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ASYMPTOTICALLY CONSTANT-FREE AND

POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ESTIMATES FOR

SPACE DISCRETIZATIONS OF THE WAVE EQUATION

T. CHAUMONT-FRELET†

Abstract. We derive an equilibrated a posteriori error estimator for the space (semi) dis-
cretization of the scalar wave equation by finite elements. In the idealized setting where
time discretization is ignored and the simulation time is large, we provide fully-guaranteed
upper bounds that are asymptotically constant-free and show that the proposed estimator
is efficient and polynomial-degree-robust, meaning that the efficiency constant does not de-
teriorate as the approximation order is increased. To the best of our knowledge, this work is
the first to derive provably efficient error estimates for the wave equation. We also explain,
without analysis, how the estimator is adapted to cover time discretization by an explicit
time integration scheme. Numerical examples illustrate the theory and suggest that it is
sharp.

Key words. a posteriori error estimate; equilibrated flux; finite element method; wave
equation

1. Introduction

Given a domain Ω, a partition of its boundary into disjoint sets ΓD and ΓA and space-
variable coefficients µ,A and γ, the scalar wave equation consists in finding u such that

(1.1)

 µü−∇ · (A∇u) = µf in Ω,
γu̇+A∇u · n = γg on ΓA,

u = 0 on ΓD,

u|t=0 = u0 and u̇|t=0 = u1, where f, g, u0 and u1 are given right-hand sides and initial
conditions. This problem models the propagation of (small) acoustics waves [34], and is a
good mathematical simplification to later address more complicated physical waves arising
for instance in elastodynamics and electromagnetism. As a result, the analysis of (1.1) and
its numerical discretization has attracted much attention over the past decades [7, 10, 13, 16,
24, 25, 28, 29, 32, 33, 37].

Here, we are interested in finite element discretizations of (1.1), which have the advantage
to easily handle complex geometries. For the sake of simplicity we focus on conforming
Lagrange elements [11, 16], but discontinuous Galerkin [24, 32, 33] or hybridized [13, 29]
methods could be considered as well. As compared to elliptic and parabolic problems (see,
e.g, [4, 21] and [20, 36, 40], and the references therein), the a posteriori error analysis of (1.1)
has not received much attention and it is the focus of the present work.

To the best of the author’s knowledge, the first references considering a posteriori error
estimation for the wave equation are [2, 3]. There, an asymptotically exact error estimator
is proposed for the space semi discretization. The analysis hinges on hierarchical polynomial
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2 CONSTANT-FREE AND P-ROBUST ESTIMATES FOR THE WAVE EQUATION

basis, and strongly relies on tensor-product meshes and the smoothness of the solution. Hence,
this methodology is not suited for general geometries which requires simplicial (or general
hexahedral) meshes and where the solution may exhibit singularities.

In [10], an estimator is proposed for the full discretization of (1.1), where an implicit Euler
scheme is used for time integration. Lower and upper bounds for the error are derived, but
these bounds are not entirely satisfactory. Indeed, the norms employed to measure the error
in the upper and lower bounds are different (compare [10, Corollary 5.3] and [10, Theorem
5.1]), indicating that the estimator may not be efficient. Besides, since this approach explicitly
relies on the implicit Euler scheme, it is unclear whether it can be extended to space semi-
discretzation or to explicit time stepping. Finally, the behaviour of the constants in the
estimates with respect to the problem parameters is unclear.

Another family of estimators, relying on the (finite element) solve of an elliptic problem at
each time step is presented and analyzed in [25, 28, 37]. Upper bounds for the error measured
in various norms, including the “L∞(L2)” and “L2(H1)” norms, have been derived, but lower
bounds are not available so far. The idea of employing an elliptic reconstruction is a technique
inherited from parabolic problems [36], where implicit integration schemes are commonly used,
due to restrictive CFL conditions. For wave propagation however, explicit time-stepping is
possible, and almost systematically employed in large scale applications [7, 16, 24, 32, 33]. In
this context, computing an elliptic reconstruction at each time step is in general very costly
as compared to simply computing the solution.

Goal-oriented adaptive algorithms are also derived in [8, 9], where the focus is more on the
algorithmic design and numerical tests than on theoretical analysis.

In this work, we discretize (1.1) with conforming Lagrange finite elements in space. We
neglect the time-discretization, and study the resulting semi-discrete problem. In spirit, the
design of our estimator is similar to the one in [10], as it is directly constructed using the
“instantaneous residual” of the PDE and avoids the computation of an elliptic reconstruction.
However, in contrast with [10], our analysis does not rely on the use of an implicit scheme and,
although we focus on the semi-discrete case here, it could be extended to cover an explicit
time scheme. Another key feature of our analysis is that we obtain constants that are much
more explicit, in the upper bound and in the lower bound, than in [10]. Actually, although
our methodology is general, we focus on equilibrated estimators so that the constant in our
upper bound is fully computable and asymptotically equal to 1, and the constant in the
lower bound is polynomial-degree-robust. Notice that similar results could be achieved with,
e.g., a residual based estimator, at the price of introducing a (in general unknown) quasi-
interpolation constant in the upper bound, and a p-dependent constant in the lower bound
which is due to the use of “bubble functions” in the efficiency analysis.

Our setting is able to handle absorbing boundary conditions, which appears to be new in the
context of a posteriori error estimation. We also allow for discontinuous material coefficients
and (possibly) non-smooth solutions in space. However, we require that the right-hand sides
f and g are smooth in time and for the sake of simplicity, we neglect the approximation of
initial conditions (i.e. we assume that u0 and u1 are discrete functions). We also assume for
shortness that f and g are piecewise polynomial in space, but we could classically alleviate this
limitation by introducing the usual data oscillation terms. These assumptions are rigorously
stated in Section 2.
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The key idea of this work is to measure the error in a “damped energy norm”

E2
ρ :=

∫ +∞

0

(
‖u̇− u̇h‖2µ,Ω +

1

ρ
‖u̇− u̇h‖2γ,ΓA

+ ‖∇(u− uh)‖2A,Ω
)
e−2ρtdt,

where ρ > 0 is a user-defined damping parameter that can be selected as small as desired,
and uh is the (semi-discrete) finite element approximation (notice that this norm is stronger
than the L∞(L2) and L2(H1) norms of [25] and [37]). We then propose an estimator η(t)
computed at each time step from the “instantaneous” residual

v → (µf(t), v)Ω + (γg(t), v)ΓA
− (µüh(t), v)− (γu̇h(t), v)ΓA

− (A∇uh(t),∇v)Ω.

The computation of η(t) is local in both time and space, and follows the equilibrated flux
construction designed in [12, 14, 17, 21]. We emphasize that other standard techniques, such
as residual-based constructions, can be employed to define η(t), although the final constants
in the estimates are less explicit in this case. Then, letting

(1.2) Λ2
ρ :=

∫ +∞

0
η2(t)e−2ρtdt,

our key results read as follows. We have the upper bound

(1.3) E2
ρ ≤ (1 + 4γ2

ρ,ω,h)Λ2
ρ +

( ρ
ω

)2r
osc2

ρ,r,

where ω > 0 and r ∈ N are arbitrary, oscρ,r is a fully computable “time-domain” data

oscillation term that involves ρ weighted norms of f (r) and g(r), and γρ,ω,h is a constant such
that

(1.4) γρ,ω,h ≤
√

1 +
ω

ρ
, lim

(h/p)→0
γρ,ω,h = 0.

The “cut-off frequency” ω can be freely selected, and in particular, we can choose it large
enough so that the second term in the right-hand side of (1.3) is of “higher-order”, meaning
that it converges to zero faster than the error (see Corollary 3.4 below). The estimate in (1.4)
shows that all the constants in our upper bound are indeed explicitly controlled, while the
limit justifies that our reliability estimate is asymptotically constant-free. On the other hand,
we also show that

(1.5) Λ2
ρ ≤ C2

lbκA

{(
κA +

ρh?
ϑ?

+

(
ωh?
ϑ?

)2
)
E2
ρ +

(
ρh?
ϑ?

)2 ( ρ
ω

)2r
osc2

ρ,r+1

}
,

where h?/ϑ? ' maxK hK/ϑK with ϑK the wave speed in the element K, κA is the “contrast”
in the coefficient A, and Clb is a generic constant solely depending on the shape-regularity
of the mesh. All the constants appearing in (1.5) are independent of the polynomial degree p
of the finite element approximation, so that our estimator is efficient and polynomial-degree-
robust. We refer the reader to Section 3 for more details.

In practice, one is often interested in understanding the behaviour of the solution u of
(1.1) on the time interval (0, T ) for some known T > 0. This can be accommodated in our
setting by selecting ρ ∼ 1/T . Another important comment is that in addition to ignoring
time discretization, our setting also assumes that the simulation time is infinite, since the
definition of the estimator Λρ in (1.2) includes an integral over (0,+∞). This is not an
important limitation in practice as long as the simulation time is large enough since the
integrand in (1.2) decays exponentially. In practical computations, the integral in (1.2) is
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computed by accumulating the integrand over time steps, and the simulation can be stopped
when stagnation is numerically observed. This is explained in detail in Section 7.1.

As far as the analysis is concerned, we take an approach that is fairly different from the
aforementioned works on this topic. Indeed, our key idea is to perform a Laplace transform
and to work in the frequency domain. We emphasize that this Laplace transform is only
used as a theoretical device: it is never computed numerically. We then rely on recent results
for the Helmholtz equation to control the low-frequency content of the error [14, 19] and
introduce new arguments to treat the high-frequency content. We refer the reader to Section
4 for an in-depth discussion.

We provide several numerical examples where linear and quadratic Lagrange finite elements
are coupled with an explicit leap-frog scheme [26]. These examples are in full agreement with
our theoretical findings and suggest that they are sharp. Besides, they seem to indicate that
time-discretization can be entirely neglected for linear elements (most likely, because they are
coupled with a second-order integration scheme here), and only moderately affects quadratic
elements when choosing a time-step close to the CFL stability limit.

The remaining of this work is organized as follows. Section 2 collects all the necessary
notation to properly introduce our main results, which we state in Section 3. In Section
4, we present the strategy we employ in our analysis as well as some preliminary results
in the frequency domain. Sections 5 and 6 respectively contain the reliability and efficiency
proofs. We present a variety of numerical examples in Section 7 before giving some concluding
remarks.

2. Settings

This section describes notation and recalls preliminary results.

2.1. Domain and coefficients. Ω ⊂ Rd, d = 2 or 3, is a polytopal Lischiptz domain. The
boundary ∂Ω is split into two relatively open, polytopal and disjoint subsets ΓD and ΓA with
Lipschitz boundaries such that ∂Ω = ΓD ∪ ΓA. The situations where ΓD = ∅ or ΓA = ∅ are
allowed.

Our model wave equation features three coefficients, namely µ : Ω → R, A : Ω → Sd and
γ : ΓA → R. For the sake of simplicity, we assume that there exists a partition P of Ω into
non-overlaping Lipschitz polytopal subdomains such that for all P ∈ P, µ|P and A|P are
constant and, if B := ∂P ∩ ΓA has positive surface measure, that γ|B is constant.

We assume that µ > 0 in Ω and, for the sake of simplicity, that γ > 0 on ΓA. We also
introduce, for a.e. x ∈ Ω

a?(x) := min
d∈Rd
|d|=1

A(x)d · d, a?(x) := max
d∈Rd
|d|=1

A(x)d · d,

and require that a? > 0 in Ω.

2.2. Mesh, hat functions and vertex patches. The domain Ω is partitioned into a com-
putational mesh Th of (closed) simplicial elements K. We assume that the mesh is conforming,
meaning that the intersection K+ ∩K− of two distinct elements K± ∈ Th is either a single
vertex, a full edge, or a full face of both elements. This requirement is entirely standard and
does not prevent strong mesh grading (see, e.g., [11]).

For an element K ∈ Th, hK and ρK denote the diameters of the smallest ball containing K
and of the largest ball contained in K. Then, βK := hK/ρK is the shape regularity parameter
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ofK. If T ⊂ Th is a collection of elements βT := maxK∈T βK is the shape-regularity parameter
of T . The notations hmax := maxK∈Th hK and ρmin := minK∈Th will also be useful.
Fh is the set of faces of Th. We assume that Th conforms with the partition boundary,

meaning that for each face F ∈ Fh such that F ⊂ ∂Ω, either F ⊂ ΓA or F ⊂ ΓD. The set
FA
h collects those faces contained in ΓA.
We will also assume that the mesh fits the physical partition, meaning that for all K ∈ Th,

there exists a P ∈P such that K ⊂ P . Equivalently, it means that µ|K andA|K are constant
for K ∈ Th, and that γ|F is constant for all F ∈ FA

h .
Vh is the set of vertices of Th. For a ∈ Vh, ψa denotes the associated hat function, that

is, the only piecewise affine function on Th such that ψa(b) = δa,b for all b ∈ Vh. We set
ωa := suppψa. Then, the vertex patch Ta ⊂ Th collecting the elements K ∈ Th sharing the
vertex a covers ωa.

2.3. Key functional spaces. If U ⊂ Ω is an open set, L2(U), H1(U) and H2(U) are the
usual (real-valued) Lebesgue and Soboelv spaces [1]. H 1

ΓD
(Ω) and H 2(Ω) for the complex-

valued counterparts of H1
ΓD

(Ω) and H2(Ω). L2
0(U) is the subset of L2(U) of functions with

vanishing mean value, and L2(U) := [L2(U)]d. The natural inner-products and norm of
L2(U) and L2(U) are denoted by (·, ·)U and ‖·‖U . We also employ the equivalent norms
‖·‖2µ,U := (µ·, ·)U and ‖·‖2A,U := (A·, ·)U on L2(U) and L2(U). For a relatively open V ⊂ ΓA,

L2(V ) is the Lebesgue space on V equiped with the surface measure. (·, ·)V and ‖·‖V are the
norm and inner-product of L2(V ), and we set ‖·‖2γ,V := (γ·, ·)V . H(div, U) is the subspace of

L2(U) consisting of functions with weak L2(U) divergence [27]. If w ⊂ ∂U is a relatively open
subset, then H1

w(U) is the subset of H1(U) of functions with vanishing traces on w. Similarly,
Hw(div, U) is the subset H(div, U) of functions with vanishing normal traces on w (we refer
the reader to [23] for a rigorous definition of normal traces on parts of the boundary).

When analyzing the flux construction, we will also need local spaces associated to vertex
patches. If a ∈ ∂Ω, we set L2

?(ωa) := L2(ωa), H1
? (ωa) := H1

∂Ω(ωa) and H0(div, ωa) :=
H∂ωa\∂Ω(div, ωa). On the other hand, when a ∈ Ω, we let L2

?(ωa) := L2
0(ωa), H1

? (ωa) :=

H1(ωa) ∩ L2
?(ωa) and H0(div, ωa) := H∂ωa(div, ωa).

2.4. Local inequalities. For all a ∈ Vh, there exist constants CP,a and Ctr,a such that

(2.1a) ‖v‖ωa ≤ CP,aha‖∇v‖ωa , ‖v‖∂ωa ≤ Ctr,ah
1/2
a ‖∇v‖ωa

for all v ∈ H1
? (ωa). Setting Ccont,a := 1 + CP,aha‖∇ψa‖L∞(ωa), we also have

(2.1b) ‖∇(ψav)‖ωa ≤ Ccont,a‖∇v‖ωa ,

We then set Cgeo,a := max(Ccont,a, Ctr,a), and Cgeo := 3(d+ 1) maxa∈Vh Cgeo,a.

2.5. Finite element spaces. Let K ∈ Th and q ≥ 0. Pq(K) is the space of polynomial

function on K of degree at most q and Pq(K) := [Pq(K)]d. We also employ the notation
RT q(K) := Pq(K) + xPq(K) for the set of Raviart-Thomas polynomials [11]. Similarly, if
T ⊂ Th and q ≥ 0, Pq(T ) and RT q(T ) are the spaces of (discontinuous) functions whose
restriction to each K ∈ T respectively belongs to Pq(K) and RT q(K).

In the remaining of this work, we fix a polynomial degree p ≥ 1, and employ the notations
Vh := Pp(Th) ∩ H1

ΓD
(Ω) for the space Lagrange finite element of degree p, and Vh for its
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complex-valued counterpart. Notice that there exists an interpolation operator Ih mapping
H 2(Ω) ∩H 1

ΓD
(Ω) into Vh such that

(2.2) ‖∇(v − Ihv)‖Ω ≤ Cihmax‖∇2v‖Ω ∀v ∈H 2(Ω) ∩H 1
ΓD

(Ω),

where

‖∇2v‖2Ω :=

d∑
j`=1

∥∥∥∥ ∂2v

∂xj∂x`

∥∥∥∥2

Ω

and Ci only depends on the shape-regularity parameter of the mesh and is explicitly available
[6, 35].

2.6. Local wave speed and contrast. The wave speed in the direction d ∈ Rd, |d| = 1 at

x ∈ Ω is usually defined as ϑ(x,d) :=
√
A(x)d · d/µ(x). Besides, if the absorbing boundary

condition on ΓA is designed to be exact for normally incident waves, the coefficient γ is chosen
as γ(x) = ϑ(x,n)/(A(x)n · n). If U ⊂ Ω is an open set, this motivates the definition

(2.3) ϑU := min

(√
infU a?
supU µ

,
infU a?

sup∂U∩ΓA
γ

)
,

for the minimum wave speed in U , where we ignore the second term in the minimum if
∂U ∩ ΓA = ∅. We also employ the shorthand notation ϑa = ϑωa for a ∈ Vh. The quantity
maxa∈Vh νha/ϑa, where ν > 0 is a frequency will often appear in the analysis. To simplify
it, we introduce h?/ϑ? := maxa∈Vh ha/ϑa. We also set ϑmin := ϑΩ.

Our reliability estimate will also depend on the “contrast” in the coefficient A that we
defined by

(2.4) κA,a :=
supωa

a?

infωa a?
, κA := max

a∈Vh
κA,a.

2.7. Model problem. The domain Ω and the partition {ΓD,ΓA} of its boundary being
defined, the problem is closed by specifying the right-hand sides f and g, as well as the initial
condition u0 and u1.

For the right-hand sides, we require that for all t ∈ R+, f(t) ∈ Pp(Th) and g(t) ∈ Pp(FA
h ).

The general case can be treated by adding “data oscillation” terms in the estimate, which we
avoid here for the sake of shortness. We will further assume that f ∈ C∞(R+,Pp(Th)) and
g ∈ C∞(R+,FA

h ). Our analysis do require smoothness in time, but the C∞ assumption can
be lowered to finite regularity. For the initial condition, we will for assume for the sake of
simplicit that u0, u1 ∈ Vh, so that the initial error at t = 0 vanish. The general case can be
handled with additional terms in the error estimates.

The solution to the wave equation is the only function u ∈ C∞(R+, H
1
ΓD

(Ω)) satisfying

u(0) = u0, u̇(0) = u1, and

(2.5) (µü(t), v)Ω + (γu̇(t), v)ΓA
+ (A∇u(t),∇v)Ω = (µf(t), v)Ω + (γg(t), v)ΓA

for all v ∈ H1
ΓD

(Ω) and t ∈ R+.
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2.8. Discretization. Classically, the (semi) discrete solution is obtained by replacing the
Sobolev space H1

ΓD
(Ω) in (2.5) by its discrete counterpart Vh. Hence, we define the discrete

solution as the unique function uh ∈ C∞(R+, Vh) such that uh(0) = u0, u̇h(0) = u1, and

(2.6) (µüh(t), vh)Ω + (γu̇h(t), vh)ΓA
+ (A∇uh(t),∇vh)Ω = (µf(t), vh)Ω + (γg(t), vh)ΓA

for all vh ∈ Vh and t ∈ R+.

2.9. Frequency-domain problem. Similar to the results in [14, 19], our reliability estimate
includes an “approximation factor” γρ,ω,h. In order to properly define it, we first need some
notation from the frequency-domain.

For s ∈ C with ρ := Re s > 0, we introduce the sesquilinear form

(2.7) bs(v, w) = s2(µv,w)Ω + s(γv, w)ΓA
+ (A∇v,∇w)Ω ∀v, w ∈H 1

ΓD
(Ω),

which corresponds to the Laplace transform of the left-hand sides of (2.5) and (2.6). Since
ρ > 0, bs is coercive, and if φ ∈ H 1

ΓD
(Ω), then there exists a unique S ?

s (φ) ∈ H 1
ΓD

(Ω) such
that

(2.8) bs(w,S
?
s (φ)) = |s|2(µw, φ)Ω +

|s|2

ρ
(γw, φ)ΓA

∀v ∈H 1
ΓD

(Ω).

With the notation {·}2H 1
s (Ω) := |s|2‖·‖2µ,Ω + (|s|2/ρ)‖·‖2γ,ΓA

, we can introduce the frequency-

domain approximation factor

(2.9) γ̂s,h := sup
φ∈H 1

ΓD
(Ω)

{φ}
H 1
s (Ω)

=1

min
vh∈Vh

‖∇(S ?
s (φ)− vh)‖A,Ω,

whose definition closely follows [14, 19].

2.10. Approximation factor. We are now in place to introduce the (time-domain) approx-
imation factor. For any cut-off frequency ω > 0 and damping parameter ρ > 0, it is defined
by

(2.10) γρ,ω,h := sup
s=ρ+iν
|ν|<ω

γ̂s,h.

The definition of γρ,ω,h is a little bit intricate, but we can easily summarize its key properties.
On the one hand, it increases when we increase ω and/or decrease ρ. On the other hand, it
converges to zero as (h/p)→ 0. Proposition 2.1 states this more formally.

Proposition 2.1 (Approximation factor). We have

(2.11) γρ,ω,h ≤
√

1 +
ω

ρ
.

In addition, if Ω is convex, A = I and ΓA = ∅, then we have

(2.12) γρ,ω,h ≤ 2Ci

(
ρhmax

ϑmin
+
ω

ρ

ωhmax

ϑmin

)
.
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2.11. Local minimization problems. Following [12, 14, 21], the construction of our esti-
mator will rely on local divergence-constrained minimization problems. The following result
is paramount to establish the efficiency of the estimator, its proof can be found in [12] for the
2D case, and in [22] for the 3D case.

Proposition 2.2 (Discrete stable minimization). Let q ∈ N, χq ∈ RT q(Ta), dq ∈ Pq(Ta)

and bq ∈ Pq(Fa). If a /∈ ΓD, assume that

(2.13) (dq, 1)ωa = (bq, 1)ΓA
.

We have

(2.14) min
τ q∈RT q(Ta)∩H0(div,ωa)

∇·τ q=dq in ωa

τ q ·n=bq on ΓA

‖τ q − χp‖ωa ≤ Cst,a min
τ∈H0(div,ωa)
∇·τ=dq in ωa

τ ·n=bq on ΓA

‖τ − χp‖ωa

where Cst,a only depends on the shape-regularity parameter of the patch and in particular,
does not depend on q.

The constant Cst := maxa∈Vh Cst,a will be useful to state our efficiency result.

3. Main results

This section summarizes the key findings of this work.

3.1. Equilibrated flux. We first clarify what we mean by an equilibrated flux and propose
a localized construction.

Definition 3.1 (Equilibrated flux). An equilibrated flux is a function τ h : R+ → H(div,Ω)
such that

(3.1a) ∇ · τ h(t) = µ(f(t)− üh(t)) in Ω

and

(3.1b) τ h(t) · n = γ(g(t)− u̇h(t)) on ΓA

for all t ∈ R+. For such τ h, we set

(3.2a) η(t) := ‖A−1τ h(t) + ∇uh(t)‖A,Ω,
and

(3.2b) Λ2
ρ :=

∫ +∞

0
η(t)2e−2ρtdt,

for ρ > 0.

Our first contribution is a construction of such a flux that is local in both space and time.
This construction is standard, and follows the line of [12, 17, 21]. Specifically, for each t ∈ R+

and each vertex a ∈ Vh, we set

da := ψaµ(f(t)− üh(t))−A∇ψa ·∇uh(t) in ωa, ba := ψaγ(u̇h(t)− g(t)) on ΓA.

We then define local contributions by

(3.3a) σah(t) := arg min
τh∈RT p+1(Ta)∩H0(div,ωa)

∇·τh=da(t) in ωa

τh·n=ba(t) on ΓA

‖A−1τ h + ∇uh(t)‖A,ωa
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that we assemble as

(3.3b) σh(t) :=
∑
a∈Vh

σah(t).

Following the lines of [12, 14, 17, 21], we can easily show that the construction is indeed
valid and provides an equilibrated flux as per (3.1). We skip the proof here for the sake of
shortness.

Proposition 3.2 (Localized flux construction). The local mixed problems in (3.3a) are well-
posed, and the construction (3.3b) provides an equilibrated flux satisfying (3.1).

3.2. Reliability. Our next set of results concerns the reliability of the proposed estimator.
The error will be measured in the following norm

|||u− uh|||2ρ :=

∫ +∞

0

{
‖u̇− u̇h‖2µ,Ω +

1

ρ
‖u̇− u̇h‖2γ,ΓA

+ ‖∇(u− uh)‖2A,Ω
}
e−2ρtdt

where ρ > 0 is an arbitrary damping parameter. Our general result reads as follows.

Theorem 3.3 (Reliability). Assume that τ h satisfies (3.1) and Λρ is defined by (3.2). Then,
for all ρ, ω > 0 and r ∈ N, we have

|||u− uh|||2ρ ≤ (1 + 4γ2
h,ω,ρ)Λ

2
ρ +

( ρ
ω

)2r
osc2

ρ,r

where

(3.4) osc2
ρ,r =

4

ρ2r

{
1

ρ2
|||f (r)e−ρt|||2µ,Ω + |||g(r)e−ρt|||2γ,ΓA

}
.

Crucially, we can select ω and r large enough so that the “oscillation” term converges to
zero faster than the error itself. On the other hand, γh,ω,ρ → 0 as (h/p) → 0, justifying
that our upper bound is “asymptoically constant-free”. When the domain is convex and
surrounded by a Dirichlet boundary condition, a simpler expression can be derived.

Corollary 3.4 (Simplified error estimate). Let τ h satisfy (3.1) and define Λρ by (3.2a).
Under the assumptions that Ω is convex, that A ≡ I, and that ΓA = ∅, we have

|||u− uh|||2ρ ≤

1 + 16C2
i

((
ρhmax

ϑmin

)1/2

+
ρhmax

ϑmin

)2
Λ2

ρ +

(
ρhmax

ϑmin

)2(p+1)

osc2
ρ,3(p+1)

for all ρ > 0.

3.3. Efficiency. Finally, we present our efficiency results. We start with the most general
form.

Theorem 3.5 (Efficiency). Assume that τ h has been constructed through the construction
described in (3.3), and define Λρ with (3.2). The estimate

Λ2
ρ ≤ C2

lbκA

{(
κA +

ρh?
ϑ?

+

(
ωh?
ϑ?

)2
)
|||u− uh|||2ρ +

(
ρh?
ϑ?

)2 ( ρ
ω

)2r
osc2

ρ,r+1

}
holds true for all ρ, ω > 0 and r ∈ N, with Clb := CgeoCst.

Similar to the reliability results, ω and r can be chosen so that the oscillation term converges
to zero faster than the error. This is clearly highlighted in Corollary 3.6.
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Corollary 3.6 (Simplified efficiency estimate). Under the assumption of Theorem 3.5, for
all ρ > 0, we have

Λ2
ρ ≤ C2

lbκA

{(
κA + 2

ρh?
ϑ?

)
|||u− uh|||2ρ +

(
ρh?
ϑ?

)2(p+1)

osc2
ρ,2(p+1)

}
.

4. Preliminary results in the frequency domain

For the sake of simplicity, we will define ξh ∈ C∞(R+, H
1
ΓD

(Ω)) by setting

(4.1) ξh(t) := u(t)− uh(t).

Classically, a central aspect of our analysis is to view the error ξh as a particular solution
to our PDE model, the associated right-hand side being the “residual”. To this end, we

introduce for each t ∈ R+ the residual functional R(t) ∈
(
H1

ΓD
(Ω)
)′

by

(4.2) 〈R(t), v〉 := (µ(f(t)− üh(t)), v)Ω + (γ(g(t)− u̇h(t)), v)ΓA
− (A∇uh(t),∇v)Ω

for all v ∈ H1
ΓD

(Ω), as well as its norm

‖R(t)‖−1,Ω := sup
v∈H1

ΓD
(Ω)

‖∇v‖A,Ω=1

〈R, v〉.

Notice that then, ξh(0) = ξ̇h(0) = 0 due to our assumptions that u0, u1 ∈ Vh, and we have

(4.3) (µξ̈h(t), v)Ω + (γξ̇h(t), v)ΓA
+ (A∇ξh(t),∇v)Ω = 〈R(t), v〉

for all v ∈ H1
ΓD

(Ω) and t ∈ R+ as can be seen by substracting (2.5) and (2.6).

When solving a steady problem with an inf-sup stable left-hand side, (4.3) can readily be
employed to bound the discretizaton error by the residual norm (see [15, Equation (5.1)] for
instance). This approach is also fruitful for parabolic problems (see, e.g., [20, Section 5]),
where a suitable space-time inf-sup condition is available [39]. Unfortunately, to the best of
the author’s knowledge, such a framework is not available for the wave equation, making the
link between the residual norm and the error harder to establish.

In this section, we develop the main idea of this work. It consists in establishing a relation
between the residual norm and the error in the frequency-domain, and to treat distinctly the
low-frequency and high-frequency content. For the low-frequency part, the analysis follows
the lines of [14, 19], with the main difference that here, the frequency is complex-valued,
with a positive imaginary part. We employ separate stability arguments to deal with the
high-frequency content.

We establish all our main results in terms of the residual norm ‖R(t)‖−1,Ω, that we some-
times call the “idealized” estimator. Indeed, we believe this form is more general, since the
residual norm can then be controlled by different types of estimators (including the equili-
brated estimator we are focusing on here).

4.1. Laplace transform. The key tool we employ to connect the time and frequency do-
mains is the Laplace transform. It is classically defined by

L {v}(s) =

∫ +∞

0
v(t)e−stdt,
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whenever the integral is properly defined. For all ρ > 0, we have

(4.4)

∫ +∞

0
|v(t)|2e−2ρtdt =

∫ ρ+i∞

ρ−i∞
|L {v}(s)|2ds

If v is sufficiently regular and with v(0) = 0, we have

(4.5) L {v̇}(s) = sL {v}(s)

for all s ∈ C with Re s > 0. Finally, we will use the following result to estimate high-frequency
contents

(4.6)

∫ ρ+i∞

ρ−i∞
|Lρ{v}(s)|2χ|s|>µds ≤ µ−2q

∫ +∞

0
|v(q)(t)|2e−2ρtdt

In the remaining of this section we fix a complex number s ∈ C with ρ := Re s > 0. For

the sake of shortness, we often employ the notation φ̂ := L {φ}(s) for any function φ in the
proofs.

4.2. Frequency-domain problems. Recalling (4.5), taking the Laplace transform of (2.5)
and (2.6), we have

(4.7a) bs(L {u}(s), v) = (µL {f}(s), v)Ω + (γL {g}(s), v)ΓA
,

and

(4.7b) bs(L {uh}(s), vh) = (µL {f}(s), vh)Ω + (γL {g}(s), vh)ΓA
,

for all v ∈H 1
ΓD

(Ω) and vh ∈ Vh, where bs is the sesquilinear form defined at (2.7). Similarly,

noticing that the definition of R naturally extends over H 1
ΓD

(Ω), we can define L {R}(s) ∈
(HΓD

(Ω))′ by setting

〈L {R}(s), v〉 =

∫ +∞

0
〈R(t), v〉e−stdt,

for all v ∈H 1
ΓD

(Ω), and we have

(4.8) bs(L {ξh}(s), v) = 〈L {R}(s), v〉.

4.3. Stability. In the following, we equip H 1
ΓD

(Ω) with norm

‖v‖2H 1
s (Ω) = |s|2‖v‖2µ,Ω +

|s|2

ρ
‖v‖2γ,ΓA

+ ‖∇v‖2A,Ω ∀v ∈ H1
ΓD

(Ω).

Straightforward arguments then show that bs is coercive in the ‖·‖H 1
s (Ω) norm. Specifically,

(4.9) ‖v‖2H 1
s (Ω) =

1

ρ
Re bs(v, sv) ≤ |s|

ρ
|bs(v, v)| ∀v ∈H 1

ΓD
(Ω).

As a direct consequence, we obtain a (coarse) upper bound for the frequency-domain error.

Lemma 4.1 (Coarse frequency-domain upper bound). We have

(4.10) ‖L {ξh}(s)‖2H 1
s (Ω) ≤ 4

{
1

ρ2
‖L {f}(s)‖2µ,Ω + ‖L {g}(s)‖2γ,ΓA

}
.
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Proof. On the one hand, recalling (4.9) and (4.7), we have

‖ûh‖2H 1
s (Ω) ≤

|s|
Re s
|bs(ûh, ûh)| = |s|

Re s
|(µf̂ , ûh)Ω + (γĝ, ûh)Γ|.

On the other hand, we have

|s||(µf̂ , ûh)Ω + (γĝ, ûh)Γ| ≤ ‖f̂‖µ,Ω|s|‖ûh‖µ,Ω + ρ‖ĝ‖γ,ΓA

|s|
ρ
‖ûh‖Γ,ΓA

≤
(
‖f̂‖2µ,Ω + ρ2‖ĝ‖2γ,Ω

)1/2
‖ûh‖H 1

s (Ω),

and therefore

(4.11) ‖ûh‖2H 1
s (Ω) ≤

1

ρ2
‖f̂‖2µ,Ω + ‖ĝ‖2γ,ΓA

.

Similar arguments show that (4.11) also holds for u, and (4.10) follows from the triangle

inequality since ξ̂h = û− ûh. �

4.4. Approximation factor. In order to refine the above error estimate, we will employ the
approximation factor. To simplify the discussion below, we introduce the norm

{φ}2H 1
s (Ω) := |s|2‖φ‖2µ,Ω +

|s|2

ρ
‖φ‖2γ,ΓA

φ ∈H 1
ΓD

(Ω)

on H 1
ΓD

(Ω). Although it is not important in the forthcoming analysis, we note that this norm

is not equivalent to the usual norm, and H 1
ΓD

(Ω) is not an Hilbert space equipped with it.

Denoting by Πh the orthogonal projection onto Vh for the (A∇·, ·)Ω inner-product, we have

(4.12) ‖∇(S ?
s (φ)−ΠhS

?
s (φ))‖A,Ω ≤ γ̂s,h{φ}H 1

s (Ω) ∀φ ∈H 1
s (Ω).

Explicit upper bounds for the approximation factor are available, as we next demonstrate.

Lemma 4.2 (Approximation factor). The estimate

(4.13) γ̂s,h ≤
|s|
ρ

holds true. In addition, if Ω is convex, A ≡ I and ΓA = ∅. Then, we have

(4.14) γ̂s,h ≤ 2Ci
|s|
ρ

|s|hmax

ϑmin
.

Proof. Let φ ∈H 1
ΓD

(Ω). Using (4.9), we have

‖S ?
s (φ)‖2H 1

s (Ω) ≤
|s|
ρ
|bs(S ?

s (φ),S ?
s (φ))|

=
|s|
ρ
{φ}H 1

s (Ω){S ?
s φ}H 1

s (Ω) ≤
|s|
ρ
{φ}H 1

s (Ω)‖S ?
s (φ)‖H 1

s (Ω),

so that |s|‖S ?
s (φ)‖µ,Ω ≤ ‖S ?

s (φ)‖H 1
s (Ω) ≤ (|s|/ρ){φ}H 1

s (Ω), and (4.13) follows since

γ̂s,h ≤ sup
φ∈H 1

ΓD
(Ω)

{φ}
H 1
s (Ω)

=1

‖∇S ?
s (φ)‖A,Ω ≤ sup

φ∈H 1
ΓD

(Ω)

{φ}
H 1
s (Ω)

=1

‖S ?
s (φ)‖H 1

s (Ω) ≤
|s|
ρ
.
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Assuming now that Ω is convex, A ≡ I and ΓA = ∅, we can apply [30, Theorem 3.2.1.2] and
[31, Theorem 2.2.1], showing that

‖∇2S ?
s (φ)‖Ω = ‖∆S ?

s (φ)‖Ω = ‖s2µφ− s2µS ?
s (φ)‖Ω.

Since A ≡ I, we have µ ≤ ϑ−2
min, leading to

‖∇2S ?
s (φ)‖Ω ≤

1

ϑmin

(
|s|2‖φ‖µ,Ω + |s|2‖S ?

s (φ)‖µ,Ω
)

≤ 1

ϑmin

(
|s|+ |s|

2

ρ

)
{φ}H 1

s (Ω) ≤
2|s|2

ϑminρ
{φ}H 1

s (Ω),

and (4.14) follows from the interpolation error estimate in (2.2) since

min
vh∈Vh

‖∇(S ?
s (φ)− vh)‖A,Ω ≤ ‖∇(S ?

s (φ)− IhS ?(φ))‖Ω ≤ Cihmax‖∇2S ?
s (φ)‖Ω.

�

4.5. Reliability. We are now ready to establish the key result of this section, which concerns
the reliability of the “idealized estimator” in the frequency domain.

Theorem 4.3 (Frequency-domain reliability). The estimates

(4.15) ‖L {ξh}(s)‖H 1
s (Ω) ≤

|s|
ρ
‖L {R}(s)‖−1,Ω

and

(4.16) ‖L {ξh}(s)‖H 1
s (Ω) ≤ (1 + 4γ̂2

s,h)1/2‖L {R}(s)‖−1,Ω

hold true.

Proof. Selecting v = ξ̂h in (4.8), we have

(4.17) |bs(ξ̂h, ξ̂h)| = |〈R̂, ξ̂h〉| ≤ ‖R̂‖−1,Ω‖∇ξ̂h‖A,Ω,

and (4.15) follows from (4.9).

The proof of (4.16) relies on an “Aubin-Nitsche trick”. Letting θ := S ?
s (ξ̂h), picking v = ξ̂h

in (2.8) and using Galerkin orthogonality, we have

{ξ̂h}2H 1
s (Ω) = bs(ξ̂h, θ) = bs(ξ̂h, θ −Πhθ).

On the other hand, it follows from (4.8) and (4.12) that

|bs(ξ̂h, θ −Πhθ)| ≤ ‖R̂‖−1,Ω‖∇(θ −Πhθ)‖A,Ω ≤ γ̂s,h‖R̂‖−1,Ω{ξ̂h}H 1
s (Ω),

so that

(4.18) {ξ̂h}H 1
s (Ω) ≤ γ̂s,h‖R̂‖−1,Ω.

Then, we have

‖∇ξh‖2A,Ω = b(ξ̂h, ξ̂h)− s2‖ξ̂‖2µ,Ω − s‖ξ̂‖2γ,Γ ≤ |b(ξ̂h, ξ̂h)|+ |s|2‖ξ̂‖2µ,Ω + |s|‖ξ̂‖2γ,Γ,

and since 1 ≤ |s|/ρ, we obtain that

‖∇ξh‖2A,Ω ≤ |b(ξ̂h, ξ̂h)|+ {ξ̂}2H 1
s (Ω).
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It then follows from (4.17) and (4.18) that

‖ξ̂h‖2H 1
s (Ω) = {ξ̂h}2H 1

s (Ω) + ‖∇ξh‖2A,Ω ≤ |b(ξ̂h, ξ̂h)|+ 2{ξ̂h}2H 1
s (Ω)

≤ ‖R̂‖−1,Ω‖∇ξ̂‖A,Ω + 2γ̂2
s,h‖R̂‖2−1,Ω ≤

1

2
‖ξ̂‖2H 1

s (Ω) +
1

2
‖R̂‖2−1,Ω + 2γ̂2

s,h‖R̂‖2−1,Ω,

from which (4.16) readily follows. �

5. Reliability

Here, we establish our reliability results.

5.1. The damped energy norm. The error will be measured in a damped energy norm.
For a damping parameter ρ > 0, we consider the norm

|||v|||2ρ := |||v̇e−ρt|||2µ,Ω +
1

ρ
|||v̇e−ρt|||2γ,ΓA

+ |||∇ve−ρt|||2A,Ω

for all v ∈W 1,∞(R+, H
1
ΓD

(Ω)), where we employed the notation

|||v|||2† =

∫ +∞

0
‖v(t, ·)‖2†dt,

for any of the “space norms” ‖·‖† introduced in Section 2.3. It is easily seen from (4.4) and
(4.5) that actually

(5.1) |||v|||2ρ =

∫ ρ+∞

ρ−i∞
‖L {v}(s)‖2H 1

s (Ω).

5.2. Approximation factor. Recall the definition of the approximation factor γρ,ω,h from
(2.10). Then, Proposition 2.1 is a direct consequence of Lemma 4.2.

5.3. Abstract reliability. We now formulate our main reliability result in terms of the
residual norm. As pointed out above, this abstract formulation permits to cover other types
of estimators.

Theorem 5.1 (Reliability). For all ω > 0, and r ∈ N, we have

(5.2) |||ξh|||2ρ ≤ (1 + 4γ2
ρ,ω,h)|||Re−ρt|||2−1,Ω +

( ρ
ω

)2r
osc2

ρ,r .

Proof. Let ω > 0. Recalling (5.1), we have

|||ξh|||2ρ =

∫ ρ+i∞

ρ−i∞
‖L {ξh}(s)‖2H 1

s (Ω)ds = Ismall + Ilarge

with

Ismall :=

∫ ρ+i∞

ρ−i∞
‖L {ξh}(s)‖2H1

s (Ω)χ|s|<ωds Ilarge :=

∫ ρ+i∞

ρ−i∞
‖L {ξh}(s)‖2H1

s (Ω)χ|s|>ωds.

On the one hand, using (4.16), the definition of γρ,ω,h in (2.10) and (4.4), we have

Ismall ≤
∫ ρ+i∞

ρ−i∞
(1 + 4γ̂2

s,h)‖L {R}(s)‖2−1,Ωχ|s|<ωds

≤ (1 + 4γ2
ρ,ω,h)

∫ ρ+i∞

ρ−i∞
‖L {R}(s)‖2−1,Ωds = (1 + 4γ2

ρ,ω,h)|||Re−ρt|||2−1,Ω.
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On the other hand, (4.10) and (4.6) show that

Ismall ≤ 4

∫ ρ+i∞

ρ−i∞

{
1

ρ2
‖L {f}(s)‖2µ,Ω + ‖L {g}(s)‖2γ,ΓA

}
≤ 4

ω2r

{
1

ρ2
|||f (r)e−ρt|||2µ,Ω + |||g(r)e−ρt|||2γ,ΓA

}
and (5.2) follows recalling the definition of oscρ,r in (3.4). �

We then give a simplified estimate assuming that holds when the Ω is convex, A ≡ I, and
ΓA = ∅. It follows by plugging (2.12) into (5.2), and then selecting r = 3(p + 1) and ω > 0
such that (ω/ρ)3 = ωhmax/ϑmin.

Corollary 5.2 (Simplified error estimate). Assume that Ω is convex, that A ≡ I and that
ΓA = ∅. Then, for all ρ > 0, we have

(5.3) |||ξh|||2ρ ≤

1 + 16C2
i

((
ρhmax

ϑmin

)1/2

+
ρhmax

ϑmin

)2
 |||Re−ρt|||2−1,Ω

+

(
ρhmax

ϑmin

)2(p+1)

osc2
ρ,3p+1 .

5.4. Application to the equilibrated estimator. We conclude our reliability analysis by
showing that the residual norm can be controlled by the equilibrated estimator using a Prager-
Synge type argument [38]. We omit the proof as it is classical (see, e.g., [14, Proposition 4.1]).

Proposition 5.3 (Control of the residual). If τ h satisfies (3.1) and η and Λρ are defined by
(3.2a), we have

‖R(t)‖−1,Ω ≤ η(t) ∀t ∈ R+, |||Re−ρt|||−1,Ω ≤ Λρ ∀ρ > 0.

At that point, Theorem 3.3 and Corollary 3.4 follow from Theorem 5.1, Corollary 5.2 and
Proposition 5.3.

6. Efficiency

In this section, we establish efficiency properties of the proposed estimator. The approach
is in part similar to the analysis presented for the time-harmonic equations in [14, 19], but
additional arguments are required to treat the second-time derivative (as opposed to a mul-
tiplication by −ω2).

6.1. Localized norm. An important ingredient of the forthcoming analysis will be the fol-
lowing localized residual norm

(6.1) ‖R(t)‖−1,a := sup
v∈H1

?(ωa)
‖∇v‖A,Ω=1

〈R(t), ψav〉

associated with each vertex a ∈ Vh. We start with a standard dual characterization showing
that this norm is actually the minimum of a continuous version of the minimization problem
defining the local flux contribution σah in (3.3a). The proof is standard (see, e.g., [14, Lemma
4.3]) and omitted here for shortness.
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Lemma 6.1 (Dual characterization). We have

‖R(t)‖−1,a = min
v∈HΓa (div,ωa)
∇·v=da in ωa
v·n=ba on ΓA

‖A−1v + ψa∇uh(t)‖A,ωa

for all vertices a ∈ Vh and all t ∈ R+.

To establish a link between the localized and global norms of the residual, we observe that
because the ψa form a partition of unity, we have

〈R(t), v〉 =
∑
a∈Vh

〈R(t), ψav〉 ≤

∑
a∈Vh

‖R(t)‖2−1,a

1/2∑
a∈Vh

‖∇v‖2A,ωa

1/2

.

Since each simplex K has d+ 1 vertices, the we obtain the following upper bound:

(6.2) ‖R(t)‖2−1,Ω ≤ (d+ 1)
∑
a∈Vh

‖R(t)‖2−1,a ∀t ∈ R+.

6.2. Abstract efficiency. We now derive efficiency results for the idealized estimator. We
first show that point-wise in time and patch-wise in space, the idealized estimator is a lower
bound for a measure of the error that in addition to the desired norm, also includes the second
time-derivative.

Lemma 6.2 (Local efficiency). For all vertices a ∈ Vh and t ∈ R+, the estimate

(6.3) ‖R(t)‖−1,a ≤

Cgeo,a

(
ha
ϑa
‖ξ̈h(t)‖µ,ωa +

(
ρha
ϑa

)1/2 1

ρ1/2
‖ξ̇h(t)‖γ,ωa∩ΓA

+ κ
1/2
A ‖∇ξh(t)‖A,ωa

)
holds true.

Proof. Let t ∈ R+ and v ∈ H1
ΓD

(Ω). Recalling (4.3), we have

|〈R(t), ψav〉| = |(µξ̈h(t), ψav)Ω + (γξ̇h(t), ψav)ΓA
+ (A∇ξh(t),∇(ψav))Ω|

≤ ‖ξ̈h(t)‖µ,Ω‖v‖µ,Ω + ‖ξ̇h(t)‖γ,ΓA
‖v‖γ,ΓA

+ ‖∇ξh(t)‖A,Ω‖∇(ψav)‖A,Ω.

Then, (6.3) follows by applying (2.1), recalling the definitions of ϑa and κA in (2.3) and (2.4)
as well as the definition of the localized residual norm in (6.1). �

Next, we show that globally in time and space, the second time-derivative can be removed,
at the price of introducing a data oscillation term.

Lemma 6.3 (Second time-derivative). For all ω > 0 and r ∈ N, we have

(6.4) |||ξ̈he−ρt|||2µ,Ω ≤ ω2|||ξ̇he−ρt|||2µ,Ω + ρ2
( ρ
ω

)2r
osc2

ρ,r+1 .

Proof. Standard identity (4.4) of the Laplace transform shows that

|||ξ̈he−ρt|||2µ,Ω =

∫ ρ+i∞

ρ−i∞
‖L {ξ̈h}(s)‖2µ,Ωds.
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We split the integral in the right-hand side in two. On the one hand, using (4.5) and (4.4)
again, we have∫ ρ+i∞

ρ−i∞
‖L {ξ̈h}(s)‖2µ,Ωχ|s|<ωds =

∫ ρ+i∞

ρ−i∞
|s|2‖L {ξ̇h}(s)‖2µ,Ωχ|s|<ωds.

≤ ω2

∫ ρ+i∞

ρ−i∞
|L {ξ̇h}(s)‖2µ,Ωds = ω2|||ξ̇he−ρt|||2µ,Ω.

On the other hand, using (4.5) and (4.10)∫ ρ+i∞

ρ−i∞
‖L {ξ̈h}(s)‖2µ,Ωχ|s|>ωds ≤

∫ ρ+i∞

ρ−i∞
|s|4‖L {ξh}(s)‖2µ,Ωχ|s|>ωds

≤ 4

ρ2

∫ ρ+i∞

ρ−i∞
|s|2|L {f}(s)‖2µ,Ωχ|s|>ωds+ 4

∫ ρ+i∞

ρ−i∞
|s|2|L {g}(s)‖2γ,ΓA

χ|s|>ωds.

Recalling the definition of oscρ,r in (3.4), we conclude the proof with (4.5) and (4.6), since∫ ρ+i∞

ρ−i∞
|s|2|L {f}(s)‖2µ,Ωχ|s|>ωds =

∫ ρ+i∞

ρ−i∞
|L {ḟ}(s)‖2µ,Ωχ|s|>ωds ≤ ω−2r|||f (1+r)e−ρt|||2µ,Ω,

and a similar estimate holds for g, for all r ∈ N. �

Remark 6.4 (Localized treatment of the second time-derivative). It is possible to obtain

a partially localized version of (6.4), with the term |||ξ̈he−ρt|||µ,Ω and |||ξ̇he−ρt|||µ,Ω respectively

replaced by |||ξ̈he−ρt|||µ,ωa and |||ξ̇he−ρt|||µ,ωa. However, the author does not see a way to localize
the data oscillation term.

Combining Lemmas 6.2 and 6.3, we arrive at our key efficiency result.

Theorem 6.5 (Global efficiency). The estimate

(6.5) |||Re−ρt|||2−1,Ω ≤ C2
geo

{(
κA +

ρh?
ϑ?

+

(
ωh?
ϑ?

)2
)
|||ξ|||2ρ +

(
ρh?
ϑ?

)2 ( ρ
ω

)2r
osc2

ρ,r+1

}
holds true for all ω > 0 and r ∈ N.

Proof. Recall the esimates in (2.1). By summing the local estimates in (6.3) over a ∈ Vh, and
using (6.2), we obtain

‖R(t)‖2−1,Ω ≤ (d+ 1) max
a∈Vh

C2
geo,a

×
∑
a∈Vh

(
ha
ϑa
‖ξ̈h(t)‖µ,ωa +

(
ρha
ϑa

)1/2 1

ρ1/2
‖ξ̇h(t)‖γ,ωa∩ΓA

+ κA,a‖∇ξh(t)‖A,ωa

)2

≤ C2
geo

((
h?
ϑ?

)2

‖ξ̈h(t)‖2µ,Ω +
ρh?
ϑ?

1

ρ
‖ξ̇h(t)‖2γ,ΓA

+ κ2
A‖∇ξh(t)‖2A,Ω

)
,

and therefore

|||Re−ρt|||2−1,Ω ≤ C2
geo

((
h?
ϑ?

)2

‖ξ̈he−ρt‖2µ,Ω +
ρh?
ϑ?

1

ρ
‖ξ̇he−ρt‖2γ,ΓA

+ κ2
A‖∇ξhe

−ρt‖2A,Ω

)
.
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We then apply (6.4), showing that(
h?
ϑ?

)2

‖ξ̈he−ρt‖2µ,Ω ≤
(
ωh?
ϑ?

)2

‖ξ̇he−ρt‖2µ,Ω +

(
ρh?
ϑ?

)2 ( ρ
ω

)2r
osc2

ρ,r+1,

and leading to (6.5). �

For the reader’s convenience, we also provide a simlified version of our efficiency estimate.
It is obtained from (6.5) by selecting ω > 0 such that (ωh?/ϑ?)

2 = ρh?/ϑ? and r = 2p.

Corollary 6.6 (Simplified efficiency estimate). We have

(6.6) |||Re−ρt|||2−1,Ω ≤ C2
geo

{(
κA + 2

ρh?
ϑ?

)
|||ξ|||2ρ +

( ρ
ω

)2(p+1)
osc2

ρ,2p+1

}
.

6.3. Application to the equilibrated estimator. Theorem 3.3 and Corollary 3.4 simply
follow from Proposition 2.2, Theorem 6.5 and Corollary 5.2.

7. Numerical examples

This section presents a set of 2D numerical examples. We use elements of degree p = 1 or 2,
coupled with an explicit leap-frog scheme for time integration [26]. The meshes are generated
with the mmg software [18].

7.1. Time discretization. Considering a time step δt > 0 we set tn = nδt, and build a
sequence of approximation (unh)n∈N, where unh is meant to approximate u(tn). We employ a
leap-frog scheme to mimick the time-derivative [26]. Specifically, we introduce

D2
δtu

n
h =

un+1
h − 2unh + un−1

h

δt2
, Dδtu

n
h =

un+1
h − un−1

h

2δt
.

The sequence (unh)n∈N is then define by setting u0
h = 0, u1

h = 0, and then iteratively by
requiring that

(7.1) (µD2
δtu

n
h, vh)Ω + (γDδtu

n
h, vh)ΓA

+ (A∇unh,∇vh)Ω = (µf(tn), vh)Ω + (γg(tn), vh)ΓA

for all vh ∈ Vh. Classically, the choice of δt is restricted by a so-called “CFL condition”, hence
we set

(7.2) δt = α min
K∈Th

ρK
ϑK

where α > 0 is selected sufficiently small to obtain a stable discretization (recall that ρK is
inscribed diameter of the element K and that ϑK is the wave speed inside K). For the meshes
we employ, we empirically find that the values α = 1.5 when p = 1 and α = 0.6 when p = 2
are close to the CFL limit.

This leads to an explicit time-integration scheme where only the matrix representation of
the form

Vh 3 wh, vh → R→ 1

δt2
(µwh, vh)Ω +

1

2δt
(γwh, vh)ΓA

∈ R

needs to be inverted. For the sake of simplicity, we employ the mumps package [5] to obtain
the Choleski factorization of the above matrix in our computations. In practice however, it
is possible to employ mass-lumping to avoid factorizing the matrix [16].
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In practice, we can only compute a finite number of iterates, meaning that the computations
stop after N ∈ N steps, with associated time T := tN . Our estimates require an infinite
simulation time, but this can be easily circumvented by monitoring∫ T

0
η(t)2e−2ρtdt

as T increases and stopping the simulation when it stagnates.
For each time step n ∈ {0, . . . , N}, and each vertex a ∈ Vh, we employ the time-discrete

version of (3.3a) to define σa,nh

(7.3) σa,nh := arg min
τh∈RT p+1(Ta)∩H0(div,ωa)

∇·τh=µψa(f(tn)−D2
δtu

n
h)−A∇ψa·∇unh in ωa

τh·n=γψa(g(tn)−Dδtunh) on ΓA

‖A−1τ h + ∇unh‖A,ωa ,

and we set

ηnK := ‖A−1σnh + ∇unh‖A,K , ηn :=

∑
K∈Th

(ηnK)2

1/2

,

as well as

(7.4) Λ2
ρ :=

1

2δt2

N∑
n=0

(
(ηn+1)2e−2ρtn+1 + (ηn)2e−2ρtn

)
.

Notice that the compatibility condition in (7.3) is satisfied due to (7.1).

7.2. Standing wave. We consider the unit square Ω = (0, 1)2 surrounded by a Dirichlet
boundary condition with ΓD = ∂Ω. We consider the solution

u(t,x) = χ(t) sin(
√

2πt) sin(πx1) sin(πx2),

where χ is a cutoff function defined as follows. For t ≤ 0, χ(t) = 0 and χ(t) = 1 when t ≥ 1.
In the interval [0, 1] χ is defined as the unique P5 polynomial that enables C2 junctions.
Observe that for t ≥ 1, u solves the wave equation with a vanishing right-hand side f . We
perform the simulation on the interval (0, T ) with T := 10.

The goal of this example is to emphasize the role of the damping parameter ρ > 0. First,
Figure 7.1 presents the evolution of the instantaneous error (recall that ΓA = ∅ here)

E2(t) := ‖ξ̇(t)‖2µ,Ω + ‖∇ξ(t)‖2A,Ω,

and the “instantaneous” estimator η(t), as well as the cumulated error

C2
ρ(t) :=

∫ t

0
E2(τ)e−2ρτdτ,

and the cumulated estimator Λρ(t) obtained by summing (7.4) up to the current time step.
On Figure 7.1a, we can see that E(t) globally increases with t, whereas η(t) remains globally
constant. The reason is that, similar to what happens in the frequency domain [14], the
estimator is insensitive to the dispersion error that accumulates over time. The effect is
counter balanced by the parameter ρ in the damped energy norm. As shown on Figure
7.1b, 7.1c and 7.1d, for a fixed mesh, the estimator tends to underestimate the error as ρ is
decreased.
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Figure 7.1. Error evolution in the standing wave example for hmax = 0.05

Figure 7.2 presents the behaviour of the estimator Λρ and the error as the mesh is refined.
As claimed, our estimate is asymptotically constant-free: the two curves becomes indintin-
guishable as h→ 0. The effect is analyzed in more depth on Figure 7.3, where the effictivity
index effρ := Λρ/‖u − uh‖ρ is plotted against the mesh size for different values of ρ, α and
p. We can see on Figures 7.3a and 7.3b that for p = 1 and p = 2 (with an over-refined time
step), we observe exactly the behaviour predicted by our analysis: the estimate is asymtot-
ically constant-free, and the asymptotic regime is achieved faster when ρ and p are larger.
On Figure 7.3c, we display the same results for p = 2 and a “natural” time step close to the
CFL stability limit. We can see in this case that the time-discretization error have a small
contribution that is not capture by the estimator.

7.3. Reflections by Dirichlet boundaries. In this example, the domain is the unit square
Ω := (0, 1)2. On the “bottom-left” boundary of Ω, we impose a Dirichlet boundary condition,
whereas on the “top-right” part, we place an absorbing boundary condition.
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Figure 7.2. Convergence in the standing wave example for ρ = 0.5
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Figure 7.3. Effectivity index in the standing wave example
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Let us first consider the travelling wave

vσ,d(t,x) = pσ((t− t0)− d · x),

where t0 = 4, d = (cos θ, sin θ) with θ = 11π/8, and pσ is the profile

pσ(τ) = τe−(τ/σ)2
τ ∈ R.

We then construct our analytical solution by the principle of images, that is by “mirroring”
vσ,d along the {x1 = 0} and {x2 = 0} hyperplanes. Specifically, we set

u(t,x) = vσ,d(t,x1,x2)− vσ,x(t,−x1,x2)− vσ,x(t,x1,−x2) + vσ,d(t,−x1,−x2).

It is easily seen that u satisfies the volume equation with f = 0 in Ω and the Dirichlet
condition on ΓD. We then set g = u̇+∇u ·n on ΓA. The initial condition u(0,x) and u̇(0,x)
are not exactly zero, but are sufficiently small that setting u0 = u1 = 0 in our computations
generates a level of error less than numerical discretization. The simulation time is T := 10,
and we set ρ := 1/T .

Here, our goal is to highlight the sensitivity of the estimator to the oscillations present in
the right-hand side, that are here described by the parameter σ. Figure 7.4 represents the
evoluation of the instantaneous and cumulated errors

E2
ρ (t) := ‖ξ̇h(t)‖2µ,Ω +

1

ρ
‖u̇(t)‖2γ,ΓA

+ ‖∇ξh(t)‖2A,Ω, C2
ρ(t) :=

∫ t

0
E2
ρ (τ)e−2ρτdτ,

and estimators, whereas Figure 7.5 presents the behaviour of the estimator for σ = 0.5.
Figure 7.6 displays the effictivity index for different mesh sizes and values of σ and p, α.

As predicted by our analysis, if the time-step is sufficiently fine (Figures 7.6a and 7.6b), the
estimate becomes asymptotically constant-free as the mesh is refined for any value of σ, and
the asymptotic regime is achieved faster if p is large or if σ is small (i.e. the data oscillate
less). When considering p = 2 with a large time-step (Figure 7.6c), the contribution of the
time-discretization, not included in our analsysis, is clearly visible.

On Figure 7.7, we represent the true solution, the instantaneous error Eρ(t), and η(t) for
different times t. We see that the estimators correctly locates the error at all times, although
there is an underetimation close the abosrbing boundary. This is due to the spatial oscilation
term that we have not included in the estimator (the right-hand side is not piecewise poly-
nomial here). We also see that as the time increases, even if the error is correclty located, its
magnitude becomes underestimated, which is in agreement with previous numerical observa-
tions and theoretical predictions. Again, this is because the estimator does not capture the
(increasing) dispersion error.

7.4. Reflections by a penetrable obstacle. We consider an example similar to the pre-
vious one, where an incident wave is reflected. As before, we set d = (cos θ, sin θ) with
θ = 11π/8, and consider the incident field uinc := vσ,d for different values of σ. We then
define g := u̇inc + ∇uinc · n on ΓA. The coefficients are define by

µ :=

∣∣∣∣ µD in D
1 outside

A :=

∣∣∣∣ AD in D
I outside ,

with µD = 2 and AD = (1/2)I, where D is the polygon defined by joining the vertices
(0,−0.5), (0.5, 0.5), (0, 0), (0, 0.5) and (−0.5, 0) (see Figure 7.9). As before, T := 10 and
ρ := 1/T .

Here, the analytical solution is not available. As a result we limit our investigation to p = 1
with α = 1.5. For a reference solution, we employ our numerical scheme with p = 2 on the
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Figure 7.4. Error evolution in the reflection wave example for σ = 0.5, p = 2,
α = 0.6 and hmax = 0.05
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Figure 7.5. Convergence in the reflection wave example for σ = 0.5

same mesh with a time-step δt divided by 3. As can be seen on Figures 7.8 and 7.9, the
behaviour of the estimator is similar to the previous experiments, and in complete agreement
with our analysis.

8. Conclusion

We present a construction of an equilibrated estimator for the scalar wave equation. Our
construction avoids elliptic reconstructions, and is similar to [10]. The key novelty of our work
is to employ a damped energy norm to measure the error together with a careful reliability
and efficiency analysis providing a guaranteed and asymptotically constant-free upper bound
as well as a polynomial-degree-robust lower bound. Numerical examples highlight the theory
and suggest that it is sharp. This work is currently limited to the semi-discretization in space,
and future work will be guided towards taking into account time-discretization, for instance
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Figure 7.6. Effectivity index in the reflection example

following [26, 28]. Besides, it would be interesting to provide equilibrated flux constructions
that can operate in the presence of mass-lumping [16], or to consider discontinuous Galerkin
schemes [21, 32].
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