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ABSTRACT
In LoRaWAN networks, devices are identified by two identifiers:
a globally unique and stable one called DevEUI, and an ephemeral
and randomly assigned pseudonym called DevAddr. The association
between those identifiers is only known by the network and join
servers, and is not available to a passive eavesdropper.

In this work, we consider the problem of linking the DevAddr
with the corresponding DevEUI based on passive observation of the
LoRa traffic transmitted over the air. Leveraging metadata exposed
in LoRa frames, we devise a technique to link two messages contain-
ing respectively the DevEUI and the DevAddr, thus identifying the
link between those identifiers. The approach is based on machine
learning algorithms using various pieces of information including
timing, signal strength, and fields of the frames. Based on an evalua-
tion using a real-world dataset of 11 million messages, with ground
truth available, we show that multiple machine learning models
are able to reliably link those identifiers. The best of them achieves
an impressive true positive rate of over 0.8 and a false positive rate
of 0.001.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computer
systems organization→ Sensor networks; •Networks→ Link-
layer protocols.

KEYWORDS
LoRaWan, re-identification attack, IoT, privacy
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1 INTRODUCTION
LoRaWAN is a technology allowing for long-range and low band-
width communications. It is particularly suited for devices with low
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energy resources such as sensors running on battery for extended
period of time. It is used in domain such as health, well-being, and
smart city [11]. As of today, it is estimated that there are hundreds
of millions of devices1 and 166 LoRaWAN network operators2 de-
ployed worldwide.

In LoRaWAN, end-devices (e.g., sensors) are identified by two
elements, the DevEUI and the DevAddr. The DevEUI is a globally
unique identifier (similar to a MAC address) tied to the device but
only exposed in a single message during the join procedure. The
DevAddr is an identifier assigned to the device by the network
as part of the join procedure. After the join procedure, only the
DevAddr is used and the DevEUI is never observed again. As part
of security features of LoRaWAN, the assignment of the DevAddr
is done via an encrypted message, thus the association between a
DevEUI and a DevAddr is never exposed in cleartext over the air.
The DevAddr can be renewed, via rejoin-request [7], to a new
random value. The various DevAddr assumed by a device are thus
equivalent to unlinkable pseudonyms from the point of view of an
external observer.

Linkingmultiple identifiers used by awireless device is a problem
that has beenmainly studied inWi-Fi [23] and Bluetooth/BLE [5, 15]
where address randomization is becoming the norm. For LoRaWAN,
we conducted a preliminary work linking DevAddr with DevEUI by
leveraging the timing closeness between the associated messages
[2].

In the present work, we propose a consolidated method to find
the association between a DevEUI and a DevAddr. After a passive
observation of the LoRa traffic over the air, similarly to [2], the
DevEUI/ DevAddr association is obtained by linking join-request
messages with the following uplinkmessages, this time leveraging
a large set of metadata such as relative timing, signal reception
indicators (RSSI, SNR, etc.), and values included directly inside the
headers.

The contributions of this paper are the following:

• We introduce a machine learning approach to re-identify
devices by linking join-request with uplink messages.

• We identify pieces of information found in LoRaWAN traffic
that can be leveraged for message linking.

• We demonstrate through experimentation on a representa-
tive dataset that our approach is able to reliably re-identify
devices.

1https://www.semtech.com/lora
2https://lora-alliance.org/
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Figure 1: Join procedure using OTAA

• We discuss several countermeasures that could be deployed
to thwart our attack.

2 BACKGROUND
Standardized by the LoRa Alliance, LoRaWAN is an open source
protocol [7] used as a MAC layer to connect end-devices to servers
though gateways (GW). The physical link between the end-device
and GW leverages LoRa, a proprietary radio frequency modulation.
Thus, the role of the gateway is to translate the LoRa traffic to IP
and forward it to or from the server. More precisely, there are three
types of servers:

• The Join Server (JS) is responsible of the enrollment of the
end-device into the network;

• The Network Server (NS) routes the traffic to the relevant
Application Server;

• The Application Server (AS) holds the actual application’s
logic.

In numerous implementations, the NS, AS and JS are all located
on the same node, but they can be physically separated. In any case,
a message going from the end-device to a server is called uplink
and, in the opposite direction, downlink.

2.1 Addressing
Each end-device owns a unique IEEE EUI64 identifier named DevEUI,
provided by the manufacturer and constant over its lifetime. The
first 3 bytes contain the OUI of the end-device (Organizationally
Unique Identifier, registered to the IEEE).

Apart from this static address, LoRaWAN also uses a new dy-
namic DevAddr every time an end-device is activated or re-joins
the network. Generated by the NS by concatenating the variable
length network identifier (7 to 24 bits) and random data, this 32
bits identifier is not bound to a unique device. Multiple end-devices
can theoretically use the same DevAddr at the same time. Thus,
the JS keeps track of the association between DevEUI and tuples
containing the DevAddr as well as a the network’s session key.

2.2 End-Device activation
A newly deployed end-device must follow a linking procedure to
be able to communicate with the NS. Two methods exist: Over-the-
Air Activation (OTAA) and Activation By Personalization (ABP).

They mainly differ in where cryptographic information is stored: in
ABP, the various keys as well as the DevAddr are saved directly on
the end-device before the activation, whereas OTAA derives them
during the join procedure.

In this work, we only consider OTAA, the standard procedure
(see figure 1). The end-device first sends a join-request message
containing notably the DevEUI and JoinEUI, an IEEE EUI64 unique
identifier corresponding to the targeted JS. This is the only time
the DevEUI is available unencrypted on the air.

Then, the relevant JS answers with a join-accept message,
providing additional information to finalize the generation of the
keys required to setup a secure session with the AS, as well as a
DevAddr. However the join-accept is encrypted, and the follow-
ing uplink messages are the only ones that provide the DevAddr
in clear text. This mechanism is meant to avoid linking the unique
identifier of the end-device, the DevEUI, with the traffic containing
its ephemeral identifier, the DevAddr.

3 MOTIVATIONS AND THREAT MODEL
Being able to link the DevAddr with the DevEUI of an end-device,
known as a re-identification attack, can be leveraged to threaten
the security and privacy of LoRaWAN networks. And since join
and rejoin procedures are similar [7], it is also possible to link the
permanent DevEUI with multiple DevAddr following the various
rejoin-request.

From the security viewpoint, which is not the main objective
of this work, this attack can be exploited to target specific devices
with reactive and selective jamming [4, 18].

From the privacy viewpoint, since the notion of privacy varies
through context and time [9], reducing it to basic questions is
beneficial. In our context, privacy applies to three categories of
information: identity (who?), activity (what/when?) and location
(where?) [10]. By design, LoRaWAN separates the identity (via the
DevEUI) from the activity (via the DevAddr). Linking them provides
more accurate information about the end-device and its potential
applications, both exploitable by an attacker to map it with an
already known identity, activity or location. For example, parking
lot end-device data could help inferring the activity of a household
[14], leading to a privacy leakage that involves both activity and
location. Another example, the OUI part of the DevEUI can be used
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to infer the manufacturer, or even the end-device model [16], and it
can help mapping a type of end-device with a company or person.

In any case, eavesdropping LoRaWAN traffic is straightforward.
Any attacker knowing which band to listen to can eavesdrop the
communication [22]. To do so, one can use a cheap LoRa device
to listen on a specific channel [19] or a more expensive but still
affordable gateway to monitor multiple channels3.

Then, LoRa benefits from a wide transmission range by design,
meaning that the attack does not require a physical proximity but
can be conducted from kilometers away. This is a major difference
with eavesdropping attacks in wireless protocols such as Bluetooth
or WiFi [3, 8]. It also means that the eavesdropping device can
listen for long periods of time without being detected, and can thus
collect a significant amount of messages.
Threat model: Our threat model relies on several assumptions.
First, we assume that the encryption layer is robust: it is impossible
to access the content of encrypted payloads. Then, we assume a
passive attacker: the traffic is left untouched and only listened
to, without injecting or altering messages. This is a reasonable
assumption as the messages benefit from an integrity protection.
Likewise, we assume the end-device is left unmodified, and the
attacker cannot physically access it. Finally, we assume that the
attacker controls several receivers in the targeted area, silently,
potentially over extended periods of time. As commercial gateways
cost a few hundreds euros (see above), achieving good coverage in
a citywide area is realistic.

4 LINKING JOIN REQUESTS AND UPLINK
MESSAGES

In this section, we present the process and the various pieces of
information used to link the join-request, containing a DevEUI
and the following first uplink message. In machine learning, such
pieces of information are called features.

Two specificities can be leveraged for this matching. The first
one is inherent to the protocol itself: a join-request is generally
closely followed by an uplink with a fresh DevAddr. There is no
obligation for the end-device to use the newly acquired DevAddr
right after receiving it; however, it makes sense in general for a
sensor either to ask for its configuration or to start sending data as
soon as possible.

The second one is the fact that each end-device has a form of
fingerprint relative to a group of gateways: its distance to them and
the terrain in between both affect the radio features. Although LoRa
end-devices can be mobile, many of them are static (e.g., a water
metering sensors). Likewise, the emitted signal of an end-device
remains constant through time: its hardware is built to broadcast
data with a specific power and should not significantly vary through
time. Thus, two messages coming from the same static end-device
should have physical similarities when received by a given gateway.

Based on these assumptions, we analyze the variation of features
among messages in our dataset by separating known first uplink
messages from other uplink messages. The distribution of the
data according to each feature is then analyzed to spot differences

3For example, The Things Gateway costs 300€: https://www.thethingsnetwork.org/
docs/gateways/gateway/. A smaller version is even cheaper, costing 70€ https://www.
thethingsnetwork.org/docs/gateways/thethingsindoor/

between the two sets. If the discrepancies are important enough,
the studied feature can be used to distinguish valid from invalid
links. A complete list is available in table 1.

The most basic form of feature is directly extracted from the
unencrypted header of the message. For example, each uplink
message contains a 2-bytes frame counter (FCnt), starting at zero
following a join or re-join procedure and incremented by 1 with
each subsequent uplink.

Alternatively, it is possible to extract more complex features
based on the transmission itself. As LoRa frames are broadcast, they
can be received by multiple gateways. This is not a problem when
working with header fields such as the frame counter. However,
physics-based features vary from gateway to gateway and cannot
easily be converted to a single value. Thus, we use various vectors,
with each index corresponding to a gateway from the dataset. When
a message is received by a gateway, the relevant value is placed at
the corresponding index and it is then possible to compute various
distances. For example, by setting a 1 if a gateway received the
message and a 0 if it did not, we can compute a vector coding the
message reception patterns by gateways. Then, we compute the
euclidean distance (GWdist) between the vector of a join-request
and the ones of uplink messages. Another example, for a join
request 𝑗 and an uplink 𝑢 received by 𝑛 gateways, the ESP distance
is computed as follows:

ESPdist ( 𝑗, 𝑢) =√︁
( 𝑗𝐸𝑆𝑃1 − 𝑢𝐸𝑆𝑃1)2 + ( 𝑗𝐸𝑆𝑃2 − 𝑢𝐸𝑆𝑃2)2 + ... + ( 𝑗𝐸𝑆𝑃𝑛 − 𝑢𝐸𝑆𝑃𝑛)2)

The closest the vectors are, the most likely the same end-device
sent both the join-request and the corresponding uplink. This
process is followed for all features with the 𝑑𝑖𝑠𝑡 suffix.

Name Description
FCnt Frame counter
plen uplink payload length
OUI OUI extracted from the DevEUI

Datarate Datarate
SF Spreading Factor

tsdiff

Time of arrival difference
between the join-request
and the studied uplink

ESPdist
Estimated Signal Power

euclidean distance

RSSIdist
Received Signal Strength Indication

euclidean distance

SNRdist
Signal to Noise Ratio
euclidean distance

tsdist Timestamps euclidean distance

DevAddrdiff

Time of arrival difference
between two uplink messages

with identical DevAddr

GWdist
Euclidean distance based on

gateways receiving the messages
Table 1: Features used by the linking process
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5 METHODOLOGY
In this section, we consider a machine learning approach to link
join-request with uplink messages, and therefore DevEUI with
DevAddr, based on the features presented in section 4 (see figure 2).
The process can be seen as a binary classification problem, as we
need to distinguish pairs of messages that are actually linked from
pairs that are not.

Computing distancesJoin Requests

Uplinks Extracting values

Features vector

Training and
validating ML model

Training dataset Testing dataset

Best model Final resultsTesting model

Figure 2: Overview of the methodology

Dataset: To conduct our experiments, we use a real-world dataset
including 740 000 join-request and 10 570 000 uplink messages
of LoRaWAN 1.0. Theywere received by a set of a hundred gateways
deployed in various places in the city of Grenoble (France), listening
to the EU 868MHz band, from the 23th June 2020 to the 3rd January
2022.4

As we control the LoRaWAN network server, we have access to
the content of the payloads as well as the ground truth for links
between 211 known DevEUI and 1024 known DevAddr identifiers.
This network is operated by the university and the end-devices are
managed by a community of researchers for experimental purposes.
Although the end-devices are used in research settings, their imple-
mentation and deployment aim at recreating a realistic real-world
LoRaWAN network.
Performance metrics: In order to evaluate the classification effi-
ciency, we use the following metrics:

• True positive (TP): the link found is valid;
• False positive (FP): the link found is invalid;
• True negative (TN): no link was found, correctly;
• False negative (FN): no link was found, erroneously;
• True Positive Rate (TPR);
• False Positive Rate (FPR);

4More precisely, only the 868.1, 868.3, 868.5, 868.3, 867.1, 867.3, 867.5, 867.7 and
867.9MHz frequencies for uplink messages as well as 869.525MHz for downlinks are
listened to. The carrier-grade frequencies used by specific operators are not received
by the gateways. Thus, some portions of a communication can be lost because the
end-device changes to a frequency not monitored. This does not affect our experiments
as it is only relevant to traffic coming from uncontrolled operators.

• Matthew correlation coefficient (MCC)5.

Data preparation: Themachine learningmodels are built with two
sets: a set of join-request messages J and another of uplink
messagesU. Note we only deal with the ground truth: messages
received from other operators were previously removed. More pre-
cisely, a subset of known links K is used to detect the unique valid
pairs ( 𝑗, 𝑢𝑣) ∈ K , representing the first class. The second class is
built by using the randomly selected leftover uplink messages to
create invalid pairs ( 𝑗, 𝑢𝑖 ) ∉ K . This ensures the second class is
heterogeneous and contains a vast variety of associations.

Both types of pairs are converted into vectors 𝑣 containing a
list of features 𝑓 such as 𝑣 ( 𝑗, 𝑢) = 𝑓1, 𝑓2, ..., 𝑓𝑛 with the last value 𝑓𝑛
being an integer corresponding to the link state between 𝑗 and 𝑢.
Thus, 𝑓𝑛 is equal to 1 for valid links ( 𝑗, 𝑢𝑣) and 0 for invalid links
( 𝑗, 𝑢𝑖 ).
Considered classifiers: Following the works of Acar et al. [1], we
choose to study seven classifiers (CLF): Decision Tree (DT), Naive
Bayes (NB), Logistic regression (LR), K-Nearest Neighbours (kNN),
Random Forest (LR), AdaBoost (AB), and LightBGM (LBGM).

We replaced XGBoost [1] by LightBGM, a faster alternative for
gradient boosting. Instead of sorted continuous values, it leverages
histograms to build the internal trees, reducing the number of
splitting points to analyse [12].
Training: Once the data has been transformed into the expected
format, we use the scikit-learn Python library 6, which provides
many algorithms [17]. In our work, we consider several of them
with the goal to identify the most efficient one.
Validations methods: In order to produce robust models against
unseen data, the dataset is split into two subsets: 75% is used for
training and validation, and the remaining 25% is only exploited
during the testing phase. We also use 5-fold cross validation: the
dataset is divided into 4 subsets training a model and the last one
is used to test it. More precisely, we leverage a stratified k-fold
cross validation to preserve the proportion of each class inside the
subsets. Using such method improves results, minimizing the bias
and variance [13] at the cost of higher computing resources [24]. It
also proves an attacker does not need to listen for communications
for years before being able to link the traffic. This process is repeated
5 times to further reduce the bias and variance [20].

6 EXPERIMENTAL RESULTS
In this section, we present the evaluation of the machine learning
classifiers and data presented in section 5 . We select a subset that
ranges from September 1st, to December 31st, 2021. This equals to
1086 valid links and 165 534 invalid links.

The frame counter is an obvious indicator to detect the first
uplink message, and obfuscating it is a potential mitigating solu-
tion for the re-identification attack (see section 7). So, in order to
further assess the importance of this feature for the success of the
attacks, we considered two versions of the dataset: one including
it, and one without.

5As the two classes are imbalanced, we specifically use the Matthew correlation
coefficient (MCC) to compare models. Contrary to accuracy or F1-score, it correctly
leverages all data from the confusion matrix and provides a score taking into account
both the positive and negative cases [6].
6https://scikit-learn.org/stable/index.html (version 1.0.2)
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Stability against unseen data: The MCC remains stable for mod-
els across the 5-fold cross validation and testing phases7. More
detailed results are available as artefacts (see section 10).
Performances with the frame counter: A comparison between
the various classifiers in table 2 shows that Random Forest presents
the best results while including the frame counter in the features,
with a true positive rate of 0.7939 and a false positive rate of 0.001.
Multiple classifiers show high performances, with Decision Tree,
AdaBoost, LightGBM and Random Forest all above a 0.79 MCC
value. Thus, an attacker has a high confidence in the links obtained:
an overwhelming majority of them is correctly detected and the
number of false positives remains low.

CLF TP FP TN FN TPR FPR MCC
RF 235 42 41317 61 0.7939 0.001 0.8195
DT 239 49 41310 57 0.8074 0.0012 0.8173
AB 236 56 41303 60 0.7973 0.0014 0.8013

LGBM 239 68 41291 57 0.8074 0.0016 0.7913
kNN 187 64 41295 109 0.6318 0.0015 0.684
LR 24 33 41326 272 0.0811 0.0008 0.1824
NB 284 10002 31357 12 0.9595 0.2418 0.1398

Table 2: Comparison of classifiers, using the frame counter

CLF TP FP TN FN TPR FPR MCC
RF 133 29 41330 163 0.4493 0.0007 0.6054
DT 175 115 41244 121 0.5912 0.0028 0.5944
AB 144 70 41289 152 0.4865 0.0017 0.5696

LGBM 191 41 41318 105 0.6453 0.001 0.7272
kNN 171 81 41278 125 0.5777 0.002 0.6237
LR 4 1 41358 292 0.0135 0.0 0.1034
NB 33 797 40562 263 0.1115 0.0193 0.0554

Table 3: Comparison of classifiers, without the frame counter

Performances without the frame counter: When the frame
counter is ignored (see table 3), most classifiers lose in performance.
For example, the true positive rate of the Random Forest classifier
decreases from around 0.80 to 0.45. However, for all models, the
false positive rate remains close to its previous value and only the
number of true positives decreases. Thus, the linking attack can
still work with a high confidence on the results, albeit with fewer
links found.
Importance of the features: In order to assess the importance of
the features, we extracted the weights leveraged by the RF classifier
(see table 4). The frame counter is confirmed essential with a weight
of 0.3685, followed by the various distances and the payload’s length,
which amounts for around 13% of the weights without the frame
counter8.
Impact of the number of receivers: Finally, we measure the
impact of the number of eavesdropping nodes controlled by the
attacker in a specific area. As they are geographically close to each
other, they receive a significant subset of messages in common. We
selected various sets of three nodes and ran tests with 1, 2, or 3
7For example, the Random Forest classifier demonstrates a 0.871 average MCC for
5-fold cross validation and a 0.88 during the final test.
8We also tested the ACK and ADR flags[7], which seemed promising based on their
distributions, but results were inconclusive.

Feature With FCnt Without FCnt
FCnt 0.3685 N/A
tsdiff 0.115 0.1838
ESPdist 0.0866 0.1284
SNRdist 0.0765 0.1106

DevAddrdiff 0.0744 0.1178
RSSIdist 0.0613 0.0956
tsdist 0.0584 0.0746
plen 0.0546 0.1339
OUI 0.0379 0.0731

Datarate 0.0241 0.0295
SF 0.0237 0.0261

GWdist 0.0191 0.0295
Table 4:Weights of each feature for the RandomForestmodel

nodes to compare the impact of the number on themodels. Contrary
to our intuition, adding new nodes does not necessarily provide
better results. Based on our observations, it seems to highly depend
on the amount of traffic captured by the node, the higher the better.
Exploring further what would improve the global re-identification
efficiency is left to future works.

7 COUNTERMEASURES
Since the re-identification attack is effective, as soon as an attacker
eavesdrops a join-request and the following uplink message(s),
the question of counter measures naturally arises.

Obfuscating the frame counter: Tests of section 6 highlight the
importance of the frame counter, FCnt, ranked first in table 4 with
a 0.37 coefficient. A first possibility is to hide it, for instance by
encrypting a part of the header, or using a random offset instead
of starting with value 0 in case of a new end-device joining the
network. However, both approaches imply a change of the specifi-
cations, although the second one remains easier to implement.

In any case, the benefits would be limited as we also proved that
in the absence of the FCnt, the attacker can still leverage other
features, reaching a reasonable true positive rate of 0.65 (with
LBGM) and high confidence on the results. The following ques-
tion is whether this can be achieved with minimal implications,
notably in terms of backward compatibility, without changing the
specifications.

Introducing randomness: Introducing randomness in parame-
ters influencing physics-related features, such as ESP, is an option.
However, it may not be possible without compromising the correct
reception of messages, or greatly modifying the end-devices as well
as increasing their energy consumption.

Other possibilities that do not impact LoRaWAN standard are: in-
troducing a random delay before sending the first uplink message;
padding the payload to hide its actual length; sending multiple first
uplink messages with false DevAddr as decoys.

Obfuscating device identifiers:More disruptive solutions, that
require an update of the LoRaWAN standard, in addition to those
centered around the FCnt feature already discussed, include: shar-
ing a DevAddr for multiple end-devices and identifying the devices
by their network session key [2]; and using resolvable addresses as
in BLE[5].
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8 RELATEDWORKS
Linking multiple pseudonym identifiers used by devices has been
studied in other wireless technologies that use address random-
ization methods, such as Wi-Fi and Bluetooth-Low-Energy. Meth-
ods leveraging the content of the wireless frame as well as their
timing have both been presented to correlate frames and identi-
fiers [5, 15, 23].

Physical-layer fingerprinting of LoRa devices has been demon-
strated in [19], and could be used to single-out a device. However,
this fingerprinting requires specialized hardware (USRP), works
with physical-layer and not LoRaWAN itself, and has not been
demonstrated in a real-world network.

Privacy considerations for LoRa traffic has been discussed in [14].
More specifically, this work focuses on the inference of information
based on traffic metadata, and how it can be obfuscated.

Finally, the linking of DevAddr and DevEUI in [21] is done by
framing the DevEUI between two sets of consecutive DevAddr with
the same behavior. First, their dataset is more homogeneous with
130 end-devices, all deployed for the same application. Then, con-
trary to our contribution, their method does not take new, unknown
end-devices into account and can only link a DevEUI effectively
framed between two DevAddr. Lastly, it only leverages the frame
counter as well as the timestamp and obtains a 0.936 accuracy,
against 0.9975 for our best model.

9 CONCLUSION
We show it is possible to reliably link two DevEUI and DevAddr, and
thus re-identify devices, by applying machine learning algorithms.
Although the frame counter plays amajor role in obtaining a 0.8 TPR
and 0.001 FPR for the best model, solely obfuscating it is not enough
to protect users from this attack, as we obtain a 0.65 TPR and 0.001
FPR by compensating its absence by other pieces of information.
We discuss potential countermeasures that require to act on several
pieces of information at the same time, with negative consequences
for some of them (e.g., backward compliance). Although mitigating
the re-identification attack is feasible, it seems there is no easy,
perfect solution.

Future works will include fine-tuning the parameters of the mod-
els to increase their efficiency, as well as evaluating our approach
on other datasets.

10 RESEARCH ARTIFACTS
The (anonymized) data and Python code necessary to build the mod-
els and reproduce results are published in a public Git repository:
https://gitlab.inria.fr/spelissi/wisec-2022-reproductibility.
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