
HAL Id: hal-03630177
https://hal.inria.fr/hal-03630177

Submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Separation Analysis for Weakest Precondition-based
Verification

Thierry Hubert, Claude Marché

To cite this version:
Thierry Hubert, Claude Marché. Separation Analysis for Weakest Precondition-based Verification.
HAV 2007 - Heap Analysis and Verication, Mar 2007, Braga, Portugal. pp.81–93. �hal-03630177�

https://hal.inria.fr/hal-03630177
https://hal.archives-ouvertes.fr

Separation Analysis for
Weakest Precondition-based Verification⋆

Thierry Hubert1,2,3 and Claude Marché2,3

1 Dassault Aviation, Saint-Cloud, F-92214
2 INRIA Futurs, ProVal, Parc Orsay Université, F-91893

3 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405

Abstract. The component-as-array model is a widely used technique formodel-
ing heap memory in Weakest Precondition-based deductive verification of pointer
programs. We propose a separation analysis which can be integrated in the core
of this model. This allows to greatly simplify the verification conditions gener-
ated, and thus greatly helps in proving such pointer programs. We illustrate the
improvements both in term of scaling up for codes of large size, and in term of
simplification of the reasoning for establishing advanced behaviors.

1 Introduction

To perform verification of pointer programs, it is widely known that detection of pointer
aliasing is essential. A separation analysis is a techniqueto automatically detect that two
given pointers are not alias to each other. Various separation analyses have been pro-
posed, in the context of advanced static analysis of programs and abstract interpretation.

Deductive verification is the class of verification techniques that are based on logical
semantics of programs, starting from the landmark work of Floyd and Hoare [1, 2], and
the concepts of logical assertions such as pre- and post-conditions, loop invariants, etc.
Compared to static analysis techniques, deductive verification is potentially much more
expressive, and is able to establish advanced behaviors of programs, the main drawback
being that logical assertions must be given by the programmer.

The most well-known technique for analysing separation in the context of deductive
verification is Separation Logic proposed by Reynolds [3]. Yet, as far as we know, no
tool implementing Separation Logic has demonstrated a disruptive progress on reason-
ing on concrete case studies such as industrial embedded code.

For deductive verification, the technique that has shown itself the most effective in
practice is the Weakest Precondition (WP) calculus of Dijkstra [4]. It is the base of
effective tools such as ESC/Java [5], several tools for Javaprograms annotated using
the Java Modeling Language [6], Spec# [7] for the C# programming language, and a
tool of our own for C programs called Caduceus [8].

Dealing with pointer programs in the context of a WP calculusis usually done by
providing an appropriate axiomatic modeling of the memory heap. The component-
as-array model, coming from an old idea by Burstall [9], has been emphasized by Bor-
nat [10]. Variants of this modeling are used by the tools mentioned above. Unfortunately
⋆ This research is partly supported by “CIFRE” contract 774/2004 with Dassault Aviation com-

pany, and ANR RNTL grant “CAT”

Separation Logic is not easily compatible with those techniques based on WP and the
component-as-array modeling.

In this paper we propose a new separation analysis, directlysuitable for the compo-
nent-as-array modeling. The main idea is that memory regions that are guaranteed to
be separated can be modelled by distinct components of the heap memory model. The
method we present here is general and applicable to many programming languages: we
present it for C but it is clearly amenable to Java, C#, etc. InSection 2, we define the core
language we consider, and recall the principles of the component-as-array modeling.

Section 3 presents our new separation analysis, and define the refined component-
as-array memory model it leads to. The first ingredient is a type system for our core
language, where pointer types are parameterized by regions. A very important feature is
that for a function arguments that has a pointer type, its region can itself by a parameter
of the function: this leads to apolymorphictype system à la Milner [11]. The main
result is Theorem 1: the type system is shownrelatively sound, that is the interpretation
of a well-typed program has the same semantics as the same program interpreted in a
classical component-as-array model.

The second ingredient is an algorithm for inferring types (Section 3.3). We do not
prove its soundness on paper, but obtain soundness by the mean of the intermediate
Why tool: the back-end verification condition generator of Caduceus. The Why input
language [12] is a polymorphically typed languageà la ML, and we use that feature to
obtain the full soundness of our separation analysis: the Why tool verifiesa posteriori,
for each C program, that its interpretation in our refined memory model is well-typed.

In Section 4, we show applications of the technique, and experimental results ob-
tained with Caduceus. Two important benefits are presented:first, it is shown that our
separation analysis provides significant improvements forprograms with a large amount
of data. Second, more unexpectedly, it is shown that separation can be a very useful in-
gredient for reasoning on advanced behaviors of programs.

We compare to related work in Section 5 and conclude in Section 6.

2 Preliminaries

2.1 Core language

Our analysis is described on a core language. Data types of this language are only
integers and structures. Core expressions are made of constants, variables, standard
operators, function calls, field accesses, pointer arithmetic. Grammar of expressions
and statements are given on Figure 1, whereτ denotes types which are either theint
type for integers or pointers to structures. Other C constructs can be translated to these,
as shown in next Section 2.2. We indeed have such a intermediate language in the
implementation of Caduceus, with some others constructs like switch, break, for , etc.
Only constructs given above are important for the rest of thepaper.

2.2 Normalization of C source

We present briefly how we transform C code into our core language. It allows a fairly
large subset of C, main unsupported features being pointer cast, unions, and pointers to
function.

2

e ::= c (integer constants)
| null (null pointer)
| v (variables)
| e → f (field access)
| id(e, . . . , e) (function call)
| e op e (integer operators +,-,*,/,%, &&, etc.)
| e ⊕ e (addition pointer+integer)
| e op e (pointer subtraction⊖ and comparisons)

s ::= v = e; (variable assignment)
| τ v = e; (local variable introduction)
| e → f = e; (field assignment)
| return e; (function return)
| if(e) s elses (conditional branching)
| while(e) s (while loop)

Fig. 1. Grammar of our core language

The two main points are first to remove the address operator &,and second to reduce
the star operator∗p, array accessest[i], and dot fields accessese.f to arrow field access
e → f . The address operator is removed by an initial phase: whenever a variablex is
present as argument of &, it is transformed into a pointer (ormore precisely an array
of size 1) to the type ofx in the original C code. Then each occurrence of&x becomes
x and each occurrence ofx becomes∗x. The same is done for structure fields: if the
address of a structure fieldf is taken somewhere as in&e.f , then the type off becomes
a pointer (more precisely an array of size 1) to the type off in the original C code. Each
occurrence of&e.f becomese.f ande.f becomese → f (because it is equivalent
to (∗e).f . In a second phase, any expressione is normalized toe by reducing star
operators, array accesses, and remaining dot field accessesby the following rules:

e.f 7→ e → f ∗e 7→ e → F (e) e1[e2] 7→ (e1 ⊕ e2) → F (e1)

whereF (e) is a field name generated from the type ofe: for theint type we useintM
(for “int memory”), for typeint* we useintPM (“int pointer memory”), etc.

Figure 2 shows an example of normalization of C code.

2.3 Component-as-array modeling

The key idea proposed by Burstall [9] is to have one ‘array’ variable for each structure
field: an applicative map which can be accessed or modified only via two side-effect
free functionsselectandstore. This modeling syntactically encode the fact that two
structure fields cannot be aliased. The important consequence is that whenever one field
is updated, only the corresponding array variable is modified and we have for free that
any other field is left untouched.

Filliâtre and Marché proposed a variant of this technique todeal with C pointer
arithmetic [8]. The C memory heap is represented by a finite set of array variables,

3

Original code:

int x;
int t[2];
struct S { int y;} s;

void f() {
int *z = &x;
t[1] = *z;
s.y = t[1];

}

Normalized code:

struct intM { int intM; };
struct intM x[1];
struct intM t[2];
struct S { int y; };
struct S s[1];

void f() {
(struct intM)* z = x;
(t ⊕ 1)->intM = z->intM;
s->y = (t ⊕ 1)->intM;

}

Fig. 2. Example of C code normalization

indexed bypointersviewed as pairs of an address to an allocated block and an offset
into this block, thus ‘array’ variables are indeed 2-dimensional. For our core language,
we interpret the⊕ operator directly into a logical operationshift in the model, so that
we don’t need anymore to make explicit this 2-dimensional representation.

The memory model is presented by a first-order axiomatization. Instead of an un-
sorted logic, we use polymorphic sorts: first it makes the presentation easier to follow,
and second it will permit the soundness of the inference algorithm, in Section 3.3.

We introduce two logic sorts:pointer andα memory (denoting a ‘memory ar-
ray’ containing values of typeα), and operations

shift : pointer,integer→ pointer

select : α memory,pointer→ α

store : α memory,pointer, α → α memory

satisfying the implicitly universally quantified axioms

select(store(a, i, v), i) = v (1)

select(store(a, i, v), j) = select(a, j) if i 6= j (2)

shift(p, 0) = p (3)

shift(shift(p, i), j) = shift(p, i + j) (4)

Our core language constructs are then interpreted into our intermediate language
Why by transformation rules:

[e → f] 7→ select(f, [e])
[e1 ⊕ e2] 7→ shift([e1], [e2])

[v = e] 7→ v := [e]
[e1 → f = e2] 7→ f := store(f, [e1], [e2])

Statements are interpreted into Why constructs, and memoryaccessese → f are actu-
ally guarded with assertions to check validity of pointer dereferencing. This last aspect
is not useful for the remaining, so we refer to [8, 13] for details.

4

struct S { int i; };

/*@ requires \valid(x) && \valid(y)
@ assigns x->i, y->i
@ ensures x->i == 1 && y->i == 2
@*/

void f(struct S *x, struct S *y) {
x->i = 1; y->i = 2;

}

struct S t1[1], t2[1];

//@ ensures t1[0].i == 1 && t2[0].i == 2
void g() { f(&t1[0],&t2[0]); }

Fig. 3. Simple case of separation analysis

3 Separation Analysis

3.1 Modeling with regions

We illustrate on simple examples how we integrate a separation analysis into the model-
ing presented before. Consider the C source code of Figure 3,where we use the syntax
of the Caduceus JML-like specification language: annotations are given in special com-
ments/*@ .. */, requires introduces a pre-condition,ensuresa post-condition, and
assignsis a clause to specify which memory locations are modified [8,13]. The anno-
tation\valid(x) means thatx points to a safely allocated memory location.

Post-condition of functionf cannot be established: it is indeed wrong in case of
aliasing: pointersx andymay be equal. For the call tof in functiong they are different,
but since we use a modular reasoning (function by function, as for any technique based
on WP), the whole code cannot be proved correct. A possible solution could be to add
to the pre-condition off the additional hypothesisx != y, but our goal in this paper
is to avoid this extra condition. The Why interpretation of the C code off is

i := store(i, x, 1); i := store(i, y, 2);

so establishing the post-conditionselect(i, x) = 1 amounts to prove the corresponding
weakest precondition

select(store(store(i, x, 1), y, 2), x) = 1

which is a consequence of axioms (1) and (2) ifx 6= y. Our goal is to interpret the code
of f differently using two distinct variables for representingthe fields ofx andy:

ix := store(ix, x, 1); iy := store(iy, y, 2);

ix andiy are two distinctregionsfor field i. With that interpretation, post-conditions
select(ix, x) = 1 andselect(iy, y) = 2 follows from axiom (1) without need ofx 6= y.

5

struct T {
struct S t1[2];
struct S t2[2];

};

/*@ ensures s.t1[0].i == 1 && s.t2[0].i == 2 &&
@ s.t1[1].i == 2 && s.t2[1].i == 1
@*/

void h(struct T s) {
f(&s.t1[0],&s.t2[0]);
f(&s.t2[1],&s.t1[1]);

}

Fig. 4.Case of parametric regions

Consider additionally the code of Figure 4. Functionf is now called twice, in first
callx points to arrays.t1 andy points to arrays.t2, and it is reversed in the second
call. To allow separation ofs.t1 ands.t2 into different regions, we need to make
these regionsparametersof f, and we call themparametric regions. The complete
interpretations off andh are then

void f(ix, iy, x, y) {
ix := store(ix, x, 1); iy := store(iy, y, 2);

}
void h(t1, t2, i1, i2, s) {

f(i1, i2, select(t1, s), select(t2, s));
f(i2, i1, shift(select(t2, s), 1), shift(select(t1, s), 1));

}

and their post-conditions can be established by simple first-order reasoning.
So our goal is to integrate a notion of separation into the modeling of C code, by

attaching regions to pointers and memory variables. The interpretation of a memory
accesse → f is now select(f_r, e) wherer is the region ofe. We now see how we
compute those regions.

3.2 Regions as types

We see regions as a rich type system for pointers. For simplicity, we only consider
pointers and theint base type. The types of expressions are given by the grammars

(types) τ ::= int
| r pointer (pointer to regionr)
| (τ, r) memory (memory of values of typeτ in regionr)

(regions) r ::= ρ (region variable)
| R (region constant)

Region variables are needed for the parametric regions passed to functions: regions as
function parameters have apolymorphictype. Our type system is then just a particular
case of a polymorphic type systemà la Milner [11].

6

If we consider the functionf of example above, its profile is

f(ix : (int, ρ1) memory, iy : (int, ρ2) memory, x : ρ1 pointer, y : ρ2 pointer)

that is polymorphic inρ1, ρ2: for each call tof these regions can be instantiated differ-
ently.

Region typing rules We now express separation by giving typing rules for expressions,
using types with regions. The typing environment is made of two parts denotedΓ and
∆. Γ is a classical typing environment which maps variable identifiers to types: we
denotex : t ∈ Γ wheneverΓ maps variablex to the typet. ∆ is aregion environment
which maps each pair(r, f), wherer is a region andf is a field identifier, to the typet
of p → f whenp is a pointer in regionr. We denote that as(r, f) : t ∈ ∆.

We are now able to give typing rules for expressions. For constants we have

Γ, ∆ ⊢ n : int Γ, ∆ ⊢ null : r pointer

for any regionr (region polymorphism fornull).
Type of a variable follows the environmentΓ and type of a field access follows the

environment∆:

Γ, ∆ ⊢ x : t
if x : t ∈ Γ

Γ, ∆ ⊢ l : r pointer

Γ, ∆ ⊢ l → f : t
if (r, f) : t ∈ ∆

Function calls use polymorphic typing:

Γ, ∆ ⊢ e1 : t1 · · · Γ, ∆ ⊢ en : tn

Γ, ∆ ⊢ id(e1, . . . , en) : t

if id : (τ1, · · · , τn) → τ ∈ Γ and there is a region substitutionσ such thatt = τσ and
for eachi, ti = τi σ.

Pointer shift keeps the same region:

Γ, ∆ ⊢ e1 : r pointer Γ, ∆ ⊢ e2 : int

Γ, ∆ ⊢ e1 ⊕ e2 : r pointer

Difference and comparison of pointers only allows pointersin the same region:

Γ, ∆ ⊢ e1 : r pointer Γ, ∆ ⊢ e2 : r pointer

Γ, ∆ ⊢ e1 op e2 : int

whereop ∈ {⊖, ==, <=, =>, <, >, ! =}.
The typing rules for statements are then the following. For variable assignment:

Γ, ∆ ⊢ e : t

Γ, ∆ ⊢ v = e : t
if x : t ∈ Γ

For field assignment:

Γ, ∆ ⊢ e1 : r pointer Γ, ∆ ⊢ e2 : t

Γ, ∆ ⊢ e1 → f = e2 : t
if (r, f) : t ∈ ∆

7

Typing of other statements is done in a natural way.
For the typing of local or global declarations, we assume forthe moment an oracle

which gives the regions involved in the construction ofΓ . For declarations of structures,
this means that the∆ environment is also given. In other words, typing of functions is
made in a given∆.

The first result we give is a soundness property of the typing rules: this soundness is
relative in the sense that it shows that the interpretationsof programs is the same with
or without the separation of memory variables.

Theorem 1 (Relative soundness).If a program is well typed in a given environment
Γ, ∆, then its logical interpretation with region memory variables has the same seman-
tics as its interpretation with the classical component-as-array model.

Proof sketch: we provide a bisimulation of execution steps of interpreted programs,
with or without separation. A state of the program with regions can be seen as a partition
of the state of the program without regions. Each operation on the program with regions
can be simulated on the state of the program without region and vice-versa: this works
because all operations respect the partition, because the programs is well-typed in term
of regions.

3.3 Inference of regions

The remaining step is now to provide an inference system, to construct an environment
Γ, ∆ which makes a given program well-typed, if possible. Since our type system is a
particular case of a polymorphic type system à la Milner, we can derive an inference
method from known type inference algorithms such as the W algorithm [14]. The only
specific feature is the handling of the∆ part of the environment.

In a first step, we assign a fresh region constant to each global pointer variable.
Parameters of functions, and local variables, which are pointers, are given a fresh region
variable. This provide an initialΓ . We build at the same time an initial∆ which makes
everything separateda priori.

In a second step, functions are analyzed, in the order given by the call graph, to
determine their polymorphic type. For each function, the code is traversed, and typ-
ing rules given above lead to equality constraints between regions, that is we perform
unification of regions. Each time a function is analysed, we determine which of the re-
gion variables remain not instantiated, and we make the function type polymorphic by
quantifying over them.

Unification of regions is standard, expect for the handling of ∆: each time two
regionsr1 andr2 are made identical, we need to perform a merge operation on∆: for
each fieldf such that∆ maps(r1, f) to t1 and (r2, f) to t2, we need to merge the
mappings, and consequently unify the typet1 and t2, which may recursively lead to
unification of other regions. During this unification phase,Γ is modified by side-effect.

At the end of this process, we end up with aΓ and a∆ in which the program is
well-typed. As said in introduction, we do not provide a proof of this fact. This is a
classical inference algorithm tough, only the unification of regions is original, and we
are pretty sure it is indeed correct, but anyway in practice the soundness is obtained in

8

a secure way: we generate a typed Why program, and if the inferred types are wrong
then Why typing will fail.

Final remark: the W algorithm is known to compute theprincipal type. In terms of
regions, this means that it computes the separation into thelargest possible number of
regions, allowed by the typing rules given.

4 Applications

Our separation analysis is implemented in the Caduceus tool, as a user option. Selection
of this option asks to perform the inference of regions, and then the generation of the
model and the Why interpretation of C code is modified accordingly. We show here a
few experiments and applications.

First of all, we tried using separation analysis on the set ofsmall C programs that
are used as a non-regression test in Caduceus. Results showsan improvement, but only
a small one, which is actually explainable because those C codes are small. But more
importantly, this means that this does not bring overhead onexamples where separation
is not the concern. Remark also that the separation analysisitself is quick (we believe it
is linear in the size of the code), so probably separation analysis could be turned on by
default in the future.

4.1 Regions and logical annotations

This example is inspired from a piece of Java code by P. Müller[16]. It computes the
set of positive elements of an array, and puts them in a new array.

int *m(int t[], int length) {
int count = 0; int i; int *u;
for (i=0; i < length; i++) if (t[i] > 0) count++;
u = (int*)calloc(count,sizeof(int));
count = 0;
for (i=0; i < length; i++) if (t[i] > 0) u[count++] = t[i];
return u;

}

Verification that the assignment ofu[count] is inside the array bounds is tricky: it
involves a “semantic” reasoning, noticing that the second loop counts exactly the same
number of elements as the first, so the indexcount must be smaller than the value of
count used for allocating the arrayu. To make this reasoning explicit, it is natural to
annotate the loops with an invariant, the same one for both loops:

//@ invariant
//@ count == \num_of(int j; 0 <= j && j < i ; t[j] > 0)
for (i=0 ; i < length; i++) ...

where\num_of is a JML-like construct [17] giving the number of elements satisfying
the predicate given as argument. Indeed, original example by Müller was precisely a

9

challenge for static verification tools because none of themsupports the\num_of
construct. Anyway, it is possible on a given example to ‘expand’ the use of\num_of,
and we did that for our C code: we introduce alogic function[8]:

logic int num_of_pos(int i,int j,int a[]) reads t[..]

whose intended meaning is to give the number of positive elements in arraya between
indexesi andj, included. This meaning is formalized by introducing a fewaxioms:

axiom num_of_pos_empty :
\forall int i, int j, int a[];

i > j => num_of_pos(i,j,a) == 0
axiom num_of_pos_true_case :

\forall int i, int j, int k, int a[];
i <= j && a[j] > 0 =>

num_of_pos(i,j,a) == num_of_pos(i,j-1,a) + 1
axiom num_of_pos_false_case :

\forall int i, int j, int k, int a[];
i <= j && ! (a[j] > 0) =>

num_of_pos(i,j,a) == num_of_pos(i,j-1,a)

(see http://www.lri.fr/~marche/MullerChallenge.pdf for the re-
maining annotations).

The key point now is that the verification of safety cannot be done, because in the
second loop, we know thatcount is less than the number of positive elements int,
but there is a reasoning to perform to establish than this number of elementsdid not
change between the two loops. With a single heap variableintM in the model to rep-
resent integer arrays, this is far from simple. Indeed, the logic functionnum_of_pos
is axiomatized with some inductive scheme, and one should prove that it implies that
num_of_pos(i,j,a) only depends on the values ofa[i..j], which is hard.

On the other hand, with our modeling involving memory separation, it is stati-
cally detected thatt andu are separated, and thus can be modeled with two separate
heap variablesintM_t andintM_u. Then, the logic functionnum_of_pos becomes
parametricin the memory variable involved for the array argumenta, and it becomes
syntactically true thatnum_of_pos(0,j-1,t) is the same in both loop of our piece
of C code. Notice also that in the Why interpretation of the axioms above, an extra
quantification over the memory variable involved is added.

On that example, each verification condition is then discharged automatically by the
Simplify prover.

4.2 An industrial case study

In collaboration with Dassault Aviation company, we experimented Caduceus and its
separation analysis on a real embedded code for avionics. The first experiment was
made on a core of this code, which is approximately 3000 lineslong. The characteristics
is that it contains a large number of data structures, and usually these structures contains
nested arrays of other structures.

10

Without separation analysis, this code gives rise to 1151 VCs, 965 being discharged
by Simplify, that is 83.8%. With separation, we get 1982 VCs,1972 discharged by Sim-
plify, that is 99.4 %. There are a total of 376 regions inferred for global variables, and
there are 242 polymorphic regions added as parameter to functions. The significantly
higher number of VCs with separation analysis can be explainby the high number of
regions: the interpretation ofassignsclauses produces as many propositions as the num-
ber of memory variables involved, which is larger when separation is turned on. So this
may make the number of VCs larger, but each of them are simpler. Notice finally that
the 10 remaining VCs have been discharged by the interactiveproof assistant Coq.

We believe this is a very positive experimental result, which shows that our sepa-
ration analysis is a major improvement in practice. We are currently experimenting on
the whole code (70000 lines long) with good results too. We are also trying to prove
a complex behavioral property, involving logical annotations and ghost variables, for
which we hope that the separation analysis will greatly simplify the reasoning, as on
the previous example.

5 Related work

Talpin and Jouvelot proposed in 1994 [18] a calculus for analyzing effects of programs
based of a polymorphic type system. The principle is the sameas ours, but their work
is limited to reference variables: no deep sharing in data structures is possible.

In the context of static analysis, points-to analysis is a very advanced technique for
computing information on pointers. This has been initiatedby Andersen in 1994 [19]
and extended further in 1996 by Steensgaard [20] and in 2000 by Das [21]. We used
their idea of designing a type system for analysis separation, but it is clear that our
analysis is much less precise than theirs. Our method is tailored to the generation of a
refined component-as-array model for deductive verification.

The Cyclone system [22] proposes a new programming languageanalogous to C,
but in which the programmer can specifying regions manually. Similarly to us, they
allow parametric regions in function call. But first our setting applies to the real C
language, and second are regions areautomatically inferredinstead of being given by
the user.

Compared to Separation Logic, our separation analysis is clearly less precise. It
seems that Separation Logic is very powerful in some cases: it allows for example to
specify that a linked list cannot be circular, or that a graphis a tree, and to reason with
that. This is something that our analysis cannot do: as soon as one traverses a linked
lists, only one region is inferred for the whole list. Our analysis is clearly more adapted
to deal with programs with a high size of data, but it also brings improvement when
reasoning on small programs, as shown in Section 4.1. Combining all the power of
Separation Logic and our Separation analysis remains a future task.

In 2006, Nanevski, Morrisett and Birkedal [23] showed the importance of para-
metricity of regions in theirHoare type theoryframework. We have shown the same in
the classical context of deductive verification based on weakest precondition calculus,
which is directly applicable to several existing practicaltools.

11

Generally speaking, we think our approach allowed us to address much more com-
plex applications than previous works, such as the industrial case study of Section 4.2

6 Conclusion

We proposed a separation analysis that is potentially useful for any tool for deductive
verification based on weakest precondition calculus and a component-as-array model.
Our experimentations on C programs are very positive, as shown by advanced applica-
tions.

There are some drawbacks that we plan to address in the future. First, the separation
analysis must be done on the whole program, so it is not modular. This is not a major
problem since the separation analysis is quick, and becauseafter separation analysis is
performed, the remaining of the verification task can still be done modularly, function
by functions. But in case we do not have the complete program available, such as if
we what to verify libraries, this is a problem. We plan to add new constructs in the
specification language to allow user specification of separation: for example, for a li-
brary function such asmemcpy, one may want to specify that the source and target are
separated.

Our separation analysis is tailored to its later use for the component-as-array model.
In that model, a given C array will be entirely in the same region. However, by advanced
static analysis, it is possible to discover that an given array may be splited into several
regions, for example in the following code:

struct S int x ;
struct S t[10];
void f(S *p, int n) { p->x = n; }
void main() f(t+0,2); f(t+1,3);

we do not get for free thatt[0]->x == 2. We are planning to incorporate more
advanced static analysis techniques in our setting, in the context of the CAT project
(http://www.rntl.org/projet/resume2005/cat.htm).

Acknowledgments We gratefully thank J.-C. Filliâtre, Ch. Paulin, Y. Moy for their
comments about this work and this paper.

References

1. Floyd, R.W.: Assigning meanings to programs. In Schwartz, J.T., ed.: Mathematical Aspects
of Computer Science. Volume 19 of Proceedings of Symposia inApplied Mathematics.,
Providence, Rhode Island, American Mathematical Society (1967) 19–32

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969) 576–580 and 583

3. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17h Annual
IEEE Symposium on Logic in Computer Science, IEEE Comp. Soc.Press (2002)

4. Dijkstra, E.W.: A discipline of programming. Series in Automatic Computation. Prentice
Hall Int. (1976)

12

5. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. Techni-
cal Report 159, Compaq Systems Research Center (1998) See alsohttp://research.
compaq.com/SRC/esc/.

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll, E.:
An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer (2004)

7. Leino, K.R.M.: Efficient weakest preconditions. Technical Report MSR-TR-2004-34, Mi-
crosoft Research (2004)

8. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In Davies, J., Schulte,
W., Barnett, M., eds.: Sixth International Conference on Formal Engineering Methods. Vol-
ume 3308 of Lecture Notes in Computer Science., Seattle, WA,USA, Springer-Verlag (2004)
15–29

9. Burstall, R.: Some techniques for proving correctness ofprograms which alter data struc-
tures. Machine Intelligence7 (1972) 23–50

10. Bornat, R.: Proving pointer programs in Hoare logic. In:Mathematics of Program Construc-
tion. (2000) 102–126

11. Milner, R.: A theory of type polymorphismn programming.Journal of Computer and System
Sciences17 (1978)

12. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud (2003)http://www.lri.fr/~filliatr/ftp/publis/
why-tool.ps.gz.

13. Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and frame
conditions. In Hurd, J., Melham, T., eds.: 18th International Conference on Theorem Proving
in Higher Order Logics. Lecture Notes in Computer Science, Springer-Verlag (2005)

14. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL ’82:
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM Press (1982) 207–212

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theoremprover for program checking. J.
ACM 52(3) (2005) 365–473

16. Müller, P.: Specification and verification challenges. Exploratory Workshop: Challenges in
Java Program Verification, Nijmegen, The Netherlands (2006) http://www.cs.ru.nl/
~woj/esfws06/slides/Peter.pdf.

17. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools
supporting detailed design in Java. In: OOPSLA 2000 Companion, Minneapolis, Minnesota.
(2000) 105–106

18. Talpin, J.P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal of Functional
Programming2(3) (1992) 245–271

19. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, University of Copenhagen (1994)

20. Steensgaard, B.: Points-to analysis in almost linear time. In: Symposium on Principles of
Programming Languages. (1996) 32–41

21. Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI ’00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, New York, NY, USA, ACM Press (2000) 35–46

22. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-based memory
management in cyclone. In: PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, New York, NY, USA, ACM Press
(2002) 282–293

23. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare type the-
ory. In Reppy, J.H., Lawall, J.L., eds.: 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2006, Portland, Oregon, USA,ACM (2006) 62–73

13

