
HAL Id: hal-03648027
https://hal.inria.fr/hal-03648027

Submitted on 21 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Methods for Biological Networks D2.1 Report
on Scalable Methods for Tropical Solutions (T1.2)

Christoph Lüders, Eléonore Bellot, François Fages, Ovidiu Radulescu, Sylvain
Soliman

To cite this version:
Christoph Lüders, Eléonore Bellot, François Fages, Ovidiu Radulescu, Sylvain Soliman. Symbolic
Methods for Biological Networks D2.1 Report on Scalable Methods for Tropical Solutions (T1.2):
ANR-DFG SYMBIONT Project ANR-17-CE40-0036. [Research Report] Inria Saclay. 2022. �hal-
03648027�

https://hal.inria.fr/hal-03648027
https://hal.archives-ouvertes.fr

ANR-DFG SYMBIONT Project
ANR-17-CE40-0036

Symbolic Methods for Biological Networks
D2.1 Report on Scalable Methods for

Tropical Solutions (T1.2)
Christoph Lüders1, Eléonore Bellot2, François Fages2, Ovidiu

Radulescu3, and Sylvain Soliman2

1Universität Bonn, Institut für Informatik II, Endenicher Allee 19a,
53115 Bonn, Germany

2EP Lifeware, Inria Saclay-Île de France, Palaiseau, France
3DIMNP, UMR CNRS 5235, University of Montpellier, Montpellier,

France

October 7, 2020

Tropical geometry can be used to find the order of time scales of variables
in chemical reaction networks and search for model reductions [SGF+15]. In
this report, we consider the problem of solving tropical equilibration problems
in ODE systems of the BioModels model repository. We are interested in
the existence of solutions both in R and Z. We present three methods and
study their scalability to solve complete equilibration problems. The first two
methods, a naive polyhedral method using PtCut [Lüd20c], and a Satisfiability
Modulo Theories (SMT) method recently introduced in [Lüd20a] using the SMT
solver CVC4 [BCD+11], compute the set of solutions over real numbers. The
SMT approach is significantly faster than the polyhedral approach, by up to two
orders of magnitude. Furthermore, this method provides an anytime algorithm,
thus offering a way to compute parts of the solution when the polyhedral
approach is infeasible. The third method, the Constraint Programming (CP)
method presented in [SFR14] and implemented in Biocham-4, computes integer
equilibrations. The CP approach presents similar performance as the SMT
method, mostly below two minutes computation time for the polynomial and
rational fractional ODE systems in this benchmark. This method also reveals
that 30% of the models that can be equilibrated over the reals have in fact no
integer solution. These evaluation results show the scalability of the SMT and
CP solvers for solving both real and integer tropical equilibration problems on
real-size problems.

1

François Fages
D1.2

1. Introduction

Tropical geometry is a natural approach to find the scalings necessary for slow/fast
decompositions and model order reduction of biochemical reaction networks [SGF+15].
These reductions extending the quasi-steady state and quasi-equilibrium approximations,
well known in biochemistry, are based on automated algorithms. The first step in these
algorithms consists in computing tropical equilibration solutions.

The basic scaling idea is to consider that both variables xi ∈ R+ and parameters ki ∈ R+
of the ODE system describing the chemical kinetics are functions of a small, positive
parameter. The dominant terms of these functions are considered to be powers of ε.
Thus, xi = x̄iε

ai and ki = k̄iε
γi . For biochemical reaction networks, the reaction rates

are rather generally rational functions of the variables xi, therefore the chemical kinetic
equations are rational or polynomial ODEs. Using the variable and parameter scaling, all
the monomials terms in these ODEs can be also expressed as powers of ε. Furthermore,
the order of the dominant terms in each ODE provide the timescale order of each variable.
A scaling satisfies the tropical equilibration conditions when the dominant monomial terms
can be compensated, i.e. when not all the dominant monomials have the same sign. A
tropical equilibration is complete when the above condition is satisfied for all the ODEs
and partial when the above condition applies at least to the ODEs describing the fast
variables dynamics. In the latter case, the timescale condition on the variables that are
equilibrated has to be solved consistently with the monomial order condition.

In this report, we present three methods and study their scalability to solve complete
equilibration problems in the BioModels model repository. The first two methods, a naive
polyhedral method using PtCut [Lüd20c], and a Satisfiability Modulo Theories (SMT)
method recently introduced in [Lüd20a] using the SMT solver CVC4 [BCD+11], compute
the set of solutions over the real numbers.

Satisfiability Modulo Theories (SMT) is usually build on top of SAT (Boolean satisfiability),
which was the first problem that was proved, in the form of 3SAT, to be NP-complete. SMT
allows to test a logical formula with unknowns and relations for satisfiability and, if it is so,
for an assignment of the unknowns that leads to the formula’s satisfiability [Mon16]. SMT
checking is used today in verification of computer hardware and software and has advanced
much in recent years due to advances in technology and industrial applications [DMB11].
The SMT approach introduced in [Lüd20a] and used here is faster than the polyhedral
approach for models that would otherwise take more than one minute to compute, in
many cases by a factor of 25 or more. Furthermore, this method is an anytime algorithm,
thus offering a way to compute parts of the solution when the polyhedral approach is
infeasible.

The third method evaluated on the same benchmark here, is the Constraint Programming
(CP) method presented in [SFR14] and implemented in Biocham-4. This method searches
for integer solutions. The CP approach is similarly efficient as the SMT method, gener-
ally under two minutes for the polynomial and rational fractional ODE systems of this
benchmark. Interestingly, this method reveals that a large part of the models that can be
equilibrated over the reals have in fact no integer solution.

Both SMT and CP methods thus appear to be scalable on BioModels.

The rest of the report is organized as follows. The next section describes the idea of
tropical geometry and tropical equilibrations in ODE systems. Section 3 describes the SMT

2

approach with some details. Section 4 describes the CP approach for searching for integer
solutions. Section 5 presents the benchmark of polynomial and fractional ODE systems
obtained from the curated part of the BioModels model repository. Then in Section 6, we
present the results and compare the performance of the three methods on this benchmark.
We conclude in the last section on the scalability of SMT and CP solvers on real and integer
tropical equilibration problems for real-size problems and on some possible improvements
for future work.

2. Tropical Equilibration Problems

Let x ∈ Rd+ and α, β ∈ Nm0 be multi-indices with xα =
∏
i x

αi
i . We express a polynomial

function as
P (x) =

∑
α∈P

kαx
α −

∑
β∈N

kβx
β,

where P and N are index sets of the monomials with positive resp. negative sign.

The order of a monomial kαxα is given by the power of ε in that monomial and can be
straightforwardly calculated as γα +

∑
i αiai, where γα is the order of kα and ai are the

orders of xi.

When ε→ 0 dominance relation between terms is given by their orders, typically εa << εb

iff a > b. As a consequence, the dominant term is the term of minimal order, and orders
are computed according to the rules of min-plus algebra, where multiplication becomes
plus and addition becomes min.

The critical observation is that during dynamics on a slow invariant manifold, dominant
terms can not remain uncompensated. For the polynomial P (x) this means that

min
α∈P

(
γα +

∑
i

αiai
)

= min
β∈N

(
γβ +

∑
i

βiai
)
, (1)

called tropical equilibration condition.

A total tropical equilibration solution satisfies (1) for all the polynomial ODEs or for all
numerators for rational ODEs in a common denominator representation.

Observe that (1) comprises now only of minima of linear functions and the set of solu-
tions can thus readily be expressed as a set of polyhedra in the space of variable orders
(a1, a2, . . . , an).

One polyhedron is defined by each combination of α ∈ P and β ∈ N that yields a
hyperplane via

γα +
∑
i

αiai = γβ +
∑
i

βixi, (2)

while for all η ∈ P ∪N half-spaces are defined by

γα +
∑
i

αiai ≤ γη +
∑
i

ηiai. (3)

The whole set of polyhedra is defined by cycling over all possible choices for α and β.

Since the ODE system often consists of multiple equations, we get multiple sets of polyhedra.
Since all l.h.s. have to be zero, the constraints that define the set of polyhedra all have to
hold at the same time, i.e., the sets of polyhedra have to be intersected. The resulting set
of polyhedra is called the set of tropical equilibration solutions.

3

3. Solving Tropical Equilibrations Over the Real Numbers

3.1. Satisfyability Modulo Theories (SMT) Method

We are interested in the intersection of several sets of polyhedra. That is, given polyhedra
Pij and sets of polyhedra Bi = {Pi1, Pi2, . . . , Pini}, we are interested in their intersection⋂
iBi = {R1, R2, . . . , R`}, where the Ri are again polyhedra.

In this article we first show how to use SMT checking to solve this question. Satisfiability
Modulo Theories (SMT) allows us to decide if a logical formula, with atoms that are
themselves equations or inequalities, is satisfiable or not. For example, x > 1 ∧ x < 2 is an
SMT formula. One has to specify a theory of numbers that unknowns in the formula can
assume. In the above example, the problem is satisfiable in the theory of real numbers, but
not in the theory of integers. If an SMT problem is satisfiable, SMT can return a model,
which is an assignment for all unknowns in the formula.

SMT solvers may accept logical formulas in general, but often formulas are written in
conjunctive normal form (CNF), i.e., as a number of AND clauses called assertions. If
SMT solvers are used in incremental mode, one can, after they have found a solution, add
additional assertions and “continue” to look for further solutions, but keep using their
internal search heuristics. We make use of that later.

3.2. Polyhedral Representation of the Set of Solutions

A polyhedron is defined as the intersection of finitely many hyperplanes and half-spaces.
Furthermore, each hyperplane can be expressed as two (closed) half-spaces, thus a polyhe-
dron can be described as a finite number of half-spaces [Zie95].

Since we are using computers to do the work, we represent numbers ∈ R as elements of
Q for reasons of numerical stability. All numbers we are dealing with are either provided
with finite precision or can be computed to arbitrary precision.

Hence, given ambient space Qd, a (closed) half-space H is the set

H = {x ∈ Qd | λ0 + λ1x1 + λ2x2 + . . .+ λdxd ≤ 0, λi ∈ Q}. (4)

Given half-spaces Hk, we define a polyhedron as

P =
⋂
k

Hk. (5)

A bag is what we call a set of polyhedra Pj and describe it as a union, i.e.,

B =
⋃
j

Pj .

Finally, we are looking for the intersection of said bags Bi, that is

V =
⋂
i

Bi =
⋂
i

⋃
j

Pij =
⋃
k

Rk. (6)

The naive solution to the problem of computing the intersection is to cycle successively
through all combinations. To do that, pick two bags Bj and Bj′ , j 6= j′, and intersect all

4

polyhedra from one with all polyhedra from the other to form a new bag B′. Then, remove
Bj and Bj′ from the set of bags and insert B′ instead. Continue this procedure until there
is only one bag left, which will then consist of the sought polyhedra R1, R2, . . . , R`. That is
the solution that was used in [SGF+15] and, with some refinements, in PtCut [Lüd20c].

The problem with this solution is that the complexity is exponential in the number of bags.
In practice, it often happens that the number of intermediate results, i.e., the number of
polyhedra in some B′, can be very high, even if in the end there are only a few solution
polyhedra. This intermediate expression swell makes computing the intersection for some
models infeasible.

Table 4 shows BioModels from our survey, their number of resulting polyhedra and their
maximum number of intermediate polyhedra. More details on the computation can be
found in Section 5.

3.3. The SMT Procedure

First, we have to formulate our problem as an SMT problem. Fortunately, it is easy to
convert a polyhedron as defined in (5) into a logical formula. Set theory maps easily to
logical formulas with union mapping to logical OR and intersection to logical AND. In the
following, H̃ denotes the logical formula that defines the set H.

Thus, (6) expands to
Ṽ =

∧
i

∨
j

∧
H̃ijk (7)

and definition (4) of Hijk employs a linear function that can be used as a formula in
SMT. Call the resulting SMT formula f . Thus, we can use an SMT solver to decide the
satisfiability of formula f and, what’s more important, get a point x ∈ Qd that satisfies
the constraints.

Next, we are looking for a matching polyhedron that includes point x and is included
in the solution V . Since point x is contained in the intersection of the Bi, it must be
contained in at least one polyhedron Pij per bag Bi. Thus, we cycle through all Bi to find
a containing Pij , call it P ′i . (There may be more than one Pij 3 x, but any will do.)

Obviously, the intersection R′ =
⋂
i P
′
i includes point x, but most likely R′ has higher

dimension than that. Furthermore, since R′ is the intersection of exactly one polyhedron
per bag it is included in V as well. Hence, we have found a whole polyhedron that includes
point x.

In the next step, we modify our initial formula f to exclude the polyhedron R′, like this:

f ′ = f ∧ ¬R′. (8)

Note that we are only adding another assertion to the formula, so we can utilize the
incremental mode of SMT solvers to save (a lot of!) time for its next computation.

The important observation here is that we are expanding the original formula f—which
describes all solution points—to exclude what we already know to be a solution and
continue the search. We can iterate this process until formula f ′ is unsatisfiable.

This is the algorithm in Python-style pseudocode:

5

1 # input : a list ’ll ’ of sets of polyhedra .
2 # output : a list ’rr ’ of polyhedra .
3 def compute_prevariety (ll):
4 # set the solver to re - use its heuristics
5 solver = Solver (incremental =True)
6 f = convert_to_SMT_formula (ll)
7 rr = [] # results list
8 while True:
9 # add the formula to the (existing) assertions .

10 solver . add_assertion (f)
11 # get the model (a variable assignment) that fits the
12 # constraints , or None if ’f’ is unsatisfiable .
13 x = solver . get_model ()
14 if x is None:
15 break
16 R = [] # resulting polyhedron
17 # cycle through all bags ’B’ and
18 # collect constraints of polyhedron containing ’x ’.
19 for B in ll:
20 # cycle through all polyhedra ’P’ in bag ’B ’.
21 for P in B:
22 if P. contains (x):
23 R. append (P. constraints ())
24 break
25 # now ’R’ defines a polyhedron surely in the intersection .
26 # exclude ’R’ from further searches .
27 f = Not(R) # new assertion for next round
28 rr. append (R)
29 return rr # list of polyhedra .

The result of this function is a list of polyhedra. Mathematically, the set of polyhedra
describes the equilibrium (resp. prevariety) V . Yet, there are some problems that we
address in the next section.

The logic used for SMT formulas is QF_LRA, that is, quantifier-free linear real arithmetic
(“real” here means rational). This allows Boolean propositional logic of equations/inequal-
ities consisting of linear polynomials over elements of Q [BST+10].

3.4. Improvements to the SMT Procedure

Non-maximal Polyhedra

The main issue we experience with the procedure compute_prevariety() is that the
polyhedron R computed from point x is often not maximal. That is, R is only a lower
dimensional face of a higher-dimensional polyhedron. The full high-dimensional polyhedron
will eventually be found by the procedure, but earlier-found lower-dimensional faces would
still remain in the result list rr, albeit superfluous.

To avoid this, we test if each newly found polyhedron R is included in one of the already
computed polyhedra of result list rr. Unfortunately, this causes quadratic run-time in
the number of resulting polyhedra. But there is an observation that can reduce the time
needed.

If the newly found polyhedron R is included in some polyhedron R′, then obviously, point
x ∈ R is included in R′ as well. Testing if a point is included in a polyhedron is simple
and fast, so one can test this first and only if this test succeeds one must perform the
full polyhedron inclusion test. Measurements show that with this heuristic, almost all
polyhedron inclusion tests can be avoided. See Section 5 for details.

6

In our procedure, we would have to modify function contains() in line 22 and function
append() in line 23 according to these observations.

Redundant Constraints

Another issue is the redundancy of the constraints that are collected in line 23. Efficiency
can be increased by minimizing the set of constraints: the larger the number of constraints,
the larger the memory demand and, of course, SMT search times.

One can simply cycle through all constraints, test if each of them is really required and if
not, drop it. The remaining set is not necessarily a minimal set, though.

Here’s how this can be done: Let c be the constraint in consideration, g the formula before
and g′ = g ∧ c after the addition. If g′ is more restrictive than g (i.e., c makes a difference),
then the following is unsatisfiable:

g ∧ ¬g′ = g ∧ ¬(g ∧ c)
= g ∧ (¬g ∨ ¬c)
= (g ∧ ¬g) ∨ (g ∧ ¬c)
= g ∧ ¬c.

That formula can be applied by SMT to all constraints to drop superfluous ones.

Preprocessing

Different possibilities were explored to improve the speed of the procedure by preprocessing
the input, i.e., the sets of polyhedra.

For one, one can collect all constraints from all bags with only one polyhedron each.
Call the resulting polyhedron C. Because of distributivity these constraints hold for all
polyhedra of the equilibrium. Hence, we can intersect all polyhedra in their bags with C
to test if the intersection is empty, in which case we can drop the polyhedron from its bag
and thus reduce problem complexity.

A more potent version of this technique can be used to test polyhedra in all bags on if they
are required for the definition of the equilibrium. Let B be the polyhedron in question,
A the union of all other polyhedra in B’s bag and C the intersection of all other bags.
Then the equilibrium is (A ∪B) ∩ C. If B is required, then A ∩ C 6= (A ∪B) ∩ C and in
particular A ∩ C ((A ∪B) ∩ C. Thus, the following set is non-empty:

((A ∪B) ∩ C) \ (A ∩ C) = (A ∪B) ∩ C ∩A ∩ C
= (A ∪B) ∩ C ∩ (A ∪ C)
= (A ∪B) ∩ C ∩A
= B ∩ C ∩A.

This can easily be tested with SMT for each polyhedron B per bag and the superfluous
polyhedra can be dropped, again reducing problem complexity.

7

4. Solving Tropical Equilibrations Over the Integers

4.1. Constraint-based Modeling

The constraint programming (CP) approach is a numerical approach that encodes the
tropical equilibration problem as a Constraint Satisfaction Problem (CSP) [SFR14]. This
method is implemented in Biocham, which is itself implemented in SWI-Prolog and uses a
constraint-solving library over integers.

It doesn’t work with a symbolic polyhedral representation of the solutions, but searches for
numerical solutions that are points in the intersection of the sets of polyhedra explained
earlier. Both complete equilibrations (i.e., for all variables) and partial equilibrations (i.e.,
for some fast variables) can be computed. In this report and in the following evaluation
benchmark, only complete equlibration problems are considered.

Constraint programming, as SMT, deals with combinatorial optimization problems, but it
uses constraints in an active manner during search to prune the search space, instead of a
symbolic manner to perform clause resolution.

A constraint-based model is defined by a finite set of variables given with their domain,
and a finite set of constraints.

• Variables. Here the variables are the orders of magnitude ai ∈ Z used to rescale the
system by posting xi = x̄iε

ai , as seen in Section 2. Taking integer values ensure that
these orders of magnitude are well separated.

• Constraints.

– Tropical equilibration constraints. The degree in ε of the monomials in P and
in N are integer linear expressions in ai, the variables of the problem. Such
linear expressions are used to filter the domain of the variables by computing
their minimum and maximum values according to the bounds of the domain of
the variables. Tropical equilibration needs to enforce that the minimum degrees
in P and in N are equal (1).

– The constraint of minimum, A = min(B,C), is implemented with simple
inequality constraints A ≤ B, A ≤ C, plus reified constraints. A reified
constraint is a constraint that links bidirectionnaly the value of one boolean
variable X to the satisfaction of another constraint, say on two variables Y and
Z, for instance X ⇔ Y = Z to state that X is true if and only if Y = Z. Two
reified constraints, (X ⇔ A = B)∧(Y ⇔ A = C)∧X+Y ≤ 1∧A ≤ B∧A ≤ C,
are used to define the minimum constraint to enforce that A is equal to B or
C, in addition that A is greater than B and C.

– Linear invariants. A conservation law is a linear invariant, i.e., an equality
beetwen a linear combination of the xi and a constant. Having the initial values
of xi, and thus the value of the constant, one can add a constraint on the ai so
that the equality of the degrees in the rescaled invariant equation still holds.
This allows us to get tropical equilibrations that are compatible with the initial
system.

8

4.2. Constraint-based Search

Constraints come with domain filtering algorithms which dynamically prune the domain of
variables when the domain of other variables change in a constraint. However, this strategy
is not sufficient to decide the satisfiability of a system of constraints and must be combined
with a search procedure for virtually enumerating all possible values of the variables, or
more generally, for enumerating all the alternatives of disjunctive constraints.

For solving tropical equilibration problems over finite domains, we obtained good results
with dichotomic search by bisecting the domain of the variables (bisect option in SWI-
Prolog) without any particular heuristics for choosing the variables. Finite bounds must be
given on the values of the variables, but this is not a restriction in practice, since biochemical
species’ concentrations usually do not vary by more than a hundred of magnitude orders.
Furthermore, in order to speed-up the computation of all solutions in such large domains,
we used an iterative domain expansion strategy: the problem is first tried with a domain
of [ε−2, ε2] for all variables , i.e., equilibrations are searched by rescaling in the [10−2, 102]
interval. If that fails, the domain is doubled and the problem tried again until the limit
interval [ε−256, ε256] is reached.

5. Benchmark of Tropical Equilibration Problems from
BioModels

This benchmark uses models from the BioModels repository [LNBB+06]. Since BioModels
are written in SBML, and to avoid inconsistency in parsing, ODEparse [Lüd20b] was used to
convert SBML into ODEs. The resulting ODE systems can be downloaded from ODEbase
[LEN+19] at http://odebase.cs.uni-bonn.de. A parser to read files from ODEbase
was implemented in Biocham. Features of SBML models like events, constraints, time
dependency, multiple compartments, or function definitions, were ignored.

The ODE systems selected contain only polynomials or rational functions. For the latter,
each equation is multiplied with its principal denominator to get a polynomial. The
polynomials are then tropicalized as sketched in Section 2.

The parameter ε was set to 1/11 for all methods.

Although the three methods can handle partial equilibration problems, we consider here
only the problem of complete equilibration, i.e., when all variables equilibrate.

5.1. SMT Method Parameters

The computations work for both equilibria and prevarietyies, since the difference is only in
the input. Here, run-times only for computation of equilibria will be shown.

Furthermore, for computation, the logarithms logε(kα) in (2) & (3) were rounded to integers
or rationals for reasons of numerical stability.

The sets of polyhedra created by tropicalization were saved with polyhedra expressed as
sets of equalities and inequalities.

9

The software used for polyhedral computation was PtCut 3.5.1 [Lüd20c] as available from
the web site of the first author. Polyhedral computation were done with the help of the
Parma Polyhedra Library (PPL) [BHZ08], version 1.2.

For SMT computation, SMTcut 4.6.0 and the PySMT framework [GM15], version 0.8.0
with SMT engines MathSAT 5.5.1 [CGSS13] and Z3 4.8.4 [DMB08] were used.

Tests were run with Python 3.7.7 on an Intel Core i7-5820K CPU with 48 GB of memory
under Windows 10 64-bit. Neither PtCut nor SMTcut make active use of multithreading.

5.2. CP Method Parameters

Concerning the CP solver over the integers, the domain of the degree in epsilon was set to
the set {0, 1, . . . , 256}. Enlarging this domain had no impact on the results obtained.

In this benchmark we did not include initial values of the variables.

The CP tropicalization was run on Biocham 4.4.14.

5.3. Availability of Code and Data

The used software program, SMTcut, is available under a free software licence from
https://gitlab.com/cxxl/smtcut. The ODE systems that were used can be downloaded
from ODEbase, http://odebase.cs.uni-bonn.de and the data that was used as input
as well as output resides in one large (≈ 20 MiB) repository available under https:
//gitlab.com/cxxl/smtcut_data_1.

The software Biocham is available at http://lifeware.inria.fr/biocham4/, and the
data used at http://lifeware.inria.fr/wiki/Main/Software#DeliverableSYMBIONT

6. Performance Results

Table 1 shows the run-times for all methods on a subset of models that have complete
tropical equilibration solutions over the real numbers, except for model 397 which has no
solution.

Table 1: Model number in BioModels, number of variables, and comparison of run-times between
PtCut and SMTcut on Windows with MathSAT solver on one side, and constraint program-
ming (CP) in Biocham on the other side. Models marked with a star (*) have a rational
vector field. Models with time in italic for CP have no integer tropical equilibration while
they have a real-valued equilibration. Timeouts are indicated by a lower bound on the
computation time.

BM R Dim Combos Polyhedra PtCut [s] SMTcut [s] Speed-up CP Biocham [s]
14 86 1067 > 6996 > 95594.9 > 79964.1 — 14.1
21 * 10 108 46 3.0 1.4 2.1 > 900
22 * 10 109 147 2.0 3.7 0.5 > 900
26 11 106 6 0.1 0.3 0.5 0.06
28 16 109 17 0.4 1.2 0.4 0.2
30 18 1010 6 0.3 0.5 0.8 0.2
32 36 1021 244 110.0 37.2 3.0 0.6
41 10 1014 4 1.4 0.3 4.8 > 900
48 * 23 1022 5 29.2 1.4 21.2 12.9

10

61 22 1025 10084 26408.6 3988.3 6.6 > 900
73 16 1014 13449 > 86400.0 2232.6 > 38.7 > 900
74 19 1015 9685 > 86400.0 2828.7 > 30.5 37.3
93 33 1026 596 6113.4 169.4 36.1 1.2
102 13 1010 322 7.2 23.4 0.3 0.3
103 17 1018 1938 763.5 397.7 1.9 0.6
105 27 1023 130 644.2 18.1 35.6 1.5
147 24 1016 54 18.7 8.3 2.3 14.4
151 66 1044 > 17784 > 86400.0 > 75494.4 — 3.1
183 67 1084 1 > 85072.9 94.9 > 896.2 > 900
200 22 1020 20 64.0 4.1 15.5 > 900 (190.3)
221 * 8 109 50 2.1 1.3 1.6 57.3
222 * 8 109 192 11.0 6.0 1.8 > 900
230 24 1016 68 24.6 11.2 2.2 0.7
315 19 1016 13 2.5 1.9 1.3 0.4
328 * 18 109 86 1.4 4.1 0.3 7.3
365 30 1023 70 583.7 15.6 37.5 0.5
396 * 36 1028 54 21.7 9.8 2.2 > 900
397 * 50 1038 0 14.9 0.2 79.4 1.2
407 47 1016 212 968.2 35.2 27.5 2.0
410 53 1041 > 28115 > 86400.0 > 78622.5 — > 900
430 27 1013 1676 58.0 282.5 0.2 0.4
431 27 1016 155 13.2 18.4 0.7 0.4
477 43 1017 467 571.0 77.7 7.3 5.8
482 * 23 1011 17 2.3 1.1 2.2 31.6
489 35 1021 42 57.5 9.3 6.2 > 900
491 57 1024 1 17.2 0.4 39.4 6.3
492 52 1025 1 2.9 0.5 6.3 6.2
498 * 19 1010 214 3.3 12.4 0.3 3.3
501 35 1025 916 > 89107.6 237.7 > 374.8 0.6
560 59 1029 > 21712 > 86400.0 > 80237.8 — 2.3
576 34 1018 756 55.8 96.2 0.6 3.3
599 30 1016 24 5.8 4.7 1.2 0.5
637 12 1012 12 4.2 1.2 3.5 0.3
638 21 1027 13 32.3 4.9 6.6 1.1
666 * 34 1024 64 5.6 4.3 1.3 > 900
730 * 45 1047 > 31349 > 86400.0 > 84098.0 — > 900

The run-times value our attention for certain models:

• BioModels 14, 151, 410, 560 & 730: each of them could not be computed with
PtCut and it is likely infeasible to that with this approach. SMTcut was at least
able to compute many polyhedra, even though it is unknown how large a part of the
full equilibrium this constitutes. On the other hand, the CP method found integer
solutions for model 14, and proved that models 151 and 560 are unsatisfiable over
the integers in less than 3 seconds.

• BioModels 183 and 491, 492: Here SMTcut was able to play out its full potential:
with only one polyhedron in the equilibrium, it took only some rounds until the
maximal polyhedron was found. PtCut, on the other hand, terminated after a day’s
work with an intermediate number of 15000 polyhedra and still only 5 of 65 iterations
done. The CP method failed to solve model 183 in less than 15 minutes, but found
integer solutions for the other two models in 6 seconds.

• BioModel 397 doesn’t have a solution at all. SMTcut realizes this in 0.2 s, whereas
CP takes 1.2 s and PtCut almost 15 s.

• BioModels 48, 73, 74, 93, 105, 407, and especially 501: computation time of SMTcut
was at least 20 times lower than with PtCut. The CP method was even faster by one
or two orders of magnitude on models 74, 93, 105 and 407, but was in timeout on
model 73.

11

• BioModels 102, 328, 430 & 498: here PtCut was at least 3 times faster than SMTcut.
The reason might be that for models of medium dimension (< 20) and with many
polyhedra, PtCut can be faster if the intermediate expression swell is not too large,
see Table 4. All these models were solved by CP in less than a second or 7.3 s

Over the reals, SMTcut was the better choice in all cases where PtCut needed more than
58 s of computation time. Over the integers, the CP method could be even faster to
conclude by up to two orders of magnitude, but could also fail with a timeout of 2 minutes
whereas SMTcut took a few seconds. The CP method reveals that nearly 30% of the
tropical equilibrations satisfiable over R have no solution over Z.

6.1. Further Results with the CP Method

The complete equilibrations were computed and the existence of a tropical equilibrium or
not was reported in the Tables 1, 2 and 3.

Results for all the polynomial models are presented in Table 2. On the over 150 models,
only one had a timeout over 15 minutes of computation, less than 10% ran over 2 seconds,
with one of them running over 20 seconds. The extreme majority of the models took then
less than 2 seconds to be computed.

Rational functions models results, presented in Table 3, were way slower than original
polynomial models (multiplication time not taken in account in the table) to tropicalize.
The multiplication by the common denominator, even after simplification, leaves large
equations to work with, and was involved in the slow-down of the computation. A timeout
over 15 minutes happens for more than half the models, and often exceed more than an
hour of computation. The computation is taking more than 20 seconds to compute in
around one eight of the cases not timed-out.

6.2. Further Results for the SMT Method

6.2.1. Benchmarking of Different SMT Solvers

Under Windows, we could only use MathSAT [CGSS13] and Z3 [DMB08] and were unable
to install the CVC4 [BCD+11] and Yices [Dut14] solvers. The other solvers that are in
principle supported by PySMT are CUDD, PicoSAT and Boolector, but they don’t support
the QF_LRA logic, so they were no option.

Hence, we switched to Ubuntu Linux 18.04 64-bit and benchmarked some models again on
the same machine to get a comparison. Under Ubuntu we could work with MathSAT 5.5.1,
Z3 4.8.4 and Yices 2.6.0. Unfortunately, CVC4 1.7-prerelease could be installed, but didn’t
work properly.

Table 5 shows the run-times for selected models.

A side-by-side comparison of operating systems suggests that Windows and Ubuntu
implementations are similar. MathSAT on Windows was some 3–9% slower than on
Ubuntu, whereas Z3 was not always faster on any one operating system.

A comparison of MathSAT and Z3 solvers suggests that they yield comparable run-times,
with Z3 in one case almost twice as fast as MathSAT (BioModel 73). Yices could not be
evaluated properly, since it crashed with all larger models.

12

6.2.2. Preprocessing

Table 6 shows a comparison of times with and without preprocessing the input. Several
observations can be made:

• BioModel 183: the process was killed after over 11 hours of preprocessing. This is
due to the extraordinary number of polyhedra in some input bags.

• With the exception of BioModel 74 (and, of course, 183), all models with a run-time
over 24 s ran faster with preprocessing (including the time for preprocessing itself)
than without.

• All models with run-times less than 17 s ran slower (or as fast in the case of BioModels
22 & 498) with preprocessing than without.

So it seems that this kind of preprocessing is advisable only in special cases.

6.2.3. Profiling

The relative time needed in different parts of the procedure to compute the whole equilibrium
varies with the number of resulting polyhedra. Table 7 shows the relative time spent in
three different parts of the procedure:

• S: Searching for another point outside the already known polyhedra,

• M: Minimizing the found polyhedron,

• I: Inserting that polyhedron into the list of already known ones and testing for
inclusion.

From the numbers it is obvious that the inclusion check time takes relatively more time
as the number of polyhedra grows. Since that routine requires quadratic time, this is as
expected.

Furthermore, the SMT checking for every next point needs more time as the number of
polyhedra grows as well. This is due to the fact that the formula grows over time (to
exclude all already found polyhedra) and thus the search gets more complicated, and we
should not forget that we would expect an exponential run-time from theory.

The time needed for minimization, in contrast, is getting less prominent, which is no
surprise, since the time required to check for superfluous constraints in a polyhedron does
not depend on the number of already found polyhedra, nor do we expect to find polyhedra
with more constraints as the search takes more time.

6.2.4. Polyhedral Inclusion Testing

As was described in Section 3.3, the test for inclusion of a newly found polyhedron in the
set of already found ones can be sped up by testing containment of the included point x,
which was found by the SMT solver.

Some cursory investigation shows that the number of full checks that still have to be done
is about 0.26–0.68 times the number of polyhedra in the result list.

13

Yet, the main message is that even though the constant is low, the run-time of the inclusion
test is still quadratic and it becomes the most dominant part of the computation for large
result lists.

7. Conclusion

We have shown that tropical equilibration problems of real size, coming from the curated
part of the BioModels model repository, can be solved quite efficiently both over the
integers and over the real numbers.

For solving over the reals, a new method, based on SMT, was presented and compared to
a known algorithm using purely polyhedral methods. The run-times were always smaller
for problems that would otherwise take more than 58 seconds to compute, sometimes
by a factor of 25 or more. The novel method has the further advantage that, even if
computation of the entirety of the solution is infeasible, parts of it can be computed and
more computation power would lead to more parts being computed. Furthermore, extensive
benchmarks with different SMT solvers under different operating systems were run on
tropicalizations of 46 different BioModels. The choice of operating systems doesn’t make a
significant difference. The choice of SMT solver sometimes makes a difference, but there is
no clear winner there. Only MathSAT and Z3 worked under all circumstances and had
comparable run-times.

Tropical solutions over the integers ensure that the orders of magnitude of the variables are
well separated. We have shown that the Constraint Programming method introduced in
[SFR14] exhibits good performances similarly to the SMT method on this benchmark, with
run-times mostly inferior to 2 minutes per model. However, this evaluation in BioModels
revealed that 30% of the tropical equilibration problems solvable over the real numbers
have no integer solution.

Both the SMT and CP methods thus appear to be scalable on BioModels. More work
is now needed to compare the real solutions with the integer solutions found by the two
methods, and assess the scope of their respective use for model reduction applications.

References

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library:
Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of
Hardware and Software Systems. Sci. Comput. Program., 72(1-2):3–21, June 2008.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version
2.0. In Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, England), volume 13, page 14, 2010.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani.
The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka, editors, Proceedings
of TACAS, volume 7795 of LNCS. Springer, 2013.

14

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69–77, 2011.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-
Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer, July 2014.

[GM15] Marco Gario and Andrea Micheli. PySMT: a solver-agnostic library for fast prototyping
of SMT-based algorithms. In SMT Workshop 2015, 2015.

[LEN+19] Christoph Lüders, Hassan Errami, Matthias Neidhardt, Satya S. Samal, and Andreas
Weber. ODEbase: an extensible database providing algebraic properties of dynamical
systems. http://wrogn.com/wp-content/uploads/lueders-casc-2019-odebase.
pdf, 2019.

[LNBB+06] Nicolas Le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie Courtot, Marco
Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce Shapiro,
Jacky L. Snoep, and Michael Hucka. BioModels Database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Research, 34(Database issue):D689–D691, Jan 2006.

[Lüd20a] Christoph Lüders. Computing Tropical Prevarieties with Satisfiability Modulo Theories
(SMT) Solvers. arXiv preprint arXiv:2004.07058, April 2020.

[Lüd20b] Christoph Lüders. ODEparse: generate ODEs from SBML. https://gitlab.com/
cxxl/odeparse/, 2020.

[Lüd20c] Christoph Lüders. PtCut: Calculate Tropical Equilibrations and Prevarieties. http:
//www.wrogn.com/ptcut/, 2020.

[Mon16] David Monniaux. A survey of satisfiability modulo theory. In International Workshop
on Computer Algebra in Scientific Computing, pages 401–425. Springer, 2016.

[SFR14] Sylvain Soliman, François Fages, and Ovidiu Radulescu. A constraint solving approach
to model reduction by tropical equilibration. Algorithms for Molecular Biology, 9(24),
December 2014.

[SGF+15] Satya Swarup Samal, Dima Grigoriev, Holger Fröhlich, Andreas Weber, and Ovidiu
Radulescu. A geometric method for model reduction of biochemical networks with
polynomial rate functions. Bulletin of Mathematical Biology, 77(12):2180–2211, October
2015.

[Zie95] Günter M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

15

A. Run-times

Table 2: Satisfiability over the integers and run-times in seconds with CP in Biocham for the
polynomial models of the curated part of BioModels.

BM output Biocham [t]
2 sat 0.2
5 sat 0.1
9 sat 0.3
11 unsat 0.3
14 sat 14.1
26 unsat 0.1
28 sat 0.2
30 sat 0.2
35 unsat 0.1
38 sat 0.1
40 sat 0.01
50 unsat 0.1
52 unsat 0.04
57 unsat 0.1
60 sat 0.01
69 unsat 0.1
72 sat 0.03
80 sat 0.1
82 sat 0.05
85 sat 0.3
86 sat 0.5
91 unsat 0.2
92 unsat 0.01
99 unsat 0.1
102 sat 0.3
103 sat 0.6
105 unsat 1.5
108 sat 0.2
123 sat 0.3
147 sat 14.4
150 sat 0.01
156 sat 0.01
159 sat 0.01
163 unsat 0.2
173 unsat 0.4
178 unsat 0.02
197 unsat 0.1
198 sat 0.05
199 sat 0.05
200 sat 190.3
205 unsat 18.0
220 unsat 1.3
226 unsat 0.3
229 unsat 0.1
230 unsat 0.7
233 unsat 0.01
243 unsat 0.1
257 sat 0.1
259 unsat 0.2
260 unsat 0.2

261 unsat 0.2
262 unsat 0.1
263 unsat 0.1
264 sat 0.1
267 unsat 0.01
270 sat 0.4
271 unsat 0.04
272 unsat 0.04
282 unsat 0.01
283 unsat 0.01
286 unsat 2.2
289 unsat 0.04
292 unsat 0.01
306 unsat 0.02
307 unsat 0.01
309 sat 0.01
310 unsat 0.01
311 unsat 0.01
312 unsat 0.01
314 unsat 0.05
315 sat 0.4
321 unsat 0.02
332 unsat 2.7
333 unsat 1.2
334 unsat 2.4
335 unsat 0.4
357 unsat 0.04
359 unsat 0.1
360 unsat 0.05
361 sat 0.04
362 unsat 0.5
363 unsat 0.01
364 unsat 0.1
365 sat 0.5
389 unsat 0.2
405 sat 0.1
407 unsat 2.0
413 unsat 0.02
416 unsat 0.7
430 sat 0.4
431 sat 0.4
459 unsat 0.01
460 unsat 0.01
475 unsat 0.2
478 unsat 0.5
483 sat 0.1
484 unsat 0.002
485 sat 0.01
486 unsat 0.003
487 unsat 0.02
491 unsat 6.3
492 unsat 6.2

500 unsat 0.1
501 unsat 0.6
504 unsat 4.9
519 unsat 0.1
530 sat 0.1
531 sat 0.01
532 sat 0.005
546 unsat 0.02
552 unsat 0.01
553 unsat 0.01
555 sat 0.001
559 unsat 3.3
561 sat 0.002
566 sat 0.002
567 sat 0.002
569 sat 5.6
580 sat 0.4
581 unsat 0.3
582 unsat 0.6
584 unsat 0.2
599 unsat 0.5
609 unsat 0.02
614 sat 0.01
619 unsat 0.2
629 sat 0.01
630 sat 0.03
635 sat 4.8
636 timeout > 900
637 unsat 0.3
638 unsat 1.1
640 unsat 0.8
646 sat 19.6
647 sat 0.1
651 sat 0.3
658 unsat 0.2
661 sat 0.1
663 sat 0.03
667 unsat 5.0
676 unsat 0.1
678 sat 0.01
687 unsat 0.1
688 unsat 0.1
692 unsat 0.04
705 sat 1.1
707 sat 0.02
708 sat 0.03
709 sat 0.1
710 sat 0.05
716 sat 0.02
721 sat 0.1
726 sat 0.1

16

Table 3: Satisfiability over the integers and run-times in seconds with CP in Biocham for the
rational fractional models of the curated part of BioModels.

BM output Biocham [t]
10 timeout > 900
16 sat 175.4
17 timeout > 900
21 timeout > 900
22 timeout > 900
23 timeout > 900
27 sat 0.2
29 sat 1.1
31 sat 482.4
32 unsat 0.6
33 unsat 1.1
37 unsat 0.1
39 sat 0.5
41 timeout > 900
42 timeout > 900
43 sat 0.4
44 timeout > 900
45 unsat 6.2
46 timeout > 900
48 sat 12.9
49 unsat 42.7
67 sat 111.4
73 timeout > 900
74 sat 37.3
79 sat 0.1
84 timeout > 900
90 unsat 0.8
93 sat 1.2
98 unsat 2.6
107 timeout > 900
110 sat 0.5
113 sat 170.4
114 sat 0.04
115 sat 0.05
116 sat 133.7
145 timeout > 900
151 unsat 3.1
157 sat 0.01
166 sat 3.8
167 unsat 0.2
168 sat 0.7
169 sat 0.5
170 sat 0.1
181 sat 2.4
182 unsat 17.2
191 sat 39.3
192 sat 0.3
201 unsat 2.8

203 sat 13.8
204 sat 14.0
206 sat 1.7
209 sat 7.5
210 sat 2.8
215 sat 51.4
216 timeout > 900
221 sat 57.3
224 sat 0.3
228 timeout > 900
231 unsat 0.1
240 sat 2.2
242 sat 1.7
249 sat 2.9
258 sat 0.1
269 unsat 0.5
275 sat 0.1
284 timeout > 900
290 sat 0.1
294 sat 10.6
296 sat 6.0
300 sat 2.1
308 unsat 0.1
313 unsat 0.1
319 unsat 851.1
320 unsat 0.2
323 sat 0.02
325 sat 21.3
328 sat 7.3
329 sat 0.1
347 unsat 2.6
351 sat 0.8
352 sat 0.8
358 unsat 0.1
366 unsat 0.1
388 timeout > 900
394 unsat 1.0
395 unsat 0.4
397 unsat 1.2
409 unsat 2.8
414 sat 0.01
415 unsat 0.6
423 sat 0.1
424 unsat 5.2
425 sat 0.03
427 unsat 1.0
434 unsat 1.8
435 sat 0.4
438 unsat 0.1
447 timeout > 900

452 unsat 6.4
453 unsat 8.9
454 sat 2.4
455 sat 1.1
456 sat 2.6
458 sat 0.1
461 sat 3.4
462 unsat 0.1
467 unsat 0.7
477 unsat 5.8
482 sat 31.6
489 timeout > 900
495 sat 38.5
498 sat 3.3
517 sat 0.6
518 sat 0.6
523 unsat 0.6
524 unsat 0.6
525 unsat 1.0
526 unsat 1.0
539 timeout > 900
543 unsat 11.8
544 unsat 10.4
545 sat 0.4
557 sat 0.9
560 unsat 2.3
573 sat 0.02
576 sat 3.3
583 unsat 0.7
611 unsat 1.7
622 sat 0.2
623 unsat 1.2
624 unsat 0.1
625 timeout > 900
626 sat 0.2
631 unsat 0.4
639 sat 0.1
689 sat 0.1
690 sat 0.1
704 unsat 0.2
713 sat 0.3
717 unsat 0.2
720 timeout > 900
724 unsat 1.5
728 sat 0.01
729 sat 0.1
732 sat 0.3
737 sat 90.3
738 sat 84.8

Table 4: Intermediate expression swell for some BioModels computed with the SMT method.

BM Combos PtCut [s] Polyhedra Max. int. ph’s
21 108 2.978 46 3408
22 109 2.036 147 1170
32 1021 109.952 244 1092
41 1014 1.416 4 924
48 1022 29.175 5 1160
93 1026 6113.411 596 47772
102 1010 7.199 322 4784
103 1018 763.480 1938 111402
105 1023 644.176 130 21088
147 1016 18.738 54 5069
200 1020 63.969 20 4704
221 109 2.150 50 2573
222 109 10.968 192 12516
230 1016 24.554 68 3330
315 1016 2.529 13 432
328 109 1.351 86 14017

365 1023 583.655 70 15030
396 1028 21.668 54 972
407 1016 968.175 212 15010
430 1013 58.050 1676 4683
431 1016 13.193 155 984
477 1017 570.995 467 23460
482 1011 2.342 17 495
489 1021 57.451 42 4824
498 1010 3.331 214 1750
576 1019 55.783 756 10752
599 1016 5.796 24 456
637 1012 4.208 12 1140
638 1027 32.306 13 2124
666 1023 5.633 64 464

Table 5: Run-times of SMT method for some models under Ubuntu (U) compared to Windows
(W). A star (*) signifies a program crash.

BioModel Polyhedra MathSAT (U) [s] Z3 (U) [s] Yices (U) [s] MathSAT (W) Z3 (W) [s]
22 147 3.583 4.656 2.097 3.703 4.000
32 244 34.598 42.938 35.319 37.234 37.156
73 13449 2089.749 1314.049 * 2232.641 1288.156
93 596 154.564 198.951 * 169.375 199.156
183 1 90.184 84.033 131.141 94.922 102.938
397 0 0.179 0.160 0.132 0.188 0.156
430 1676 260.927 248.023 * 282.484 260.625
501 916 216.917 297.374 * 237.719 292.672

Table 6: Run-times of SMT method in seconds for some models without and with preprocessing
using the MathSAT solver under Windows. Column “PP time” contains the time for
preprocessing and column “after PP” the total time minus the preprocessing time.

BioModel Dim Combos Polyhedra Without PP With PP PP time After PP Speed-up
21 10 108 46 1.3 1.5 0.6 1.0 0.87
22 10 109 147 3.7 3.7 0.5 3.3 1.00
26 11 106 6 0.2 0.4 0.3 0.1 0.50
28 16 109 17 1.2 1.8 0.8 1.0 0.67
30 18 1010 6 0.4 1.3 1.0 0.3 0.31
32 36 1021 244 37.2 29.8 1.8 28.0 1.25
41 10 1014 4 0.3 2.0 1.9 0.1 0.15
48 23 1022 5 1.2 12.5 12.3 0.2 0.10
61 22 1025 10084 3191.3 2651.9 40.6 2611.3 1.20
73 16 1014 13449 2232.6 2203.2 1.4 2201.8 1.01
74 19 1015 9685 1873.7 2179.1 1.2 2177.8 0.86
93 33 1026 596 169.4 143.8 7.3 136.5 1.18
102 13 1010 322 24.6 20.9 2.4 18.5 1.18
103 17 1018 1938 382.8 343.1 38.2 304.8 1.12
105 27 1023 130 16.6 73.8 60.2 13.6 0.22
147 24 1016 54 11.7 12.3 6.0 6.3 0.95
183 67 1084 1 94.9 > 40000.0 > 40000.0 — —
200 22 1020 20 3.9 10.1 8.0 2.2 0.39
221 8 109 50 1.1 2.1 1.2 0.9 0.52
222 8 109 192 6.1 6.9 1.5 5.4 0.88
230 24 1016 68 9.7 17.0 7.1 9.9 0.57
315 19 1016 13 1.6 4.0 2.9 1.1 0.40
328 18 109 86 3.8 4.0 0.6 3.4 0.95
365 30 1023 70 14.2 18.1 10.6 7.5 0.78
397 50 1038 0 0.2 1.8 1.8 0.0 0.11
407 47 1016 212 37.1 30.2 2.0 28.1 1.23
430 27 1013 1676 282.5 255.8 1.6 254.2 1.10
431 27 1016 155 17.7 18.3 3.2 15.1 0.97
477 43 1017 467 59.0 55.0 1.7 53.3 1.07
482 23 1011 17 1.0 2.0 1.2 0.8 0.50
489 35 1021 42 7.5 22.3 14.8 7.5 0.34

18

491 57 1024 1 0.4 3.0 3.0 0.0 0.13
492 52 1025 1 0.4 3.0 3.0 0.0 0.13
498 19 1010 214 11.3 11.3 1.9 9.4 1.00
501 35 1025 916 237.7 183.0 7.4 175.5 1.30
576 34 1018 756 95.2 91.9 4.0 87.9 1.04
599 30 1016 24 4.1 5.8 3.6 2.3 0.71
637 12 1012 12 1.1 2.3 1.4 0.9 0.48
638 21 1027 13 4.5 41.8 39.9 2.0 0.11
666 34 1024 64 4.2 5.5 1.4 4.1 0.76

Table 7: Relative run-time of SMT method used for Searching another point, Minimizing a polyhedron
and Inclusion checking. The second part of the models didn’t finish and the numbers
signify only the times until the process was terminated.

BioModel Polyhedra % in S % in M % in I

26 6 15.3 46.3 0.0
22 147 15.6 59.5 7.2
222 192 20.1 53.7 11.2
498 214 18.5 62.9 9.4
407 212 9.8 74.3 11.1
32 244 10.0 72.0 12.6
477 467 12.2 65.0 16.2
93 596 13.5 72.0 10.5
501 916 12.9 76.4 7.5
430 1676 23.3 53.8 18.5
103 1938 27.5 56.2 10.9
74 9685 42.5 15.7 32.7
61 10084 53.4 18.6 21.6
73 13449 43.3 13.1 34.4
14 6996 16.0 55.0 26.1
151 17784 28.3 22.2 45.1
560 21712 18.1 11.1 68.1
410 28115 34.4 24.8 35.0
730 31349 39.0 11.3 44.9

19

