N
N

N

HAL

open science

Separation Analysis for Weakest Precondition-based
Verification
Thierry Hubert, Claude Marché

» To cite this version:

Thierry Hubert, Claude Marché. Separation Analysis for Weakest Precondition-based Verification.
HAV 2007 - Heap Analysis and Verication, Mar 2007, Braga, Portugal. pp.81-93. hal-03630177

HAL Id: hal-03630177
https://hal.inria.fr /hal-03630177

Submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/hal-03630177
https://hal.archives-ouvertes.fr

Separation Analysis for
Weakest Precondition-based Verificatiom

Thierry Hubert-22 and Claude MarcHé

! Dassault Aviation, Saint-Cloud, F-92214
2 INRIA Futurs, ProVal, Parc Orsay Université, F-91893
3 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRSay)F-91405

Abstract. The component-as-array model is a widely used techniquedalel-
ing heap memory in Weakest Precondition-based deductiviéecation of pointer
programs. We propose a separation analysis which can lgratee in the core
of this model. This allows to greatly simplify the verificati conditions gener-
ated, and thus greatly helps in proving such pointer prograife illustrate the
improvements both in term of scaling up for codes of large,sénd in term of
simplification of the reasoning for establishing advanceldviors.

1 Introduction

To perform verification of pointer programs, it is widely kmothat detection of pointer
aliasing is essential. A separation analysis is a technimaetomatically detect that two
given pointers are not alias to each other. Various separatalyses have been pro-
posed, in the context of advanced static analysis of progeard abstract interpretation.

Deductive verification is the class of verification techrégthat are based on logical
semantics of programs, starting from the landmark work oy&land Hoare [1, 2], and
the concepts of logical assertions such as pre- and posiitzors, loop invariants, etc.
Compared to static analysis techniques, deductive veidité potentially much more
expressive, and is able to establish advanced behavioreg@fgms, the main drawback
being that logical assertions must be given by the programme

The most well-known technique for analysing separatiohéndontext of deductive
verification is Separation Logic proposed by Reynolds [}, ¥s far as we know, no
tool implementing Separation Logic has demonstrated aplise progress on reason-
ing on concrete case studies such as industrial embedded cod

For deductive verification, the technique that has shovetfitee most effective in
practice is the Weakest Precondition (WP) calculus of migk$4]. It is the base of
effective tools such as ESC/Java [5], several tools for gawgrams annotated using
the Java Modeling Language [6], Spec# [7] for the C# programgrianguage, and a
tool of our own for C programs called Caduceus [8].

Dealing with pointer programs in the context of a WP calcusussually done by
providing an appropriate axiomatic modeling of the memoegh The component-
as-array model, coming from an old idea by Burstall [9], hesrbemphasized by Bor-
nat [10]. Variants of this modeling are used by the tools noed above. Unfortunately

* This research is partly supported by “CIFRE” contract 7082with Dassault Aviation com-
pany, and ANR RNTL grant “CAT”

Separation Logic is not easily compatible with those teghas based on WP and the
component-as-array modeling.

In this paper we propose a new separation analysis, diraaitigble for the compo-
nent-as-array modeling. The main idea is that memory regibat are guaranteed to
be separated can be modelled by distinct components of tqerhemory model. The
method we present here is general and applicable to manygmoging languages: we
presentit for C butitis clearly amenable to Java, C#, et6dction 2, we define the core
language we consider, and recall the principles of the corapbas-array modeling.

Section 3 presents our new separation analysis, and deénefihed component-
as-array memory model it leads to. The first ingredient ispee tyystem for our core
language, where pointer types are parameterized by regioresy important feature is
that for a function arguments that has a pointer type, itoregan itself by a parameter
of the function: this leads to polymorphictype system a la Milner [11]. The main
resultis Theorem 1: the type system is shaelatively soundthat is the interpretation
of a well-typed program has the same semantics as the samgepranterpreted in a
classical component-as-array model.

The second ingredient is an algorithm for inferring typesotn 3.3). We do not
prove its soundness on paper, but obtain soundness by the afi¢lhe intermediate
Why tool: the back-end verification condition generator aidGceus. The Why input
language [12] is a polymorphically typed languagka ML, and we use that feature to
obtain the full soundness of our separation analysis: thg &l verifiesa posteriorj
for each C program, that its interpretation in our refined mgnmodel is well-typed.

In Section 4, we show applications of the technique, and raxgatal results ob-
tained with Caduceus. Two important benefits are presefite:it is shown that our
separation analysis provides significant improvementgifograms with a large amount
of data. Second, more unexpectedly, it is shown that séparzdn be a very useful in-
gredient for reasoning on advanced behaviors of programs.

We compare to related work in Section 5 and conclude in Seétio

2 Preliminaries

2.1 Corelanguage

Our analysis is described on a core language. Data typessofathguage are only
integers and structures. Core expressions are made ofacts\svariables, standard
operators, function calls, field accesses, pointer aritttm&rammar of expressions
and statements are given on Figure 1, wheenotes types which are either time
type for integers or pointers to structures. Other C corgtrean be translated to these,
as shown in next Section 2.2. We indeed have such a interteediaguage in the
implementation of Caduceus, with some others construasWitch, break, for, etc.
Only constructs given above are important for the rest optiqeer.

2.2 Normalization of C source

We present briefly how we transform C code into our core lagguh allows a fairly
large subset of C, main unsupported features being poiagtyegnions, and pointers to
function.

en=c (integer constants)

| null (null pointer)

| v (variables)

le—f (field access)

| id(e,...,e) (function call)

|eope (integer operators +,-,*,/,%, &&, etc.)

lede (addition pointer+integer)

|eope (pointer subtractiom® and comparisons)
su=v=c¢; (variable assignment)

| 7v=e¢; (local variable introduction)

le— f=c¢; (field assignment)

| return e; (function return)

| if(e) s elses (conditional branching)

| while(e) s (while loop)

Fig. 1. Grammar of our core language

The two main points are first to remove the address operatandsecond to reduce
the star operatorp, array accesse$|, and dot fields accesses' to arrow field access
e — f. The address operator is removed by an initial phase: wkergevariabler is
present as argument of &, it is transformed into a pointemfore precisely an array
of size 1) to the type of in the original C code. Then each occurrencéafbecomes
x and each occurrence efbecomes«xz. The same is done for structure fields: if the
address of a structure fiefdis taken somewhere asdre. f, then the type of becomes
a pointer (more precisely an array of size 1) to the typgiofthe original C code. Each
occurrence ofe.f becomes.f ande.f becomes — f (because it is equivalent
to (xe).f. In a second phase, any expressiors normalized toe by reducing star
operators, array accesses, and remaining dot field acdas#es following rules:

ef—e—f *e—e— Ie) eiles] = (BT @ 22) — Flen)

whereF (e) is a field name generated from the typesofor thei nt type we usé nt M
(for “int memory”), for typei nt = we usei nt PM("“int pointer memory”), etc.
Figure 2 shows an example of normalization of C code.

2.3 Component-as-array modeling

The key idea proposed by Burstall [9] is to have one ‘arrayialale for each structure
field: an applicative map which can be accessed or modifieg waltwo side-effect
free functionsselectandstore This modeling syntactically encode the fact that two
structure fields cannot be aliased. The important consegtisithat whenever one field
is updated, only the corresponding array variable is matidied we have for free that
any other field is left untouched.

Fillidtre and Marché proposed a variant of this techniquedal with C pointer
arithmetic [8]. The C memory heap is represented by a finiteobarray variables,

Original code: Normalized code:

struct intM{ int intM };

int x; struct intMx[1];

int t[2]; struct intMt[2];

struct S { int y;} s; struct S { int vy; };

struct S s[1];

void f() { void f() {
int *z = &X; (struct intM*x z = x;
t[1] = *z; (t ® 1)->intM= z->ntM
s.y =t[1]; s->y = (t & 1)->intM

} }

Fig. 2. Example of C code normalization

indexed bypointersviewed as pairs of an address to an allocated block and aet offs
into this block, thus ‘array’ variables are indeed 2-dimenal. For our core language,
we interpret theb operator directly into a logical operatiani ft in the model, so that
we don’t need anymore to make explicit this 2-dimensiongiesentation.

The memory model is presented by a first-order axiomatimatitstead of an un-
sorted logic, we use polymorphic sorts: first it makes the@néation easier to follow,
and second it will permit the soundness of the inferencerilgo, in Section 3.3.

We introduce two logic sortgoi nt er anda nmenory (denoting a ‘memory ar-
ray’ containing values of type), and operations

shift: poi nter,integer — pointer
select : « menory,pointer — «
store : @ mMenoOry,poi nter,a — «a NMeMoOry

satisfying the implicitly universally quantified axioms

select(store(a,i,v),i) =v 1)
select(store(a,i,v),j) = select(a,j)if i £ j)
shift(p,0) =p (3)
shift(shift(p,i),7) = shift(p,i+7) 4)

Our core language constructs are then interpreted intordermediate language
Why by transformation rules:

[e — f] — select(f,[e]) [v=-¢]— v:=][e]
[e1 @ ea] — shift([e1], [e2]) le1 — f = ea] = f:= store(f, [e1], [e2])

Statements are interpreted into Why constructs, and meaumgsses — f are actu-
ally guarded with assertions to check validity of pointerederencing. This last aspect
is not useful for the remaining, so we refer to [8, 13] for deta

struct S{ int i; };

[*@requires \valid(x) & \valid(y)
@ assi gns x->i, y->i
@ensures x-> == 1 && y->i ==
@/

void f(struct S *x, struct S *y) {
x->i =1; y->i = 2

}

struct S t1[1], t2[1];

[l @ensures t1[0].i == 1 && t2[0].i ==
void g() { f(& 1[0],&2[0]); }

Fig. 3. Simple case of separation analysis

3 Separation Analysis

3.1 Modeling with regions

We illustrate on simple examples how we integrate a seqparatialysis into the model-
ing presented before. Consider the C source code of Figurb&e we use the syntax
of the Caduceus JML-like specification language: annatatéoe given in special com-
ments * @ .. =*/,requiresintroduces a pre-conditioansuresa post-condition, and
assignsis a clause to specify which memory locations are modified38, The anno-
tation\ val i d(x) means thax points to a safely allocated memory location.

Post-condition of functiori cannot be established: it is indeed wrong in case of
aliasing: pointerg andy may be equal. For the call foin functiong they are different,
but since we use a modular reasoning (function by functisfigaany technique based
on WP), the whole code cannot be proved correct. A possililgiso could be to add
to the pre-condition of the additional hypothesis ! = y, but our goal in this paper
is to avoid this extra condition. The Why interpretationiod {C code of is

i:= store(i,z,1); i := store(i,y,2);

so establishing the post-conditie&lect(i,) = 1 amounts to prove the corresponding
weakest precondition

select(store(store(i,x,1),y,2),z) =1

which is a consequence of axioms (1) and (2) i y. Our goal is to interpret the code
of f differently using two distinct variables for representthg fields ofx andy:

iy = store(iz, x,1); iy = store(iy,y,2);

iy andi, are two distinctegionsfor field i . With that interpretation, post-conditions
select(iz, z) = 1 andselect(iy, y) = 2 follows from axiom (1) without need af # y.

struct T {
struct S t1[2];
}_struct S t2?2[2];
/[*@ensures s.t1[0].i == 1 && s.t2[0].1 == 2 &&
g/ s.t1[1].i == 2 && s.t2[1].i ==
void h(struct T s) {
f(&s.t1[0],&s.12[0]);
}f(&s.t2[1],&st1[1]);

Fig. 4. Case of parametric regions

Consider additionally the code of Figure 4. Functfois now called twice, in first
callx pointsto arrays. t 1 andy pointsto arrays. t 2, and it is reversed in the second
call. To allow separation of. t 1 ands. t 2 into different regions, we need to make
these regionparametersof f, and we call thenparametric regionsThe complete
interpretations of andh are then

iy 1= store(iy,x,1); iy = store(iy,y,2);
¥

voi d h(tl,tg,il,ig, S) {

f (31,12, select(ty, s), select(ta, 8));

flia, i1, shift(select(ta, s),1), shift(select(t1,s),1));
}

and their post-conditions can be established by simpledidr reasoning.

So our goal is to integrate a notion of separation into the etind of C code, by
attaching regions to pointers and memory variables. Thapnetation of a memory
access — f is now select(f_r,e) wherer is the region ofe. We now see how we
compute those regions.

3.2 Regions as types

We see regions as a rich type system for pointers. For siityplige only consider
pointers and thent base type. The types of expressions are given by the grammars

(types) r7:==int

| r poi nt er (pointer to region-)

| (r,7) menory (memory of values of type in regionr)
(regions) r:=p (region variable)

| R (region constant)

Region variables are needed for the parametric regionggasgunctions: regions as
function parameters havepmlymorphictype. Our type system is then just a particular
case of a polymorphic type systema Milner [11].

If we consider the functiorf of example above, its profile is
f(iz @ (int, p1) mMeMOry,i, : (int, p2) MEMDry,z: p; Poi Nt er,y: ps poi nter)

that is polymorphic irpy, p2: for each call tof these regions can be instantiated differ-
ently.

Region typing rules We now express separation by giving typing rules for expoess
using types with regions. The typing environment is madewof parts denoted’ and
A. I' is a classical typing environment which maps variable ifiens to types: we
denoter : t € I' whenever' maps variable: to the typet. A is aregion environment
which maps each pair, f), wherer is a region and is a field identifier, to the type
of p — f whenp is a pointer in regiom. We denote thatag:, f) : t € A.

We are now able to give typing rules for expressions. For tzors we have

I''AbFn:int At null :rpointer

for any region- (region polymorphism fonull).
Type of a variable follows the environmehtand type of a field access follows the
environmentA:

fote I I'’AF1:rpointer

T AFz:t TAFI =@ Tnfited

Function calls use polymorphic typing:

F7A|—€12t1 I’,Al—en:tn
I'Abid(er, ... eq): t

if id: (7, --,m) — 7 € I and there is a region substitutiensuch that = 7o and
for each, t; = 7; o.
Pointer shift keeps the same region:
I'AbFep:rpointer IN'Ableg:int
I'At e @es:rpointer

Difference and comparison of pointers only allows pointeithe same region:

I'Atej:rpointer IAl es:rpointer
I''AF e opes:int

whereop € {©, ==, <=,=>,<,>,!=}.
The typing rules for statements are then the following. Forable assignment:
I''AbFe:t
- ifzx:te I
INArv=e:t rite

For field assignment:

At e :rpointer I'Abey:t.)
IAbei— f=eo:t if (r,f):teA

7

Typing of other statements is done in a natural way.

For the typing of local or global declarations, we assumdhiermoment an oracle
which gives the regions involved in the constructiodofor declarations of structures,
this means that thél environment is also given. In other words, typing of funatias
made in a giver\.

The first result we give is a soundness property of the typitesr this soundness is
relative in the sense that it shows that the interpretatidmsograms is the same with
or without the separation of memory variables.

Theorem 1 (Relative soundness)f a program is well typed in a given environment
I, A, then its logical interpretation with region memory variab has the same seman-
tics as its interpretation with the classical componentaasy model.

Proof sketch: we provide a bisimulation of execution stefpaterpreted programs,
with or without separation. A state of the program with regican be seen as a partition
of the state of the program without regions. Each operatiotihe program with regions
can be simulated on the state of the program without regidnvae-versa: this works
because all operations respect the partition, becausedbegms is well-typed in term
of regions.

3.3 Inference of regions

The remaining step is now to provide an inference systenmngtcuct an environment
I, A which makes a given program well-typed, if possible. Singetgpe system is a
particular case of a polymorphic type system a la Milner, &e derive an inference
method from known type inference algorithms such as the \Wrikgn [14]. The only
specific feature is the handling of th&part of the environment.

In a first step, we assign a fresh region constant to each Igbaiiater variable.
Parameters of functions, and local variables, which aretps, are given a fresh region
variable. This provide an initial’. We build at the same time an initial which makes
everything separatedlpriori.

In a second step, functions are analyzed, in the order giyethé call graph, to
determine their polymorphic type. For each function, thdeces traversed, and typ-
ing rules given above lead to equality constraints betwegions, that is we perform
unification of regions. Each time a function is analysed, @&dnine which of the re-
gion variables remain not instantiated, and we make thetifumtype polymorphic by
quantifying over them.

Unification of regions is standard, expect for the handlifigdo each time two
regionsr; andr, are made identical, we need to perform a merge operatiofh:dar
each fieldf such thatA maps(rq, f) to ¢1 and(r2, f) to t2, we need to merge the
mappings, and consequently unify the typeandt,, which may recursively lead to
unification of other regions. During this unification phasds modified by side-effect.

At the end of this process, we end up withaand a4 in which the program is
well-typed. As said in introduction, we do not provide a fgrobthis fact. This is a
classical inference algorithm tough, only the unificatiémegions is original, and we
are pretty sure it is indeed correct, but anyway in practieesoundness is obtained in

a secure way: we generate a typed Why program, and if theréufeypes are wrong
then Why typing will fail.

Final remark: the W algorithm is known to compute firécipal type In terms of
regions, this means that it computes the separation inttatgest possible number of
regions, allowed by the typing rules given.

4 Applications

Our separation analysis is implemented in the Caduceusasaluser option. Selection
of this option asks to perform the inference of regions, dmhtthe generation of the
model and the Why interpretation of C code is modified acemigi We show here a

few experiments and applications.

First of all, we tried using separation analysis on the sesnadll C programs that
are used as a non-regression test in Caduceus. Results ahdawprovement, but only
a small one, which is actually explainable because thosedéscare small. But more
importantly, this means that this does not bring overheagkamples where separation
is not the concern. Remark also that the separation andiysifis quick (we believe it
is linear in the size of the code), so probably separatiotyaisacould be turned on by
default in the future.

4.1 Regions and logical annotations

This example is inspired from a piece of Java code by P. M{lllé}. It computes the
set of positive elements of an array, and puts them in a neay.arr

int xnm(int t[], int length) {
int count = 0; int i; int *~u;
for (i=0; i < length; i++) if (t[i] > 0) count++;
u = (int=)calloc(count,sizeof(int));
count = 0;
for (i=0; i <length; i++) if (t[i] > 0) u[count++] = tJ[i];
return u;

}

Verification that the assignment af count] is inside the array bounds is tricky: it
involves a “semantic” reasoning, noticing that the secaagIcounts exactly the same
number of elements as the first, so the indexint must be smaller than the value of
count used for allocating the array. To make this reasoning explicit, it is natural to
annotate the loops with an invariant, the same one for baghsio

[/ @invariant
/1@ count == \numof(int j; 0 <=j & j <i ; t[j] > 0)
for (i=0 ; i < length; i++)

where\ num of is a JML-like construct [17] giving the number of elementis$ging
the predicate given as argument. Indeed, original exampMiiler was precisely a

challenge for static verification tools because none of tisepports thd num_of
construct. Anyway, it is possible on a given example to ‘exjzhe use of num of ,
and we did that for our C code: we introduckogic function[8]:

logic int numof pos(int i,int j,int a[]) reads t[..]

whose intended meaning is to give the number of positive efdsin arraya between
indexes andj , included. This meaning is formalized by introducing a fexioms

axi om num of _pos_enpty :

\forall int i, int j, int a[];
i >j => numof_pos(i,j,a) ==
axi om num of _pos_true_case :
\forall int i, int j, int k, int a[];
i <= && a[j] > 0 =>
num of pos(i,j,a) == numof_pos(i,j-1,a) + 1
axi om num of _pos fal se _case :
\forall int i, int j, int k, int a[];
i <=j && ! (a[j] > 0) =>
num of pos(i,j,a) == numof pos(i,j-1,a)

(see http://wwv. lri.fr/~marche/ Mul | er Chal | enge. pdf for the re-
maining annotations).

The key point now is that the verification of safety cannot bee] because in the
second loop, we know tha&tount is less than the number of positive elements jn
but there is a reasoning to perform to establish than thisheuraf elementslid not
change between the two looWith a single heap variablent Min the model to rep-
resent integer arrays, this is far from simple. Indeed, dgéclfunctionnum of _pos
is axiomatized with some inductive scheme, and one showdepthat it implies that
num of _pos(i, |, a) onlydependson the valuesa&fi . .j],whichis hard.

On the other hand, with our modeling involving memory sepiana it is stati-
cally detected that andu are separated, and thus can be modeled with two separate
heap variablesnt M t andi nt M_u. Then, the logic functionum of _pos becomes
parametricin the memory variable involved for the array argumanand it becomes
syntactically true thatum of _pos(0, j -1, t) isthe same in both loop of our piece
of C code. Notice also that in the Why interpretation of théoms above, an extra
quantification over the memory variable involved is added.

On that example, each verification condition is then disgbdautomatically by the
Simplify prover.

4.2 Anindustrial case study

In collaboration with Dassault Aviation company, we expented Caduceus and its
separation analysis on a real embedded code for avioniesfifdt experiment was

made on a core of this code, which is approximately 3000 leg. The characteristics

is that it contains a large number of data structures, analyshese structures contains
nested arrays of other structures.

10

Without separation analysis, this code gives rise to 1154,\965 being discharged
by Simplify, that is 83.8%. With separation, we get 1982 VT&/2 discharged by Sim-
plify, that is 99.4 %. There are a total of 376 regions infdri@r global variables, and
there are 242 polymorphic regions added as parameter tdidnsc The significantly
higher number of VCs with separation analysis can be exfipithe high number of
regions: the interpretation aSsignsclauses produces as many propositions as the num-
ber of memory variables involved, which is larger when sapan is turned on. So this
may make the number of VCs larger, but each of them are siniytgice finally that
the 10 remaining VCs have been discharged by the intergmtoaf assistant Coq.

We believe this is a very positive experimental result, wrsbows that our sepa-
ration analysis is a major improvement in practice. We areerily experimenting on
the whole code (70000 lines long) with good results too. Veadso trying to prove
a complex behavioral property, involving logical annaias and ghost variables, for
which we hope that the separation analysis will greatly §ifmwghe reasoning, as on
the previous example.

5 Related work

Talpin and Jouvelot proposed in 1994 [18] a calculus foryariag effects of programs
based of a polymorphic type system. The principle is the sasmsurs, but their work
is limited to reference variables: no deep sharing in datecsires is possible.

In the context of static analysis, points-to analysis isiy aglvanced technique for
computing information on pointers. This has been initidtgdAndersen in 1994 [19]
and extended further in 1996 by Steensgaard [20] and in 20@Dals [21]. We used
their idea of designing a type system for analysis separabat it is clear that our
analysis is much less precise than theirs. Our method @r¢dilto the generation of a
refined component-as-array model for deductive verificatio

The Cyclone system [22] proposes a hew programming langaagegous to C,
but in which the programmer can specifying regions manu&isnilarly to us, they
allow parametric regions in function call. But first our s> applies to the real C
language, and second are regionsartmatically inferrednstead of being given by
the user.

Compared to Separation Logic, our separation analysiserlgl less precise. It
seems that Separation Logic is very powerful in some casa#iows for example to
specify that a linked list cannot be circular, or that a gregd tree, and to reason with
that. This is something that our analysis cannot do: as se@na traverses a linked
lists, only one region is inferred for the whole list. Our bysés is clearly more adapted
to deal with programs with a high size of data, but it also ¢siimprovement when
reasoning on small programs, as shown in Section 4.1. Cangpadl the power of
Separation Logic and our Separation analysis remains eeftask.

In 2006, Nanevski, Morrisett and Birkedal [23] showed thepartance of para-
metricity of regions in theiHoare type theoryramework. We have shown the same in
the classical context of deductive verification based onkestaprecondition calculus,
which is directly applicable to several existing practiwals.

11

Generally speaking, we think our approach allowed us toestdmuch more com-
plex applications than previous works, such as the indstaise study of Section 4.2

6 Conclusion

We proposed a separation analysis that is potentially Uafany tool for deductive
verification based on weakest precondition calculus andh@ponent-as-array model.
Our experimentations on C programs are very positive, assty advanced applica-
tions.

There are some drawbacks that we plan to address in the fiftst the separation
analysis must be done on the whole program, so it is not madihiés is not a major
problem since the separation analysis is quick, and bedteseseparation analysis is
performed, the remaining of the verification task can sglldone modularly, function
by functions. But in case we do not have the complete prognaitable, such as if
we what to verify libraries, this is a problem. We plan to adnvrconstructs in the
specification language to allow user specification of sdjmarafor example, for a li-
brary function such asentpy, one may want to specify that the source and target are
separated.

Our separation analysis is tailored to its later use for tregonent-as-array model.
In that model, a given C array will be entirely in the same @agHowever, by advanced
static analysis, it is possible to discover that an giveayamay be splited into several
regions, for example in the following code:

struct S int x ;

struct S t[10];

void f(S *p, int n) { p-> =n; }
void main() f(t+0,2); f(t+1,3);

we do not get for free that[0] - >x == 2. We are planning to incorporate more
advanced static analysis techniques in our setting, in dmeegt of the CAT project
(http://ww. rntl.org/projet/resume2005/cat. htn.

Acknowledgments We gratefully thank J.-C. Fillidtre, Ch. Paulin, Y. Moy fdneir
comments about this work and this paper.

References

1. Floyd, R.W.: Assigning meanings to programs. In Schwatik, ed.: Mathematical Aspects
of Computer Science. Volume 19 of Proceedings of Symposiapiplied Mathematics.,
Providence, Rhode Island, American Mathematical Soci¥$7) 19—-32

2. Hoare, C.A.R.: An axiomatic basis for computer programgmi Communications of the
ACM 12(10) (1969) 576-580 and 583

3. Reynolds, J.C.: Separation logic: a logic for shared biatdata structures. In: 17h Annual
IEEE Symposium on Logic in Computer Science, IEEE Comp. Boess (2002)

4. Dijkstra, E.W.: A discipline of programming. Series intamatic Computation. Prentice
Hall Int. (1976)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: &xded static checking. Techni-

cal Report 159, Compag Systems Research Center (1998) <ade alp: / / r esear ch.
conpaq. com SRC/ esc/ .

. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leaage G.T., Leino, K.R.M., Poll, E.:

An overview of JML tools and applications. Internationaudwal on Software Tools for
Technology Transfer (2004)

. Leino, K.R.M.: Efficient weakest preconditions. TeclahiReport MSR-TR-2004-34, Mi-

crosoft Research (2004)

. Filliatre, J.C., Marché, C.: Multi-prover verificatiori @ programs. In Davies, J., Schulte,

W., Barnett, M., eds.: Sixth International Conference omka Engineering Methods. Vol-
ume 3308 of Lecture Notes in Computer Science., Seattle W&, Springer-Verlag (2004)
15-29

. Burstall, R.: Some techniques for proving correctnesgrofirams which alter data struc-

tures. Machine Intelligence (1972) 23-50

Bornat, R.: Proving pointer programs in Hoare logic.Mathematics of Program Construc-
tion. (2000) 102-126

Milner, R.: A theory of type polymorphismn programmidgurnal of Computer and System
Scienced 7 (1978)

Filliatre, J.C.: Why: a multi-language multi-proverrifieation tool. Research Report 1366,
LRI, Université Paris Sud (2008 t p: //www. I ri . fr/~filliatr/ftp/publis/
why- t ool . ps. gz.

Marché, C., Paulin-Mohring, C.: Reasoning about Jaegnams with aliasing and frame
conditions. In Hurd, J., Melham, T., eds.: 18th Internagid@onference on Theorem Proving
in Higher Order Logics. Lecture Notes in Computer Sciengeirger-Verlag (2005)
Damas, L., Milner, R.: Principal type-schemes for fiol programs. In: POPL '82:
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Bipfes of programming
languages, New York, NY, USA, ACM Press (1982) 207-212

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theoqgmover for program checking. J.
ACM 52(3) (2005) 365—-473

Muller, P.: Specification and verification challengesgplBratory Workshop: Challenges in
Java Program Verification, Nijmegen, The Netherlands (606 p: / / ww. cs. ru. nl /
~woj / esfws06/ sl i des/ Pet er. pdf.

Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacd®ds JML: notations and tools
supporting detailed design in Java. In: OOPSLA 2000 Congramilinneapolis, Minnesota.
(2000) 105-106

Talpin, J.P., Jouvelot, P.: Polymorphic type, regiotheffect inference. Journal of Functional
Programming2(3) (1992) 245-271

Andersen, L.O.: Program Analysis and Specializatiorttie C Programming Language.
PhD thesis, University of Copenhagen (1994)

Steensgaard, B.: Points-to analysis in almost lin@ag.tiln: Symposium on Principles of
Programming Languages. (1996) 32-41

Das, M.: Unification-based pointer analysis with di@tal assignments. In: PLDI '00:
Proceedings of the ACM SIGPLAN 2000 conference on Programgrainguage design and
implementation, New York, NY, USA, ACM Press (2000) 35-46

Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang Cheney, J.: Region-based memory
management in cyclone. In: PLDI '02: Proceedings of the AQRFLAN 2002 Conference
on Programming language design and implementation, New, YévY, USA, ACM Press
(2002) 282—-293

Nanevski, A., Morrisett, G., Birkedal, L.: Polymorpimisand separation in Hoare type the-
ory. In Reppy, J.H., Lawall, J.L., eds.: 11th ACM SIGPLANédmational Conference on
Functional Programming, ICFP 2006, Portland, Oregon, US2\ (2006) 62—73

13

