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Prophecy variables were introduced in the article “The Existence of Refinement Mappings” by Abadi and

Lamport. They were difficult to use in practice. We describe a new kind of prophecy variable that we find

much easier to use. We also reformulate ideas from that article in a more mathematical way.
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1 INTRODUCTION

Refinement mappings are used to verify that one specification implements another. They general-
ize to systems the concept of abstraction function, introduced by Hoare to define what it means for
one input/output relation to implement another [13]. Refinement mappings are a central concept
in extending Floyd-Hoare state-based reasoning to concurrent systems. They are crucial to making
verification of those systems tractable, whether verification is by rigorous proof or model checking.

“The Existence of Refinement Mappings” by Abadi and Lamport [2] has become a standard
reference for verifying implementation with refinement mappings in state-based formalisms. That
article, henceforth called ER, was mostly a synthesis of work that had been done in the preceding
decade or so. It was well known that being able to construct a refinement mapping often requires
adding to a specification a history variable that remembers information from previous states. The
major new concept ER introduced was prophecy variables that predict future states, which may
also be required to define a refinement mapping. ER showed that refinement mappings can always
be found by adding history and prophecy variables for specifications satisfying certain conditions.

The prophecy variables defined by ER were elegant, looking like history variables with time run-
ning backward. In practice, they turned out to be difficult to use because reasoning backward from
the future is hard. Defining the prophecy variable needed to verify implementation was challeng-
ing even in simple examples. We were never able to do it for realistic examples. Here, we describe
a new kind of prophecy variable that we find easier to understand and to use because it involves
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6:2 L. Lamport and S. Merz

reasoning forward from the present. It makes simple examples simple and realistic examples not
too hard.

We were motivated to take a fresh look at prophecy variables by a paper of Abadi [1]. It describes
techniques to make ER’s prophecy variables easier to use, but we found those techniques hard
to understand and prophecy variables still too hard to use. Soon after ER was written, TLA was
developed. It allowed us to express the concepts developed in ER mathematically, so a specification
is a formula and implementation is implication. It also gave us a new way to think about prophecy.

TLA is a linear-time temporal logic. A formula in such a logic is a predicate on sequences of
states. In other temporal logics, formulas are built from predicates on states. TLA formulas are
built from actions, which are predicates on pairs of states. This makes it easy to write as TLA
formulas the state-machine specifications on which ER is based. Earlier temporal logics could also
express actions, but not as conveniently as TLA. They therefore did not lead one to think in terms
of actions.

Thinking in terms of actions led us quickly to the simple idea of letting the value of a prophecy
variable predict which one of a set of actions will be the next one satisfied by a pair of successive
states. For example, if each of the actions describes the sending of a different message, the value of
the prophecy variable predicts which message is the next one to be sent. It was easy to generalize
this idea to a prophecy variable that makes multiple predictions—even infinitely many.

In addition to explaining our new prophecy variables, we recast the concepts from ER in terms
of temporal logic formulas. TLA is an obvious logic to use since it was devised for representing
state machines, but the concepts should be applicable to any state-based formalism. We assume
no prior knowledge of TLA or of ER. For readers who are familiar with ER, we point out the
correspondence between our definitions and those of ER.

Sections 2, 3, and 4.1 explain how specifications are written, what it means for one specification
to implement another, refinement mappings, and history variables. They correspond to Sections
2, 3, and 5.1 of ER. The rest of Section 4 explains prophecy variables and stuttering variables,
which provide part of the functionality of ER’s prophecy variables. Section 5 sketches how a
prophecy variable can be used to verify that a concurrent algorithm implements the specification
of a linearizable object [10]. Our method should be useful for verifying linearizable specifications
of other systems.

Section 6 shows that existential quantification over constants, an operation present in TLA and
some other temporal logics, can be used to predict the future. When used in this way, we call it a
prophecy constant. Section 7 presents completeness results stating that the refinement mapping
required to verify an implementation can always, in theory, be obtained by adding history and
stuttering variables and either prophecy constants or our prophecy variables—without assuming
the conditions required by ER’s prophecy variables. In practice, prophecy constants and prophecy
variables complement each other. A concluding section compares our prophecy variables to others
inspired by ER.

Our exposition is as informal as we can make it while trying to be rigorous. TLA+ is a complete
specification language based on TLA [17]. Most of what we describe here has been explained
in excruciating detail for TLA+ users [18]. It is easy to write our examples in TLA+, and their
correctness has been checked with the TLA+ tools. Since the examples are written somewhat
informally here, we cannot be sure that they have no errors.

2 PRELIMINARIES

2.1 States, Behaviors, and Specifications

Following Turing and ER, we model the execution of a discrete system as a sequence of states,
which we call a behavior. For mathematical simplicity, we define a state to be an assignment of
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Prophecy Made Simple 6:3

values to all possible variables. Think of a behavior as representing a history of the entire universe.
We specify a system as a predicate on behaviors, which is satisfied by those behaviors that repre-
sent a history in which the system executes the way it should. Traditional verification methods
consider only behaviors that represent possible executions of a system. We consider all behaviors,
where a behavior is any sequence of states, and a state is any assignment of any values to variables.

Only a finite number of variables are relevant to a system; the system’s specification allows
behaviors in which other variables can have any values. For example, if we represent its display
with the variable hr , a 12-hour clock that displays the hour is satisfied by behaviors of the form

[hr : 12], [hr : 1], [hr : 2], . . . , (1)

where [hr : i] can be any state that assigns the value i to hr . We call each pair of successive states
in a behavior a step of the behavior. A state of ER corresponds to an assignment of values to only
the variables of the specification.

Common sense dictates that a specification of an hour clock should not say that the clock has no
alarm, or no radio, or no display showing minutes. However, between any two steps that change
the value of hr , a behavior representing a universe in which our hour clock also displays minutes
must contain 59 steps in which the minute display changes and the value of hr remains the same.
Therefore, in addition to allowing behaviors of the form (1), a specification of an hour clock must
allow steps in which the value of hr does not change.

We define a stuttering step of a specification to be one in which both states assign the same
values to the specification’s variables. Two behaviors are said to be stuttering equivalent for a
specification iff (if and only if) they both have the same sequence of non-stuttering steps. We
often don’t mention the specification when it is clear from context. We write only specifications
that are stuttering insensitive, meaning that if two behaviors are stuttering equivalent, then one
satisfies the specification iff the other does. All behaviors are infinite. An execution in which a
system stops is represented by a behavior ending in an infinite sequence of stuttering steps of its
specification. (The rest of the universe needn’t also stop.)

An event e in an event-based formalism corresponds to a step that satisfies some predicate E
on pairs of states. If the events are generated by transitions in an underlying state machine, then
transitions that produce no event correspond to stuttering steps. In a purely event-based formalism,
special “nothing happened” events correspond to stuttering steps.

Writing stuttering-insensitive specifications allows a simple definition of implementation (also
called refinement). We say that a specification S1 implements a specification S2 iff every behavior
satisfying S1 also satisfies S2. When predicates on behaviors are formulas in a temporal logic,
S1 implements S2 means that the formula S1 ⇒ S2 is valid (satisfied by all behaviors).

2.2 State Machines

Following Turing, ER, and common programming languages, we write our specifications in terms
of state machines. A state machine is specified with two formulas: a predicate Init on states that
describes the possible initial states and a predicate Next on pairs of states that describes how the
state can change. We call a predicate A on pairs of states an action, and we call a step satisfying A
an A step. For a function f on states, we define UC f to be the action satisfied by a step iff it leaves
the value of f unchanged. We enclose tuples in angle brackets 〈 〉.

Let x be the list x 1, . . . , xn of all variables of the specification. Then UC 〈x〉 is the action satisfied
only by steps that leave all the variables x unchanged—that is, stuttering steps. The state machine
specified by Init and Next is satisfied by a behavior s1, s2, . . . iff

SM1. s1 satisfies Init , and
SM2. For all i , the step s i , s i+1 satisfies Next ∨ UC 〈x〉.
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6:4 L. Lamport and S. Merz

The disjunct UC 〈x〉 in SM2 ensures that the specification is stuttering insensitive. The predicate
on behaviors described by SM1 and SM2 is written in TLA as this formula:

Init ∧ �[Next]〈x〉, (2)

where � is the temporal logic forever operator and [Next]f is an abbreviation for Next ∨ (UC f ) .
In TLA, an action is written as an ordinary mathematical formula that may contain primed and

unprimed variables. Unprimed variables refer to the values of the variables in the first state of a
pair of states, and primed variables refer to their values in the second state. (An action with no
primed variables is a predicate on states.) Thus, UC 〈x〉 equals 〈x〉′ = 〈x〉, which is equivalent to
(x ′1 = x 1) ∧ . . . ∧ (x ′n = xn ) . (Priming an expression means priming all its variables.) Our hour-
clock specification can be written in TLA as

(hr = 12) ∧ �[hr ′ = if hr = 12 then 1 else hr + 1]〈hr 〉.

(The angle brackets in the subscript 〈hr 〉 can be omitted.) A specification of the form (2) allows
behaviors in which, at some point, the values of the variables x never again change—that is, in our
example, behaviors in which the clock halts. Allowing halting is a feature, not a problem. Formula
(2) expresses a safety property. If we want the system also to satisfy a liveness property1 L, we
specify it as

Init ∧ �[Next]〈x〉 ∧ L. (3)

Letting L be the TLA weak fairness formula WF〈x〉 (Next ) makes Formula (3) assert that the state
machine never halts in a state in which a non-stuttering step is possible. For the hour clock, this
implies that the clock never stops. The precise meaning of WF is irrelevant.

Safety and liveness properties are verified differently, so it is best to keep them separate in a
specification. The liveness property L plays no part in defining our prophecy variables, so we
don’t care how L is written. We don’t even require it to be a liveness property. Following ER, we
call L a supplementary property.

2.3 Internal Variables

Specifying a system with a state machine often requires the use of variables that do not represent
the actual state of the system but serve to describe how that state changes. We call the variables de-
scribing the system’s state external variables, and we call the additional variables internal variables.
In our specifications, we want to hide the internal variables, leaving only the external variables
visible.

In a linear-time temporal logic, we hide a variable y in a formula F with the temporal existential
quantifier ∃∃∃∃∃∃ . The approximate definition is that ∃∃∃∃∃∃ y : F is true of a behavior σ iff there exist
assignments of values to y in the states of σ (a separate assignment for each state of σ ) that make
the resulting behavior satisfy F . This definition is wrong because it doesn’t ensure that ∃∃∃∃∃∃ y : F
is stuttering insensitive. The correct definition is that σ satisfies ∃∃∃∃∃∃ y : F iff there is a behavior τ
stuttering equivalent for F to σ and assignments of values to y that make τ satisfy F . For a list y

of variables y1, . . . ym , we define ∃∃∃∃∃∃ y : F to equal ∃∃∃∃∃∃ y1 : . . . ∃∃∃∃∃∃ ym : F.
We generalize the form (3) of a specification S to ∃∃∃∃∃∃ y :IS , where

IS Δ
= Init ∧ �[Next]〈x,y〉 ∧ L, (4)

1The definitions of safety and liveness can be found elsewhere [4]; they are not needed here.
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Prophecy Made Simple 6:5

Fig. 1. The definition of specification A.

and x and y are lists of variables that may appear in Init , Next , and L. The external variables x

are assumed to be different from the internal variables y. We call IS the internal specification
of S.

3 IMPLEMENTATION AND REFINEMENT MAPPINGS

We explain refinement mappings with an example consisting of a specification A, a specification
B that implements A, and a refinement mapping that can be used to verify B ⇒ A .

3.1 Specification A
SpecificationA describes a system that receives as input a sequence of integers and, after receipt
of each integer, outputs the average of all the integers received thus far. Receipt of an integer i is
represented by the value of the variable in changing from the special value rdy to i , where we
assume rdy is not a number. Producing an output is represented by the value of in changing back
to rdy and the value of out being set to the output. Initially, in = rdy and out = 0. Here is the
beginning of a behavior that satisfies A :

[in : rdy, out : 0], [in : 3, out : 0], [in : rdy, out : 3],

[in : −2, out : 3], [in : rdy, out : 1
2 ], . . . .

(5)

A is defined to equal ∃∃∃∃∃∃ sum,num :IA , where num is the number of outputs that have been
produced and sum is the sum of the inputs that produced the most recent output. Here is a behavior
satisfying IA, which shows that behavior (5) satisfies A :

[in : rdy, out : 0, num : 0, sum : 0],

[in : 3, out : 0, num : 0, sum : 0],

[in : rdy, out : 3, num : 1, sum : 3],

[in : −2, out : 3, num : 1, sum : 3],

[in : rdy, out : 1
2 , num : 2, sum : 1], . . . .

(6)

The complete specification A is defined in Figure 1, where Int is the set of all integers. A step
satisfies the action NextA iff it is an InputA step or an OutputA step. An InputA step represents
the receipt of an input and an OutputA step represents the production of an output.

3.2 Specification B
Specification B is a different way of writing the same specification asA. Instead of variables that
record the number of inputs and their sum, the internal specification IB has a single internal
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6:6 L. Lamport and S. Merz

Fig. 2. The definition of specification B.

variable seq that records the entire sequence of inputs received so far. Specification B has the
same form as A, except its action InputB appends the value being input to seq , and its OutputB
action outputs the average of the numbers in the sequence seq .

To write B, we introduce some notation for sequences. As mentioned above, we enclose se-
quences in angle brackets, so 〈 〉 is the empty sequence. We define Len (sq ) to equal the length of
sequence sq and Append (sq , e ) to be the sequence obtained by appending e to the end of sequence
sq , so Len (〈3, 1〉) equals 2 and Append (〈3, 1〉, 42) equals 〈3, 1, 42〉. We also define Sum (sq ) to be
the sum of the elements of sq , so Sum (〈3, 1, 42〉) equals 46 (which equals 3+ 1+ 42) and Sum (〈 〉)
equals 0. Specification B is defined in Figure 2.

3.3 Implementation and a Refinement Mapping

To show B ⇒ A , we must show (∃∃∃∃∃∃ seq :IB) ⇒ A . The quantifier ∃∃∃∃∃∃ obeys the same rules
as the quantifier ∃ of ordinary math. By those rules, since seq is not a variable of A, to show
(∃∃∃∃∃∃ seq :IB) ⇒ A it suffices to show IB ⇒ A .

For any state s , let s[[num ← u, sum ← v ]] be the state that is the same as s except that it assigns
the value u to variable num and the value v to variable sum . SinceA equals ∃∃∃∃∃∃ num, sum :IA , to
show IB ⇒ A , it suffices to assume that a behavior s1, s2, . . . satisfies IB and find sequences
of values num1, num2, . . . and sum1, sum2, . . . such that the behavior

s1[[num ← num1, sum ← sum1]], s2[[num ← num2, sum ← sum2]], . . .

satisfies IA. We are free to let each numi and sumi depend on the entire behavior s1, s2, . . . .
However, we are going to make them depend only on the state s i . We do that by finding expressions
num and sum , containing only the variables in , out , and seq of IB, and let numi and sumi be
the values of these expressions in state s i .

More precisely, if u and v are expressions (formulas that need not be Boolean valued), then let
s[[num ← u, sum ← v ]] be the state that is the same as s except that it assigns to the variables
num and sum the values of u and v in state s , respectively. To show IB ⇒ ∃∃∃∃∃∃ num, sum :IA , it
suffices to find expressions num and sum , containing only the (unprimed) variables of IB, such
that:

RM. If a behavior s1, s2, . . . satisfies IB, then the behavior

s1[[num ← num, sum ← sum]], s2[[num ← num, sum ← sum]], . . .

satisfies IA.
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Prophecy Made Simple 6:7

From conditions SM1 and SM2 of Section 2.2 and the definitions of IA and IB, we see that RM is
implied by:

RM1. For any state s , if s satisfies InitB , then s[[num ← num, sum ← sum]] satisfies InitA .
RM2. For any states s and t , if step s, t satisfies NextB ∨ UC 〈in, out , seq〉 , then the pair of

states

s[[num ← num, sum ← sum]], t[[num ← num, sum ← sum]]

satisfies NextA ∨ UC 〈in, out ,num, sum〉.
Because num and sum contain only the variables in , out , and seq of IB, if the step s, t satisfies
UC 〈in, out , seq〉, then the step

s[[num ← num, sum ← sum]], t[[num ← num, sum ← sum]]

satisfies UC 〈in, out ,num, sum〉. Therefore, RM2 is automatically satisfied if the step s, t satisfies
UC 〈in, out , seq〉. This means we can simplify RM2 to:

RM2. For any states s and t , if the step s, t satisfies NextB , then the pair of states

s[[num ← num, sum ← sum]], t[[num ← num, sum ← sum]]

satisfies NextA ∨ UC 〈in, out ,num, sum〉.
Let’s consider RM1. Since InitA is the formula

(in = rdy) ∧ (out = num = sum = 0),

the state s[[num ← num, sum ← sum]] satisfies InitA iff state s satisfies

(in = rdy) ∧ (out = num = sum = 0). (7)

This is the formula obtained by substituting the expression num for the variable num and the
expression sum for the variable sum in the formula InitA . Let’s call that formula

InitA with num ← num, sum ← sum .

RM1 asserts that every state satisfying InitB satisfies (7). Therefore, it is equivalent to

RM1. InitB ⇒ (InitA with num ← num, sum ← sum ).

As a sanity check on this condition, observe that because the variables in expressions num and
sum are variables of InitB , and the other variables in and out of InitA are also variables of InitB ,
the formula (InitA with . . .) in RM1 contains only variables in InitB . Therefore, RM1 asserts
that InitB implies a formula containing only variables of InitB .

Applying the same reasoning to RM2, we see that RM2 is equivalent to

RM2. NextB ⇒
(NextA with num ← num, sum ← sum ) ∨ UC 〈in, out ,num, sum〉.

Substituting an expression like num for num in NextA means replacing num ′ by num ′. The
expression num ′ represents the value of num in the second state of a step. It is the expression
obtained by priming all the variables in num .

The substitutions num ← num, sum ← sum of expressions containing variables of IB for
the internal variables of IA are what we call a refinement mapping. In ER, a state of IA or IB
would be an assignment of values to that specification’s variables. The mapping from states of
IB to states of IA that maps s to s[[num ← num, sum ← sum]] is what ER calls a refinement
mapping. Thinking of refinement mappings in terms of formulas instead of states is better when
writing proofs, since proofs are written with formulas.
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6:8 L. Lamport and S. Merz

3.4 Finding the Refinement Mapping

Let’s now find the expressions num and sum for the actual formulas defined in Figures 1 and 2
that satisfy RM1 and RM2. RM2 asserts that a step satisfying NextB simulates a step satisfying
NextA or a stuttering step, where the values of num and sum are simulated by the values of num
and sum . In this simulation, the variables in and out are simulated by themselves. This implies
that an InputB step must simulate an InputA step, leaving num and sum unchanged, and an
OutputB step must simulate an OutputA step. So, we should verify RM2 by verifying these two
formulas:

InputB ⇒ (InputA with num ← num, sum ← sum ), (8)

OutputB ⇒ (OutputA with num ← num, sum ← sum ). (9)

It’s pretty clear that, after an output step, num should equal Len (seq ) and sum should equal
Sum (seq ). Since in equals rdy after an OutputA step, this leads to the following definitions:

num Δ
= if in = rdy then Len (seq ) else Len (Front (seq )),

sum Δ
= if in = rdy then Sum (seq ) else Sum (Front (seq )),

where Front (sq ) is defined to equal the sequence consisting of the first Len (sq ) − 1 elements of
sequence sq , and Front (〈 〉) is defined to equal 〈 〉.

It’s easy to verify RM1, which asserts

(in = rdy) ∧ (out = 0) ∧ (seq = 〈 〉) ⇒
(in = rdy) ∧ (out = num = sum = 0).

It’s not hard to verify Formula (8), since InputB implies Front (seq ′) = seq . Equation (9) may also
appear valid, but it’s not. For example, there’s no way to show that Formula (9) is true if in ′ = 42
and seq = 〈rdy〉, since we don’t know what Sum (〈rdy〉) and Sum (〈rdy, 42〉) equal.

It may seem obvious that seq can’t equal 〈rdy〉, but why can’t it? Nothing in Formula (9) or
Figure 2 asserts that seq doesn’t equal 〈rdy〉. What is true is that the value of seq can’t equal
〈rdy〉 in any state of any behavior satisfying IB. To show implementation, we don’t have to show
that RM2 is true for all pairs of states. It need only be true for reachable states, which are states that
can occur in a behavior satisfying IB. In fact, every reachable state of IB satisfies the following
formula Inv :

Inv Δ
= (in ∈ Int ∪ {rdy}) ∧ (out ∈ Int ) ∧ (seq ∈ Int∗) ∧

((in � rdy ) ⇒ (seq � 〈 〉) ∧ (in = Last (seq ))),

where Int∗ is the set of finite sequences of integers and Last (sq ) denotes the last element of a
non-empty sequence sq . A formula that is true in every reachable state of a specification is called
an invariant of the specification. In temporal logic, the formula �Inv is satisfied by a behavior iff
every state of the behavior satisfies Inv . Therefore, the assertion that Inv is an invariant of IB is
expressed by IB ⇒ �Inv .

Since Inv contains only variables of IB, its value is left unchanged by steps that leave
those variables unchanged. To show that Inv is an invariant of IB, by induction it suffices to
show:

I1. InitB ⇒ Inv ,
I2. Inv ∧NextB ⇒ Inv ′.
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Prophecy Made Simple 6:9

(Remember that Inv ′ is the formula obtained by priming all the variables in Inv .) Because Inv is
an invariant of IB, instead of showing RM2, we need only show:

Inv ∧ Inv ′ ∧ NextB ⇒
(NextA with num ← num, sum ← sum ) ∨ UC 〈in, out ,num, sum〉.

(10)

We leave this to the reader.
Proving invariance by proving I1 and I2 underlies all state-based methods for proving correct-

ness, including the Floyd-Hoare [9, 12] and Owicki-Gries [21] methods. ER avoids the explicit use
of invariants by restricting a specification’s set of states to ones that satisfy the needed invariant.

3.5 Generalization

We now generalize what we have done in this section to arbitrary specifications S1 and S2, with
external variables x, defined by

IS1
Δ
= Init1 ∧ �[Next1]〈x,y〉 ∧ L1,

IS2
Δ
= Init2 ∧ �[Next2]〈x,z〉 ∧ L2,

S1
Δ
= ∃∃∃∃∃∃ y : IS1 S2

Δ
= ∃∃∃∃∃∃ z : IS2,

(11)

where the lists y and z of internal variables of S1 and S2 contain no variables of x. To verify
S1 ⇒ S2 , we first define a state predicate Inv , with variables in x and y, and show it is an invariant
of IS1 by showing:

I1. Init1 ⇒ Inv ,
I2. Inv ∧ Next1 ⇒ Inv ′.

Then, if z is the list z 1, . . . , zm of variables, we find expressions z1, . . . , zm with variables x and y

and show the following, where z← z means z 1 ← z 1 , . . . , zm ← zm :

RM1. Init1 ⇒ (Init2 with z← z),
RM2. Inv ∧ Inv ′ ∧ Next1 ⇒ ((Next2 with z← z) ∨ UC 〈x, z〉),
RM3. Init1 ∧ �[Next1]〈x,y〉 ∧ L1 ⇒ (L2 with z← z).

When RM1–RM3 hold, we say that IS1 implements IS2 under the refinement mapping z← z .

4 AUXILIARY VARIABLES

Sometimes, one specification implements another, but there does not exist a refinement mapping
that shows it. For example, while we showed above that B implies A, the two specifications are
actually equivalent. However, IA does not implement IB under any refinement mapping because
there is no way to define seq in terms of the variables of A.

To show A ⇒ B, we construct a specification Aa from A containing an additional variable a
such that A is equivalent to ∃∃∃∃∃∃ a :Aa , and we show Aa ⇒ B . This shows A ⇒ B, assuming
that a is not an (external) variable of B. Constructing Aa such that ∃∃∃∃∃∃ a :Aa is equivalent to A
is called adding the auxiliary variable a toA. We define three kinds of auxiliary variables: history,
prophecy, and stuttering variables.

Let specificationS have internal specification IS defined by Formula (4). We define Sa to equal
∃∃∃∃∃∃ y :ISa and define

ISa Δ
= Inita ∧ �[Nexta ]〈x,y,a 〉 ∧ L, (12)

where Inita and Nexta are obtained from Init and Next by adding specifications of the initial
value of a and how a changes. To show that Sa is obtained by adding a as an auxiliary variable—
that is, ∃∃∃∃∃∃ a :Sa is equivalent to S—we show that ∃∃∃∃∃∃ a :ISa is equivalent to IS. Since ISa and
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IS have the same supplementary property L, it suffices to show their equivalence with L removed.
That is, we only have to show that if we hide the variable a , the state machines of ISa and IS are
equivalent. This requires verifying two conditions:

AV1. Any behavior satisfying SM1 and SM2 for ISa satisfies them for IS.
AV2. From any behavior σ satisfying SM1 and SM2 for IS, we can obtain a behavior σa satis-

fying SM1 and SM2 for ISa by adding stuttering steps and assigning new values to the
variable a in the states of the resulting behavior.

For all our auxiliary variables, Inita is defined by

Inita Δ
= Init ∧ J , (13)

where J is an expression containing the variables x, y, and a . To define Nexta , we write Next as a
disjunction of elementary actions, where we consider existential quantification to be a disjunction.
For example, if U , V , and W (i ) are actions, we can consider the elementary actions of

U ∨ V ∨ ∃ i ∈ Int : W (i ) (14)

to be U , V , and all W (i ) with i ∈ Int . (We could also consider U ∨V and ∃ i ∈ Int : W (i ) to be
the elementary actions of Formula (14).) We define Nexta by replacing every elementary action A
of Next with an action Aa . For history and prophecy variables, Aa is defined by letting

Aa Δ
= A ∧ B , (15)

where B is an action containing the variables x, y, and a (which may appear primed or un-
primed), and letting a be left unchanged by stuttering steps of IS. Condition AV1 is implied by
Formulas (13) and (15). Condition AV2 is implied by:

AX. For any behavior s1, s2, . . . satisfying SM1 and SM2 for IS, there exists a behavior
sa

1 , s
a
2 , . . . such that each sa

i is the same as s i except for the value it assigns to a , and
(1) sa

1 satisfies Inita and (2) for each elementary action A and each step s i , s i+1 that satis-
fies A, the step sa

i , s
a
i+1 satisfies Aa .

We can show that history and prophecy variables satisfy AX. Stuttering variables can be shown to
satisfy AV1 and AV2 directly.

Inspired by Abadi [1], we explain prophecy variables in terms of examples in which a specifica-
tion with an undo action that reverses the effect of some other action implements the same speci-
fication without the undo action. However, there is nothing about undo that makes our prophecy
variables work especially well. We find them just as easy to use on other kinds of examples.

4.1 History Variables

We use a history variable h to showA ⇒ B. A history variable stores information from the current

and previous states. To be able to find a refinement mapping that shows IAh ⇒ ∃∃∃∃∃∃ seq :IB , we
let h record the sequence of values input thus far. The initial value of h should obviously be the
empty sequence, so we define

InithA
Δ
= InitA ∧ (h = 〈 〉).

The elementary actions of NextA are InputA and OutputA . We let InputhA append the new input
value to h and OutputA leave h unchanged:

InputhA
Δ
= InputA ∧ (h ′ = Append (h, in ′)),

OutputhA
Δ
= OutputA ∧ (h ′ = h ).
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Finally, we define

NexthA
Δ
= InputhA ∨ OutputhA ,

IAh Δ
= InithA ∧ �[NexthA]〈in,out,sum,num,h 〉,

Ah Δ
= ∃∃∃∃∃∃ sum,num : IAh .

Condition AX is satisfied because, for any behavior s1, s2, . . . satisfying SM1 and SM2 for IA,
we can inductively define the required states sh

i as follows: The value of h in sh
1 is determined by

the condition h = 〈 〉. For each i , a nonstuttering step s i , s i+1 is a step of one of the two elementary
actions, and we let sh

i+1 assign to h the value of h ′ determined by the h ′ = . . . condition of that
action. For a stuttering step, h ′ = h .

To show Ah ⇒ B, we let seq equal h ; that is, we use the refinement mapping seq ← h . We

must find an invariant Inv of IAh and show:

InithA ⇒ (InitB with seq ← h ),

Inv ∧ Inv ′ ∧ InputhA ⇒ (InputB with seq ← h ),

Inv ∧ Inv ′ ∧ OutputhA ⇒ (OutputB with seq ← h ).

(16)

This is a standard exercise in assertional reasoning. Formula (16) implies RM1 and RM2, which
imply Ah ⇒ B.

The generalization to an arbitrary internal specification (Formula (4)) is simple. We define

Inith Δ
= Init ∧ (h = f ),

where f is an expression that can contain the variables x and y. For an elementary action A of
Next , we define

Ah Δ
= A ∧ (h ′ = F ),

where F is an expression that can contain the variables x and y, both unprimed and primed, and
the unprimed variable h . The general verification of AX is essentially the same as for our example.
(If a step satisfies more than one elementary action, the value of h ′ determined by Ah for any of
those actions can be used.)

4.2 Simple Prophecy Variables

We now consider a specification C that models implementingA with speculative execution, where
an input can either produce an output or else be “undone” by resetting in to rdy without changing
any other variables. Such a specification cannot implement A, which requires that every input

produces an output. However, it does model a specification ˜A that is the same as A except with
the variable in hidden.

We therefore let ˜A equal ∃∃∃∃∃∃ in :A , which equals ∃∃∃∃∃∃ in,num, sum :IA . Thus, ˜A is the same as

A except we consider input actions to be internal to the system. We define C to be the same as ˜A,
except that after an input is received, the input action can be undone, setting in to rdy, without
producing any output for that input. The definition of C is in Figure 3.

Since out is the only external variable, it’s clear that C allows the same externally visible be-

haviors as ˜A. An InputA step followed by an UndoC step produces no change to out , so viewed

externally they’re just stuttering steps. It’s obvious that ˜A implements C because IA implies
IC. (A behavior allowed by IA is allowed by IC because IC does not require that any UndoC
steps occur.) However, we can’t show C ⇒ ˜A with a refinement mapping, even by adding history
variables.

We can verify that C implements ˜A by adding a prophecy variable p to C and showing that
ICp implements IA under a refinement mapping. The variable p predicts whether or not an
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Fig. 3. The definition of specification C.

Fig. 4. The definition of specification Cp .

input value will be output. More precisely, its value predicts whether the next OutputA ∨UndoC
step will be an OutputA step or an UndoC step. The initial predicate makes the first prediction.
The next prediction is made after the currently predicted OutputA or UndoC step occurs. The
specification Cp is defined in Figure 4.

The value of the prophecy variable p is always either do or undo. Initially, p can have either
of those values. If p equals do, then the next OutputA or UndoC step must be an OutputA step;
it must be an UndoC step if p equals undo. In either case, after that step is taken, p is set to
either do or undo. Condition AX is satisfied because for any behavior s1, s2, . . . satisfying IC,
there is a corresponding behavior sp

1 , s
p
2 , . . . satisfying ICp in which p always makes the correct

prediction.
It’s not hard to see that ICp implements IA under this refinement mapping:

in ← if p = undo then rdy else in, num ← num, sum ← sum .

The generalization from this example is straightforward. Suppose the next-state action Next is the
disjunction of elementary actions that include a set of actions Ai for i in some set P . A simple
prophecy variable p that predicts for which i the next Ai step occurs is obtained by:

(1) Conjoining p ∈ P to the initial predicate Init ,
(2) Replacing each Ai by (p = i ) ∧ (p ′ ∈ P ) ∧ Ai ,
(3) Replacing each other elementary action B by (p ′ = p ) ∧ B .

Generalizations of simple prophecy variables and of the prophecy variables described in Sec-
tions 4.4 and 4.5 are discussed in Section 4.6.

The examples we use to illustrate prophecy variables are unrealistically simple because input
steps are internal. This makes it possible to define the necessary refinement mappings using the
stuttering variables introduced in Section 4.7 instead of prophecy variables. We have no reason to
believe stuttering variables can replace prophecy variables in any realistic example.
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4.3 Predicting the Impossible

What if we obtainSp by adding a prophecy variable p in this way to a specificationS, and p makes
a prediction that cannot be fulfilled? This would appear to cause unsoundness, because it seems
that ∃∃∃∃∃∃ p :Sp and S couldn’t be equivalent. But they would be equivalent, and understanding why
helps understand our prophecy variables. Let’s consider an especially egregious example. Define
S by

S Δ
= (x = 0) ∧ �[x ′ = x + 1]〈x 〉.

Since x ′ = x + 1 equals (x ′ = x + 1) ∨ false , we can rewrite this as

S Δ
= (x = 0) ∧ �[(x ′ = x + 1) ∨ false]〈x 〉.

Following the procedure above, we add a prophecy variable p that predicts if the next non-
stuttering step (i.e., the next (x ′ = x + 1) ∨ false step) is an x ′ = x + 1 step or a false step:

Sp Δ
= Initp ∧ �[Nextp]〈x,p〉,

Initp Δ
= (p ∈ {go, stop}) ∧ Init ,

Nextp Δ
= ((p = go) ∧ (x ′ = x + 1) ∧ (p ′ ∈ {go, stop}))
∨ ((p = stop) ∧ false ∧ (p ′ ∈ {go, stop})).

If p ever becomes equal to stop, then no further Nextp step is possible (since no step can satisfy
false), at which point the behavior must consist entirely of stuttering steps. In other words, the
behavior describes a system that has stopped. But that’s fine because S allows such behaviors. If
we don’t want S to allow such halting behaviors, we must conjoin to it a supplementary property
such as WF〈x 〉 (x ′ = x + 1). In that case, Sp becomes

Initp ∧ �[Nextp]〈x,p〉 ∧ WF〈x 〉 (x ′ = x + 1). (17)

The conjunct WF〈x 〉 (x ′ = x + 1) implies that a behavior must keep taking steps that increment x .
Formula (17) thus rules out any behavior in which p ever equals stop, and therefore the formula
∃∃∃∃∃∃ p :Sp ∧WF〈x 〉 (x ′ = x + 1) is equivalent to S ∧WF〈x 〉 (x ′ = x + 1) .

Readers who find this equivalence puzzling may be confusing the next-state action false
with the specification false. The specification false is satisfied by no behavior; the specification
�[false]〈x 〉 allows any behavior in which the value of x never changes.

Readers who find the specification (17) weird are not confused. It is weird. In the terminol-
ogy introduced by ER, it is weird because it is not machine closed. (Machine closure is explained
in ER; it originally appeared under the name feasibility [5].) Except in rare cases, system spec-
ifications should be machine closed. However, a specification obtained by adding a prophecy
variable is not meant to specify a system. It is used only to verify the system. Its weirdness is
harmless.

4.4 A Sequence of Prophecies

We generalize a simple prophecy variable that makes a single prediction to one that makes a se-
quence of consecutive predictions. As an example, let D be the specification that is the same as
˜A except instead of alternating between input and output actions, it maintains a queue inq of

unprocessed input values. An input action appends a value to the end of inq , and an output action
removes the value at the head of the queue and changes sum , num , and out as in our previous
specifications. An input action can be performed anytime, but an output action can occur only
when inq is not empty. The definition of D is in Figure 5, where for any nonempty sequence sq
of values, Head (sq ) is the first element of sq and Tail (sq ) is the sequence obtained from sq by
removing its first element, with Tail (〈 〉) = 〈 〉.
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Fig. 5. The definition of specification D.

Fig. 6. The definition of specification E.

Fig. 7. The definition of specification Ep .

As for our previous example, we implement D with a specification E, which also contains an
undo action that throws away the first input in inq instead of processing it. It is specified in
Figure 6.

To define a refinement mapping under which E implements D, we add a prophecy variable
whose value is a sequence of predictions, each one predicting whether the corresponding value
of inq will be processed by an output action or thrown away by an undo action. Each prediction
is made when the value is added to inq by an input action. The prediction is forgotten when the
predicted action occurs. The definition of Ep is in Figure 7.

For sequences vsq and dsq of the same length, let OnlyDo (vsq , dsq ) be the subsequence of vsq
consisting of all the elements for which the corresponding element of dsq equals do. For example:

OnlyDo (〈3, 2, 1, 4, 7〉, 〈do, undo, undo, do, undo〉) = 〈3, 4〉.
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Fig. 8. The definition of specification F .

Specification IE implements ID under this refinement mapping:

inq ← OnlyDo (inq , p ), sum ← sum, num ← num .

The generalization from this example is straightforward, if we take p = 〈 〉 to mean that there is
no prediction being made. Let the next-state action Next be the disjunction of elementary actions
that include a set of actions Ai for i in a set P , and let Pn be the set of all length n sequences of
elements of P . Here is how we add a prophecy variable p that makes a sequence of predictions of
the i for which the next Ai step occurs:

(1) Conjoin p ∈ Pn to the initial predicate Init , for some n ≥ 0. (Note that p ∈ P 0 is equivalent
to p = 〈 〉.)

(2) Replace each Ai by (p = 〈 〉 ∨ Head (p ) = i ) ∧ (p ′ = Tail (p )) ∧ Ai .
(3) Replace each other elementary action B by either (p ′ = p ) ∧ B or

(∃ i ∈ P : p ′ = Append (p, i )) ∧ B .

As with simple prophecy variables, AX is satisfied with the required behavior sp
1 , s

p
2 , . . . being

one in which all the right predictions are made.
In our definition of Ep , we could eliminate the p = 〈 〉 of condition 2 from the definitions of

OutputpE and Undop
E because IEp implies that p is always the same length as inq , and OutputD

and UndoE both imply inq � 〈 〉.
In condition 1, n can even equal ∞, where P∞ is the set of all infinite sequences of elements

of P . In that case, condition 3 requires replacing B by (p ′ = p ) ∧ B , since one cannot append
an element to an infinite sequence. Such a prophecy variable, which makes infinitely many initial
predictions that can unfold forever, is used in the completeness proof of Section 7.

4.5 A Set of Prophecies

Our next type of prophecy variable is one that makes a set of concurrent predictions. Our example
specification F is similar to D, except that instead of a queue inq of inputs, it has an unordered
set inset of inputs. An output action can process any element of inset . Formula F is defined in
Figure 8, where \ is the set difference operator, so Int \ inset is the set of all integers not in inset .

As before, we add an undo action that can throw away an element in inset so it is not processed
by an output action. The resulting specification G is defined in Figure 9.

To show that G implements F , we add a prophecy variable p whose value is always a function
with domain inset . For any element n of inset , p (n ) predicts whether that element will be undone
or produce an output. To write the resulting specificationGp , we need some notation for describing
functions:
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Fig. 9. The definition of specification G.

Fig. 10. The definition of specification Gp .

EmptyFcn The (unique) function whose domain is the empty set.

Extend (f , v ,w ) The function̂f obtained from function f by adding v to its domain and defin-

inĝf (v ) to equal w .
Remove (f , v ) The function obtained from function f by removing v from its domain.

The specificationGp is defined in Figure 10. As before, AX holds with sp
1 , s

p
2 , . . . a behavior having

all the right predictions. Specification IGp implements IF under this refinement mapping:

inset ← {n ∈ inset : p (n ) = do}, sum ← sum, num ← num,

which assigns to the variable inset of IF the subset of inset consisting of all elements n with
p (n ) = do.

The only nontrivial part of the generalization from this example to an arbitrary set of prophecies
is that p should make no prediction for a value not in its domain. Usually, as in our example, the
actions to which the prediction apply are not enabled for a value not in the domain of p. If that’s
not the case, then the condition conjoined to an action to enforce the prediction should equal true
if the prediction is being made for a value not in the domain of p.

4.6 Further Generalizations of Prophecy Variables

Prophecy variables making sequences and sets of predictions can be generalized to prophecy vari-
ables whose predictions are organized in any data structure—even an infinite one. The generaliza-
tion is described in detail in [18]. The basic ideas are:

• A prediction predicts a value i for which the next step satisfying an action ∃ i ∈ P : Ai
satisfies Ai . To add the prophecy variable, each Ai is modified to enforce this prediction.
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• An action or an initial condition that makes a prediction must allow any value i in P to be
predicted.
• Any action may remove predictions and/or make new predictions. An action that fulfills a

prediction must remove that prediction. Except for that requirement, actions may leave all
predictions unchanged.

Whether a particular prophecy is made is often indicated by the data structure containing the
prophecies. In the example of Section 4.5, whether a prediction is made for an integer n depends
on whether n is in the domain of p. Sometimes it is convenient to indicate the absence of a prophecy
by a special value none that is not an element of the set P of possible predictions. In the example
of a simple prophecy variable in Section 4.2, we could let the Output and Undo actions remove the
prophecy by setting p to none and have the Input action make the prophecy by setting p to do or
undo. A none value is handled like the value 〈 〉 of the prophecy sequence variables of Section 4.4.

4.7 Stuttering Variables

Usually, when S1 implements S2, specification S1 takes more steps than S2. Those extra steps
simulate stuttering steps ofS2 under a refinement mapping. As an example, letS2 have an internal
variable q , whose value is a sequence, and an action A that sets q to Tail (q ). Let A equal

E ∧ (q ′ = Tail (q )) ∧ UC 〈w〉,
where E is an enabling condition that implies q � 〈 〉, and w is the list of all internal and external
variables of S2 except q .

Let S1 implement S2 by representing q with an array variable a , where the value of q is the
sequence of elements a[0], . . . , a[Len (q ) − 1], and a[j ] equals a special value null for j ≥ Len (q ).
(We assume that a is a large enough array—perhaps infinite.) Let an A step of S2 be implemented
with a variable i , initially equal to 0, by steps setting a[i] to a[i + 1] for i equal to 0 through
Len (q )−1, the last step resetting i to 0. To show thatS1 implementsS2, we might use a refinement
mapping in which an A step of S2 is implemented by the first of those Len (q ) steps of S1.

If a and i are internal variables of S1, then S2 should implement S1. Since S1 takes more steps
than S2 to implement an A step, defining a refinement mapping to show that S2 implements S1

requires an auxiliary variable that adds stuttering steps to S2 that implement the additional steps
taken by S1. That variable must add Len (q ) − 1 stuttering steps for each A step.

ER made their prophecy variables more complicated so they could add stuttering steps; we have
long felt it was easier instead to use a new kind of auxiliary variable. We introduce a variable s that
can add stuttering steps before and/or after an action, in this case the action A. An easy way to
do it is to let the value of s be a natural number. Normally s equals 0; it is set to a positive integer
to take stuttering steps, the value of s being the number of steps remaining. Let Init and Next be
the initial predicate and next-state actions of S2. We assume Next is written A ∨ B 1 ∨ . . . ∨ Bn ,
where for each j , no step is both an A and B j step. We add the stuttering variable s toS2 as follows
to obtain the specification Ss

2 that adds Len (q ) − 1 steps after each A step. The initial predicate
Inits and next-state action Nexts of Ss

2 are

Inits Δ
= Init ∧ (s = 0) Nexts Δ

= As ∨ B s
1 ∨ . . . ∨ B s

n ,

As Δ
= ((s = 0) ∧ (s ′ = Len (q ) − 1) ∧ A)
∨ ((s > 0) ∧ (s ′ = s − 1) ∧ UC 〈w, q〉),

B s
j

Δ
= (s = s ′ = 0) ∧ B j , for j = 1, . . . ,n .

Defining the refinement mapping under which Ss
2 implements S1 is tricky. The reader can verify

that if A were the only action that changed q , then the correct refinement mapping would include
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these substitutions, where q[k ] equals the k th element of q :

i ← iBar
a[j ] ← if s = 0

then if j < Len (q ) then q[j + 1] else null
else if j < iBar then q[j + 1]

else if j ≤ Len (q ) then q[j ] else null

where iBar Δ
= if s = 0 then 0 else Len (q ) + 1 − s .

To add the Len (q ) − 1 stuttering steps before every A step, we just change the definition of As to:

As Δ
= ((s = 0) ∧ E ∧ (s ′ = Len (q ) − 1) ∧ UC 〈w, q〉)
∨ ((s > 1) ∧ (s ′ = s − 1) ∧ UC 〈w, q〉)
∨ ((s = 1) ∧ (s ′ = 0) ∧ (q ′ = Tail (q )) ∧ UC 〈w〉).

(18)

Finding a refinement mapping with this stuttering variable is another tricky exercise.
The generalizations that add K stuttering steps before or after each A step, for an arbitrary state

function K and action A, are straightforward. To add the steps after A, we modify the definition
above by replacing Len (q ) − 1 with K and w, q with the list of all variables of S2. To add the
stuttering steps before the A step, we make one additional change to the corresponding definition
of As : replacing (q ′ = Tail (q )) ∧ UC 〈w〉 with F , where F is an action such that A ≡ E ∧F and
F is enabled in every state in which E is true.

We don’t have to use natural numbers for counting stuttering states. We can add stuttering
steps both before and after an action by using negative integers to count the steps after the action,
counting up to 0—e.g., for an additional J stuttering steps after action A, we can replace the last
disjunct of Formula (18) by

∨ ((s = 1) ∧ (s ′ = −J ) ∧ (q ′ = Tail (q )) ∧ UC 〈w〉)
∨ ((s < 0) ∧ (s ′ = s + 1) ∧ UC 〈w, q〉).

Often, we let s take values that help define the refinement mapping. For example, suppose we want
to take stuttering steps so the refinement mapping can implement an action by each process satis-
fying some condition. We can let s always be a sequence of processes, where the empty sequence
is the normal value of s , and counting down is done by s ′ = Tail (s ).

A single variable s can be used to add stuttering steps before and/or after multiple actions. For
example, we can let the normal value of s be 〈 〉, add stuttering steps to an action A by letting s
assume values of the form 〈“A”, i 〉 for a number i , and add stuttering steps to an action B by
letting s assume values of the form 〈“B”, q 〉 for q a sequence of processes.

To handle the rare case when S1 implements S2 but it has internal behaviors that halt while the
corresponding internal behaviors of S2 must take additional steps, we add an infinite stuttering

variable s to S1 that simply keeps changing forever. The formula WF〈s 〉 (s ′ � s ) asserts that there
are infinitely many steps in which the value of s changes.2 We add the auxiliary variable s by
conjoining to the supplementary property of S1 the temporal logic tautology ∃∃∃∃∃∃ s : WF〈s 〉 (s ′ � s ) .
An infinite stuttering variable is our only auxiliary variable that is added by modifying the supple-
mentary property rather than the initial predicate and next-state action.

2We assume that variables can take more than one value.
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Fig. 11. The common prefix of behaviors σ and τ .

5 VERIFYING LINEARIZABILITY

Linearizability has become a standard way of specifying an object shared by multiple pro-
cesses [10]. A process’s operation Op is described by a sequence of three steps: a BeginOp step
that provides the operation’s input, a DoOp step that performs the operation by reading and/or
modifying the object, and an EndOp step that reports the operation’s output. The BeginOp and
EndOp steps are externally visible, meaning that they change external variables. The DoOp step
is internal, meaning it modifies only internal variables.

We illustrate our use of auxiliary variables for verifying a linearizability specification with the
atomic snapshot algorithm of Afek et al. [3]. Our discussion is informal; a precise exposition includ-
ing formal TLA+ specifications is in [18]. The algorithm implements an array of memory registers
accessed by a set of writer processes and a set of reader processes, with one register for each writer.
A writer can perform write operations to its register. A reader can perform read operations that
return a “snapshot” of the memory—that is, the values of all the registers.

We let LinearSnap be a linearizable specification of what a snapshot algorithm should do. It uses
an internal variable mem , where mem (w ) equals the value of writer w ’s register. A DoWrite step
modifies mem (w ) for a single writer w . A single DoRead step reads the value of mem . Another
internal variable maintains a process’s state while it is performing an operation, including whether
the DoOp action has been performed and, for a reader, what value of mem was read by DoRead
and will be returned by EndRead . An external variable describes the BeginOp and EndOp
actions.

We consider a simplified version of the Afek et al. snapshot algorithm we call SimpleAfek .
It maintains an internal variable imem . A writer w writes a value v on its i th write by setting
imem (w ) to the pair 〈i , v 〉. A reader does a sequence of reads of imem , each of those reads reading
the values of imem (w ) for all writers w in separate actions, executed in any order. If the reader
obtains the same value of imem on two successive reads, it returns the obvious snapshot contained
in that value of imem . If not, it keeps reading. SimpleAfek does not guarantee termination. The
actual algorithm adds a way to have reading terminate after at most three reads and a way to
replace the unbounded write numbers by a bounded set of values. The more complicated algorithm
can be handled in the same way as SimpleAfek .

SimpleAfek implements LinearSnap, but constructing a refinement mapping to show that
it does requires predicting the future. We show why with the following example, illustrated in
Figures 11 to 13. There are two writers, named 1 and 2, and one reader. We describe two behaviors
σ and τ of SimpleAfek and consider how a refinement mapping maps steps of those behaviors
to DoRead and DoWrite steps of LinearSnap. As shown in Figure 11, both behaviors begin in
a state having imem (1) = imem (2) = 〈0, old 〉 for some value old and with the reader perform-
ing a BeginRead step (labeled BR) and beginning its sequence of reads of the complete array
imem with individual reads obtaining the value 〈0, old 〉 for the first reads Rd 1 (1) of imem (1) and
Rd 1 (2) of imem (2), as well as for the second read of imem (1). Meanwhile, writer 1 performs a
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Fig. 12. Suffix of behavior σ .

Fig. 13. Suffix of behavior τ .

BeginWrite step BW (new ) of the value new . It then writes value new to imem (1), updating it
to 〈1,new 〉, followed by an EndWrite step.

As illustrated in Figure 12, in behavior σ the reader then completes its second read, finding
imem (2) = 〈0, old 〉. Concurrently, writer 2 writes new to its register, the write of imem (2) oc-
curring after the second read of imem (2). Since the first two reads see the same values of imem ,
the read completes and returns the snapshot with mem (1) = mem (2) = old . Because the reader
obtained the snapshot before the writes, we have:

A. For behavior σ , the step of SimpleAfek that implements the DoRead step must precede the
step that implements writer 1’s DoWrite step.

As shown in Figure 13, in behavior τ the second read of imem (2) is preceded by writer 2 updat-
ing imem (2) to 〈1,new 〉. The reader then continues its operation, finding imem (2) = 〈1,new 〉.
Because the first two reads obtained different values of imem (2), the reader continues reading. Its
third and fourth reads find imem (1) = imem (2) = 〈1,new 〉, so the read completes and returns
the snapshot with mem (1) = mem (2) = new . Since that snapshot contains the value written by
writer 1, we have:

B. For behavior τ , the step of SimpleAfek that implements the DoRead step must follow the
steps that implement the DoWrite steps of both writers.

Observations A and B imply that to handle the behavior σ correctly, the refinement mapping must
know that the current behavior is σ and not τ before the two behaviors have diverged. This is
possible only if something in the state predicts the future—i.e., only if we add a prophecy variable.

Linearizability provides a simple, uniform way of specifying data objects, but it provides little
insight into what state must be maintained by an implementation. Whether this is a feature or a
flaw depends on what the specification is used for. We present an equivalent snapshot specification
NewLinearSnap that can make verifying correctness of an implementation easier. We verify that
SimpleAfek implements LinearSnap by verifying that it implements NewLinearSnap and that
NewLinearSnap implements LinearSnap.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 6. Publication date: April 2022.



Prophecy Made Simple 6:21

In addition to the internal variable mem of LinearSnap, NewLinearSnap uses an internal vari-
able isnap such that during a read operation by reader r , the value of isnap (r ) is the sequence of
values that mem had since the operation began. These values are the snapshots that LinearSnap
allows the read to return. The BeginRead action sets isnap (r ) to a one-element sequence contain-
ing the current value of mem . The writer actions are the same as in LinearSnap, except that a
DoWrite action appends the new value of mem to isnap (r ) for all readers r that have executed a
BeginRead action but not the corresponding EndRead . The EndRead action of reader r returns
a nondeterministically chosen element of the sequence isnap (r ). There is no DoRead action.

To verify that SimpleAfek implements NewLinearSnap, we add to it a history variable that
has the same value as variable isnap of NewLinearSnap. Translating an understanding of why
the algorithm is correct into an invariant of SimpleAfek and a refinement mapping under which it
implements NewLinearSnap is then a typical exercise in assertional reasoning about concurrent
algorithms, requiring no prophecy variable.

Although NewLinearSnap is equivalent to LinearSnap, to verify SimpleAfek we need only
verify that it implements LinearSnap. This is done by first adding to it a prophecy variable p
so that p (r ) predicts which element of the sequence isnap (r ) of snapshots will be chosen by
the EndRead action of reader r . The value of p (r ) is set to an arbitrary positive integer by r ’s
BeginRead action and is reset to none by its EndRead action.

If p (r ) is set to 1, predicting that r will return the value mem had when the BeginRead step
occurred, then the refinement mapping will cause the DoRead step of LinearSnap to occur right
after the BeginRead step. If p (r ) is set to a number greater than 1, predicting that r will return
the value of mem after the (p (r ) − 1)st DoWrite action since the read began, then the refine-
ment mapping will cause the DoRead step to occur immediately after that DoWrite step. The
step that implements the DoRead step of LinearSnap is added as follows as a stuttering step of
NewLinearSnap.

We introduce a stuttering variable that adds a single stuttering step after r ’s BeginRead action
if p (r ) = 1, and that adds stuttering steps after each DoWrite action—one stuttering step for
every read r for which the write adds the p (r )th element to isnap (r ). To add the stuttering step
after a BeginRead step, the stuttering variable simply counts down from 1. To add any necessary
stuttering steps after a DoWrite step, it counts down using the set of readers whose DoRead the
steps will simulate. Requiring the stuttering steps to simulate those DoRead steps of LinearSnap
makes it clear how to define the refinement mapping.

The verification that SimpleAfek implements LinearSnap, which requires a prophecy variable,
has been split into two steps: verifying that the intermediate specification NewLinearSnap imple-
ments LinearSnap and is implemented by SimpleAfek . Only the first step requires a prophecy
variable. This approach can also be applied to an example in Herlihy and Wing’s article defin-
ing linearizability [10]: an algorithm that implements a linearizable specification of a queue and
requires predicting the future to construct a refinement mapping. The intermediate specification
replaces the totally ordered queue of the original specification with a partially ordered set, where
the partial order constrains which items may be dequeued. A refinement mapping showing that
the new specification implements the original one can be defined using a prophecy variable that
predicts the order in which items will be dequeued.

Verifying linearizability is an important problem. Liang and Feng devised a method for doing
it [19], and Chakraborty et al. developed an elaborate theory just for proving linearizability of
queue algorithms [6]. Our method of decomposing the verification has two obvious advantages.
Adding a prophecy variable is not trivial—especially for complex algorithms. It is easier to add it to
the simpler intermediate specification. Second, the same intermediate specification can be used for
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Fig. 14. The definitions of specification S1 and S2.

multiple implementations. There is a third advantage that suggests the approach should be widely
applicable: the intermediate specification is likely to be useful.

A specification might be written for implementors of a system or for its users. A specification
written for implementors should not contain in its state information that is not needed by an
implementation. The need for auxiliary variables to define a refinement mapping means that its
state does contain unnecessary information. However, it could be a better specification for users.
It’s easier for a user to think of a queue as being totally ordered; an implementor should know that
a partial order suffices. Writing an intermediate specification with no unnecessary state can be a
useful part of the system-design process.

6 PROPHECY CONSTANTS

In addition to variables and constants like 0, a temporal logic formula can contain constant param-
eters. The sets of readers and writers in the SimpleAfek specification are examples of constant
parameters. Constant parameters can also be used to make predictions. Moreover, no new rules
are required to use them in this way. The ordinary rules of logic suffice.

What we call a variable is called a flexible variable by logicians because its value can vary during
the course of a behavior. They call a constant parameter a rigid variable because its value remains
the same throughout a behavior. In addition to quantifiers over variables, temporal logic has quan-
tifiers ∃ and ∀ over constant parameters. A behavior σ satisfies the formula ∃ n : F iff there is a
value of the constant parameter n (the same value in every state of σ ) for which σ satisfies F . We
let ∃ n ∈ P : F equal ∃ n : (n ∈ P ) ∧ F , where P is a constant expression (one containing only
constants and constant parameters) not containing n . The following simple rule of ordinary logic
holds for any temporal logic formulas F and G and constant expression P .

∃ Elimination To prove (∃ n ∈ P : F ) ⇒ G , it suffices to assume n ∈ P and prove F ⇒ G .

The following example from Section 5.2 of ER shows how this rule can be used to construct refine-
ment mappings that require predicting the future, without adding a prophecy variable.

Specification S1 is satisfied by behaviors that begin with x = 0, repeatedly increment x by 1,
and eventually stop (take only stuttering steps). It has no internal variables. Specification S2 has
external variable x and internal variable y . Its internal specification is satisfied by behaviors that
begin with x = 0 and y any element of the set Nat of natural numbers, take steps that increment
x by 1 and decrement y by 1, and stop when y = 0. The TLA specifications of S1 and S2 are in
Figure 14, where formula Stops asserts that the value of x eventually stops changing.

Clearly S1 and S2 are equivalent, since both are satisfied by behaviors that increment x a finite
number of times (possibly 0 times) and then stop. ER observes that S1 ⇒ S2 cannot be verified
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using their prophecy variables because S1 doesn’t satisfy a condition they call finite internal non-
determinism. We can prove it using the ∃ Elimination rule.

Specification S1 implies that the value of x is bounded, which means that there is some natural
number n for which x ≤ n is an invariant. This means that the following theorem is true:

S1 ⇒ ∃ n ∈ Nat : �(x ≤ n ). (19)

Define T 1 (n ) to equal S1 ∧ �(x ≤ n ). Formula (19) implies that S1 equals ∃ n ∈ Nat : T 1 (n ).
By the ∃ Elimination rule, this implies that to prove S1 ⇒ S2, it suffices to assume n ∈ Nat and
prove T 1 (n ) ⇒ S2. This can be done with the refinement mapping y ← n − x . The proof of
S1 ⇒ S2 can be made completely rigorous in TLA and presumably in other temporal logics.

In general, we proveS1 ⇒ S2 by finding a formula T 1 (n ) such thatS1 implies ∃ n ∈ P : T 1 (n )
for some constant set P , and we then prove n ∈ P implies T 1 (n ) ⇒ S2. We can view this method
in two ways. The first is that instead of proving S1 ⇒ S2 with a single refinement mapping, we
prove T 1 (n ) ⇒ S2 by using a separate refinement mapping for each value of n . The second is
that n is a constant that predicts the value x will have when the execution stops (stutters forever).
We take the latter view and call n a prophecy constant.

Prophecy constants are useful for predicting the infinite future—that is, making predictions that
depend on the entire behavior. Section 6 of ER provides an example in which they cannot prove
S1 ⇒ S2 with a refinement mapping because the supplementary property of S2 implies that
the initial value of an internal variable depends on whether the behavior terminates, violating
a condition they call internal continuity. It is easy to find the refinement mapping by adding a
prophecy constant that predicts if the behavior terminates—a prediction about the entire behavior.

The completeness results of the next section show that, in principle, we can use prophecy
constants instead of prophecy variables, and vice versa. In practice, it seems that we should use
prophecy variables to predict safety and prophecy constants to predict liveness. A prophecy vari-
able is good for predicting which of multiple possibilities will be allowed to happen; a prophecy
constant is good for predicting what will eventually happen.

“Prophecy constants” is just a new name for the bound rigid variables of a temporal logic. The
observation that those bound variables can be used for defining refinement mappings appears not
to have been published before. Hesselink’s eternity variables [11] are essentially a special case of
prophecy constants, except based on reasoning directly about sequences of states using history
variables rather than on temporal logic. Temporal logic was introduced to computer science by
Pnueli to abstract that kind of reasoning [24].

7 THE EXISTENCE OF REFINEMENT MAPPINGS

We now present two completeness results. The first states that for any specification S1 of the
form ∃∃∃∃∃∃ y : Init ∧ �[Next]〈x,y〉 ∧ L , if S1 implements S2, then we can add history, stuttering, and
prophecy variables to S1 to obtain an equivalent specification Sa

1 for which there exists a refine-
ment mapping showing that Sa

1 implements S2. The second result is the same except for prophecy
constants rather than prophecy variables.

These results require only the assumption that the language for defining auxiliary variables
and writing proofs is sufficiently expressive. (TLA+ is such a language.) We first sketch the proof
for prophecy constants. It is almost the same as Hesselink’s proof of completeness for eternity
variables [11]. We then indicate how the proof is modified for prophecy variables. In the proofs,
we let a specification’s state be an assignment of values to that specification’s variables, and we
let a behavior of a specification be the sequence of specification states of a behavior satisfying the
specification.
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Let IS1 and IS2 be the internal specifications of S1 and S2. To simplify the proof, we assume
that the next-state action Next of IS1 allows stuttering steps, replacing it by Next ∨ UC 〈x, y〉 if
necessary; and we assume IS1 never halts, adding an infinite stuttering variable if it may halt.3 Let
ISh

1 be obtained from IS1 by adding a history variable h that initially equals 1 and is incremented

by 1 with every Next step. Letting σ[i] be the i th state of a behavior σ , specification ISh
1 equals

∃σ ∈ P : ISh
1 ∧ �(〈x, y〉 = σ[h]),

where P is the set4 of all behaviors of ISh
1 . We define a refinement mapping using σ as a prophecy

constant.
Since S1 implements S2, for each σ in P there exists a behavior f (σ ) of IS2 that σ simulates.

We define the refinement mapping for σ so that it maps the state σ[h] in the behavior of ISh
1 to the

corresponding state f (σ )[g] of IS2, for some g . In the absence of stuttering steps, g would equal h .
To define g in general, we first make the externally visible steps σ and f (σ ) match up by adding
stuttering steps to σ and/or f (σ ). Since our specifications are stuttering insensitive, we can choose
f so that f (σ ) already has the necessary stuttering steps. Since σ is an arbitrary behavior of IS1,
we may have to add stuttering steps to it to make the externally visible steps of σ match those of
f (σ ). We do that by adding a stuttering variable s to ISh

1 . We can then define g to be a function
of h , s , σ , and f (σ ).

We now show how to use a prophecy variable p instead of the prophecy constant σ to construct

the refinement mapping. Let ISh
1 be as above. Let IShj

1 be the specification obtained by adding a

history variable j to ISh
1 whose value is the sequence of IS1 states reached thus far during the

current behavior of ISh
1 . Initially, j contains a single element that equals the initial state of IS1;

and each Nexth step appends the new IS1 state to j . At any point during an execution of IShj
1 ,

the value of j is the part of the behavior of IS1 executed thus far, and its length always equals
h . We will define p to be a prophecy variable whose value is an infinite sequence of IS1 states,
predicted to be the rest of the behavior whose prefix is the current value of j . Thus, the complete
behavior σ is a function of the current state. We can then define the necessary refinement mapping
g the same way we did for the prophecy constant σ .

To complete our proof sketch, we show how the prophecy variable p is defined and how to
define the behavior σ of IS1 as a function of the current values of j and p. Let Σ be any set of

IS1 states containing all its reachable states. We then define the specification IShjp
1 obtained by

adding the prophecy variable p to IShj
1 as follows: the initial value of p is any infinite sequence

of elements of Σ, and the next-state action of IShjp
1 is

Nexthj ∧ (Head (p ) = 〈x′, y′ 〉) ∧ (p ′ = Tail (p )).

The behavior σ is defined to equal the concatenation of j and p, which equals its initial value

throughout a behavior of IShjp
1 . Define a step of σ to be a correct prediction if it satisfies the next-

state relation ofIS1. If all the steps of σ are correct predictions, then σ is a behavior ofIS1. We can
therefore define the required refinement mapping the same way we did for the prophecy constant

σ . If σ contains an incorrect prediction, then IShjp
1 halts (stutters forever) at the first incorrect

prediction. Since IS1 is assumed not to halt, this means σ does not satisfy IS1 and it doesn’t

3This also allows us to avoid Hesselink’s “preservation of quiescence” assumption.
4In TLA+, it is easy to write a specification ISh

1 in which P is a collection that is “too large” to be a set—for example, a

version of the Afek et al. algorithm in which a memory value can be any set, Russell’s paradox implying that the collection

of all sets is not a set. We could remove the assumption that P is a set by generalizing prophecy variables and constants

to predict one among an arbitrary collection of possibilities, but there is no practical reason to do so. This assumption is

built into many formalisms, including the one used by ER.
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matter how the refinement mapping is defined, since a proof that S1 implements S2 considers
only behaviors satisfying IS1.

These completeness proofs are based on embedding behavioral reasoning in state-based reason-
ing by recording behaviors in auxiliary variables. This is the same idea used in the first complete-
ness result for assertional reasoning about concurrent specifications [22]. Such a completeness
result is important because it shows that there are no inherent limitations to a proof method. How-
ever, it does not tell us anything about how to use the method in practice. For example, prophecy
constants and prophecy variables are used differently, even though their completeness proofs are
similar. Trying to mimic the reasoning used in these completeness proofs would simply place a
state-based veneer over a behavioral proof. It would defeat the purpose of refinement mappings,
which is to extend the Floyd-Hoare state-based assertional approach to concurrent systems.

8 CONCLUSION

Refinement means implementing a higher-level description of a program or system with a lower-
level one. We know of two general methods of verifying refinement: refinement mappings, which
we have described, and reduction. Reduction means obtaining a coarser-grained description (one
with fewer atomic actions) from a finer-grained one by combining multiple atomic actions into a
single action [20]. Reduction can be performed in TLA using refinement mappings [7].

ER and later uses of prophecy variables are based on assertional reasoning, introduced by Floyd
[9] and Hoare [12]. The fundamental principle underlying this reasoning is that whether a program
will do the correct thing in the future depends not on what it did in the past (or what it will
do in the future), but on a property of its current state. For properties like invariance (including
partial correctness) and termination that can be described in terms of the program’s state, auxiliary
variables are not necessary. They are needed only for refinement, which relate two specifications
that may have different sets of states.

Much of the recent work uses prophecy variables based on a paradigm in which a havoc state-
ment nondeterministically assigns to the variable an arbitrary element of some set of values, and
a subsequent assume statement aborts execution if the “wrong” value was chosen. If the set of val-
ues is finite, this is a special case of an ER prophecy variable. Because it is a restricted type of ER
variable, it is sound for an infinite set of values even though it doesn’t satisfy ER’s finite internal
nondeterminism condition.

This assume/havoc approach is much like our simple prophecy variable, and it too is easier to
use than an ER prophecy variable because it involves thinking forward to the future rather than
backward from the future. However, like an ER prophecy variable, it predicts the future value of
a variable. Our prophecy variables predict future events (action executions). This allows us easily
to make predictions about structured sets of events, such as sequences. The prophecy variables of
Zhang et al. [26] can predict a finite sequence of future values of a variable, but unlike predictions
made with our prophecy sequences, their predictions cannot be modified. And sequences are just
one kind of structure that can be put on our predictions.

Some recent work [8, 23] uses prophecy variables to assist in model checking, verifying that
something eventually happens by adding a variable that predicts how many steps it takes for it to
happen. They are verifying properties of state machines. Other recent work on prophecy variables
[15, 19, 25, 26] uses Hoare triples to reason about programming-language code. Some of this work
is for proving reduction [25]. The rest is for proving refinement (also called abstraction).

Being based on a programming language limits the power of methods. Reduction and refinement
mappings are restricted to conform to the program structure. For example, it seems impossible for
them to prove the equivalence (each refining the other) of two formulations of a simple N -process
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producer-consumer algorithm—one using two processes and the other using N processes [16]. Be-
cause their expression languages have no way of describing the control state, these programming-
language-based methods require history variables to prove even the simplest properties—for ex-
ample, that the parallel composition of two atomic statements that each increment x by 1 is a
program that increments x by 2. Moreover, they do not seem to be able to express, let alone ver-
ify, the rich variety of liveness conditions that arise in concurrency—for example, to distinguish
between weakly and strongly fair semaphores.

We do not mean to denigrate programming languages and verification of programs written in
them. Programs are what are executed on computers, and it is important to verify them. TLA is for
describing and reasoning about algorithms, which are above the code level. Hoare famously said:
“Inside every large program is a small program that is struggling to get out.” That small program is
what we call an algorithm [14]. TLA is for specifying and reasoning about those algorithms. TLA
is simple because it is very close to its semantics. It is extremely expressive because it uses the full
power of mathematics to describe an algorithm. The algorithm and the properties we prove about
it are written in mathematics, the same language in which the proofs are written. There is no need
for a special verification logic such as Hoare logic or separation logic. TLA is mathematics.
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