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ABSTRACT

Identifying and mapping fractures and faults are important in
geosciences, especially in earthquake hazard and geological
reservoir studies. This mapping can be done manually in op-
tical images of the earth surface, yet it is time consuming and
it requires an expertise that may not be available. Building
upon a recent prior study, we develop a deep learning ap-
proach, based on a variant of a U-Net neural network, and
apply it to automate fracture and fault mapping in optical im-
ages and topographic data. We show that training the model
with a realistic knowledge of fracture and fault uneven dis-
tributions and trends, and using a loss function that operates
at both pixel and larger scales through the combined use of
weighted Binary Cross Entropy and Intersection over Union,
greatly improves the predictions, both qualitatively and quan-
titatively. As we apply the model to a site differing from those
used for training, we demonstrate its enhanced generalization
capacity.

Index Terms— Image processing, Curvilinear feature ex-
traction, Deep convolutional neural network, VHR optical im-
agery, Tectonic faults and fractures.

1. INTRODUCTION

Fractures and faults are ubiquitous on earth and contribute
to a number of important processes: small-scale fractures
(i.e., length < 102 m) control the permeability of rock reser-
voirs [1]; larger-scale faults (i.e., length > 103 m) may pro-
duce damaging earthquakes [2]; faults and fractures combine
to weaken the rocks or materials they affect [3]; etc. To better
understand earthquakes, fluid pathways, rock strength, etc., it
is thus necessary to identify fracture and fault networks in the
material or region of concern. One approach is to search for
the traces these fractures and faults may form at the ground
surface, in the exposed rocks. The mapping of these traces

allows recovering the architecture of the fault and fracture
networks [4, 5]. This architecture, which generally reveals
to be dense and complex [6], in turn provides clues to un-
derstand the fault and fracture mechanics and the mechanical
behavior of the fractured or faulted material [7–9].

So far, mapping fractures and faults at the ground sur-
face has been done manually, based on the visual detection of
their traces in field outcrops or in remote optical images of the
earth surface [9,10]. However, this visual detection and man-
ual mapping of the fault traces is labor-intensive and requires
an expertise that is not always available. In particular, while
fractures have generally simple, short, linear traces, faults
have longer (up to 102-103 km) and more complex curvilin-
ear traces, that can be segmented laterally and inter-connected
with more minor fault lines (e.g. [3, 5, 11]).

In the last decade, the progress of deep learning for the de-
tection of curvilinear structure networks has increased, with
specific developments dedicated to recover blood vessel net-
works in biomedical imagery [12–14]. Several deep learning
techniques have also been successfully developed for the de-
lineation of road networks [15–17]. More recently, attempts
have been made to adapt these prior techniques to the detec-
tion of fractures and faults in optical remote images and topo-
graphic data [18]. In [18], Mattéo et al. proposed an upgraded
version of a U-Net model, based on an architecture developed
by [19]. The model revealed successful to identify and map
fractures and faults with high accuracy in high resolution op-
tical images, in regions similar to those used for training. By
contrast, the predictions were fairly weak in regions with dif-
ferent characteristics (different rocks, fault sizes, fault topo-
graphic imprints, image texture, etc.). Using the same dataset
as in [18], Jafrasteh et al. [20] have developed a Generative
Adversarial Network (GAN) model to automate fractures and
faults mapping. The approach succeeded to predict small
fractures, but was less efficient to recognize major faults [20].

Our objective is to go a step forward and to produce a
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deep learning model that can identify and map fractures and
faults with high accuracy and a greater generalization capac-
ity than in [18] and [20]. We build upon the model proposed
in [18]. Since this model is not freely accessible, we first had
to rebuild it using the indications provided in [18], namely a
variant of the U-Net architecture with an increased number of
blocks, a larger number of convolutional layers per block and
the addition of skip connections. However, as the biases and
weights are not provided in [18], our final model is not strictly
similar (see below). We have then performed two major ad-
ditions to our model, to increase its performance. The results
are positive, as shown in this paper.

2. DATA

We use the same training data as in [18], but then make the
predictions on a test site that was not used for training nor an-
alyzed in [18]. This allows testing the generalization capacity
of our model.

The training and test data sets are photogrammetric opti-
cal ortho-images and topographic data acquired in the Gran-
ite Dells region in Arizona, USA. The site is a large gran-
ite rock outcrop, mainly free of vegetation and anthropogenic
features, and dissected by a dense network of 10−3-103 m
long fractures and faults forming fairly clear traces at the
ground surface (e.g. [6]) (Fig. 1 a-b). The ortho-image and
topographic data have an ultra-high resolution pixel size of 3
mm (more details in [18]).

The training was done in two close sub-sites of the imaged
zone, referred to as sites A and B in [18]. These sites are 10-
15 m long and a few meters wide, so that fractures and fault
traces have lengths in range 10−3-10 m. The ground truth is a
basic manual mapping of the fracture and fault traces done by
a student with limited expertise in fault mapping. In this ba-
sic mapping, most fracture and fault traces are thus simplified
while some of the actual faults and fractures were not mapped.
Furthermore, all fracture and fault traces are represented with
the same level of confidence, which is unlikely. Finally, the
proportion of fractures and faults in the training sites is fairly
low, with a much larger fraction of the sites showing no fault.
The basic ground truth is thus imperfect (i.e., large uncertain-
ties at the pixel scale), incomplete, too highly confident, and
unbalanced.

The test zone (6 m wide, 20 m long; Fig. 1 a) is 2 km
away from the training sites, and was not used for training
nor analyzed in [18]. While fracture and fault traces have
similar geomorphic signatures and lengths than in the train-
ing sites, the texture of the image is slightly different from
that in the training sites. In this test zone, we have an expert
manual mapping (Fig. 1 b). In this refined mapping, the frac-
ture and fault traces were mapped more precisely than in the
basic mapping, while the mapping is more exhaustive. Also,
the fracture and fault traces are represented with two levels
of confidence, “certain” and “uncertain” fractures and faults;

the latter includes traces whose interpretation is uncertain or
having imprecise contours. Furthermore, major and more mi-
nor fractures/faults are discriminated. Although the refined
ground truth is of higher accuracy than the basic ground truth,
it is still imperfect (i.e., uncertainties at the pixel scale), in-
complete (exhaustive manual mapping cannot be done), and
unbalanced (total area with no fracture/fault is larger than to-
tal fracture/fault area).

3. METHODOLOGY

We have built a CNN architecture of U-Net type inspired from
the work of [18], based on the architecture developed by [19].
We call this reference model “Tasar-Mattéo MRef” or TM-
MRef. As we said earlier, we had to rebuild the model as it
was not freely available. We call our new model ”Bilel Ka-
noun MRef” or BK-MRef. As TM-MRef, it was designed
with a binary approach (i.e., a pixel is a fault or is not a fault),
with the same loss function (weighted Binary Cross Entropy
or wBCE), and with the same training data and procedure as
described in [18]: use of 4-bands RGBT (red, green, blue +
topography) and basic ground truth in sites A and B; ground
truth fault lines represented with Gaussian thickness to take
their location uncertainty into account; split of tiles into 2565
training sets and 375 validation samples, with the size of each
tile 256×256 pixels; data augmentation including random ro-
tations of 180◦, mirror effects around x and y axis, random
contrast and brightness changes, and addition of Gaussian
noise (see [18]).

The predictions of the models TM-MRef and BK-MRef in
the test zone are shown in Fig. 1 c-d. Both fail to predict many
of the fractures and faults identified in the refined mapping.
To improve the performance of BK-MRef, we thus include
two major additions. Firstly, we build upon the observation
that fractures and faults in the training zones have different
orientations (see Fig. 3 in [18]), mainly about North-South,
East-West, and NorthEast-SouthWest (apparent orientations
as sites are not geo-referenced), and the fraction of fractures
and faults showing one or other of these overall orientations is
variable. We assume that a training that would respect the ac-
tual balance in fault trends would be more efficient. We thus
used a balanced tile partition technique to train the model with
tiles including similar fractions of fractures and faults having
a given overall orientation. We call this training a “balanced
training”. Secondly, we test different loss functions. As men-
tioned above, the reference models TM-MRef and BK-MRef
use the wBCE given by the formula [21]:

L = −y × log(ŷ))− β(1− y)× log(1− ŷ)) (1)

where y represents a pixel in the ground truth, ŷ is the pre-
diction for each pixel and β is made to indicate the balance
between the fault and not-a-fault classes (defined as the % of
fault pixels in the ground truth).



The wBCE is well adapted to binary classifications as in
our case, yet operates at the pixel scale which may be an issue
when working with a ground truth with large uncertainties at
the pixel level, and in a site where the two classes are unbal-
anced. These limitations may explain why the predictions of
TM-MRef and BK-MRef are not very good (Fig. 1 c-d).

Thus, we use another loss function that better deals with
imbalanced classes and uncertain ground truth: the focal
loss [22]. The focal loss is a variant of the wBCE and is
made to target the less represented features in the ground
truth, thus here, the fractures and faults. To do that, the
focal loss function ”down-weights” the most represented fea-
tures (not-a-fault pixels) to focus on the less represented but
most meaningful features, here the fracture/fault pixels. It is
written as:

L′ = −αy(1− ŷ)γ log(ŷ)− (1− y)ŷγ log(1− ŷ) (2)

where α and γ are made to balance the fault and not-a-fault
classes.

However, the focal loss function still operates at the pixel
level, while, due to large uncertainties in the ground truth,
a spatial metric taking into account the actual uncertainties
on the fault locations would be more appropriate. To reach
this objective, we use the Intersection over Union (IoU, or
Jaccard) loss function [23] which measures the ratio between
the summed number of pixels (expressed as an area) whose
prediction is consistent with the ground truth, and the total
area encompassing both the ground truth and the predictions.
More, in order to penalize different aspects of the errors, we
combine the IoU –which quantifies the overall spatial error,
with the wBCE –which quantifies the pixel error.

The proposed combined loss L′′ is written as:

L′′ = IoUloss + L (3)

where IoUloss = J(y, ŷ) = 1− y
⋂

ŷ
y
⋃

ŷ

4. EXPERIMENTAL RESULTS

During the calculations, the weights and biases given by the
filters are randomly initialized respecting the theory of Glorot
et al. [24]. In addition, these weights and biases are updated at
each iteration during the training process using an Adam op-
timizer [25] characterized by a learning rate lr=10−4, β1=0.9
and β2=0.999. No regularization including dropouts and
batch normalization, was performed during this process. The
program was coded in Python environment using the Keras
deep learning library [26], on an AMD Ryzen Threadripper
1950X 16-Core 3.40-GHz processor with Linux Debian as
the operating system. The GPU used was a GeoForce RTX
2080 Ti work station characterized by 11 GB of memory and
3584 CUDA Cores version 11.0.

Using the same training data as in [18], we calculated five
models: a first one trained as in [18] (unbalanced training)
and using a wBCE loss function, called BK-MRef (Fig. 1
d); two other models testing the impact of a balanced train-
ing, with a wBCE (Fig. 1 e) or a focal loss (Fig. 1 f) func-
tion; and two other models testing the impact of the com-
bined L′′ loss function, with unbalanced (Fig. 1 g) or bal-
anced (Fig. 1 h) training. The predictions of TM-MRef are
not good, as many fractures and faults fail to be predicted
(Fig. 1 c). The predictions of our original reference model
BK-MRef are slightly better in that they include more frac-
tures and faults (Fig. 1 d). However, those lack along-strike
continuity and many are still missing. The balanced train-
ing much improves the predictions, even with the wBCE loss
function (Fig. 1 e). They are fairly noisy however, and distor-
tions at the top and bottom boundaries of the image are mis-
takingly predicted as faults. When using together a balanced
training and a focal loss function (Fig. 1 f), major faults be-
come well predicted, and the distortions discriminated. How-
ever, most minor fractures/faults fail to be detected. Using
the L′′ combined loss function greatly improves the predic-
tions, whether a non-balanced (Fig. 1 g) or a balanced train-
ing (Fig. 1 h) is done. However, with unbalanced training,
the predictions are noisy and many minor fractures and faults
are represented with high probabilities, which is unrealistic.
Distortions are also mistakingly predicted as faults. The pre-
dictions are much better when the model uses both a balanced
training and the combined loss function L′′ (Fig. 1 h). Even
though a few distortions are still mistakingly represented as
faults, all major fractures and faults are well predicted, while
minor features are also found and generally assigned lower,
thus more realistic probabilities.

To assess the results more quantitatively, we use the same
numerical indicators as in [18]: the Tversky similarity index
(TI) [27] that evaluates the similarity between the ground
truth and the prediction pixels, and the Receiver Operator
Characteristic curve (ROC) [28] that compares the “False
Positive Rate” to the “True Positive Rate”.

We do not refer to other common metrics due to the im-
balance between fault and not-a-fault classes in our dataset.
Moreover, these metrics are appropriate for binary probabil-
ities, not for probabilities spanning a broad range between 0
and 1 as it is the case here.

The TI scores (calculated for certain faults only) confirm
the positive impacts of both the balance training (Table 1,
lines 3-4) and the combined L′′ loss function (Table 1, lines
5-6). The model using both balanced data and combined loss
function gives better quantitative results.

Fig. 2 shows the ROC representations for the six mod-
els. It confirms that including either balanced training or
a combined loss function improves the model performance,
with greater improvement achieved when balanced training
and combined loss are used together.



Fig. 1. Predictions in the test zone with the different ap-
proaches. (a) Optical ortho-image of the test zone. The data is
not geo-referenced thus the orientation is arbitrary; (b) Man-
ual expert mapping of fracture and fault traces (refined map-
ping). Different line thicknesses discriminate major and more
minor faults. However we do not use this classification here.
(c) Predictions using model of [18], TM-MRef, that uses un-
balanced training and a wBCE loss function, (d) Predictions
using our model built and trained as in [18] (unbalanced train-
ing and wBCE loss function), called BK-MRef, (e) Predic-
tions using our model BK-MRef with a wBCE loss function,
yet trained with “balanced training”, (f) Predictions using our
model BK-MRef yet with a focal loss function and a “bal-
anced training”, (g) Predictions using our model BK-MRef
trained as in [18] (unbalanced training) yet with the loss func-
tion L′′ combining IoU and wBCE; and (h) Predictions using
our model BK-MRef yet with the loss function L′′ combining
IoU and wBCE, and a “balanced training”).

Table 1. Tversky Index (TI) calculated for the six models
with respect to refined mapping

TI
TM-MRef (unbalanced training, wBCE loss) 0.29
BK-MRef (unbalanced training, wBCE loss) 0.29

BK-MRef (balanced training, wBCE loss) 0.4
BK-MRef (balanced training, focal loss) 0.3

BK-MRef (unbalanced training, combined loss L′′) 0.42
BK-MRef (balanced training, combined loss L′′) 0.44

Fig. 2. ROC representations for the six models, with respect
to refined mapping.

5. CONCLUSIONS

We propose an enhanced deep learning approach for faults
and fractures prediction in high resolution optical and topo-
graphic data, building upon the prior works of [18] and [19].
As the ground truth is imperfect and incomplete by essence
(exhaustive fault mapping cannot be done even by the best
expert and cannot be accurate at the pixel scale), we had to
improve the prior approaches. We show here that training the
model with a realistic knowledge of the fracture and fault un-
even distributions and trends improves the predictions. The
choice of the loss function is even more important as the pre-
dictions need to be examined both at a pixel and a larger spa-
tial scales. We have thus proposed a new loss function com-
bining these two scales through the combined use of wBCE
and IoU. The results are greatly improved, as demonstrated
both qualitatively and quantitatively. This is especially inter-
esting as we applied the model to a site with different charac-
teristics than those of the zones used for training. This shows
an increased generalization capacity of our model. Further
work remains to be done however, in particular to test the
generalization power of the model on different datasets, and
to taken into account the major and minor, and the certain and
uncertain fault classes that we have ignored here. We expect
that this will result in a fairly generic model that we will make
freely available to assist geologists and geophysicists to iden-
tify fractures and faults in earth images and materials.
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