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Abstract

In this chapter, we present the main characteristics of electroencephalog-
raphy (EEG) and magnetoencephalography (MEG). More specifically,
this chapter is dedicated to the presentation of the data, the way they
can be acquired and analyzed. Then, we present the main features that
can be extracted and their applications for brain disorders with concrete
examples to illustrate them. Additional materials associated with this
chapter are available in the dedicated Github repository.

Keywords: Electroencephalography, Magnetoencephalography, Evoked
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1. Introduction

This chapter aims at providing an overview of electroencephalography
(EEG) and magnetoencephalography (MEG) to help the reader with no
previous experience with these modalities to understand the information
that can be extracted, and their neurophysiological meaning in the per-
spective to be used for brain disorders. These two modalities, that share
common characteristics, are often designated together with the acronym
M/EEG.
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To this end, instead of providing an exhaustive presentation of the M/EEG
clinical applications, we focused on the main aspects related to these
modalities. As a result, this chapter is organized as follows. We first
describe the basic principles in terms of origins of the signals and electro-
physiological activity exploited in M/EEG (Section 2). We then present
the principles of M/EEG experiments (Section 3), the data analysis tech-
niques (Section 4), and in particular features that can be extracted from
the data (Section 5). The last part of this chapter presents illustrations
of M/EEG applications to brain disorders (Section 6). To go further,
additional resources are provided to the reader in Box 1, Box 2, and in
a dedicated Github repository.

2. Basic principles

Being able to extract the information of interest to perform a classifica-
tion from M/EEG data requires to have some neurophysiological back-
ground knowledge to assess the relevance of the selected features. This
paragraph aims at providing some general elements regarding the origin
of the signals and the recorded activity.

2.1 Origin of the signals

Neurons create electrical signals, transmitted to other cells via synapses.
First, an action potential (AP) arrives at a synaptic cleft (step 1 in Fig-
ure 1) where it will transmit chemical information via neurotransmitters
(step 2 in Figure 1) that generate post-synaptic potentials (PSPs) and
local currents (step 3 in Figure 1). A PSP will create a current sink and
will propagate until the cell body to generate a current source (step 4
in Figure 1). As a result, the PSP creates an electrical dipole consisting
in a negative pole (i.e. the sink) and a positive pole (i.e. the source).
This dipole will generate primary (intracellular) currents and secondary
(extracellular) currents. M/EEG signals result from post-synaptic po-
tentials. More specifically, M/EEG signals result from the spatial and
temporal summation of the activity of a large population of synchronous
neurons. But notable differences exist between MEG and EEG.

First, regarding the signals themselves, MEG signals are mainly caused
by intracellular currents generated by the PSP at the dendrite level, and
less by the extracellular currents; EEG signals correspond to a differ-
ence between electrical potentials, mainly due to extracellular currents.
Secondly, regarding the sensitivity towards the dipole orientation, EEG
is sensitive to both radial currents (activity located at the gyrus level)
and to tangential currents (generated within sulci) even though it has
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Figure 1: Origin of M/EEG signals.
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stronger sensitivity to radial currents, whereas MEG is more sensitive to
tangential currents. Finally, regarding the sensitivity towards the con-
ductivity, EEG is strongly attenuated and deformed by crossing through
the skull whereas MEG is less sensitive to the different layers crossed
(i.e. skull, brain, etc...). Such differences between MEG and EEG have
an impact on the way data are preprocessed, analyzed, and therefore,
interpreted. The differences between MEG and EEG are summarized in
Table 1.

2.2 Evoked and oscillatory activity

There are two main types of electrophysiological activity of interest that
are exploited in the M/EEG domain: the evoked and the oscillatory ac-
tivity. Evoked responses are weak variations of electromagnetic activity
resulting from a stimulation (for instance, in response to a task perfor-
mance by the participant). Given their amplitude, it is often necessary to
average signals over chunks of signals, referred as epochs, to reduce noise.
To identify and describe these evoked responses, there is a specific way
to name them according to their latency, their amplitude, their shape
and the polarity. Let’s take an example (see Figure 2), that represent
evoked responses from a study where we simulated a visual stimulation.
We first see a positive deflection occurring 300ms after the presentation
of the stimulation, which is referred to as P300. These waves can re-
flect different mechanisms: the early components are mostly exogenous
and are related to the stimulus characteristics; the late components are
endogenous and are related to the performed task and to the subject’s
state.

The oscillatory activity, or induced activity, results from the summa-
tion of the activity in a given brain region. These rhythms are mainly
defined by their frequency, their amplitude, their shape, their location,
and their duration. In Figure 3), we provided examples of the main
rhythms found in the literature. Each frequency band is referred to by a
greek letter. Delta ([0.5-3Hz]) and Theta ([3-7Hz]) rhythms are respec-
tively detected in the deep and slight sleeps. Alpha ([8-12Hz], in posterior
areas) and Mu ([7-13Hz], in central areas) rhythms are both observed in
quiet watch and resting state (with the eyes closed for Alpha). Beta ([13-
30Hz]) rhythm is detected during the active watch and during cognitive
tasks such as motor imagery for instance. Gamma rhythm (divided in
two sub-rhythms: slow in [30-70Hz], and fast beyond 70Hz) is observed
during specific cognitive processing.

Machine Learning for Brain Disorders, Chapter 9
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Figure 2: Evoked activity. Results from a simulation where two sources,
located in the visual area, generated an activity after a stimulus. On the
right, we plotted the associated time course over the scalp (synthetic sig-
nals), resulting from the averaging of 1000 repetitions. One can observe
notably a positive wave around t=300ms. The code to generate this figure
is accessible via the dedicated Github repository.
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Figure 3: We plotted the time course associated to the main rhythms
that one can observe from M/EEG recordings. These plots were obtained
from synthetic signals. The code to generate this figure is accessible via
the dedicated Github repository.
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3. M/EEG experiments

This section provides an overview of the devices currently used and the
main steps that constitute a M/EEG experiment. As a take-home mes-
sage, in Table 1, we propose a comparison of the main features of MEG
and EEG.

3.1 Instrumentation

3.1.1. EEG

EEG signals are recorded through the use of electrodes placed over the
scalp. The EEG relies on the difference of potentials. The first EEG
recordings have been performed by Hans Berger in 1924. He described
the oscillatory activity at 8Hz occurring in the posterior area of the scalp
when the subject is awake with his eyes closed. There are different types
of electrodes: wet/dry electrodes, and active/passive electrodes. Wet
electrodes are generally made of tin, silver, or silver chloride material
(Ag/AgCl). They need an electrolytic gel to enable the conduction be-
tween the skin and the electrode. Dry electrodes are made of stainless
steel that behaves as a conductor between the skin and the electrode.
The active electrodes contain an electronic module that performs a pre-
amplification of the signal to ensure the stability of the system towards
changes in impedance and noise. The passive electrodes do not use a
pre-amplification module.

Naming. Even though some differences may be found from one EEG
device to another, there are some standardized ways to name and localize
EEG sensors (also called channels). Each channel is often referred to by
a letter and a number. Most of the time, odd channels are located on the
left hemisphere and the even ones on the right hemisphere. The letters
correspond to the area: frontal, temporal, parietal, central, and occipi-
tal. In addition to the sensors themselves, one can also find landmarks:
nasion, inion, and pre-auricular points. An example of such naming is
shown in Figure 4B.

List of montages. Depending on the scientific question to be ad-
dressed, and therefore, the brain areas of interest, different montages can
be found. One can build an EEG montage from less than 5 electrodes to
up to 256 channels. EEG measurements rely on a difference of electrical
potentials. For this purpose, two montages can be considered: the refer-
ential montage and the bipolar montage. In the referential montage, each
difference of electrical potentials considers an electrode placed over the
scalp and a reference. As a result, each electrode placed over the scalp is
compared to the reference electrode. The choice of the reference is cru-
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cial. The most commonly chosen locations for the reference electrodes
are the mastoids (i.e. temporal bone behind the ears), even though sev-
eral studies prefer placing the reference at the vertex (Cz, i.e. midline
central of the scalp). Again, the location depends on the scientific ques-
tion to be addressed. The bipolar montage consists of performing the
difference between two electrodes placed over the scalp, after the exper-
iment. Another electrode, referred as ground electrode, is used. Among
the privileged locations is the scapula (i.e. shoulder blade). An example
of an EEG setup and a standard montage are proposed in Figures 4A &
B. For a complete description of the standardized EEG electrode arrays,
the reader can refer to [1].

Future of EEG hardware. In the past years, there has been an in-
creased interest in developing wearable EEG, to remove wires and to
reduce its dimension but also to enable long lasting recordings in a less
constrained environment. Three bottlenecks need to be overcome: the
EEG electrodes, hard to put on and to keep in place on the head; the
EEG hardware to make it less power consuming and miniaturized; the
EEG software, to propose the most intelligible and reliable information
regarding the captured brain activity [2]. In particular, EEG systems
that rely on dry EEG electrodes get more and more attention. By not
requiring conductive gel, it reduces the preparation time. Recent stud-
ies relying on commercialized dry electrodes systems show performances
close to those obtained with wet electrodes [2].

3.1.2. MEG

Sensors and main devices. The difficulty here is to detect signals that
are 109 weaker than the Earth magnetic field. The current devices rely
on Superconducting QUantum Interference Devices (SQUIDs) that can
detect small MEG signals [3]. One of the first proof-of-concept was made
by D. Cohen in the 1970’s [4]. The SQUIDs present a sensitivity, defined
here as the smallest variation of magnetic field that can be detected by the
sensor, of 1 fT/

√
Hz. To obtain such performance, a magnetic shielding

room is required to remove the environmental noise and a part of the
device needs to be cooled via a cryogenic system (see Figure 4C). Two
types of sensors are used to record MEG signals: magnetometers and
gradiometers. Magnetometers measure the magnetic field whereas the
gradiometers measure the gradient of the magnetic field. They are used
for noise elimination, and consist in a combination of magnetometers.
The main difference from one manufacturer to another lies in the type of
gradiometers used:

• CTF manufacturer: radial gradiometers consisting of two magne-
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tometers placed one above the other;

• MEGIN manufacturer: planar gradiometers consisting of two mag-
netometers placed side by side.

The type of gradiometer has an influence on the way brain activity is
recorded, and therefore, on how to interpret the recorded signal [5]. Mag-
netometers and radial gradiometers are more sensitive to sources around
the sensor whereas planar gradiometers are more sensitive to sources lo-
cated right below the sensor.

New generation of sensors. The current devices rely on a cryogenic
cooling system that engenders technical and financial constraints. New
cryogenic-free sensors have recently emerged: the optically-pumped mag-
netometers (OPMs)[6, 7]. Developing cryogenic-free sensors presents two
main advantages: an increase in the amplitude of the signal recorded by
the sensor and a reduction of the dimension of the magnetic shielding
room. Recent studies, proved that OPMs present a better signal to noise
ratio than EEG [8], can detect deep sources [9], and can be suited for
pediatric or movement disorders studies [10]. Promising results could be
obtained with triaxial measurements obtained from OPMs [11, 12].

3.2 Data acquisition

Depending on the tasks and on the hardware used, the duration of a
M/EEG experiment may vary. This section aims presents the main steps
that constitute the data acquisition.

The first step consists in preparing all the materials to perform the
experiment. For EEG, it will consist in cleaning the locations where elec-
trodes will be in contact with the skin (e.g. forehead and mastoids). The
electrodes and the EEG cap are then placed. Several key distances can
be measured to verify that the cap is well-placed or to record fiducial
points to be matched to other modalities afterwards (e.g. MRI). Then,
the experimenter needs to ensure that the communication between the
electrodes and the scalp is established. For that purpose, an assessment
of the impedance is made for each electrode. The lower it is, the better it
is. In the case of wet electrodes, the experimenter has to inject gel at each
sensor location. Once the impedances are lower than a certain threshold,
typically a few kOhms, then the experiment can start. Regarding MEG,
the experimenter places head tracking coils to measure the head position
before each recording. It helps preventing from large head movements
that could lead to motion artefacts and error in the localization of source
activity. The locations of fiducial points (nasion, left and right preauric-
ular points) are registered. The information is stored in each data file.
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Figure 4: M/EEG instrumentation. (A) EEG experimental setup (B)
Example of EEG montage. For an illustrative purpose, each color cor-
responds to a brain area. Each circle represents either a sensor or a
landmark. Sensors appear in color while landmarks appear in gray. Sen-
sors are designated with a letter and a number. The letter is indicative
of the brain region. Odd numbers correspond to the left hemisphere and
even ones to the right hemisphere. (C) MEG experimental setup

Machine Learning for Brain Disorders, Chapter 9



10 Corsi

The subject is then placed in the magnetic shielding room after taking
off all the elements that could generate magnetic interference with the
device (e.g. jewels, belt). The experimenter helps the subject to place
his/her head in the MEG helmet. Once the subject is in a comfortable
position, the experimenter will save the head position that will be used
as reference during the whole session.

Once the subject is correctly installed, the experimenter can start
some pre-recordings to check the quality of the signal and give specific
instructions to the subjects accordingly (e.g. loosening the jaw to avoid
muscular artifacts). Finally, the experimenter can give further instruc-
tions regarding the task to perform before starting the recordings. After
the end of session, the data are stored in specific servers to be processed.

Items MEG EEG

Measurement
Magnetic field,

+ intracellular currents
Difference of potentials,
+ extracellular currents

Spatial resolution 1 cm 2-3 cm
Temporal resolution 1 ms or less

Amplitudes ≈ 100 fT ≈ 100 µVolts

Advantages
- Absolute values

- Less affected by bone-
Focal

- Portable
- Cost

Drawbacks
- Financial constraints
- Mechanical constraints

- Need of a reference
- Affected by bone

- Diffuse

Table 1: Main features to compare MEG and EEG.

4. Data analysis

This sections aims at providing recommendations for analysing M/EEG
data. An overview of the main steps of the M/EEG data analysis is
provided in Figure 6.

4.1 Types of artifacts/noise

The notion of artifacts depends strongly on the signal of interest. Here,
we consider as artifacts the signals that make the recording more difficult
and may hamper the analysis of the brain activity recorded with EEG
and/or MEG. Such artifacts can be divided in two categories: the neu-
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rophysiological artifacts, and the environmental noise. This section aims
at presenting their main features.

4.1.1. Neurophysiological artifacts

This category of artifacts corresponds to noise generated by the subjects
themselves, whether it is voluntarily or not. In a nutshell, it is important
to bear in mind that the brain is far from being the only organ that
generates electromagnetic activity. In particular, the eyes and the heart
produce electromagnetic activity, that shows an amplitude higher than
that of the brain. As a result, the main neurophysiological artifacts are
related to cardiac activity and ocular activity (via blinks and saccades)
and can be visually spotted out during a M/EEG recording (see Figures
5A & B). A possible way to reduce the ocular artifacts is to instruct
the subject to avoid moving their eyes and, for short recordings only, to
avoid eyes blinking. Another neurophysiological artifacts may be induced
by the subjects’ voluntarily motion. Indeed, motion engenders muscular
activity that can distort the recorded brain signals. Typical examples
are jaw clenching and swallowing. They generate high frequency activity
that propagates to temporal electrodes. In the specific case of MEG, the
device consisting in a helmet, it is strongly sensitive to head motion. A
possible way to reduce the muscular artifacts is to instruct the subjects
to remain as quiet as possible and to avoid moving their jaws.

4.1.2. Environmental noise

This category refers to the artifacts generated by the environment that
surrounds the experimental setup. They can be magnetic (e.g. mag-
netized devices that can interfere with the MEG sensors), linked with
mechanical vibrations (e.g. presence of a tramway nearby), or simply as-
sociated with power line (occurring at 50Hz or 60Hz, see Figure 5C). We
do not aim at being exhaustive. We simply want the reader to be aware
of the possible sources of environmental noise when analyzing M/EEG
signals even though the Faraday cage and the shielded room, used re-
spectively in EEG and MEG, can partly prevent them.

4.1.3. System noise

This category refers to artifacts generated by the sensors themselves. For
example, in MEG, one can observe SQUIDs jumps or saturation. In both
MEG and EEG, one can have broken sensors.

Machine Learning for Brain Disorders, Chapter 9
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Figure 5: Examples of artifacts in M/EEG. (A) Cardiac artifacts
recorded with magnetometers. (B) Ocular artifacts recorded with EEG.
(C) Power line noise recorded with gradiometers. Given its character-
istics, plotting the power spectra enables to elicit it easily. The code to
generate this figure is accessible via the dedicated Github repository.
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4.2 Preprocessing

This sections aims at presenting the main steps that constitute the pre-
processing pipeline, dedicated to artifacts removal. This is probably the
most crucial part when analyzing M/EEG data. Indeed, the point here is
to remove noise without eliminating information of interest or distorting
the signal. Attention must be paid to build the pipeline the most suited
to the dataset and to the scientific question to be addressed. As such, the
first thing to do when working with a new dataset is to extensively study
it. In particular, inspecting the M/EEG signals but also the associated
broadband power spectra. This preliminary step enables to identify most
of the artifacts, and more importantly, if they have a specific temporal
and/or frequency signature (e.g. presence of periodic artifacts).

From this point, it is possible to choose a specific strategy to remove
the observed noise. In the case of cardiac and ocular artifacts, given
their clear pattern, an efficient way to isolate and reduce them consists in
applying Independent Component Analysis (ICA) [13]. One can visually
identify the components to be removed from both the temporal and the
topographies (to avoid removing too many components) and manually
select them. Another possibility, more reproducible, consists of using
biosignals (e.g. electrocardiogram and electrooculogram) and to compute
correlations between timeseries. This technique enables to ensure the
robustness of the decision of removing a component.

In the case of artifacts at a specific frequency (e.g. power line noise at
50Hz or 60Hz), one can consider applying notch filters. With the same
philosophy, in the case of muscular activity, applying a low-pass filter
with a cut-off frequency at 40Hz can be of interest. Nevertheless, one
objection can be raised: the signal distortion induced by the filtering.
As previously explained, here, we aim at finding a trade-off between re-
moving artifacts and preserving the information of interest. That is why
the pipeline strongly depends on the scientific question to be addressed.
In the case of muscular activity, if someone is interested in the activity
in the gamma band (>30Hz), applying a low-pass filter will be a poor
choice and as such, removing noisy trials can be an option. Regarding
head motion, as explained in section 3.2, MEG systems enable to register
the head position. Methods relying notably on Signal-Space Separation
[14] can correct small movements (i.e. less that several centimeters).

Another type of artifacts consists of a broken channel. To avoid hav-
ing a different number of sensors from one subject to another, the pro-
posed solution depends on the sensor location. If the sensor has four
neighbors, strategies relying on the interpolation can be considered. It
consists in creating a virtual sensor that is the linear combination of

Machine Learning for Brain Disorders, Chapter 9



14 Corsi

the signals recorded by the broken sensor’s neighbors. If the sensor is
located on the periphery, the interpolation is no longer reliable. The ex-
perimenter may consider removing the channel from the dataset. In the
specific case of MEG, after an optional head movement correction step, if
SQUID jump artifacts remains, one should consider re-applying the head
movement correction on the raw data after having labeled as ”bad” the
sensors that show jumps. The bad MEG channels will be reconstructed.

Once the pipeline has been chosen and tested, it is important to check
that the signals have been correctly preprocessed. This step corresponds
to the quality check. There are different possibilities to perform it. The
qualitative way would consist in superimposing pre- and post-processed
signals (which can be displayed as time-series and/or power spectra) and
to visualize potential differences. A more reliable way would consist in
identifying a judgement criterion to assess to which extent the output
signals are noisy. Possible metrics are the variance, the z-score or the
kurtosis. Using one of these metrics on the output may lead to both
noisy channels and trials to be discarded. As a rule of thumb, the trials
elimination must not exceed 10% of the total number of trials to ensure
to have enough data to perform a relevant analysis [15].

4.3 Source reconstruction

It is possible to directly analyze the signals recorded by the sensors. In
such a case, one will say that the analysis is performed in the space of the
sensors. However, it is also possible to go one step further and estimate
the activity within the brain. This processing step is called source recon-
struction and consists in estimating the neural correlates M/EEG signals
location. It can be performed when one wants to have access to a higher
spatial resolution to provide a more accurate description, and interpreta-
tion, of the neurophysiological phenomena occurring. For that purpose,
both the direct and the inverse problems need to be solved [16, 15].

4.3.1. Direct problem

Here, we aim at modelling the electromagnetic field produced by a cere-
bral source with known characteristics. For that purpose, it is necessary
to consider both a physical model of the sources, and a model that pre-
dicts the way that these sources will generate electromagnetic fields at
the scalp level. The simplest model is the spherical model, that consid-
ers the head as an ensemble of spheres. Each sphere corresponds to a
given tissue (brain, cerebrospinal fluid, skull, or skin) characterized by
a given conductivity. Even though it is possible to adjust the spheres
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to the geometry of the head or restrict them to a limited number of re-
gion of interest, this model is an oversimplification of the head geometry.
More realistic models rely on geometrical reconstruction of the different
layers that form the head tissues, directly extracted from the anatomical
magnetic resonance imaging (MRI) data of, ideally, the participant (the
MRI thus needs to be acquired separately) or a dedicated template (e.g.
MNI Colin 27). They consist in building meshes of the interfaces between
different tissues. We can cite three approaches: the Boundary Element
Method (BEM) [17] that is the most widely used, the Finite Difference
Method (FDM), and the Finite Element Method (FEM). Another model,
called Overlapping spheres [18], consists of fitting a given sphere under
each sensor.

Even though there are no guidelines regarding the choice of the method,
we could provide some elements of recommendations: given the high sen-
sitivity of the EEG towards variations in terms of conductivity, the BEM
model can be a tool of choice. As for the MEG, being less sensitive to
changes in conductivity, the overlapping spheres can be considered.

4.3.2. Inverse problem

One of the main challenge of the inverse problem lies in the non-uniqueness
of its solution. In other words, a large number of brain activity patterns
could generate the same signature detected at the sensor level. There-
fore, some constraints or assumptions are essential to lead to a unique
solution that reflects the best the acquired data [15, 16]. In this section,
we aim at providing a short overview of the methods that are the most
used in routine.

The dipole modelling methods rely on a source modelling via a re-
duced number of equivalent dipoles where each of them represents a
source activity. As a result, such methods are based on an a priori hy-
pothesis on the required number of sources.

Scanning methods, such as the MUSIC approach [19], consist in esti-
mating the probability of presence of a current dipole inside each voxel.
Among them are the beamformer methods [20], that consist in apply-
ing a spatial filtering to estimate the source activity at each location.
We can cite the linearly constrained minimum variance (LCMV) and the
synthetic aperture magnetometry (SAM) [21] as examples of beamformer
methods [22].

The approaches relying on distributed source models consist in esti-
mating the amplitudes of dipoles located on the cortical surface. The
characteristics of the groups of dipoles are fixed or are estimated via the
individual MRI of the participant. The most famous methods relying
on distributed sources models are the weighted minimum norm (wMNE)
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[23, 24] and LORETA [25].
Similarly to the preprocessing step, there is no ideal choice of method

for the inverse problem, as it depends on the question to be addressed.
A general recommendation would be to consider the minimum norm
method when expecting distributed sources, and the dipole modelling
for focal sources.

5. Features extraction and selection

When considering M/EEG from the Machine Learning perspective, an
important aspect is the extraction, and the selection of the features. This
section aims at presenting the main features that can be extracted from
M/EEG. As previously mentioned, the selection of the features depends
on the scientific question to be addressed but also on the neurophysi-
ological phenomenon underlying the M/EEG experiment. In M/EEG,
filtering both in the time domain and in the spatial domain to select the
most relevant features is common.

The two main types of features used in the literature rely on the
information in the frequency domain and in the time domain. In an
effort of completeness, we will see alternatives features that reflect the
interconnected nature of brain.

The event-related features consist of chunks of time-series concate-
nated from all the channels, resulting from a low-pass or band-pass fil-
tering and/or from a down-sampling step. This category of features is
relevant when considering evoked activity after the presentation of a given
stimulus (e.g. visual, auditory or sensory). They are therefore of interest
when one is expecting significant changes in signal amplitudes occurring
at a given moment. In the example presented in section 2.2, a positive
wave occurred 300 ms after the visual stimulation. One could consider
using chunks of timeseries centered at t=300ms to detect automatically
the P300 wave.

The spectral features are used in the case of the detection of an os-
cillatory activity (see section 2.2), when changes in M/EEG rhythms
amplitudes are expected. The features are associated with the power
spectra estimated in a given channel and in a given frequency band for
a specific time window. Power spectra can be computed via a plethora
of methods, we can notably cite the spectrogram, the Morlet wavelet
scalogram, and the auto-regressive models. For a thorough comparison
of spectral features extraction techniques on EEG signals, please refer to
[26].

Spatial filtering can be a valuable tool both for the event-related and
the spectral features [27]. It relies on the combination of signals, recorded
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Head movement compensation & 
environmental noise removal +QC

Raw signals

Advanced analysis

Time-frequency analysis

Connectivity Networks

Event-related potentials

Individual MRI 
or template

Source reconstruction + QC

Data inspection

Artifacts removal + QC

MEG only

M/EEG

Figure 6: Data analysis in M/EEG: general workflow. QC stands for
quality check. Source reconstruction is not compulsory but advisable in
specific cases. The code to generate this figure is accessible via the dedi-
cated Github repository.
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from different sensors, to obtain a new one, associated with an improved
signal-to-noise ratio. We can divide the spatial filtering methods into
three categories. The first one, not data driven, relies on physical con-
siderations regarding the way the signals propagate through the different
brain tissues. The most famous illustration of this category is the Lapla-
cian filter. In its simplest version, the small Laplacian consists, for each
electrode location, of a derivation of the EEG waveform via the average
signal computed from the four nearest-neighbors [28]. The second cat-
egory of spatial filtering is data-driven and unsupervised. It can rely,
for example, on a Principal Component Analysis (PCA) approach (see
Chapter 2, section 13.1). The third category is data-driven and super-
vised. The most famous examples in M/EEG are the Common Spatial
Patterns (CSP) for spectral features [29], and xDAWN for event-related
features [30]. The CSP consists of a linear combination of EEG signals
to maximize the difference between two classes in terms of variance. The
xDAWN approach aims at improving the signal-to-noise ratio obtained
with evoked potentials via a projection of the raw EEG signals onto an
estimated evoked subspace. Recent efforts have been put together to
combine approaches to provide ways to optimize simultaneously spectral
and spatial filters, with for example the Filter Bank CSP (FBCSP) [31].

Even though spectral and event-related features are the most used in
the M/EEG literature, alternative features have been considered in the
past years. First, features relying on covariance matrices have recently
been extensively used, in particular for Riemannian geometry-based clas-
sification [32]. Despite an unclear neurophysiological interpretation, they
enabled to reach state-of-the art performance and to win a large num-
ber of competitions. Secondly, new features, that take into account the
interconnected nature of brain functioning have recently emerged [33].
There is a plethora of estimators to assess the intensity of the interac-
tions between brain areas [34]. The most frequent estimators used as
features in M/EEG are derived from the coherency i.e. the normalized
cross-spectral density obtained from two signals (e.g. imaginary part of
coherence), or rely on the assessment of the phase synchrony between
two signals (e.g. Phase-Locking Value (PLV), Phase-Lag Index (PLI)).
Here, two challenges need to be dealt with: the volume conduction that
can lead to spurious connectivity1 and the online implementation. In the
first case, even though some estimators, such as the imaginary coherence,
are less sensitive to the volume conduction, working in the source space
is recommended. In the second case, a large majority of studies that
consider estimators of functional interactions between two brain areas

1originating from the mixture of signals engendered by different sources recorded
at a given sensor.
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(i.e. functional connectivity estimators) as features are performed of-
fline. Estimating brain interactions in real-time is not trivial: it consists
in finding the compromise between ensuring the quasi-stationarity of the
signals and the statistical reliability of the functional connectivity esti-
mation [33]. Recent studies considered the use of brain network metrics
as potential features. Again, there is a plethora of metrics that char-
acterize brain networks [33]. Here, we will cite the most used metrics.
At the local scale, the node degree counts the number of connections
linking one node to the others. In weighted networks (i.e. without hav-
ing filtered the connectivity/adjacency matrix) it is referred to as node
strength and consists in summing the weights of the connections of the
considered node [35]. Another local-scale property of interest is the be-
tweenness centrality defined as the extent to which a node lies “between”
other pairs of nodes via the proportion of shortest paths in the network
passing through it. This metric enables the identification of the nodes
that are crucial for the information transfer between distant regions. At
the global scale, we can cite two metrics: the characteristic path length
and the clustering coefficient. The characteristic path length indicates
the global tendency of the nodes in the network to integrate and exchange
information. The clustering coefficient measures the tendency of having
nodes’ neighbors mutually interconnected. Lastly, it is worthwhile not-
ing the use of heterogeneous features (e.g. relying on both functional
estimators and power spectra) that improves the classification accuracy
[27]. Such an approach leads to an increase of the dimension, requiring
cautious to select the most relevant features, via dimensional reduction
methods.

The feature selection is a crucial step as it prevents redundancy, en-
sures the reliability of the features, reduces the dimensionality tuned,
and helps in providing interpretable results. In this section, we aim at
presenting the most popular features selection methods in the M/EEG
domain. For a complete description of the features selection methods,
the reader can refer to [27]. They can be divided into three categories:
embedded, filter, and wrapper methods. In filter methods, the feature
selection is performed independently, and before, the evaluation. Differ-
ent criteria can be chosen to select features. The most popular criterion
is the R2 score, that assesses to which extent a given feature is influenced
by a task performed by the subject. In wrapper methods, the feature se-
lection utilizes the classification. In other words, in an iterative process,
the relevance of each subset of features is assessed via the classification
performance until a given criterion is met. The embedded method con-
sists in integrating both the features selection and the classification in
the same process, via a decision tree for example or an ℓ1 penalty term.
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Box 1: Tools for M/EEG analysis

All these tools provide a wide range of tutorials, publicly available
datasets, and codes.
Python-based:

• MNE-Python [36]

• MOABB [37]

Matlab-based:

• EEGLAB [38]

• Fieldtrip [39]

• Brainstorm [40]

• SPM [41]

6. M/EEG and brain disorders

6.1 Clinical applications of M/EEG

The spatial and temporal resolutions of M/EEG enables the observation
of a large number of processes. Notably, they can detect both evoked
responses and oscillatory activity. As such, using these information could
pave the way to biomarkers of brain disorders. To illustrate this point, we
will focus our presentation on two specific clinical applications: epilepsy
and Alzheimer disease. Nevertheless, M/EEG can be useful for a wider
range of applications both in neurological and psychiatric disorders [42,
43].

6.1.1. Epilepsy

Epilepsy is a neurological disorder that presents a high prevalence of
1% [44]. It is established that between 20 and 30% of the patients present
a pharmacoresistant form of epilepsy [45]. Among this proportion of
patients, only 30% can undergo a surgery [46]. Epilepsy is a distributed
disease that induces brain network reorganization and brain rhythms
alterations both during ictal and interictal periods [47, 48]. Due to its
time resolution compatible with the capture of dynamical changes as
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well as its wide availability, EEG is a key modality for the evaluation
of epilepsy [44]. In addition to scalp EEG, stereotactic-EEG (SEEG)
can be used to further localize epileptogenic foci and proved to provide
valuable information on epileptogenic networks [48]. MEG can also be
used for pre-surgical evaluation and for functional mapping [49], but it
is much more costly and less widely available.

The use of network theory in epilepsy provides a useful framework to
characterize the seizure (onset and propagation), and its clinical expres-
sion (e.g. comorbidities) [47, 48]. At the local scale, the node strength or
degrees, and the betweeness centrality have been used to characterize the
epileptic network [50, 48]. At the global scale, two metrics have proved
to be of interest in epilepsy [51]: the characteristic path length and the
clustering coefficient.

6.1.2. Alzheimer disease

Alzheimer disease is the most common dementia with 60 to 80% of the
cases. The first symptoms are a deficit in short-term memory and con-
centration, followed later by a decline of linguistic skills, visuo-spatial
orientation, abstract reasoning judgement. As the pathophysiological
process of the disease starts many years before the occurrence of symp-
toms [52], it is crucial to elicit biomarkers to provide a diagnosis as soon
as possible. Efforts have been put together to describe mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) with M/EEG. These
studies are essentially focused on oscillatory activity and on interactions
between brain areas [53, 54]. In particular, patients present a reduced
synchrony [55] and a decrease of the alpha power (i.e. between 8 and
12Hz) correlates with lower cognitive status and hippocampal atrophy.
Studies performed with MEG in preclinical and prodomal stages of AD
showed that the effects of amyloid-beta deposition were associated with
an increment of the prefrontal alpha power and that altered connectivity
in the default mode network was present in normal individuals at risk
for AD [56, 57].

A recent EEG work showed that effects of neurodegeneration were
focused in frontocentral regions with an increase in high frequency bands
(beta and gamma) and a decrease in lower frequency bands (delta) [58].
In particular, EEG patterns differ depending on the degree of amyloid
burden, suggesting a compensatory mechanism: following a U-shape
curve in delta power and an inverted U-shape curve for the other tested
metrics.
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6.2 Advanced uses: the example of BCI as a reha-
bilitation tool

6.2.1. Presentation of the BCI

Brain-Computer Interfaces (BCIs) consist of acquiring, analyzing and
translating brain signals into commands in real time for control or com-
munication. These systems present a large number of clinical applications
and assistive technologies including control of wheelchairs and brain-
based communication. BCI devices can be a valuable tool in the treat-
ment of neurological disorders such asstroke [59], and to provide assistive
solutions for patients with spinal cord injury [60] or the amyotrophic lat-
eral sclerosis [59]. With regard to the communication, devices such as the
P300 Speller, that rely on the evoked response occurring 300ms after the
visual stimulation, allow the users to communicate by selecting letters to
form words and even sentences. For an overview of the main steps to be
considered when performing a BCI experiment, please refer to Figure 7.

Brain activity recording

Features extractionClassification

Feedback

Figure 7: BCI experiment workflow.

6.2.2. BCI as a rehabilitation tool

Stroke is one of the most common neurological conditions. In 2010, stroke
was the second leading cause of death worldwide [61]. After a stroke,
most patients require rehabilitation and assistance for daily tasks. Mo-
tor deficit of the upper limbs affects 70% of the survivors [62] and 85%
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of those presenting paralysis will have persistent damage [63]. Rapid
recovery is observed during the first three months (acute phase) but
can continue for several months after the accident (chronic phase) [64].
Motor-imagery (MI) based BCI can constitute a motor substitution in
the case of stroke by building alternative pathways from the stimula-
tion to the brain [65]. In this particular case, the system relies on the
desynchronization effect associated with a decrease of the power spectra
computed within the contralateral sensorimotor area [66]. In a recent
meta-analysis [67], the authors observed that rehabilitation to restore
upper-limb motor function based on BCIs could improve the motricity,
assessed via the Fugl-Meyer scale, more than other therapies. A part of
the screened studies showed that BCI could induce neuroplasticity.

Brain network changes in stroke patients represent a very promising
clinical application of closed-loop systems in rehabilitation strategies.
Motor imagery has been proved to be a valuable tool in the study of
upper-limb recovery after stroke [68]. It enabled observations of changes
in ipsilesional intrahemispheric connectivity [69] but also modifications in
connectivity in prefrontal areas, and correlations between node strengths
and motor outcome [70]. Based on previous observations in resting-
state [71], a recent double-blind study involving ten stroke patients at
the chronic stage revealed that node strength, computed from the ipsile-
sional primary motor cortex in the alpha band, could be a target for a
motor-imagery-based neurofeedback and lead to significant improvement
on motor performance [72].

6.2.3. Current challenges and perspectives

Despite being beneficial for patients, controlling a BCI system is a learned
skill that 15 to 30% of the users cannot develop even after several train-
ing sessions. This phenomenon, called ”BCI inefficiency” [73], has been
presented as one of the main limitations to a wider use of BCI. From the
machine learning perspective, the main challenges to overcome in current
BCI paradigms relying on EEG recordings are: the low signal-to-noise
ratio of signals; the non-stationarity over time mainly resulting from the
difference between calibration and feedback sessions; the reduced amount
of available data to train the classifier explained by the number of classes
to be discriminated and/or the need to avoid the subject’s tiredness; the
lack of robustness and reliability of the BCI systems, in particular when
decoding the users’ mental command.

To tackle these challenges, efforts have been put to improve the clas-
sification algorithms. They can be divided in three main groups: the
adaptive classifiers, the transfer learning techniques and the matrix or
tensor based algorithms. The adaptive classifiers aim at dealing with
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EEG non-stationarity by taking into account changes in signal proper-
ties, and feature distribution, over time. Their parameters are updated
when new EEG signals are available [74]. Even though most of the adap-
tive classifiers can rely on a supervised approach, the unsupervised one
has proven to outperform the classifiers that cannot catch temporal dy-
namics [75]. Besides, it can be a valuable tool to reduce the training
duration and potentially to remove the calibration part. Nevertheless,
the adaptive classifiers present one main pitfall: their lack of online val-
idation with a user in most of the current literature. This leads to two
potential issues: the difficulty to find a trade-off between fully retraining
the classifier and updating some key-parameters, and the adaptation that
may not follow the actual user’s intent by being too fast or too slow [76].

Transfer learning consists here in exploiting changes in EEG signals
properties over time and subjects to extract knowledge. More specifi-
cally, it relies on learned classifiers that are trained on one task (called
domain here) and are adapted to another task with little or no new
training data [77]. For example, it can be applied to a dataset formed
by two motor imagery tasks performed by two different subjects. There
is plethora of methods to solve the transfer learning problem [78]. The
most common in the EEG-based BCI domain consists in learning the
transformation to correct the mismatch between the domains, occurring
when one domain corresponds to a hand motor imagery and the other to
a foot motor imagery for instance, finding a common feature representa-
tion for the domains, or learning a transformation of the data to make
their distributions match [27]. Despite its robustness and recent advances
in proposing guidelines [79], there is a lack of online experiments relying
on transfer learning to fully validate this approach and assess to which
extent it can be beneficial to patients.

Among the classification methods relying on matrices and tensors the
most well-known is the Riemannian geometry-based one. One of the main
original characteristics of this approach is that it is able to manipulate
and classify the data by representing them as symmetric positive definite
matrices, such as covariance matrices, and by mapping them onto a dedi-
cated geometrical space, involving less steps than the classic approaches.
This approach relies on the assumption that the sources are specific of a
given task encoded via the covariance matrix computed from EEG sig-
nals. Here, trials are classified via nearest neighbour methods relying on
the Riemannian distance, and the geometric mean. With the method
relying on the minimum distance to mean (MDM), each class is associ-
ated with a geometric mean computed from the training data. Then, the
MDM will attribute an unlabelled trial to the class showing the closest
mean [80]. The Riemannian approaches present many advantages: they
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can be applied to all BCI paradigms, no parameter tuning is required,
they are robust to noise and, combined to transfer learning methods, they
can lead to calibration-free BCI sessions [81]. In particular, Riemannian
geometry-based methods [80, 82] are now the state-of-the-art is terms of
performance [27] and have won several data competitions2 [83].

Box 2: To go further

Guidelines and books of reference

• Hari, M., and Puce, A. (2017). MEG-EEG Primer. In MEG-
EEG Primer. Oxford University Press.

• M. Clerc, L. Bougrain, and F. Lotte. (2016) Brain-Computer
Interfaces 1: Methods and Perspectives, Wiley.

• M. Clerc, L. Bougrain, and F. Lotte. (2016) Brain-Computer
Interfaces 2: Technology and Applications, Wiley.

• Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand,
A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld,
R., Parkkonen, L., Taylor, J. R., van Wassenhove, V., Wibral,
M., and Schoffelen, J.-M. (2013). Good practice for conducting
and reporting MEG research. Neuroimage, 65, 349–363.

• Puce, A. and Hämäläinen, M. S. (2017). A Review of Issues
Related to Data Acquisition and Analysis in EEG/MEG Stud-
ies. Brain Sci, 7(6).

7. Conclusion

EEG and MEG are key modalities for the study of brain disorders. In
particular, EEG is relatively cheap and widely available and is thus a
widely used tool in neurology. When dealing with EEG and MEG data, it
is important to understand the origin of the signals as well as the different
steps in their preprocessing and feature extraction. Machine learning is
increasingly used on EEG and MEG data, in particular for BCI but also
for computer-aided diagnosis and prognosis of brain disorders.

2See for example the 6 competitions won by A. Barachant: http://alexandre.

barachant.org/challenges/
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KJ, Tierney TM, Bestmann S, Barnes
GR, Bowtell R, Brookes MJ (2018) Mov-
ing magnetoencephalography towards real-
world applications with a wearable system.
Nature 555(7698):657–661, DOI 10.1038/
nature26147, URL https://www.nature.

com/articles/nature26147

[11] Brookes MJ, Boto E, Rea M, Shah V,
Osborne J, Holmes N, Hill RM, Leggett J,
Rhodes N, Bowtell R (2021) Theoretical
advantages of a triaxial optically pumped
magnetometer magnetoencephalogra-
phy system. NeuroImage p 118025,
DOI 10.1016/j.neuroimage.2021.118025,
URL https://www.sciencedirect.com/

science/article/pii/S1053811921003025

[12] Labyt E, Corsi MC, Fourcault W, Laloy AP,
Bertrand F, Lenouvel F, Cauffet G, Prado

Machine Learning for Brain Disorders, Chapter 9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431319/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431319/
https://link.aps.org/doi/10.1103/RevModPhys.65.413
https://link.aps.org/doi/10.1103/RevModPhys.65.413
https://www.sciencedirect.com/science/article/pii/S1046202301912381
https://www.sciencedirect.com/science/article/pii/S1046202301912381
https://www.sciencedirect.com/science/article/pii/S1046202301912381
http://www.theses.fr/2015GREAT082
http://www.theses.fr/2015GREAT082
http://www.sciencedirect.com/science/article/pii/S1053811919304550
http://www.sciencedirect.com/science/article/pii/S1053811919304550
http://www.sciencedirect.com/science/article/pii/S1053811919306901
http://www.sciencedirect.com/science/article/pii/S1053811919306901
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854457/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854457/
https://www.nature.com/articles/nature26147
https://www.nature.com/articles/nature26147
https://www.sciencedirect.com/science/article/pii/S1053811921003025
https://www.sciencedirect.com/science/article/pii/S1053811921003025


EEG and MEG 27

ML, Berger F, Morales S (2019) Magne-
toencephalography With Optically Pumped
4He Magnetometers at Ambient Tempera-
ture. IEEE Transactions on Medical Imag-
ing 38(1):90–98, DOI 10.1109/TMI.2018.
2856367, conference Name: IEEE Transac-
tions on Medical Imaging

[13] Bell AJ, Sejnowski TJ (1995) An
information-maximization approach to
blind separation and blind deconvolu-
tion. Neural Comput 7(6):1129–1159,
DOI 10.1162/neco.1995.7.6.1129

[14] Taulu S, Simola J (2006) Spatiotemporal
signal space separation method for rejecting
nearby interference in MEG measurements.
Phys Med Biol 51(7):1759–1768, DOI 10.
1088/0031-9155/51/7/008

[15] Gross J, Baillet S, Barnes GR, Henson RN,
Hillebrand A, Jensen O, Jerbi K, Litvak V,
Maess B, Oostenveld R, Parkkonen L, Tay-
lor JR, vanWassenhove V, Wibral M, Schof-
felen JM (2013) Good practice for conduct-
ing and reporting MEG research. Neuroim-
age 65:349–363, DOI 10.1016/j.neuroimage.
2012.10.001

[16] Baillet S, Mosher J, Leahy R (2001) Elec-
tromagnetic brain mapping. IEEE Signal
Processing Magazine 18(6):14–30, DOI 10.
1109/79.962275

[17] Fuchs M, Wagner M, Kastner J (2001)
Boundary element method volume conduc-
tor models for EEG source reconstruction.
Clinical Neurophysiology 112(8):1400–1407,
DOI 10.1016/S1388-2457(01)00589-2, URL
http://www.sciencedirect.com/science/

article/pii/S1388245701005892

[18] Huang MX, Mosher JC, Leahy RM (1999)
A sensor-weighted overlapping-sphere head
model and exhaustive head model com-
parison for MEG. Physics in Medicine
and Biology 44(2):423–440, DOI 10.1088/
0031-9155/44/2/010

[19] Mosher J, Baillet S, Leahy R (1999) EEG
source localization and imaging using multi-
ple signal classification approaches. Journal
of Clinical Neurophysiology 16(3):225–238,
DOI 10.1097/00004691-199905000-00004

[20] Hillebrand A, Barnes GR (2005)
Beamformer Analysis of MEG Data.
In: International Review of Neu-
robiology, Magnetoencephalography,
vol 68, Academic Press, pp 149–171,
DOI 10.1016/S0074-7742(05)68006-3,
URL https://www.sciencedirect.com/

science/article/pii/S0074774205680063

[21] Robinson S, Vrba J (1999) Functional
neuroimaging by synthetic aperture mag-
netometry (SAM) – ScienceOpen. Recent
advances in Biomagnetism. Sendai: Tohoku
University Press, pp 302–5, URL https:

//www.scienceopen.com/document?vid=

067e8134-c846-4b5f-9ae1-656869ca8727

[22] Van Veen B, Van Drongelen W, Yucht-
man M, Suzuki A (1997) Localization of
brain electrical activity via linearly con-
strained minimum variance spatial filtering.
IEEE Transactions on Biomedical Engineer-
ing 44(9):867–880, DOI 10.1109/10.623056

[23] Fuchs M, Wagner M, Köhler T, Wischmann
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