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Abstract. To study and predict meteorological phenomenons and to include them
in broader studies, the ability to represent and exchange meteorological data is of
paramount importance. A typical approach in integrating and publishing such data now
is to formalize a knowledge graph relying on Linked Data and semantic Web standard
models and practices. In this paper, we first discuss the semantic modelling issues
related to spatio-temporal data such as meteorological observational data. We motivate
the reuse of a network of existing ontologies to define a semantic model in which me-
teorological parameters are semantically defined, described and integrated. The model
is generic enough to be adopted and extended by meteorological data providers to pub-
lish and integrate their sources while complying with Linked Data principles. Finally,
we present a meteorological knowledge graph of weather observations based on our
proposed model, published in the form of an RDF dataset, that we produced by trans-
forming observation records made by Météo-France weather stations. It covers a large
number of meteorological variables described through spatial and temporal dimensions
and thus has the potential to serve several scientific case studies from different domains
including agriculture, agronomy, environment, climate change and natural disasters.

Keywords: Knowledge Graph · Semantic Modelling · Observational Data · Linked
Data · Meteorology.

1 Introduction

Meteorological data have attracted great interest in recent years since they are crucial for
many application domains. Meteorological observations typically include measurements of
several weather parameters such as wind direction and speed, air pressure, rainfall, humidity
and temperature. However, these data are mostly collected and stored separately in different
files using a tabular data format that lacks explicit semantics, which impedes their integration
and sharing to serve researchers from different domains such as agriculture, climate change
studies or natural disaster monitoring. Publishing such data on the Web using Linked Data
(LD) principles would make them more accessible, easier to discover and reuse. However,
integrating and interpreting weather data requires rich metadata about studied features of
interest such as the air, observed properties such as the temperature or the humidity, the
utilized sampling strategy, the specific location of a weather station and the time (instant or
interval) at which the property was measured, and a variety of other information. Getting
insights into these heterogeneous data motivates the need of a semantic model in which
domain-specific ontologies play a central role by providing a coherent view over it.
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In this paper, we propose a semantic model that relies on a network of modular ontologies
and domain vocabularies that capture common and specific characteristics of observational
meteorological data at a fine grained level, including time, location, provenance, units of
measurement, etc. We paid specific attention to propose a model that adheres to LD best
practices and standards, thereby allowing for its re-use and extension by other meteorological
data producers, and making it accommodated for multiple application domains. To deal with
the complexity of the domain knowledge to be modelled, we adopt the SAMOD agile method-
ology [8] for ontology development, consisting of small steps within an iterative process that
focuses on creating well-developed and documented models by using significant exemplar
data so as to produce semantic models that are always ready-to-use and easily-understandable
by humans. Based on the early work of Uschold & Gruninger [12] the SAMOD process is
initiated by a motivating scenario that leads to a set of competency questions that, in turn,
provide requirements on the knowledge graph model. We build a self-contained semantic
model reusing and extending standard ontologies, among which the GeoSPARQL ontology
for spatial features and relations[3], the Time ontology [4] for temporal entities and relations,
the Sensor, Observation, Sample, and Actuator (SOSA) [6] and Semantic Sensor Network
(SSN) ontologies [5] for sensors and observations, and the RDF Data Cube ontology [10]
for aggregation and multidimensionality features.

Furthermore, we implement and make available a software pipeline that is reproducible
to generate knowledge graphs compliant with the proposed semantic model. We use the
pipeline to generate the first release of the WeKG-MF RDF knowledge graph constructed
according to this model from open weather observations published by Météo-France. It
includes weather observations from January 2019 till December 2021. To demonstrate the
interest of WeKG-MF and the underlying semantic model, competency questions identified
in our use case were translated into SPARQL queries to retrieve data from the WeKG-MF
knowledge graph in order to meet expert requirements.

The paper is structured as follows. Section 2 describes a motivating scenario that allows us
to identify a set of competency questions. Section 3 details our semantic model and highlights
its design principles. Section 4 presents the RDF-based knowledge graph constructed from
the observational weather data archives of Météo-France. Section 5 presents a validation
of the proposed model and the constructed knowledge graph through a set of SPARQL
queries implementing the competency questions identified in our motivating scenario. Section
6 presents the related work on lifting meteorological data into RDF datasets. Finally, we
conclude and present perspectives of our work in Section 7.

2 Motivating Scenario and Competency Questions

In this section, we present a motivating scenario [12, 8] inspired from requirements expressed
by experts and collected in the context of the D2KAB French research project1. The primary
objective of D2KAB is to create a framework to turn agriculture, agronomy and biodiversity
data into semantically described, interoperable, actionable, and open knowledge. Experts in
agronomy investigate the correlations between the development rate of plants and weather
parameters. They are especially interested in comparing aggregated values of a weather

1 https://www.d2kab.org/
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parameter for the same period of time in the same geographic location across years, e.g. the
Growing Daily Degrees (GDD) calculated from the daily average air temperature minus a cer-
tain threshold called base temperature. This motivating scenario already triggers competency
questions that reflect the requirements on the knowledge that has to be represented in the
proposed semantic model as well as the way of scoping and delimiting it [12, 8]. We present
some of them in the following:

CQ1. What is the measurement unit of a given weather parameter?
Several parameters such as atmospheric pressure, air temperature, wind speed, relative hu-
midity, sea surface temperature are measured using different sensors and procedures, and the
resulting numeric/qualitative values are included in weather reports. Measurement units and
possible values for qualitative parameters are not included in these reports and are usually
documented in external sources (e.g., WMO documentations).

CQ2. At what time of the day was the highest value of a weather parameter measured (ob-
served)?
Temporal features are crucial for observational data. Indeed, within a 24-hour time interval,
sensors hosted by weather stations regularly produce different measurement values for the
same weather parameter.

CQ3. What is the closest weather station to a specific spatial location?
This competency question points to the fact that the semantic model should encompass a
spatial module to capture the geographic coordinates of stations by means of longitude and
latitude values.

CQ4. For a specific location and given a calendar interval, provide time series of some
aggregated (pre-computed) weather parameters.
Providing aggregated data over relevant time period and for a specific location/weather station
is a recurrent need. For instance, daily minimum, maximum and mean temperature, cumu-
lative rainfall during a period of time for each station are examples of significant aggregated
parameters for different studies in agronomy or climate change studies.
According to CQ1 and CQ2, weather parameters as well as their significance need to be clearly
expressed and formalized. Metadata describing weather properties such as their possible lexi-
cal labels in different languages and their possible measurement units are required. CQ4 is one
example of competency questions that require the computation of aggregated values (sum of
average temperatures, weekly average temperature). This motivated us to propose a semantic
model presented in 3 that combines SSN/SOSA ontologies and RDF data cube vocabulary
to represent inherent semantics of observations at different levels of semantic granularity.

3 Semantic Model

Our aim is to design a semantic model in which meteorological variables are semantically
defined, described and integrated. The analysis of CQs presented in section 2 led us to select
a set of state-of-the art ontologies and thesauri to be re-used. It includes:
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– the SOSA/SSN ontologies [6, 5] designed for describing sensors and their observations,
and that we extend with new classes to capture the semantics of meteorological obser-
vations and provide formal definitions of these new classes. The extension is motivated
by the re-use of the Value Sets ontology design pattern;

– the Time Ontology [4] for describing the temporal properties of our data;
– the QUDT ontology and vocabulary [9] representing the various quantity and unit stan-

dards and supporting their processing such as conversion;
– the GeoSPARQL vocabulary [3] for representing spatial information in our data;
– the RDF data Cube Vocabulary [10] supporting the publication of multi-dimensional data,

such as statistics. We use it to create spatio-temporal slices of meteorological observations
by fixing time spans and geographic places as well as applying aggregation functions;
SOSA/SSN ontologies only support the description of a single, atomic, observation.

The OWL formalization of our model as well as the related SKOS vocabulary are available
in our Github repository2. The prefixes of ontologies and vocabularies reused or introduced
in this paper are listed in the repository’s README3.

In the following we present in details our model according to four categories of features:
features of interest, spatial features, temporal features, and aggregated features.

3.1 Features of Interest and Observable Properties: Describing Observations

In order to propose a self-contained model for representing and publishing meteorological
data, we define three new classes. weo:MeteorologicalObservation is the core class
of our model; it supports the description of a single, atomic observation. A meteorological
observation is related to a particular feature of interest, instance of class weo:Meteoro
logicalFeature, and an observable property, instance of class weo:WeatherProperty.
These three classes specialize classes from the SOSA/SSN ontologies as reflected by their
formal definitions.
weo:MeteorologicalFeature is defined as a subclass of sosa:FeatureOfInterest
and serves to represent meteorological features of interest, that is phenomena or events such
as precipitations, gusts or storms. Formally, the class is defined as follows:

weo :MeteorologicalFeature ≡ sosa :FeatureOf Interest ∩
∀ ssn :hasProperty.weo :WeatherProperty ∩ ≥1 ssn :hasProperty

weo:WeatherProperty is defined as a subclass of sosa:ObservableProperty. Its in-
stances are observable properties of meteorological features. Precipitation amount, gust speed,
air humidity are examples thereof. Formally, the class is defined as follows:

weo :WeatherProperty ≡ sosa :ObservableProperty ∩
∀ ssn : isPropertyOf .weo :MeteorologicalFeature ∩ =1 ssn : isPropertyOf

Instances of weo:MeterologicalObservation are observations of a weather property
of a certain feature of interest. The definition of weo:MeterologicalObservation ex-
presses that only one weather property and one meteorological feature is used for a given
meteorological observation:

2 https://github.com/Wimmics/d2kab/tree/main/meteo/ontology
3 https://github.com/Wimmics/d2kab/tree/main/meteo
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weo :MeteorologicalObservation≡sosa :Observation ∩
∀sosa :observedProperty.weo :WeatherProperty ∩ =1 sosa :observedProperty ∩
∀sosa :hasFeatureOf Interest.weo :MeteorologicalFeature ∩ =1 sosa :hasFeatureOf Interest

Fig. 1. Example meteorological observation of the WindAverageSpeed weather property

Figure 1 depicts the RDF graph representing an example meteorological observation
relative to the wind feature of interest and reporting the average wind speed observable
property. Although SOSA/SSN ontologies are commonly used to represent knowledge about
sensor data across domains, the definition of observable properties and features of interest,
as well as their alignment with existing controlled vocabularies, are delegated to the com-
munity of interest. Thus, we have reused the Value Sets4 (VS) ontology design pattern and
we defined a SKOS5 vocabulary whose concepts are instances of weo:WeatherProperty
and weo:MeteorologicalFeature and represent the possible observable properties and
features of interest. This SKOS vocabulary is available on our Github repository 6.

An excerpt of it is given in Listing 1.1. The SKOS concepts representing weather
properties are aligned with both terms from the NERC Climate and Forecast Standard
Names vocabulary and terms from the QUDT Quantity Kind vocabulary that includes gen-
eral concepts about quantifiable quantities such as quantity-kind:Speed or quantity-
kind:Temperature. For instance, wevp:averageWindSpeed and wevp:gustSpeed are
declared as narrower than qudt-kind:Speed (and instances of class qudt:QuantityKind).
The vocabulary can be easily extended to include new observable properties and features as
long as it is compliant with the proposed semantic model.

4 https://www.w3.org/TR/swbp-specified-values/
5 https://www.w3.org/2004/02/skos/
6 https://github.com/Wimmics/d2kab/blob/main/meteo/ontology/features-properties-vocabulaire.ttl
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wevf : wind a weo: MeteorologicalFeature , skos : Concept ;
rdfs : label " wind "@en , " vent "@fr ;
ssn: hasProperty wevp : windAverageSpeed , wevp : windAverageDirection .

wevp : windAverageSpeed a weo: WeatherProperty , qudt : QuantityKind , skos : Concept ;
ssn: isPropertyOf wevf : wind ;
skos : broader nerc : CFSN0038 , <http :// qudt .org /2.1/ vocab / quantitykind /Speed >;
qudt : applicableUnit <http :// qudt .org/ vocab / unit /M-PER -SEC > ;
skos : prefLabel " Vitesse moyenne du vent 10 mn"@fr ," Average wind speed 10 mn"@en;
wep: hasAbbreviation "ff ".

Listing 1.1. SKOS representation of meteorological feature wind and related weather property win-
dAverageSpeed.

@prefix : <http :// ns. inria .fr/ meteo / vocab / weatherproperty / wmocode /> .
:0901 a skos : Collection ;

rdfs : label " State of ground without snow or ice cover "@en;
skos : member :0901/0 , :0901/1 , ... ;

:0901/0 a skos : Concept ; rdf: value 0 ;
skos : definition " Surface of ground dry ( without cracks and no appreciable
amount of dust or loose sand )".

:0901/1 a skos : Concept ; rdf: value 1;
skos : definition " Surface of ground moist " .

Listing 1.2. SKOS collection representing the state of ground qualitative weather property (0901 WMO
code).

Observation results are literals and an observation is linked to its result by a property
sosa:hasSimpleResult. Instead of repeating the measurement units within each observa-
tion, we denote it at the level of the SKOS concept representing the observable property in
our vocabulary (Listing 1.1). Furthermore, some qualitative weather properties require the use
of standard encoded values defined by the WMO. For instance, the ground state is a weather
property whose possible values (dry, moist, etc.) are in a predefined set of values of the WMO
0901 code7. For each qualitative weather properties, we created a skos:Collection whose
members represent the possible values of the weather property as described in the WMO
documentation. Listing 1.2 presents an excerpt of the skos:Collection of values for the
state of the ground weather property.

3.2 Spatial Features: Locating the Weather Stations

A weather station typically hosts sensors and equipments for the purpose of measuring atmo-
spheric conditions and providing information for weather forecasts. Whereas a description of
sensors and equipment is not always made available by meteorological data providers, relevant
metadata about weather stations generally include station identifier, name, latitude, longitude
and altitude. Our model introduces the weo:WeatherStation class to represent any type of
weather station. To capture stations’ spatial location, weo:WeatherStation is introduced
as a subclass of geosparql:Feature. Therefore, each instance of weo:WeatherStation

7 https://epic.awi.de/id/eprint/29967/1/WMO2011i.pdf
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has a geometry that is a point with specific coordinates. Following GeoSPARQL vocabulary,
geo-coordinates of a weather station are defined as a Well-Known Text (WKT) literal (e.g.,
POINT(8.792667 41.918)). Our adoption of GeoSPARQL is motivated by the fact that it
allows to efficiently query spatial data based on a set of spatial functions. It enables us to
express spatial queries involving meteorological data, e.g. retrieving the closest station to a
given location or the precipitations for a specific location. We also reused latitude, longitude,
and altitude datatype properties from the WGS84 vocabulary since WKT literals do not
integrate information about the altitude of a station.

3.3 Temporal Features: Defining Time Entities

In many cases, the observation of a given weather property is made over a period of time.
The duration of a measurement varies depending on the property. For such cases, we reuse
the sosa:phenomenonTime property to link an instance of weo:Meteorological- Ob-
servation to an instance of time:Interval. Since time durations are described in the
documentation of weather observed properties, we defined different time interval classes by
expressing an OWL restriction on their duration that may be declared in seconds, minutes or
hours. The interest of doing this is that these time intervals are declared once in our model and
are reused for all observations, and thus avoid substantial redundancy. For instance, in Figure 1
the wevp:windAverageSpeed weather property is measured during a period of 10 minutes.
This is denoted by property sosa:phenomenonTime whose value is an instance of class
weo:Interval10m, while the end time of the interval is an instance of class time:Instant.

3.4 Aggregated Features: Defining Observation Slices

Observations produced by sensors can rapidly reach enormous volumes. The CQ4 compe-
tency question (see Section 2) stresses the need to create focused and homogeneous sets
of observations that share some dimension. In particular, creating times series of air tem-
peratures or other weather parameters is a recurrent need. In this respect, we reuse the
RDF Data Cube vocabulary (DCV)8 to describe multi-dimensional data according to a ’data
cube’ model. Each data cube is an instance of class qb:DataSet and is linked to instances
of class qb:DataStructureDefinition by property qb:structure (Figure 2). A Data
Structure Definition (DSD) defines the structure of a data cube and how observations are
linked to the measures and dimensions of the data cube. Listing 1.3 presents an example of
DSD wes:annualTimeSeriesTemperature that defines the structure of a data cube of air
temperatures. According to this DSD, each observation contains three daily measures: the mini-
mum, maximum and average temperatures. The qb:Slice class enables to represent a subset
of observations that share the same dimensions. In our model, we declare spatio-temporal
slices of observations by fixing the spatial and temporal dimensions: the spatial dimension
may refer to the weather station, while the temporal dimension corresponds to a calendar
interval. While the SOSA/SSN ontologies only support the description of a single, atomic, me-
teorological observation, an observation (instance of qb:Observation) in a spatio-temporal
slice is represented by a set of measures (instances of qb:MeasureProperty) each linked
to an observable property (declared in our SKOS vocabulary) with property qb:concept.

8 https://www.w3.org/TR/vocab-data-cube/
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Fig. 2. Example of an RDF data Cube slice representing a TimeSeries of Air Temperatures

Furthermore, observations from the same qb:Slice have attributes such as the observation
date that refers to a 24-hour interval during which a certain value of a certain parameter is
selected with respect to a specific condition or aggregation (e.g. maximum daily temperature).

4 Météo-France Weather Observations RDF Dataset

This section presents the pipeline that we set up to lift the observation reports published by
Météo-France into an RDF knowledge graph named WeKG-MF (Weather Knowledge Graph
- Météo-France), that complies with the model presented in Section 3.

4.1 Météo-France Dataset

In France, the primary source of weather data and forecasting is the Météo-France9 organisa-
tion. As a member of World Meteorological Organization (WMO)10, Météo-France provides
access to daily meteorological observations. These data are the result of measurements per-
formed by 62 weather stations located in different regions in metropolitan France and overseas
departments. Measurements are generated by different sensors/equipments hosted by weather
stations, collected in daily tabular data files such as the table presented in Figure 3. Each
line corresponds to the values of meteorological parameters measured or observed at a given
weather station (column 1) at a specific date and time (column 2). For instance, column u
denotes the values of “relative air humidity” measured at different times of the day at different

9 https://www.meteofrance.com/
10 https://public.wmo.int/en/
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<http :// ns. inria .fr/ meteo / dataset -MF /2021 > a qb: DataSet ;
qd: structure wes: annualTimeSeriesTemperature ;
dct: title " French Meterological Weather Data of 2021" @en ;
dct: description " Daily min/max/avg temperature in 2021" @en .

wes: annualTimeSeriesTemperature
a qb: DataStructureDefinition , qb4st : SpatioTemporalDSD ;
qb: component

[qb: dimension wes - dimension : year ; qb: componentAttachment qb: DataSet ],
[qb: dimension wes - dimension : station ; qb: componentAttachment qb: Slice ],
[qb: measure wes - measure : minDailyTemperature ],
[qb: measure wes - measure : maxDailyTemperature ],
[qb: measure wes - measure : avgDailyTemperature ],
[qb: attribute wes - attribute : observationDate ] ;

qb: sliceKey wes: SliceByStationAndYear .

wes - dimension : station a rdf: Property , qb: DimensionProperty ;
rdfs : range weo: WeatherStation .

wes - dimension : year a rdf: Property , qb: DimensionProperty ;
rdfs : range xsd: gYear .

wes - measure : minDailyTemp a rdf: Property , qb: MeasureProperty ;
rdfs : label " Daily Minimum Temperature "@en;
rdfs : range xsd: decimal ;
qb: concept wevp : minAirTemperature .

Listing 1.3. The wes:annualTimeSeriesTemperature Structure Definition.

Fig. 3. Snapshot of a CSV file of meteorological parameters

location. However, presented in a tabular-delimited structure and stored separately in different
files, weather measurements are hardly exploitable.

4.2 Lifting Process

We downloaded from Météo-France’s portal11 the list of SYNOP12 weather stations in Geo-
JSON format13, and the monthly observation reports generated by these stations as CSV
files. Measurement are generated every 3 hours and disseminated into the WMO network
in less than 15 minutes. Then, we implemented a reproducible software pipeline to generate
WeKG-MF in compliance with the proposed model. The core of the pipeline is the mapping
task that is performed with Morph-xR2RML tool14, an implementation of the xR2RML

11 https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
12 SYNOP: surface synoptic observations, a numerical code used for reporting observations made by weather stations.
13 https://donneespubliques.meteofrance.fr/donnees_libres/Txt/Synop/postesSynop.json
14 https://github.com/frmichel/morph-xr2rml/
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mapping language [7] for MongoDB databases. Pipeline scripts as well as xr2RML mapping
triples are available in our github repository15.

Additionally, we enriched the weather stations’ descriptions by linking each station to the
closest Wikidata entity, based on its geographic coordinates, using property dct:spatial.
This allows us to get further information about the regions, departments and municipalities
in which weather stations are located using simple SPARQL queries. Furthermore, leveraging
Wikidata allows to benefit from its many links to other data sources, in particular the French
national institute for statistics and economic studies (INSEE) which is highly used and trusted
by French organisms.

WeKG-MF is published under an open licence, is assigned a DOI16 and can be down-
loaded from Zenodo. In the short term, we intend to make it available through a public
SPARQL endpoint.The current version of WeKG-MF covers the period from January 2019
to November 2021. Statistics about its content are provided in Table 1.

Category Resources
Total Nr. of triples 60.601.248
Nr. of classes 9
Nr. of weather stations 62
Nr. of Observations for 2019 2.788.528
Nr. of Observations for 2020 2.789.574
Nr. of Observations for 2021 (till November 2021) 2.528.467
Nr. of weather properties 22
Nr. of meteorological features 6
Nr. of Observations per observed property ≈ 405.328
Nr. of Air Temperatures slices 183

Table 1. key statistics of the WeKG-MF dataset

5 Validation: Implementing the Competency Questions

The validation process is intended to check the consistency of the model and its ability to ad-
dress requirements and cover the domain [8]. In Section 2, we have presented an example mo-
tivating scenario that pointed to a set of competency questions which reflect requirements that
potential users may want to get answers for. In this section, we evaluate the proposed semantic
model by demonstrating how CQs can be translated into SPARQL queries. Note that the model
and the WeKG-MF dataset were loaded in a Virtuoso triple store deployed as a Docker image.

5.1 Querying Low-Level Observations

Let us first address CQ2 “At what time was the highest value of a weather parameter measured
(observed)?”. It points to the need to query the exact time at which a given parameter reaches

15 https://github.com/Wimmics/d2kab/tree/main/meteo/Lifting-dataset
16 https://doi.org/10.5281/zenodo.5925413



A Model for Meteorological Knowledge Graphs: Application to Météo-France Data XI

SELECT ? date ? hour ? station ? temp_max WHERE {
{
SELECT ? date ?s (MAX (?v) as ? temp_max )

WHERE {
?obs a weo: MeteorologicalObservation ;

sosa : observedProperty wevp : airTemperature ;
sosa : hasSimpleResult ?v;
wep: madeByStation ?s ;
sosa : resultTime ?t .

BIND (xsd: date ("2020 -08 -01") as ? date )
FILTER (xsd: date (?t) = ? date ) }

GROUP BY ?s ? date
}
?obs a weo: MeteorologicalObservation ;

sosa : observedProperty wevp : airTemperature ;
sosa : hasSimpleResult ? temp_max ;
wep: madeByStation ?s ;
sosa : resultTime ?t .

?s rdfs : label ? station .
FILTER (xsd: date (?t)= ? date )
BIND ( HOURS (?t) as ? hour ) }

Listing 1.4. SPARQL query implementing CQ2

SELECT ? label ?lat ? long ? coordinates WHERE {
?x rdfs : label ? label ;

geosparql : hasGeometry [ geosparql : asWKT ? coordinates ].
geo:lat ?lat; geo: long ? long .

BIND (" Point (0.1413499 45.1423348)"^^ geosparql : wktLiteral as ? Currentposition )
BIND ( geof : distance (? coordinates ,? Currentposition , uom: metre ) as ? distance )

}
ORDER BY ? distance
LIMIT 1

Listing 1.5. SPARQL query implementing CQ3

its peak. Our model captures the importance of temporal features surrounding observational
data by capturing the exact time at which each and every observation is generated. The
SPARQL query, presented in Listing 1.5, is a formal translation of CQ2 that allows us to
retrieve, for each station available in the WeKG-MF dataset, at what time the maximum
air temperature was reached on August 1st, 2021. It shows that CQ2 can be successfully
converted and executed as a SPARQL query over the dataset. Another set of SPARQL queries
leveraging spatial GeoSPARQL functions demonstrate how end-users can query meteoro-
logical observations based on geospatial coordinates of weather stations. For instance, CQ3
expresses the need to query the closest weather station given specific geospatial coordinates.

5.2 Querying Observation Slices

Let us now address the CQ4 “For a specific location and given a calendar interval, provide
time series of some aggregated weather parameters?”. This question motivates our adoption
of the RDF Data Cube Vocabulary to represent pre-calculated time series of aggregated
weather parameters. For example, in agronomy, experts are interested in calculating GDD
values that are calculated based on the average daily temperature minus a base temperature
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SELECT ? date ? station ? temp_avg ?GDD WHERE {
BIND (URI (" http :// ns. inria .fr/ meteo / weatherstation /07510") as ? station )
?s a qb: Slice ;

wes - dimension : station ? station ;
wes - dimension : year "2021"^^ xsd: gYear ;
qb: observation [

a qb: Observation ;
wes - attribute : observationDate ? date ;
?p ? temp_avg ] .

?p a qb: MeasureProperty ; qb: concept wevp : airTemperature .
BIND ((? temp_avg - 10) as ?GDD) }

ORDER BY ? date

Listing 1.6. SPARQL query implementing CQ4

which varies from a crop to another. Note that daily average temperature corresponds to the
average of the minimum and maximum temperatures measured during a 24-hour interval.
Listing 1.6 shows the SPARQL query formalizing competency question CQ4 and shows it
can easily calculate GDD values based on pre-calculated slices corresponding to a specific
weather station and by selecting beginning date of a calendar interval. Note that the value of
10 in the query denotes an example of base temperature. Without pre-calculated slices, CQ4
could be implemented by a SPARQL query that computes min/max/avg temperatures for a
specific weather station on the fly. However, the complexity of the writing of the query as well
as its execution time would be significantly higher. The generation of spatio-temporal slices
is done once and they can be reused for the calculation of any new aggregated parameters
and facilitates their implementation.

5.3 Implemented Notebook and Visualizations

We developed a set of SPARQL queries available on the Github repository of our project17,
together with a Jupyter Notebook that demonstrate how the results of SPARQL queries can
be used to generate visualizations from the WeKG-MF knowledge graph. As an example,
Figure 4 presents different types of data visualisations. The first plot (on the top-left) shows
daily cumulative precipitations measured at the "Bordeaux-Merignac" station and the sec-
ond one (on the top-right) shows the evolution of daily average temperature collected from
weather stations located in the French region of "Nouvelle Aquitaine". Both plots show a
comparison of aggregated values calculated based on two weather parameters (precipitation
and air temperatures) available in the WeKG-MF knowledge graph. The third visualisation
(on the bottom-center) shows the different weather stations located in Metropolitan France.

6 Related Work

In this section, we present existing research works on the publication of meteorological data
as LOD datasets. First, the AEMET meteorological dataset [2] makes available some data
sources from the Spanish Meteorological Office through a SPARQL endpoint. The dataset is
based on the AEMET ontology network which follows a modular structure: a central ontology

17 https://github.com/Wimmics/d2kab/tree/main/meteo/sparql-examples
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Fig. 4. Examples of Visualisation of Daily Precipitations, Average Temperature and Weather Station
Locations in Metropolitan France

relates a set of ontologies that describe different sub-domains involved in the modeling of
meteorological measurements. These sub-domains are: (meteorological) Measurements, Sen-
sors, Time and Location. As an attempt to access to the dataset, we tried to quey the AEMET
SPARQL endpoint18, however, we noticed that the endpoint is no longer available19. The
authors of [11] present an RDF dataset of meteorological measurements made by a weather
station located at the Irstea experimental farm. Our proposition is in line with their work as
we rely on most of the ontologies that they used (SOSA/SSN, GeoSPARQL, QUDT, OWL-
Time ontology). Yet, we adopt somehow different design principles to propose a minimal
yet extensible semantic model for meteorological data. Furthermore, we extend their work
to support the description and dynamic generation of homogeneous slices of observations
pre-calculated using aggregation functions over temporal and spatial dimensions. Thus, we
are able to represent annual times series of daily min, max and average temperatures for each
weather stations in our dataset.

The authors of [1] propose an ontological model to represent metadata and data schema
of meteorological observation data from the Météo-France archives. The focus of this work
is to enable access and understanding of the data sources (weather reports) with adherence to
FAIR principles, yet without actually transforming the observational data included in weather

18 http://aemet.linkeddata.es/sparql
19 Last attempt on February, 7th 2022
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reports into RDF data. In our work, we are interested not only in describing observational
data but also in transforming them into semantically-enriched observations accessible via
SPARQL queries in order to enable their integration in a wide range of applications from
different domains such as agronomy or natural disaster monitoring.

7 Conclusion and Future Works

Meteorological observations refer to values of different weather observable properties mea-
sured across space and time by means of different sensors and equipment available in weather
stations. Transforming these data into RDF knowledge graphs bridges the semantic gap
between observational data and other resources also published on the Web as Linked Open
Data, thus enabling their re-use in different domain applications. In terms of sustainability,
we provide a fully automatic pipeline that enables us the update of the WeKG-MF graph over
time with new weather data downloaded from Météo-France.

Towards this goal, in this paper we proposed a reusable and extensible model that seman-
tically describes the multiple dimensions behind meteorological data. Our semantic model
reuses the SOSA/SSN ontologies and extends it with new classes about specific feature of
interest entities. These classes are rigorously defined and aligned with third-party vocabularies
and ontologies. We rely on Time Ontology and GeoSPARQL to capture the spatio-temporal
context surrounding observational data, as well as the QUDT schema and vocabulary to
include metadata about measurement units of observed weather properties. We leverage
the RDF Data Cube vocabulary to create slices of weather parameters that are the result
of aggregation functions over spatial and temporal dimensions. This is typically needed to
represent time series of min/max/average temperatures or precipitations in a given spatial
area. We also propose a SKOS vocabulary of observable properties and features aligned with
existing controlled vocabularies. In addition, we generated and published WeKG-MF, an RDF
knowledge graph complying with this semantic model, from Météo-France meteorological
data observations. To the best of our knowledge, our research work is the first that proposes
a meteorological RDF-based knowledge graph.

This work was started in the context of the D2KAB French project20. Within this project,
a use case concerns the design and development of a reading interface for the Plant Health
Bulletins (PHB) that are meant to inform bio-vigilance stakeholders about the status of plant
diseases and crop pests in French regions. This interface shall be able to augment reading
experience by integrating related information likely to provide the reader with enriched context
and insights into the data they are currently reading. Various related information may be
involved, such as phenological stages of crops and pests, phenotyping information, taxonomic
resources, geographic references and meteorological observations record history. In the latter,
we typically expect the aggregated data (such as max/min/avg temperature or precipitation
and the measure of Growing Daily Degrees) to be of utmost importance for experts to draw
hypotheses about, e.g., the possible impact of weather conditions on the advent of crop pests
at different periods or phenological stages.

20 https://www.d2kab.org/
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