p-value assessing the statistical significance of the ranks according
to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold
p-value=0.05.

J SENSITIVITY ANALYSIS OF d

Table 9 reports the NDCG@k performance of METABU on Task 1 for varying values of d, showing
that: i) the best results are obtained for the intrinsic dimension in the vast majority of cases; ii) the
sensitivity w.r.t. d is very moderate.

The intrinsic dimension d of the OpenML benchmark is circa 6 for AutoSkLearn, 8 for Adaboost, 9
for RandomForest and 14 for Support Vector Machines.

29

Published as a conference paper at ICLR 2022

Random Forest Adaboost SVM
d \ NDCG@k 10 15 20 25 10 15 20 25 10 15 20 25
2 0.57 0.65 0.71 0.76 0.6 0.67 0.73 0.78 0.55 0.62 0.68 0.73
5 0.58 0.65 0.71 0.75 0.6 0.67 0.73 0.78 0.58 0.65 0.7 0.74
10 0.57 0.65 0.71 0.76 0.63 0.7 0.75 0.8 0.58 0.65 0.71 0.75
15 0.58 0.66 0.72 0.76 0.62 0.7 0.75 0.79 0.57 0.65 0.71 0.76
20 0.58 0.67 0.73 0.77 0.62 0.69 0.74 0.79 0.58 0.65 0.71 0.76
25 0.57 0.65 0.71 0.76 0.62 0.69 0.75 0.79 0.58 0.65 0.71 0.76
intrinsic 0.59 0.67 0.73 0.78 0.62 0.69 0.75 0.8 0.59 0.67 0.73 0.78

Table 9: Sensitivity of METABU w.r.t the number d of METABU meta-features on Task 1. The
performance is the NDCG@k score measuring the relevance of the ranking induced by METABU
w.r.t. the target representation.

K PERFORMANCE CURVES

These curves, in addition to the rank results displayed in Fig. 3b, display the performance values on
10 representative datasets from OpenML CC-18, in the context of Task 2 for respectively Random
Forest (Fig. 12), Adaboost (Fig. 13), and SVM (Fig. 14). At each iteration, the curve reports the
average performance value with its the standard deviation (on 3 runs).

30

Published as a conference paper at ICLR 2022

Figure 12: Performance curves on Random Forest.

31

Published as a conference paper at ICLR 2022

Figure 13: Performance curves on Adaboost.

32

Published as a conference paper at ICLR 2022

Figure 14: Performance curves on SVM.

33

	Introduction
	Related Work and Formal Background
	Overview of Metabu
	Experiments
	Experimental Settings
	Comparative empirical validation of Metabu
	Sensitivity analysis
	Toward understanding the dataset landscape

	Conclusion and Perspectives
	The augmented OpenML benchmark suite
	Pseudo Code of Metabu
	Measuring performance indicators
	 The hyper-parameter configuration spaces
	List of meta-features
	Computational effort
	Toward understanding the dataset landscape
	The stability of the intrinsic dimension
	Interpretation: Impact of the HC meta-features on the performance of the learning algorithm

	Detailed results
	Pairwise Comparisons
	Sensitivity Analysis of d
	Performance Curves

