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ON GRAPH REWRITING SYSTEMS
TERMINATION THROUGH LANGUAGE THEORY

GUILLAUME BONFANTE AND MIGUEL COUCEIRO

Abstract. The termination issue that we tackle is rooted in Natural Language
Processing where computations are performed by graph rewriting systems (GRS)
that may contain a large number of rules, often in the order of thousands.
Thus algorithms become mandatory to verify the termination of such systems.
The notion of graph rewriting that we consider does not make any assumption
on the structure of graphs (they are not “term graphs”, “port graphs” nor
”drags”). This lack of algebraic structure led us to proposing two orders on
graphs inspired from language theory: the matrix multiset-path order and the
rational embedding order. We show that both are stable by context, which we
then use to obtain the main contribution of the paper: under a suitable notion
of “interpretation”, a GRS is terminating if and only if it is compatible with an
interpretation.

1. Introduction

Computer linguists rediscovered a few years ago that graph rewriting is a good
model of computation for rule-based systems. They used traditionally terms, see
for instance Chomsky’s Syntagmatic Structures [1]. But usual phenomena such as
anaphora do not fit really well within such theories. In such situations dealing with
sharing or references, graphs behave much better. Graph Rewriting may be used for
several purposes such as for example parsing procedures as described by Guillaume
and Perrier [2] or the word ordering modeling by Kahane and Lareau [3] or corpus
transformation by Gerdes, Guillaume and Kahane [4]. The first named author with
Guillaume and Perrier designed a graph rewriting model called grew [5] that is
adapted to natural language processing. This is an open-source project available at
http:\\grew.fr.

The rewriting systems developed by the linguists often contain a huge number of
rules, e.g., those synthesized from lexicons (e.g. some rules only apply to transitive
verbs). For instance, in [2], several systems are presented, some with more than a
thousand of rules. Verifying properties such as termination by hand thus becomes
intractable. This fact motivates our framework for tackling the problem of GRS
termination.

There is a large litterature on the termination of term-rewriting including the
surveys [6, 7] and a famous competition http://termination-portal.org/wiki/
Termination_Portal. Accordingly, we will refer to term rewriting as a background.
However, extensions from term to graph rewriting is not easy at all: this is due to
the fact that termination methods for term rewriting are based on the underlying
algebraic structure of terms, a property that does not hold in general for graphs.
Thus, there is not a simple shift from terms to graphs for this kind of problems.
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The second difficulty comes from the fact that the definition of graph rewriting
itself is problematic. Contrarily to term rewriting for which the definition is
essentially fixed by the algebraic structure of terms (again), many approaches to
graph rewriting emerged in past years. Some definitions (here meaning semantics)
are based on a categorical framework, e.g., the double pushout (DPO) and the single
pushout (SPO) models, see [8]. To make use of algebraic potential, some authors
make some, possibly weak, hypotheses on graph structures, see for instance the main
contribution by Courcelle and Engelfriet [9] where graph decompositions, graph
operations and transformations are described in terms of monadic second-order
logics (with the underlying decidability/complexity results). In this spirit, Ogawa
describes a graph algebra under a limited tree-width condition [10].

Another line of research follows from the seminal work by Lafont [11] on interaction
nets. The latter are graphs where nodes have some extra structure: nodes have a
label related to some arity and co-arity. Moreover, nodes have some "principal gates"
(ports) and rules are actionned via them. One of the main results by Lafont is that
rewriting in this setting is (strongly) confluent. This approach has been enriched by
Fernandez, Kirchner and Pinaud [12], who implemented a fully operational system
called porgy with strategies and related semantics. Also, it is worth mentioning the
graph rewriting as described by Dershowitz and Jouannaud [13]. Here, graphs are
seen as a generalization of terms: symbols have a (fixed) arity, graphs are connected
via some sprouts/variables as terms do. With such a setting, a good deal of term
rewriting theory also applies to graph rewriting.

Let us come back to the initial problem: termination of graph rewriting systems
in the context of natural language processing. We already mentioned that rule
sets are large, which makes manual inspection impossible. But, at the same time,
termination is a mandatory property for computations, thus our main concern.

Furthermore, empirical studies fail to observe some of the underlying hypotheses
of the previous frameworks. For instance, there is no clear bound on tree-width:
even if input data such as dependency graphs are almost like trees, the property
is not preserved along computations. Also, constraints on node degrees are also
problematic: graphs are usually sparse, but some nodes may be highly connected.
To illustrate, consider the sentence “The woman, the man, the child and the dog eat
together”. The verb “eat” is related to four subjects and there is no a priori limit
on this phenomenon. Typed versions (those with fixed arity) are also problematic:
a verb may be transitive or not. Moreover, rewriting systems may be intrinsically
nondeterministic. For instance, if one computes the semantics of a sentence out of
its grammatical analysis, it is quite common there are multiple solutions. To further
illustrate nondeterminism consider the well know phrasal construction “He saw a
man with a telescope” with two clear readings. To sum up, none of the approaches
applies, at least in a straightforward way.

Some hypotheses in Natural Language Processing transformations are rather
unusual compared to standard computations. For instance, we may suppose there
is a fixed number of nodes. Indeed, nodes are usually related to words or concepts
(which are themselves closely related to words). A paraphrase may be a little bit
longer than its original version, but its length can be easily bounded by the length
of the original sentence up to some linear factor. In grew, node creations are
restricted. To take into account the rare cases for which one needs extra nodes,
a “reserve” is allocated at the beginning of the computation. All additional nodes
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are taken from the reserve. Doing so helps largely the implementation of graph
rewriting since we do not need to cope graph isomorphism which has some efficiency
advantages, but that goes beyond the scope of the paper.

Also, node and edge labels, despite being large, remain finite sets: they are
usually related to some lexicons. These facts together have an important impact
on the termination problem: since there are only finitely many graphs of a given
size, rewriting only leads to finitely many outcomes. Thus, deciding termination
for a particular input graph is decidable. However, our problem is to address
termination in the class of all graphs. The latter problem is often referred to as
uniform termination, whereas the former is refereed to as non-uniform. For word
rewriting, uniform termination of non size increasing systems constituted a well
known problem, and it was shown to be undecidable by Sénizergues in [14].

This paper proposes a novel approach for termination of graph rewriting. In a
former paper [15], we proposed a solution based on label weights. Here, the focus
is on the description (and the ordering) of paths within graphs. In fact, paths in
a graph can be structured as good old regular languages. The question of path
ordering thus translates into a question of regular language orderings. Accordingly,
we define the graph multi-set path ordering that is related to that in [6]. Dershowitz
and Jouannaud, in the context of drag rewriting, consider a similar notion of path
ordering called GPO (see [16]). Our definitions diverge from theirs in that our
graph rewriting model is quite different: here, we do not benefit (as they do)
from a good algebraic structure. Our graphs have no heads, tails nor hierarchical
decomposition. In fact, our ordering is not even well founded! Relating the two
notions is nevertheless interesting and left for further work. Plump [17] also defines
path orderings for term graphs, but those behave like sets of terms.

We introduce a second ordering on languages. It is based on a transducer
technique which can be seen as a uniform way of transforming paths of the left hand
side of a rule to its right hand side. It is called the rational embedding ordering and
it seems quite new, we could not relate it (at least directly) to previous propositions.

Both orderings will involve matrices, and orderings on matrices. Nonetheless,
as far as we see, there is no relationship with matrix interpretations as defined by
Endrullis, Waldmann and Zantema [18].

The paper is organized as follows. In Section 2 we recall the basic background
on graphs and graph rewriting systems (GRS) that we will need throughout the
paper, and introduce an example that motivated our work. In Section 4 we consider
a language theory approach to the termination of GRSs. In particular, we present
the language matrix, and the matrix multiset path order (Subsection 4.5) and the
rational embedding order (Subsection 4.6). We also propose the notion of stability
by context (Subsection 4.7) and show that both orderings are stable under this
condition (Subsection 4.8). In Section 5 we propose notion of graph interpretability
and show one of our main results, namely, that a GRS is terminating if and only if
it is compatible with interpretations.

Main contributions: The two main contributions of the paper are the following.

(1) We propose two orders on graphs inspired from language theory, and we
show that both are monotonic and stable by context.

(2) We introduce a notion of graph interpretation, and show that GRSs that are
terminating are exactly those that are compatible with such interpretations.
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2. Background in Set Theory and Languages

In this section we recall some general definitions and notation that are used in
the sequel. Let us begin with relations and orders.

2.1. Orders and multisets. A preorder on a set X is a binary relation � ⊆ X2

that is reflexive (x � x, for all x ∈ X) and transitive (if x � y and y � z, then
x � z, for all x, y, z ∈ X).

A preorder � is a partial order if it is anti-symmetric (if x � y and y � x, then
x = y, for all x, y ∈ X).

An equivalence relation is a preorder that is symmetric (x � y ⇒ y � x) . Observe
that each preorder � induces an equivalence relation ∼: a ∼ b if a � b and b � a.
The strict part of � is then the relation: x ≺ y if and only if x � y and ¬(x ∼ y).

We also mention the “dual” preorder � of � defined by: x � y if and only if y � x.
A preorder � is said to be well-founded if there is no infinite chain · · · ≺ x2 ≺ x1 or,
equivalently, x1 � x2 � · · · .

A multi-set relative to some set X is a function m : X → N. m(x) is called the
multiplicity of x. Let M(X) be the set of all multisets on X. Given a multiset
s ∈ M(X), we define its support to be the set s = {x ∈ X | s(x) 6= 0}. Finally,
given two multisets s and t inM(X), s+ t denote the multiset inM(X) defined
by (s+ t)(x) = s(x) + t(x).

An order ≺ on X induces an order onM(X) as follows.

Definition 1 (Multiset induced order). The multiset induced order of ≺, next
denoted ≺mul, is the smallest partial order on multisets such that for any multisets
s and t, the two following statements hold:

• if there is w ∈ t such that for all v ∈ s, v ≺ w, then s ≺mul t, and
• if r �mul s and t �mul u, then r + t �mul s+ u.

We write s ≺mul t when s �mul t and s 6= t. Finally, when the context is clear,
we will drop the subscript "mul" and s ≺ t stands for s ≺mul t.

2.2. (Regular) languages, automata and transducers. For this section about
Language Theory, we refer the reader to the book of Sakarovitch [19] for justifications
or proofs of the statements we mention. We took in large parts his notations.

Given an alphabet Σ, the set of words (finite sequences of elements of Σ) is
denoted by Σ∗. The size of a word w, that is its length, is denoted |w|. The
concatenation of two words v and w is denoted by v ·w. The empty word, being the
neutral element for concatenation, is denoted by 1Σ or, when clear from the context,
simply by 1. Note that 〈Σ∗, 1, ·〉 constitutes a monoid. Given two alphabets Σ and
Γ, a word homomorphism is a function φ : Σ∗ → Γ∗ respecting concatenation. That
is: φ(w · w′) = φ(w) · φ(w′) and φ(1) = 1. Actually, φ is uniquely described by its
values on Σ.

A language on Σ is some subset L ⊆ Σ∗. The set of all languages on Σ is P(Σ∗).
The addition of two languages L,L′ ⊆ Σ∗ is defined by L+L′ = {w | w ∈ L∨w ∈ L′}.
The empty language is denoted by 0 and 〈P(Σ∗),+, 0〉 is also a (commutative)
monoid.
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Given some word w ∈ Σ∗, we will also denote by w the language made of the
singleton {w} ∈ P(Σ∗). Given two languages L,L′ ⊆ Σ∗, their concatenation is
defined by L · L′ = {w · w′ | w ∈ L ∧ w′ ∈ L′}. In this way, 〈P(Σ∗), 1, ·〉 is also a
monoid. Given the distributivity of the product · with respect to +, the 5-tuple
〈P(Σ∗),+, 0, ·, 1〉 forms a semiring.

Finally, given some language L ⊆ Σ∗, let L∗ = 1 + L+ L2 + · · · .
Given some alphabet Σ, Regular Expressions are built on the following grammar:

E ::= a ∈ Σ | (E + E) | (E · E) | (E∗).

To any regular expression corresponds a language built according to the definition
above. Languages that correspond to regular expressions form the rational languages.

An automaton on some alphabet Σ is a 4-tuple 〈Q, q0, F, δ〉 with δ ⊆ Q× Σ×Q.
The set Q is the set of states, q0 being the initial state and F ⊆ Q being the set of
final states. The relation δ can be extended to Q× Σ∗ ×Q via the equations:

(q, 1, q) ∈ δ∗

(q, w · a, q′) ∈ δ∗ if (q, w, q′′) ∈ δ∗and (q′′, a, q′) ∈ δ

An automaton A = 〈Q, q0, F, δ〉 defines a language L(A) = {w ∈ Σ∗ | (q0, w, qf ) ∈
δ∗ with qf ∈ F}. It is Kleene’s famous Theorem that languages recognized by
automata are rational languages. Automata will be presented by drawings. The
input arrow indicate the initial state while the output arrows indicate the final states.
The language associated to the following automaton is L = A(B ·A)∗ + (A ·B)∗:

q0 q1

q2

A

B
B

A

A B

A state of an automaton is said to be accessible whenever there is a path from
the initial state to it. It is co-accessible when there is a path from it to a final
state. Removing a state that is not accessible or co-accessible does not change the
recognized language. Thus, all along, we suppose that any state in an automaton is
accessible and co-accessible.

Given two alphabets Γ and ∆, a finite state transducer, or transducer in short,
is a 4-tuple τ = 〈Q, q0, F, δ〉 with Q a finite set, q0 ∈ Q its initial state, F ⊆ Q its
final states and δ ⊆ Q× Γ∗ ×∆∗ ×Q its transition function. It extends as above:

(q, 1, 1, q) ∈ δ∗

(q, v · v′, w · w′, q′) ∈ δ∗if (q, v, w, q′′) ∈ δ∗ and (q′′, v′, w′, q′) ∈ δ

The tranducer τ defines a relation on Γ∗ ×∆∗: [τ ](w,w′) holds for some words
w ∈ Γ∗, w′ ∈ ∆∗ if and only if there is some state qf ∈ F such that (q0, w, w

′, qf ) ∈ δ∗.
Such a relation will be qualified as rational.

Clearly, the identity relation IdΣ∗ in Σ∗ is a rational relation. Take the transducer
to have a unique state q which is both initial and final. And set δ = {(q, a, a, q) |
a ∈ Σ}. That definition is drawn as follows for Σ = {A,B}:

q0 A|AB|B
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Rational relations have some nice closure properties. For instance, they are closed
by union, intersection and composition. When the rational relation is actually a
function, we mention it as a rational function. In that case, we use the functional
notation: [τ ] : Γ∗ → ∆∗.

There is a well known characterization of rational relations. It is due to Nivat [20]
(Prop. 4, §3). A relation S ⊆ Γ∗ × ∆∗ is rational whenever there is a rational
language L ∈ Σ∗ and two word homomorphisms φ : Σ∗ → Γ∗ and ψ : Σ∗ → ∆∗ such
that S = {(w,w′) | ∃t ∈ L ∧ w = φ(t) ∧ ψ(t) = w′}. The 3-tuple (φ,L, ψ) is known
as a bimorphism.

Rational languages are closed by word homomorphism, that is if L ⊆ Σ∗ is
a rational language and φ : Σ∗ → ∆∗ is a word homomorphism, then φ(L) =
{φ(w) | w ∈ L} is a rational language (within ∆∗). They are also closed by inverse
homomorphism: φ−1(L) = {w ∈ Σ∗ | φ(w) ∈ L} is a rational language.

Thus, the domain of definition and the image of rational relations are actually
rational languages. Indeed, take [τ ] = {(w,w′) | ∃t ∈ L ∧ w = φ(t) ∧ w′ = ψ(t)}.
Then the image Im([τ ]) = ψ(L). The same for the domain. In other words, a
rational relation can be seen as a relation between rational languages.

So, for a rational function, restricting it to its domain of definition and its image,
it becomes legitimate to write it as: [τ ] : φ(L)→ ψ(L).

Proposition 1. Let [τ ] : L→ L′ be computed by a transducer τ , and let L′′ be a
regular language. Then the following assertions hold.

(1) The restriction [τ|L′′ ] : L′′ ∩ L→ L′ mapping w 7→ [τ ](w) is computable by
a transducer.

(2) The co-restriction [τ |L
′′
] : L→ L′ ∩ L′′ mapping w 7→ [τ ](w) if [τ ](w) ∈ L′′

and otherwise undefined, is computable by a transducer.
(3) The function [τ ′] : L → L′ defined by [τ ′](w) = [τ ](w) if w ∈ L′′ and

otherwise undefined, is computable by a transducer.

Proof. For 1), let (φ,L0, ψ) be the bimorphism computing [τ ]. Then, (φ,L0 ∩
φ−1(L′′), ψ) computes [τ|L′′ ]. For 2), (φ,L0 ∩ ψ−1(L′′), ψ) computes the function
[τ ]|L

′′
]. 3) is a rereading of 1) with an enlarged domain. �

Corollary 1. Given a rational language L, the identity function IdL : L→ L is a
rational function.

Proof. Indeed, IdL = (IdΣ∗)
|L
|L. �

A transducer τ is decreasing whenever for all transition (q, w1, w2, q
′), we have

|w2| ≤ |w1|. In that case, it is clear that the function [τ ] computed by such a
transducer verifies |[τ ](w)| ≤ |w| for all w on which [τ ] is defined.

We say that a transition of a transducer τ is deleting when it is of the form
(q, a, 1, q′) for some a ∈ Σ, q, q′ ∈ Q. If a path corresponding to an input w passes
through a deleting transition of a decreasing transducer τ , then |[τ ](w)| < |w|.

3. Graph rewriting

There are several definitions of graph rewriting in the litterature. The one we
propose here corresponds to grew, our graph rewriting tool. Extensions of our
results on termination to other frameworks is beyond the scope of the paper. The
content of this section may be found in [5] where we discuss the definition in more
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details. The definition was actually driven by the applications of graph rewriting
we implemented in the context of Natural Language Processing such as semantics
translations, grammatical parsing, corpus construction and correction and so on.

We suppose given a (finite) set ΣN of node labels, a (finite) set ΣE of edge
labels and we define graphs accordingly. A graph is a triple G = 〈N,E, `〉 with
E ⊆ N ×ΣE×N and ` : N → ΣN is the labeling function of nodes. Note that there
may be more than one edge between two nodes, but at most one is labeled with
some e ∈ ΣE. In the sequel, we use the notation m e−→ n for an edge (m, e, n) ∈ E.

Given a graph G, we denote by NG, EG and `G respectively its sets of nodes,
edges and labeling function. We will also (abusively) use the notation m ∈ G and
m

e−→ n ∈ G instead of m ∈ NG and m
e−→ n ∈ EG when the context is clear.

Furthermore, in a drawing ♣
a

♥

b

A , a, b denote nodes, ♣,♥ are their respective

node labels and A is the edge label (here between a and b).
The set of graphs on node labels ΣN and edge labels ΣE is denoted by GΣN,ΣE

or G in short. Two graphs G and G′ are said to share their nodes when NG = NG′ .
Given two graphs G and G′ such that NG ⊆ NG′ , set G J G′ to be the graph
〈NG′ , EG ∪ EG′ , `〉 with `(n) = `G(n) if n ∈ NG and `(n) = `G′(n), otherwise.

A graph morphism µ between a source graph G and a target graph H is a function
µ : NG → NH that preserves edges and labelings, that is, for all m e−→ n ∈ G,
µ(m)

e−→ µ(n) ∈ H holds, and for any node n ∈ G: `G(n) = `H(µ(n)).
A basic pattern is a graph, and a basic pattern matching is an injective morphism

from a basic pattern P to some graph G. Given such a morphism µ : P → G, we
define µ(P ) to be the sub-graph of G made of the nodes {µ(n) | n ∈ NP }, of the
edges {µ(m)

e−→ µ(n) | m e−→ n ∈ P} and node labels µ(n) 7→ `P (n).
A pattern is a pair P = 〈P0, ~ν〉 made of a basic pattern P0 and a sequence of

injective morphisms νi : P0 → Ni, called negative conditions1. The basic pattern
describes what must be present in the target graph G, whereas negative conditions
say what must be absent in the target graph. Given a pattern P = 〈P0, ~ν〉 and a
graph G, a pattern morphism is a basic pattern morphism µ : P0 → G for which
there is no morphism ξi such that µ = ξi ◦ νi.

Example 1. Consider the basic pattern morphism µ : P0 → G (colors define the
mapping):

♣

b0

♥

b1

A µ
♣
g0

♥
g1

♣
g2

A

B

D

C

AE

The pattern P = 〈P0, [ν]〉 with ν defined by ♣

b0

♥

b1

A ν ♣

b0

♥

b1

A

B
prevents the

application of the morphism above. Indeed, ξ = [b0 7→ g0, b1 7→ g1] is such that
ξ ◦ ν = µ.

Without loss of generality, we can suppose that for a negative condition, the
injection morphism is the identity on the basic pattern. Then, we can represent
a negative condition by crossing nodes and edges which are not within the basic

pattern. For instance, the negative condition above is represented ♣

b0

♥

b1

A

B×
that

1A negative conditions is supposed not to be isomorphic. Otherwise, there is no pattern
matching. Indeed, µ = (µ ◦ ν−1) ◦ ν which prevents the application as defined below.
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we hope is self-explanatory. The negative pattern ♣A

p

A

q

A

B

C× is an other way

to prevent the application of µ on G.

In this paper we describe graph transformations as sequences of “basic commands”.

Definition 2 (The command language). There are three basic commands: label(p, α)
for node renaming, del_edge(p, e, q) for edge deletion and finally add_edge(p, e, q)
for edge creation. In these basic commands, p and q are nodes, α is some node label
and e is some edge label. A pattern 〈P0, ~ν〉 is compatible with a command whenever
all nodes involved by the command belong to P0.

Definition 3 (Operational semantics). Given a pattern P = 〈P0, ~ν〉 compatible
with some command c, and some pattern matching µ : P → G where G is the
graph on which the transformation is applied, we have the following possible
cases: c = label(p, α) turns the label of µ(p) into α, c = del_edge(p, e, q) removes
µ(p)

e−→ µ(q) if it exists, otherwise does nothing, and c = add_edge(p, e, q) adds the
edge µ(p)

e−→ µ(q) if it does not exist, otherwise does nothing. The graph obtained
after such an application is denoted by G ·µ c. Given a sequence of commands ~c =
(c1, . . . , cn), let G ·µ~c be the resulting graph, i.e., G ·µ~c = (· · · ((G ·µ c1) ·µ c2) ·µ · · · cn).

Definition 4 (Rule). A rule is a pairR = 〈P,~c〉made of a pattern and a (compatible)
sequence of commands.

Such a rule R applies to a graph G via a pattern morphism µ : P → G. Let
G′ = G ·µ ~c, then we write G→R,µ G

′.

Definition 5 (Graph Rewriting System). A graph rewriting system R is a (finite)
set of rules.

Given a GRS R, we define the relation G→ G′ whenever there is a rule R and a
pattern morphism µ such that G→R,µ G

′.
A derivation is a (possibly infinite) sequence G0 → G1 → · · · . A normal form is

a graph G for which there is no G′ such that G→ G′. A computation operates by
successive applications of rules until no rule can be applied.

As stated, a computation may be nondeterministic, it may happen that given
some graph G, there are two rules (possibly the same) R1, R2 and two morphisms
µ1, µ2 (also possibly the same) with G→R1,µ1

G′ and G→R2,µ2
G′′. Both choices

are explored. To sum up, a rewriting system R computes the relation [R] in G
defined by: (G,G′) ∈ [R] if and only if there is a (finite) derivation G→ · · · → G′

and G′ is a normal form.

3.1. The main example. Let ΣN = {A} and ΣE = {α, β, T}. For the discussion,
we suppose that T is a working label, that is not present in the initial graphs.

Suppose we want to add a new edge β between node n and node 1 each time we
find a maximal chain: A

1

A

2

A

3

· · · A

n

α α α α within a graph G.

To perform that task, let us consider the basic pattern Pinit = A

p

A

q

α together

with its two negative conditions ν1 = A A

p

A

q

αα× that ensures node P is at the

begining of the chain and ν2 = A A

p

A

q

αβ× that verifies the computation has

not been already performed. We consider three rules:
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Init: 〈〈Pinit, (ν1, ν2)〉, (add_edge(p, T, q))〉 which fires the transitive closure.
Follow: 〈 A

p

A

q

A

r

T α , (add_edge(p, T, r), del_edge(p, T, q))〉 which follows

the chain.
End: 〈 A

p

A

q

A
T α× , (del_edge(p, T, q), add_edge(q, β, p))〉 which stops the

procedure.
Actually, to prevent all pathological cases (e.g., when the edge β is misplaced,

when two chains are crossing, and so on), we should introduce more sophisticated
patterns. But, since that does not change issues around termination, we avoid
obscuring rules with such technicalities.

Example 2. Consider the graph G = A

1

A

2

A

3

α α . By applying succesively

’Init’, ’Follow’ and ’End’, G rewrites as: A

1

A

2

A

3

α α → A

1

A

2

A

3

α
α

T

→

A

1

A
2

A

3

α
α

T

→ A

1

A
2

A

3

α
α

β

as expected by the requirements.

Actually, even if there are more than one derivation starting from G, all lead to
the same normal form. This is known as confluence:

A

1

A

2

A

3

α α // A

1

A

2

A

3

α
α

T

// A

1

A
2

A

3

α
α

T

//

(∗)
zz

A

1

A
2

A

3

α
α

β

A

1

A

2

A

3

α
α

T

T
//

(♦)

::

A

1

A

2

A

3

α
α

β

T
// A

1

A
2

A

3

α
α

β

T

OO

Two remarks about these graph rewriting steps. First, we see that there is an
infinite derivation due to the steps (∗) and (♦). Second, (♦) is "baddly" formed.
Indeed, it is supposed to transport the T edge between 1 and 2 to 1 and 3. However,
such an arc is already present, and consequently, the rule application just deletes
the edge. To avoid such behaviors, we will enforce our assumptions about rules.
This is the topic of the next section where we introduce the notion of uniform rules.

3.2. Three technical facts about Graph Rewriting. It is well known that the
main issue with graph rewriting definitions is the way the context is related to the
pattern image and its rewritten part. We shall tackle this issue with Proposition 2.
Self-application. Let R = 〈P,~c〉 be the rule made of a pattern P = 〈P0, ~ν〉 and a
sequence of commands ~c. The identity morphism 1P0 : P0 → P0 is then a pattern
matching2, and thus we can apply ruleR on P0 itself, that is, P0 →R,1P0

P ′0 = P0·1P0
~c.

We call this latter graph the self-application of R.
Rule node renaming. To avoid heavy notation, we will use the following trick. Sup-
pose that we are given a rule R = 〈P,~c〉, a graph G and a pattern morphism µ : P →
G. Let P = 〈P0, ~ν〉. We define Rµ to be the rule obtained by renaming nodes p in P0

to µ(p) (and their references within ~ν and ~c). For instance, the rule ’Follow’ can be
rewritten as Followµ = 〈 A

1

A

2

A

3

T α , (add_edge(1, T, 3), del_edge(1, T, 2))〉

2We implicitly use the fact that the negative conditions are not isomorphic here.
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where µ denotes the pattern morphism used to apply ’Follow’ in the derivation of
Example 2. Observe that: (i) the basic pattern of Rµ is actually µ(P0), which is a
subgraph of G, (ii) ι : µ(P0)→ G mapping n 7→ n is a pattern matching, and (iii)
applying rule Rµ with ι is equivalent to applying rule R with µ. In other words,
G→R,µ G

′ if (and only if) G→Rµ,ι G
′. To sum up, we can always rewrite a rule so

that its basic pattern is actually a subgraph of G.

Uniform rules. Let us consider rule ’Init’ above. It applies on: A

p

A

q

α

T , and the

result is the graph itself: A

p

A

q

α

T . Indeed, we cannot add an already present edge

(relative to a label) within a graph. Thus, depending on the graph, the rule will
or will not append an edge. Such an unpredictable behavior can be easily avoided

by adding a negative condition to ’Init’: A

p

A

q

α

T× . The same issue may come from

edge deletions. A uniform rule is one for which commands apply (that is, modify
the graph) for each rule application. Since this is not the scope of the paper, we
refer the reader to [5] for a precise definition of uniformity. Nevertheless, from
the definition of uniformity, we will take the benefit of two facts that are justified
in [5]§7.

First, any rule can be replaced by a finite set of uniform rules (using negative
conditions as above) that operate identically. Thus, from now on, we always suppose
that rules are uniform.

Second, the following property holds for uniform rules.

Proposition 2. Suppose that G →R,ι G
′ with R = 〈P,~c〉 and P = 〈P0, ~ν〉 (the

basic pattern P0 being a subgraph of G). Let C be the graph obtained from G by
deleting the edges in P0. Then G = P0 J C and G′ = P ′0 J C with P ′0 being the
self-application of the rule. Moreover, EC ∩ EP0 = ∅ and EC ∩ EP ′0 = ∅.

The uniform versions of the rule "Init", "Follow" and "End" are:

Init: 〈〈Pinit, (ν1, ν2, ν3)〉, (add_edge(p, T, q))〉 with ν3 = A

p

A

q
α

T× .

Follow: 〈 A

p

A

q
A

r

T α

T
×

, (add_edge(p, T, r), del_edge(p, T, q))〉 which follows

the chain.
End: 〈( A

p

A

q

T , ( A

p

A

q

A
T α× , A

p

A

q

T

β
× ), (del_edge(p, T, q), add_edge(q, β, p))〉

which stops the procedure.
Observe that the negative condition on the "Follow" rule prevents its application

as in (♦). Then, the system has no longer such infinite derivations. The two paths
to the normal form are both finite.

4. Termination of Graph Rewriting Systems

A GRS R is said to be terminating if the relation→ is well-founded, that is there
is no infinite derivations G1 → G2 → · · · .

Since there is no node creation (neither node deletion) in our notion of rewriting,
any derivation starting from a graph G will lead to graphs whose size is the size of
G. Since there are only finitely many such graphs, we can decide the termination
for this particular graph G. However, the question we address here is the uniform
termination problem (see Section 1).
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Remark 1. Suppose that we are given a strict partial order �, not necessarily well
founded. If G → G′ implies G � G′ for all graphs G and G′, then the system is
terminating. Indeed, suppose it is not the case, let G1 → G2 → · · · be an infinite
reduction sequence. Since there are only finitely many graphs of size of G1, it means
that there are two indices i and j such that Gi → · · · → Gj with Gi = Gj . But then,
since Gi � Gi+1 � · · · � Gj , we have that Gi � Gj = Gi which is a contradiction.

A similar argument was exhibited by Dershowitz in [21] in the context of term
rewriting. For instance, it is possible to embed the rewriting relation within the
order on real numbers rather than the one on natural numbers to prove termination.

4.1. Weight functions. Let us try to prove the termination of our main example
(see Subsection 3.1). The notion of weight functions was introduced in [22]. We refer
the reader to this publication for proofs and formal definitions. That said, rules
such as ’Init’ and ’End’ are “simple”: we put a weight on edge labels ω : ΣE → R
and we say that the weight of a graph is the sum of the weights of its edges labels:
ω(G) =

∑
x
e−→y∈G ω(e). Let us set ω(α) = 0, ω(β) = −2 and ω(T ) = −1 and we

say G � G′ if and only if ω(G) > ω(G′).

Then, observe that for PInit = A

p

A

q

α → A

p

A

q
α

T

= P ′Init, we have ω(PInit) =

0 > −1 = ω(P ′Init), thus PInit � P ′Init. More generally, due to Proposition 2, for any
rule application G→Init,µ G

′, we have G = PInit J C with EG = EPInit∪EC . Again,
by Proposition 2, we know that EPInit∩EC = ∅, thus ω(G) = ω(PInit)+ω(C). For the
same reason, ω(G′) = ω(P ′Init)+ω(C) so that ω(G) = 0+ω(C) > −1+ω(C) = ω(G′).
To conclude, G � G′.

To sum up, coming back to Remark 1, there is no infinite sequence G→Init,µ1

G1 →Init,µ2 · · · .
Actually, for the "End" rule, we have the same observation:

A

p

A

q

A

p

A

q

T β→

ω(.) = −1 > ω(.) = −2
Again, the weight decrease whatever the context. Thus, the system {Init, End}

is terminating.
But how do we handle rule ’Follow’? No weights as above can work. Indeed,

whatever the choice of ω, applying ω on the pattern of "Follow" and its self

application lead to ω( A

p

A

q
A

r

T α ) = ω( A

p

A

q
A

r
T

α

) and this equality holds

for any application of "Follow". It is now time to introduce some new ingredients.

4.2. A language point of view. Let G → G′ be a rule application. The set of
nodes stays constant. Let us think of graphs as automata, and let us forget about
node labeling for the time being. Let ΣE be the set of edge labels. Consider a pair
of states (nodes), choose one to be the initial state and one to be the final state.
Thus the automaton (graph) defines some regular language on ΣE. In fact, the
graph describes n2 languages (one for each pair of states).

Now, let us consider the effect of graph rewriting in terms of languages. Consider
an application of the ’Follow’ rule: G → G′. Any word to state r that goes
through the transitions p T→ q

α→ r can be mapped to a shorter one in G′ via the
transition p T→ r. The languages corresponding to state r contain "shorter" words



12 GUILLAUME BONFANTE AND MIGUEL COUCEIRO

in G′ compared to G. The remainder of this section is devoted to formalizing this
intuition into proper orders on graphs. For that, we will need to count the number
of paths between any two states. Hence, we shall introduce N-rational expressions,
that is, rational expression with multiplicity. See, e.g., Sakarovitch’s book [19] for
an introduction and justifications of the upcoming constructions. We introduce here
the basic ideas.

4.3. Formal series. A formal series on Σ (with coefficients in N) is a (total) function
s : Σ∗ → N. That is, it is a multiset on Σ∗. Given n ∈ N, let n be the series defined
by n(w) = 0, if w 6= 1, and n(1) = n, where 1 denotes the empty word. The empty
language is 0, the language made of the empty word is 1. Moreover, for a ∈ Σ, the
series a is given by a(w) = 0 if w 6= a and a(a) = 1.

Given two series s and t, their addition is the series s+ t given by (s+ t)(w) =
s(w) + t(w), and their product is s · t defined by s · t(w) =

∑
u·v=w s(u)t(v). The

star operation is defined by s∗ = 1 + s+ s2 + · · · . The monoïd Σ∗ being graded3,
the operation is correctly defined whenever s(1) = 0.

Given a series s, let s≤k be its restriction to words of length less or equal to k,
i.e., s≤k(w) = 0 whenever |w| > k and s≤k(w) = s(w), otherwise.

An N-rational expression on an alphabet Σ is built upon the grammar [23]:

E ::= a ∈ Σ | n ∈ N | (E + E) | (E · E) | (E∗).
Thus, given the constructions mentioned in the previous paragraph, any N-

rational expression E ∈ E denotes some formal series. To each N-rational expression
corresponds an N-automaton, which is a standard automaton with transitions labeled
by a non empty linear combination

∑
i≤k niai with ni ∈ N and ai ∈ Σ for all i ≤ k.

4.4. The language matrix. Let us suppose given an edge label set ΣE. Let E
denote the N-rational expressions over ΣE. A matrix M of dimension P × P for
some (finite) set P is an array (Mi,j)i∈P,j∈P whose entries are in E. Let ME be the
set of such matrices. Given two matrices M and N sharing dimension P × P , let
the matrix M +N of dimension P × P defined by: (M +N)i∈P,j∈P = Mi,j +Ni,j
and M ×N also of dimension P × P with (M ×N)i,j =

∑
k∈P Mi,kNk,j .

Given a graph G, we define the matrix MG of dimension NG ×NG as follows:
MGi,j = T1 + · · ·+ T` with T1, . . . , T` the set of labels on the transitions between
state i and j if such transitions exist, otherwise 0.

Let 1P be the unit matrix of dimension P × P , that is (1P )i,j = 0 if i 6= j else
1. From now on, we abbreviate the notation from 1P to 1 if the context is clear.
Then, let M∗ = 1 + M + M2 + · · · . Each entry of M∗ is actually an N-regular
expression (see for instance Sakarovitch Ch. III, §4). The (infinite) sum is correctly
defined if M = MG for some graph G. Indeed, since for all i, j, we have the equality
Mi,j = T1 +· · ·+T` for some T1, . . . , T` ∈ ΣE, whether ` = 0 (in which caseMi,j = 0)
or not, 1 6∈Mi,j .

The question about termination can be reformulated in terms of matrices whose
entries are languages (with words counted with their multiplicity). To prove the
termination of the rewriting system, it is then sufficient to exhibit some order >
on matrices such that for any two graphs G→ G′, we have M∗G > M∗G′ . To prove

3Id est there is a notion of length | − | : Σ∗ → N such that |1| = 0 and for any w 6= 1, |w| > 0
and for all w, w′, |w · w′| = |w|+ |w′| holds.
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such a property in the infinite class of finite graphs, we will use the notion of “stable
orders”.

Recall the ’Follow’ rule and consider the corresponding basic pattern L and its
self-application R. Their respective matrices are:

ML =

0 T 0
0 0 α
0 0 0

 MR =

0 0 T
0 0 α
0 0 0

 .

Observe that (MR)13 > (ML)13. This matrix deals with edges/transitions. In order
to consider paths, we need to compute M∗L and M∗R that are given by:

M∗L =

1 T T · α
0 1 α
0 0 1

 M∗R =

1 0 T
0 1 α
0 0 1

 .

Note that any word within M∗R’s entries is a sub-word of the corresponding entry in
M∗L.

Example 3. Consider now a variation of ’Follow’ that is made of the pattern

〈 A

p

A

q

A

r

T α

γ

and commands (add_edge(p, T, r), del_edge(p, T, q))〉. By setting

L′ as its pattern and R′ as its self-application, we get the following matrices:

M∗L′ =

 (Tαγ)∗ T (αγT )∗ Tα(γTα)∗

αγ(Tαγ)∗ (αγT )∗ α(γTα)∗

γ(Tαγ)∗ γT (αγT )∗ (γTα)∗

 M∗R′ =

 (Tγ)∗ 0 T (γT )∗

αγ(Tγ)∗ 1 α(γT )∗

γ(Tγ)∗ 0 (γT )∗

 .

Again, words within M∗R′ are sub-words of the corresponding ones in M∗L′ .

4.5. The matrix multiset path order. The order we shall introduce in this
section is inspired by the notion of multiset path ordering within the context of term
rewriting (see for instance [6]). However, in the present context of graph rewriting
(to be compared with Dershowitz and Jouannaud’s [16] or with Plump’s [17]), the
definition is a bit less direct. Here, we do not consider an order on letters as it is
done for terms.

Let E be the word embedding on Σ∗, that is, the smallest partial order such
that 1 E w, and if u E v, then u · w E v · w and w · u E w · v, for all u, v, w ∈ Σ∗.
This order E can be extended to formal series, that is, the multiset-path ordering,
see Dershowitz and Manna [24] or Huet and Oppen [25]. We still denote it by E.

Proposition 3. Addition and product are monotonic with respect to the multiset-
path order. Moreover, addition is strictly monotonic with respect to E, and if r / s,
then r · t / s · t and t · r / t · s, whenever t 6= 0 (otherwise, we have equality).

Proof. Addition is monotonic by definition. Actually, we prove now that it is strictly
monotonic. Suppose that r / s. We prove that r + t / s + t, by induction (see
Definition 1). Suppose that there is w ∈ s such that for all v ∈ r we have v /w, then
r / s. Since r(w) = 0, then (r + t)(w) = t(w) < s(w) + t(w) = (s+ t)(w), and we
are done. Otherwise, r = r0 + r1 and s = s0 + s1 with r0 E s0 and r1 E s1. One of
the two inequalities must be strict (otherwise r = s). Suppose r0 / s0. By definition,
observe that r1 + t E s1 + t. But then, r + t = r0 + (r1 + t) and s = s0 + (s1 + t)
and we apply induction on (r0, s0). As addition is commutative, the result holds.
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For the product, suppose that r E s and let t be some series. We prove r · t E s · t;
the other inequality t · r E t · s is similar. Again, we proceed by induction on
Definition 1:

• Suppose there is w ∈ s such that for all v ∈ r, v / w. By induction on
t, if t = 0, r · t = 0 E 0 = s · t. Otherwise, t = t0 + v0 for a word v0.
Observe that r · v0 =

∑
v∈r r(v)v · v0. Since for all v ∈ r, v · v0 / w · v0, we

have r · v0 / w · v0 E s · v0. Now, r · t = r · (t0 + v0) = r · t0 + r · v0 and
s · t = s · t0 + s · v0. By induction, r · t0 E s · t0 and since r · v0 E s · v0, the
result holds.

• Otherwise, r = r0 +r1. In this case, s ·r = s ·r0 +s ·r1 and t ·r = t ·r0 + t ·r1.
The result then follows by induction.

To show strict monotonicity, suppose r/s and again proceed by case analysis. Suppose
that there is some w ∈ s such that for all v ∈ r, v /w. Since t 6= 0, it contains at least
one word v0 such that t = t0 +v0. By r/s, r ·v0 =

∑
v∈r r(v)v ·v0 /

∑
v∈s s(v)v ·v0 =

s ·v0. Now, r · t0 E s · t0 by monotonicity. Thus r · t = r · t0 +r ·v0 /s · t0 +s ·v0 = s · t
where the strict inequality is due to strict monotonicity of addition. �

Definition 6 (Matrix multiset-path order). Let M and M ′ be two matrices with
dimension P × P . Write M E M ′ if for all k ≥ |P | and for all (i, j) ∈ P × P , we
have M≤ki,j EM

′
i,j
≤k.

Corollary 2. The addition and the multiplication are monotonic with respect to
the matrix multiset-path order.

Proof. It follows from Proposition 3 since addition and product of matrices are
defined as addition and product of their entries. �

4.6. The Rational Embedding Order. We introduce a second order on regular
languages.

Definition 7 (Rational Embedding Order). Given two regular languages L and L′
on Σ, write L . L′ if there is an injective function f : L′ → L that is computed by
a decreasing transducer τ .

The transducer τ is said to be a witness of L . L′.
Recall that the identity on L is computed by a decreasing transducer (see

Corollary 1). Thus . is reflexive. Also, it is well known that both transducers and
injective functions can be composed. Hence, we also have that . is transitive. Thus,
. is a preorder.

However, we do not have anti-reflexivity in general. For instance, we have

L1 = A · (A+B)∗ . L2 = B · (A+B)∗ . L1.

To see this, consider the following transducer (whose initial state is indicated by

an in-arrow, whereas the final one by an out-arrow): q0 q1
A | B

B | A

A | B

. This shows that

L1 . L2. Swap ’A’ and ’B’, to see that the reversed relation also holds.
It is worth noting that there is a simple criterion to ensure a strict inequality.

Proposition 4. Suppose L1 . L2 has a witness τ : L2 → L1. If τ contains one
(accessible and co-accessible) deleting transition, then the relation is strict.
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Proof. Let w be a word whose computation crosses the deleting transition. Then,
following the definition, it is clear that |[τ ](w)| < |w|.

Now, as before, set L1 < L2 whenever L1 . L2 but not L2 . L1. Ad absurdum,
suppose L1 . L2 . L1 with a transducer θ : L1 → L2 and τ as above. Then θ ◦ τ
(the composition of the two transducers) defines an injective function. Let w be the
smallest input word from the initial state to a final state through the transition
(q, a, 1, q′) in τ . Define the set

M<|w| = {u ∈ L2 | |u| < |w|}.

For any word u, we have |θ ◦ τ(u)| ≤ |u|. Thus θ ◦ τ(M<w) ⊆ M<w. Since M<w

is a finite set and θ ◦ τ is injective, it is actually bijective when restricted to M<w.
However, |θ ◦ τ(w)| ≤ |τ(w)| < w implies θ ◦ τ(w) ∈ M<w. By the Pigeon-hole
Principle, there is one word in M<w that has two pre-images via θ ◦ τ . Thus, θ ◦ τ
cannot be injective, which yields a contradiction. �

In the sequel, we define L < L′ if τ has a decreasing with one (accessible and
co-accessible) deleting transition.

Remark 2. As the proof shows it, injectivity is necessary to ensure that decreasing
automata with one deleting transition lead to a strict order. Here is a counter
example showing that otherwise we would have A∗ < A∗. Consider the transducer:

q0 q1
A | 1

A | A

Remark 3. From Proposition 1 it follows that if two regular languages L and L′ are
such that L ⊆ L′, then L . L′.

Definition 8. The rational embedding order extends to matrices by pointwise
ordering: Let M and N with dimension P × P , and write M . N if for every
i, j ∈ P × P , we have Mi,j . Ni,j .

Recall the modified version of ’Follow’ (Example 3). The following transducers
show that all entries strictly decrease.



q0 q1 q2
T | T α | 1

γ | γ

q−1 q0 q1 q2
T | 1 T | 1 α | 1

γ | 1

q−1q−2 q0 q1 q2
T | T α | 1 T | T α | 1

γ | γ

q−1q−2 q0 q1 q2
α | α γ | γ T | T α | 1

γ | γ

q−1

q−2 q−3

q0 q1 q2

T | 1

α | 1

γ | 1 T | T α | 1

γ | γ

q−1 q0 q1 q2
α | α γ | γ T | T

α | 1

q−1 q0 q1 q2
γ | γ T | T α | 1

γ | γ

q−1q−2 q0 q1 q2
γ | 1 T | 1 α | 1 γ | 1

T | 1

q0 q1 q2
γ | γ T | T

α | 1


In the following, to compare two graphs by means of the rational embedding order,

we transform graphs into matrices as follows. Given a graph G, letM ′G be the matrix
of dimension NG ×NG such that (M ′G)i,j = T i,j1 + · · ·T i,j` with T1, . . . , T` the labels
of the edges from i to j. In other words, we “decorate” the labels with the source and
target nodes. Then, we define G < G′ whenever MG = (M ′G)∗ < (M ′G′)

∗ = MG′ .
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Suppose that G < G′, that is MG = (M ′G)∗ < (M ′G′)
∗ = MG′ . Consider a path

p1
T1→ p2

T2→ · · · pk in G. It is mapped bijectively to the word T p1,p21 · · ·T pn,pn+1
n . In

the sequel, we do not make a distinction between the two forms of paths.

Remark 4. Consider a pair r, s of nodes in G. Then, the component (MG)r,s is the
set of path from r to s in G. Thus, any such path begins necessarily with a first
letter T r,m for some vertex m in G, T ∈ ΣE and ends with a letter of the shape
Un,s for some n ∈ G, U ∈ ΣE.

Suppose that we have some rule involving some pattern P = L and its self-
application P · ~c = R. Suppose R < L. Then, there are decreasing transducers
such that any word T r1,s1 · · ·T rk,sk in L read by τr1,sk is transformed into a word
Ur
′
1,s
′
1 · · ·Ur′k′ ,s′k′ in R. Consider an application of the rule within some graph G.

We say that a letter T r,s is in C (the context) if r 6∈ P or s 6∈ P . It is in P otherwise
(that is both r, s ∈ P ). A letter cannot be both in C and P . If a letter in P
corresponds to a letter/edge in L, then we say it is in L. In the same way, it can be
in R and possibly in both.

4.7. Stable orders on matrices. A matrix on E is said to be finite whenever all
its entries are finite. Two matrices M and M ′ (of same dimension) on E are said to
be disjoint if for every i, j, Mi,j ·M ′i,j = 0.

Definition 9. Let M be a matrix of dimension P × P and P ⊆ G. The extension
of M to dimension G×G is the matrix M↑G defined by:

(M↑G)i,j =

{
Mi,j if i, j ∈ P
0 otherwise

The notation M↑G is shortened to M↑ when G is clear from the context.

Proposition 5. Let M be a matrix of dimension P × P , with P ⊆ G. Then
(M↑G)∗ = (M∗)↑G.

Proof. By induction on k ∈ N, we prove that (M↑G)k = (Mk)↑G. The result
follows. �

Definition 10 (Context stability). We say that a partial order � (with respect to
E) is stable by context if for every P ⊆ G, all matrices L and R of dimension P × P ,
and every C of dimension G×G, the following assertions hold.

(1) If L,R,C are finite, L being disjoint from C, R being disjoint from C and
R∗ ≺ L∗, then (R+ C)∗ ≺ (L+ C)∗;

(2) If R ≺ L, then R↑G ≺ L↑G.

Lemma 1. Let � be a partial order stable by context and consider finite matrices
L,R of dimension P × P and let C be a finite matrix of dimension G × G with
P ⊆ G. Then, R∗ ≺ L∗ implies (R↑ + C)∗ ≺ (L↑ + C)∗.

Proof. If R∗ ≺ L∗, then we have (R∗)↑ ≺ (L∗)↑ by Definition 10.2. By Lemma 5, it
follows that (R↑)∗ ≺ (L↑)∗. Clearly, R↑ and L↑ are finite, and from Definition 10.1,
we have (R↑ + C)∗ ≺ (L↑ + C)∗ �

Theorem 1. Let � be a partial order stable by context. Suppose that for every rule
R = 〈P,~c〉 with P = 〈P0, ~ν〉 and P ′0 the self-application of R, we have M∗P ′0 ≺M

∗
P0
.

Then the corresponding GRS is terminating.



ON GRAPH REWRITING SYSTEMS TERMINATION THROUGH LANGUAGE THEORY 17

Proof. Let � be a partial order on graphs and consider the corresponding order on
matrices: G ≺ G′ if and only if M∗G ≺M∗G′ . We show that for every rule, we have
G→ G′ implies G′ ≺ G. As justified at the begining of the section, this is sufficient
tor prover termination.

So let R be a graph rewriting rule and let µ be a morphism such that G→R,µ G
′.

By the discussion in the beginning of Section 3, without loss of generality, we
can suppose that µ is actually the inclusion of pattern P0 in G. Now, let P0 and
P ′0 be respectively the basic pattern and the self-application of R. Define C to
be the graph made of the nodes of G without edges in P0. By Proposition 2,
MG = M↑P0

+MC and MG′ = M↑P ′0
+MC . Moreover, MP0

,MP ′0
and MC are finite,

MP0 is disjoint from MC , and MP ′0
is disjoint from MC . From Lemma 1 it thus

follows that M∗G′ = (M↑P ′0
+MC)∗ ≺ (M↑P0

+MC)∗ = M∗G. �

4.8. Stability of the orderings. We can now prove the two announced stability
results.

Proposition 6. The multiset path ordering is stable by context.

Proof. We first verify that condition 2 of Definition 10 holds. Suppose that R / L

with R,L of dimension P × P . Then, for all (i, j) 6∈ P × P , R↑Gi,j = 0 E 0 = L↑Gi,j .
Now, for all k ≥ |G| ≥ |P | and for all (i, j) ∈ P × P , we have (R↑G)≤ki,j = R≤ki,j E

L≤ki,j = (L↑G)≤ki,j . The inequality is strict for at least one pair (i, j) ∈ P × P . Thus a
strict inequality.

To verify that condition 1 also holds, let G×G be the dimension of L,R and C.
Take k ≥ |G|. On the one side we have

(R+ C)∗
≤k

=
∑

(A1,...,A`)∈{R,C}∗, `≤k

∏
i≤`

Ai

and on the other side

(L+ C)∗
≤k

=
∑

(A1,...,A`)∈{R,C}∗|`≤k

∏
i≤`

Ai{R← L},

where Ai{R← L} = L if Ai = R, and C otherwise. As the product and the addition
are (strictly) monotonic, the result follows. �

Proposition 7. The rational embedding order is stable by context.

Proof. Since we use a component-wise ordering, it is easy to verify that condition 2
of Definition 10 holds. To verify that condition 1 also holds, let P ×P be the shared
dimension of L,R and C of dimension G×G with P ⊆ G. Since R < L, there are
decreasing transducers τp,q : Lp,q → Rp,q with at least one of them deleting for any
p, q ∈ P . We extend the family to any p, q ∈ G. For that, we build the family of
transducers (θp,q)p,q∈G×G as follows. The family of transducers will share the major
part of the construction. They only differ by their initial and terminal states.

First, we make a copy of all transducers (τp,q)(p,q)∈P×P . Then, we add as states
all the nodes of G outside P . Given a non null entry in the context T = Cp,q, that is

p, q ∈ C, we set a transition p
Tp,q|Tp,q−→ q. The transducer "copies" the paths within

C. For a an entry V = Cp,q with p 6∈ P, q ∈ P , we set a transitions: p
V p,q|V p,q−→ ip,n

for any n ∈ P with ip,n the initial state of the transducer τp,n. Similarly, for

any entry X = Cp,q with p ∈ P, q 6∈ P , we set the transitions: fn,p
Xp,q|Xp,q−→ q for
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any terminal state fn,p of the transducer τn,p, n ∈ P . This construction can be
represented as follows:

ij ij

T i,j | T i,j

U j,i | U j,i
p

q

r

s

V i,k | V i,k

W i,` |W i,`

τk,m

τ`,n

· · ·

· · ·

· · ·
Xm,i | Xm,i

Y n,i | Y n,i

where U, T,W,X, Y range over the edge labels.
It remains to specify initial and final states of the θp,q with (p, q) ∈ G×G. Given

some entry p, q ∈ G, if p 6∈ P , we set the initial state to be p itself. Otherwise, we

introduce a new state ιp which is set to be initial, and we add a transition ιp
1|1−→ ip,n

for any n ∈ P with ip,n the initial state in τp,n. If q 6∈ P , then, q is the final state.
Otherwise, any terminal state fn,q within some τn,q, n ∈ P is set as final.

By construction, the transducers θp,q’s are decreasing with at least one deleting
transition (one within τr,s for some r, s ∈ P ). We need to show that they are
functional and injective.

Let us begin with some observations about the behavior of the transducers θp,q.

Remark 5. We have seen in Remark 4 that a succesful path in τr,s necessarily begins
with a letter T r,m and ends with Un,s. Given their definition, the property holds
for the θp,q’s.

Let us check that θp,q is functional. That is there at most one succeeding
path within the automaton given some input word w = w1`1w2 · · ·wk`k. We let
w1 = T r1,s11 · · ·T ri1 ,si1i1

and `1 = Su1,v1
1 · · ·Suj1 ,vj1j1

.
Let us start with a non empty w1, that is T r1,s11 is in C. Let us follow the

computation on this word within the transducer. Up to T ri1−1,si1−1

i1−1 , the transducer
is deterministic, thus the unicity of the path up to T ri1−1,si1−1

i1−1 . For the last letter,
T
ri1 ,si1
i1

, there is a choice. One can reach any state isi1,m that is initial within τsi1 ,m.
Two cases are under consideration. Either w2 is empty (that is k = 1) or not.

After the last step, the computation will continue within τs1,m reading letters
within P . Since w2 is empty, it will end within τs1,m in a terminal state. But let
the last letter of r1 be Sn,s. Then, since it is a terminal state in τs1,m, that leads
to m = s. Thus, there is at most one succesful choice for m. Next, observe that
the run in τs1,s goes from one initial state to a terminal one. Functionality of τs1,m
applies. Thus, w has only one image through θp,q.

Otherwise, let T r,s be the first letter in w2. The computation "leaves" τs1,m.
But, it must do it via a final state fs1,m in τs1,m. The only possibility is r = m.
Again, the choice vanishes. As above, inside τs1,m, the computation starts at some
initial state, ends at a final state, thus is unique. In other words, there is a unique
way to reach the second letter of w2. This process can be followed up to the end of
the input word.

Now suppose we begin within P . At the very begining, again, there is a choice.
One fires one of the transitions ιp

1|1−→ ip,m for some m ∈ P . Then, either w2 is
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empty and the computation stays within the transducer. Again, the last letter
determines which transducer we go through and again, we keep in mind that τp,m is
functional. Otherwise, as above, it is the first letter of w2 that fixes the value m.
And we are back to a state in C as above.

Consider some pair p, q ∈ G×G. We prove that the transducer θp,q is injective.
Consider a path w in C + L. It can be decomposed as follows: w = w1`1 · · ·wk`k
where the `i’s are the sub-words within L (that is the wi’s have the shape viai where
ai is a transition from C to L). Consider a second word w′ = w′1`

′
1 · · ·w′k′`′k′ such

that the transducer θp,q(w) = θp,q(w
′) = u.

Given the construction of θp,q, since letters in C are copied (and distinct from
the outputs letters by the τi,j ’s), the word u has the shape u = w1r1 · · ·wkrk =
w′1r

′
1 · · ·wk′r′k′ with r1, . . . , rk, r

′
1, . . . , r

′
k′ some paths within R. Thus, w1 and w′1

have a common prefix, say w′′1 . Suppose that w1 is strictly shorter than w′1. Its last
letter has the shape T r,s with s ∈ P . That is not compatible with w′1 (whose only
letter of that sort is the last one). Thus, w1 = w′1. Then, r1 = r′1 since the τr,s are
injective. The process continues up to k. �

5. Interpretations for Graph Rewriting Termination

Interpretation methods are well known in the context of term rewriting, see for
instance Dershowitz and Jouannaud’s survey on rewriting [6]. Their usefulness
comes from the fact that they belong to the class of simplification orderings, i.e.,
orderings for which if t E u, then t � u. In the context of graphs, we introduce a
specific notion of “interpretation”, that we will still call interpretation.

Definition 11. A graph interpretation is a triple 〈X,≺, φ〉 where 〈X,≺〉 is a
partially ordered set and φ : G → X is such that given two graphs P and P ′

having the same set of nodes and C disjoint of P and P ′, if φ(P ) ≺ φ(P ′), then
φ(P + C) ≺ φ(P ′ + C).

An interpretation Ω = 〈X,≺, φ〉 is compatible with a ruleR if φ(P ′0) ≺ φ(P0) where
P0 is the basic pattern of R and P ′0 its self-application. Similarly, an interpretation
is compatible with a GRS if it is compatible with all of its rules.

Theorem 2. Every GRS compatible with an interpretation Ω is terminating.

The theorem being a more abstract form of Theorem 1, its proof follows exactly
the same steps.

Proof. Suppose that G ≺ G′ if and only if φ(G) ≺ φ(G′). We prove that for each
rule R of the GRS, G→ G′ implies G′ ≺ G. Indeed, suppose that G→R,µ G

′. Let
P0 and P ′0 be respectively the basic pattern and the self-application of R. Then,
there is a graph C such that G = P0 + C, G′ = P ′0 + C, such that P0 and P ′0 are
disjoint from C. Since φ(P ′0) ≺ φ(P ), we then have φ(G′) ≺ φ(G). �

Example 4. The triple 〈M,E, (M(−))
∗〉 is an interpretation for ’Follow’.

Example 5. Let us come back to the weight analysis. Define ω(G) =
∑
p
e−→q∈G ω(e)

with ω(α) = 0, ω(T ) = −1, ω(β) = −1. Then, 〈R, <, ω(−)〉 is an interpretation for
’Init’ and ’End’.

Example 6. Let 〈X1,≺1, φ1〉 be an interpretation for a set of rules R1, and let
〈X2,≺2, φ2〉 be an interpretation for a set of rules R2. Suppose that for every
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rule R in R2, G →R,µ G′ implies G′ �1 G (that is without strict inequality).
Then the lexicographic ordering on X1 × X2 defined by (x1, x2) ≺1,2 (y1, y2) if
and only if x1 ≺1 y1, or x1 �1 y1 and x2 ≺2 y2, constitutes an interpretation
〈X1 ×X2,≺1,2, φ1 × φ2〉 for R1 ∪R2.

Thus, combining Example 4, Example 5 and Example 6, we have a proof of the
termination of the Main Example (Subsection 3.1).

Corollary 3. The GRS given in Subsection 3.1 is terminating.

Example 7. Let R be a terminating GRS. Then there is an interpretation that
“justifies” this fact. Indeed, take 〈G,≺, 1G〉 with ≺ defined to be the transitive closure
of the rewriting relation→. The termination property ensures that the closure leads
to an irreflexive relation. The compatibility of ≺ with respect to 1G is immediate.

We thus have the following corollary.

Corollary 4. A GRS is terminating if and only if it is compatible with some
interpretation.

6. Conclusion

We proposed a new approach based on the theory of regular languages to decide
the termination of graph rewriting systems, which does not account for node
additions but settles the uniform termination problem for these GRS. We think that
there is room to reconsider some old results of this theory under the new light. In
particular, we think of profinite topology [26], is a powerful tool that could give us
some insight on the underlying structure of the orders. Indeed, if we are back to the
multiset order, we see that we look at the structure of languages with a stratificatio
along the length of words.

For both orders, multiset and rational embedding, we can extend them to take
into account partial orders on the edge labels and partial orders on the node labels.
This is left for further work. We left that part to skip technical difficulties related
to this step.

As the next natural step, we intend to explore more systematically graph rewriting
with node creation. Let us say a few word about it. First, matrices would have
infinite dimension. But, at the same time, since graphs are finite, only finitely
many entries are non null. Here again, the technical step is not immediate, but not
without hope.

Second, there is one slippery point that must be discussed in details. We said
that the ordering on matrices did not need to be well founded to show termination.
And for that, we needed the fact that all graphs met during computation have a
fixed size (so that there are only finitely many of them). In the present context, the
hypothesis cannot hold in general.

Third, suppose the ordering is not well-founded. We need an extra-ingredient.
Let us suppose that the ordering ≺ is stable by edge contraction: that is, if G′
is obtained from G by contracting some edge e ∈ G, then MG′ ≺ MG. Suppose
furthermore that for any steps, G → G′, we have MG′ ≺ MG, then the system is
terminating. Indeed, due to Robertson and Seymour’s Theorem (see [27], ), any
infinite sequence MG1 � MG2 � · · · will contain two indices for which MGj is a
(directed) minor of MGk for some j < k. That is Gj is obtained from Gk by finitely
many edge contractions. But, since the order is stable by edge contraction, then,
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MGj ≺MGk which leads to the contradiction. The notion of minors for the directed
case may be discussed further, see for instance [28]. We leave that exploration for
some other day.

Finally, concerning the practical aspect of the algorithm we designed, given the
experiments mentioned in the introduction about natural language processing, in
principle, these two orders should still be sufficient to ensure termination. For
multiset-path ordering, the decision procedure is almost contained within the defini-
tion. This is not the case of the rational embedding for which we have to choose the
transducer. Anyway, from the theory to the implementation, we may meet some
surprises.
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