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Abstract: This paper studies checkpointing strategies for parallel jobs subject to fail-stop errors.
The optimal strategy is well known when failure inter-arrival times obey an Exponential law,
but it is unknown for non-memoryless failure distributions. We explain why the latter fact is
misunderstood in recent literature. We propose a general strategy that maximizes the expected
efficiency until the next failure, and we show that this strategy is asymptotically optimal for very
long jobs. Through extensive simulations, we show that the new strategy is always at least as good
as the Young/Daly strategy for various failure distributions. For distributions with a high infant
mortality (such as LogNormal 2.51 or Weibull 0.5), the execution time is divided by a factor 1.9
on average, and up to a factor 4.2 for recently deployed platforms.
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Stratégies de checkpoint pour protéger les tâches parallèles contre
des erreurs ayant des distributions générales

Résumé : Cet article étudie les stratégies de checkpoint pour des tâches parallèles sujettes à des erreurs
fatales. La stratégie optimale est bien connue lorsque les temps d’inter-arrivée des pannes obéissent à
une loi exponentielle, mais elle est inconnue pour les distributions d’erreurs générales. Nous expliquons
pourquoi ce dernier fait est mal compris dans la littérature récente. Nous proposons une stratégie générale
qui maximise l’efficacité attendue jusqu’à la prochaine défaillance, et nous montrons que cette stratégie est
asymptotiquement optimale pour les travaux très longs. Par des simulations extensives, nous montrons
que la nouvelle stratégie est toujours au moins aussi bonne que la stratégie de Young/Daly pour diverses
distributions de pannes. Pour les distributions avec une mortalité infantile élevée (comme LogNormal 2.51
ou Weibull 0.5), le temps d’exécution est divisé par un facteur 1.9 en moyenne, et jusqu’à un facteur 4.2
pour des plates-formes récemment déployées.

Mots-clés : checkpoint, fautes, tâches parallèles, distributions d’erreurs générales.
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4 Benoit, Perotin, Robert, Vivien

1 Introduction

Checkpointing is the standard technique to protect applications running on HPC (High Performance Com-
puting) platforms. Every day, the platform experiences a few fail-stop errors (or failures, we use both terms
indifferently). After each failure, the application executing on the faulty processor (and likely on many other
processors for a large parallel application) is interrupted and must be restarted. Without checkpointing, all
the work executed for the application is lost. With checkpointing, the execution can resume from the last
checkpoint, after some downtime (enroll a spare to replace the faulty processor) and a recovery (read the
checkpoint).

Consider a parallel application executing on a platform whose nodes are subject to fail-stop errors. How
frequently should it be checkpointed so that its expected execution time is minimized? There is a well-known
trade-off: taking too many checkpoints leads to a high overhead, especially when there are few failures, while
taking too few checkpoints leads to a large re-execution time after each failure. However, the optimal strategy
is known only when failure inter-arrival times obey an Exponential distribution. In that case, the optimal
checkpointing period is (approximately) given by the Young/Daly formula as WYD =

√
2µC [43, 11], where

µ is the application MTBF (Mean Time Between Failures) and C is the checkpoint duration.
This paper revisits checkpointing strategies for parallel jobs on platforms subject to failures that obey

arbitrary probability distributions. This is a very important topic because the most accurate probability
distributions to model processor failures are LogNormal [21] and Weibull [32, 33, 38, 39] instead of Ex-
ponential. For instance, LANL failure traces are best fit by Weibull distributions of different shapes [15].
However, dealing with non-memoryless distributions induces dramatic difficulties. Several recent papers mis-
takenly consider that if each processor experiences failures distributed according to some non-memoryless
distribution, then the platform as a whole will experience failures distributed according to the same (scaled)
distribution. This is wrong, unless we could rejuvenate thousands of processors each time a failure hits one
single processor. Hence, it is important to provide a provenly correct strategy for arbitrary distributions.

The main contributions of this paper are the following:
• A synthetic overview of known results for Exponential distributions, some of which being frequently redis-
covered;
• A detailed explanation of why non-memoryless distributions require a fully different approach;
• The design of a new checkpointing strategy, NextStep, which is asymptotically optimal for arbitrary
distributions;
• A practical and fast implementation of NextStep through time discretization and numerical approxima-
tion;
• A detailed experimental comparison with the standard Young/Daly approach.

The paper is organized as follows. We first survey related work in Section 2. Then, we provide background
on checkpointing parallel jobs with Exponential or non-memoryless distributions in Section 3. We detail the
design of the checkpointing strategy NextStep in Section 4, and show that it is asymptotically optimal
for arbitrary distributions. The experimental evaluation in Section 5 presents extensive simulation results
comparing NextStep and the usual approach à la Young/Daly. Finally, we conclude in Section 6.

2 Related work

2.1 Checkpointing preemptible parallel jobs

Checkpoint-restart is one of the most widely used strategy to deal with fail-stop errors. Several variants of
this policy have been studied; see [22] for an overview. The natural strategy is to checkpoint periodically, and
one must decide how often to checkpoint, i.e., derive the optimal checkpointing period. An optimal strategy
is defined as a strategy that minimizes the expectation of the execution time of the job. For a preemptible
job, where one can checkpoint at any time, the classical formula due to Young [43] and Daly [11] states that
the optimal checkpointing period is WYD =

√
2µC, where µ is the job MTBF and C the checkpoint cost.

This formula is a first-order approximation. For memoryless failures, Daly provides a second-order, more

Inria
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accurate, approximation in [11], while our previous work [7] provides the optimal value; both [11] and [7] use
the Lambert function. The derivation in [7] is based on Equation (1) (see Section 3.2), a formula rediscovered
ten years later, with a quite different proof based on a Markov model, in [35].

As explained in Section 3.6, non-memoryless failures are more difficult to deal with for parallel jobs.
Several papers study non-periodic checkpointing strategies, with and without partial rejuvenation [29, 24, 31].
A recent paper [28] uses full rejuvenation while [38] wrongly assumes IID failures for a range a classic
distributions, including Weibull and LogNormal, which are not memoryless (see Section 3.6). An unorthodox
approach is used in [17], where it is assumed that the failures striking the whole platform obey a Weibull
distribution; this is misleading for two reasons: (i) it is not clear what is the failure distribution on each
individual processor; and (ii) after one processor is struck by a failure and rejuvenated, the platform failure
distribution does not remain Weibull (see a more detailed discussion in Section 3.6).

In order to deal with non-memoryless failures, the NextFailure problem is studied in [7], where the
goal is to maximize the expected amount of work completed before the next failure. This problem is solved
using a dynamic programming algorithm, and it is used as a solution to the initial problem of makespan
minimization. Simulations are done with Exponential and Weibull laws, showing that the proposed algorithm
outperforms existing solutions with Weibull distributions. In this paper, we propose to maximize the expected
efficiency rather than the expected work, with our new NextStep heuristic. This requires a much more
subtle approach. Nevertheless, we succeed in proving that NextStep is asymptotically optimal.

2.2 Checkpointing task-based applications

Going beyond preemptible applications, some works have studied task-based applications, using a model
where checkpointing is only possible right after the completion of a task. The problem is then to determine
which tasks should be checkpointed. This problem has been solved for linear workflows (where the task
graph is a simple linear chain) by Toueg and Babaoglu [41], using a dynamic programming algorithm. This
algorithm was later extended in [6] to cope with both fail-stop and silent errors simultaneously. Another
special case is that of a workflow whose dependence graph is arbitrary but whose tasks are parallel tasks
that each executes on the whole platform. In other words, the tasks have to be serialized. The problem of
ordering the tasks and placing checkpoints is proven NP-complete for simple join graphs in [1], which also
introduces several heuristics. For general workflows, deciding which tasks to checkpoint has been shown
#P-complete [19], but several heuristics are proposed in [20].

2.3 Extensions: multi-criteria, hierarchical checkpointing, independence

In addition to the minimization of the expected job makespan, other optimization criteria have been consid-
ered in the literature. I/O is a scarce resource on modern platforms, and several works aim at minimzation
I/O volume while enforcing an efficient checkpoint for makespan [25, 23]. Similarly, energy-makespan bi-
criteria optimization has been addressed in [15, 18]. To reduce I/O overhead, various two-level checkpointing
protocols have been studied [36, 14]. Some authors have also generalized two-level checkpointing to account
for an arbitrary number of levels [30, 4, 12, 5].

As for failure independence, the standard model assumes IID failure inter-arrival times, or IATs, on each
node, with a common distribution D. While it is reasonable to assume that IATs are identically distributed
on a given processor, because the faulty node is rejuvenated (replaced by a spare) after each failure, it is
very questionable to assume that IATs are independent across the platform. As for temporal dependence,
it has been observed many times that when a failure occurs, it may trigger other failures that will strike
different system components [21, 40, 3]. As an example, a failing cooling system may cause a series of
successive crashes of different nodes. Also, an outstanding error in the file system will likely be followed
by several others [34, 27]. As for spatial dependence, it is clear that the overheating of some node in a
cabinet is quite likely to be followed by the overheating of neighbor nodes (which comes atop of a temporal
dependence as well!) Bautista-Gomez et al. [3] have studied nine systems, and they report periods of high
failure density in all of them. They call these periods cascade failures. This observation has led them
to revisit the temporal failure independence assumption, and to design bi-periodic checkpointing algorithms

RR n° 9465



6 Benoit, Perotin, Robert, Vivien

that use different periods in normal (failure-free) and degraded (with failure cascades) modes. [40] introduces
a dynamic strategy called lazy checkpointing to adjust to changes in the failure rate. Another approach has
been proposed in [2], using quantiles of consecutive IAT pairs.

3 Framework

This section overviews known results for checkpoint strategies. We cover uni-processor and multi-processor
applications, either with Exponential failure distributions or with arbitrary failure distributions. Beforehand,
we detail the platform and job model.

3.1 Model

3.1.1 Platform and jobs

We consider a large parallel platform with m identical processors, or nodes. These nodes are subject to
fail-stop errors, or failures. A failure interrupts the execution of the node and provokes the loss of its
whole memory. We consider parallel jobs that can be checkpointed at any time. In scheduling terminology,
the jobs are preemptible. Consider a parallel job running on several nodes: when one of these nodes is
struck by a failure, the state of the application is lost, and execution must restart from scratch, unless a
fault-tolerance mechanism has been deployed. The classical technique to deal with failures makes use of a
checkpoint-restart mechanism: the state of the application is periodically checkpointed, i.e., all participating
nodes take a checkpoint simultaneously. This is the standard coordinated checkpointing protocol, which is
routinely used on large-scale platforms [9], where each node writes its share of application data to stable
storage (checkpoint of duration C). When a failure occurs, the platform is unavailable during a downtime
D, which is the time to enroll a spare processor that will replace the faulty processor [11, 22]. Then, all
application nodes (including the spare) recover from the last valid checkpoint in a coordinated manner,
reading the checkpoint file from stable storage (recovery of duration R). Finally, the execution is resumed
from that point on, rather than starting again from scratch. Note that failures can strike during checkpoint
and recovery, but not during downtime (otherwise we can include the downtime in the recovery time). When
a failure hits a processor, that processor is replaced by a spare. This amounts to start anew with a fresh
processor. In the terminology of stochastic processes, the faulty processor is rejuvenated. However, all the
other processors are not rejuvenated: this would be infeasible due to the multidinious spares needed!

3.1.2 Failures

We assume that each node experiences failures whose inter-arrival times follow Independent and Identically
Distributed (IID) random variables obeying an arbitrary probability distribution D. We only assume that
D is continuous and of finite expectation and variance, a condition satisfied by all standard distributions.
We let µind denote the expectation of D, also known as the individual processor MTBF. Even if each node
has an MTBF of several years, large-scale parallel platforms are composed of so many nodes that they will
experience several failures per day [16, 8]. Hence, a parallel job using a significant fraction of the platform
will typically experience a failure every few hours.

3.1.3 Checkpointing strategies

Given a parallel job of length Tbase (base time without checkpoints nor failures), the optimization problem
is to decide when and how often to checkpoint in order to minimize the expected execution time of the job.
The job is divided into Nc segments of length Wi, 1 ≤ i ≤ Nc, each followed by a checkpoint of length C. Of
course

∑Nc

i=1Wi = Tbase. Throughout the paper, we add a final checkpoint at the end of the last segment,
e.g., to write final outputs to stable storage. Symmetrically, we add an initial recovery when re-executing
the first segment of a job (e.g., to read inputs from stable storage) if it has been struck by a failure before

Inria
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completing the checkpoint. Adding a last checkpoint and an initial recovery brings symmetry and simplifies
formulas, but it is not at all mandatory: see Section 3.4 for an extension relaxing either or both assumptions.

3.2 Uni-processor job, and D Exponential

This is the simplest case. Consider a job J executing on a single processor experiencing failures whose inter-
arrival times follow an Exponential distribution D = Exp(λ) of parameter λ > 0, whose PDF (Probability
Density Function) is f(x) = λe−λx for x ≥ 0. The processor MTBF is µind = 1

λ . The optimal checkpointing
strategy, i.e., the strategy minimizing the expected execution time, can be derived as shown below.

Lemma 1. The expected time E(W,C,R) to execute a segment of W seconds of work followed by a checkpoint
of C seconds and with recovery cost R seconds is

E(W,C,R) =
(
1

λ
+D

)
eλR

(
eλ(W+C) − 1

)
. (1)

Lemma 1 comes from [7, Theorem 1]. It also applies when the segment is not followed by a checkpoint

(take C=0). The slowdown function is defined as f(W,C,R) = E(W,C,R)
W . We have the following properties:

Lemma 2. The slowdown function W 7→ f(W,C,R) has a unique minimum Wopt that does not depend on
R, is decreasing in the interval [0,Wopt] and is increasing in the interval [Wopt,∞).

Proof. Again, see [7, Theorem 1]. The exact value of Wopt is obtained using the Lambert W function, but

a first-order approximation is the Young/Daly formula WYD =
√

2C
λ .

Lemma 2 shows that infinite jobs should be partitioned into segments of size Wopt followed by a check-
point. What about finite jobs? Back to our job J of duration Tbase, we partition it into Nc segments of
length Wi, 1 ≤ i ≤ Nc, each followed by a checkpoint C. By linearity of the expectation, the expected time
to execute job J is

E(J)=
Nc∑
i=1

E(Wi, C,R) =

(
1

λ
+D

)
eλR

Nc∑
i=1

(
eλ(Wi+C)− 1

)
,

where
∑Nc

i=1Wi = Tbase. By convexity of the Exponential function, or by using Lagrange multipliers, we
see that E(J) is minimized when the Wi’s take a constant value, i.e., all segments have same length. Thus,
we obtain Wi = Tbase

Nc
for all i, and we aim at finding Nc that minimizes

E(J) = Nc E
(
Tbase
Nc

, C,R

)
= f

(
Tbase
Nc

, C,R

)
× Tbase , (2)

where f is the slowdown function. We let Nopt = Tbase

Wopt
, where Wopt achieves the minimum of the slowdown

function. Nopt would be the optimal number of segments if we could have a non-integer number of segments.
Lemma 2 shows that the optimal value NME of Nc is either NME = max(1, bNoptc) or NME = dNopte,
whichever leads to the smallest value of E(J). In the experiments, we use the simplified Young/Daly

expression NME =
⌈
Tbase

WYD

⌉
.

3.3 Parallel job, and D Exponential

Because of the memoryless property of the Exponential distribution, the multi-processor case can be reduced
to the uni-processor case. Everything holds by replacing the parameter λ by pλ, where p is the number
of processors of job J . To see this formally, say the job J is executed on p processors {Pq}1≤q≤p. Let
Xq
i ∼ Exp(λ), i ≥ 1, 1 ≤ q ≤ p, denote the IID fault inter-arrival times on processor Pq. Let Yi, i ≥ 1,

denote the fault inter-arrival times for (the p processors executing) job J .
The assumption Xq

i ∼ Exp(λ) formally means that when processor Pq is rejuvenated (or when it is used
for the first time), the next failure will strike according to a distribution Exp(λ). If the job starts at time
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8 Benoit, Perotin, Robert, Vivien

t, and the last failure stroke at time t1 < t, what is the distribution of the probability of the next failure,
knowing that Pq has been alive for t− t1 seconds? The memoryless property of Exponential distributions is
the key: it is still the same Exponential distribution. To keep notations simple, we let Xq

i ∼ Exp(λ), i ≥ 0,
denote the failure inter-arrival times on Pq once the job has started (and similarly for Yi, i ≥ 0).

First, we have Y1 = minq(X
q
1 ). Hence Y1 ∼ Exp(pλ) (minimum of p Exp(λ) distributions). Assume

that the first failure for job J stroke at time t2 (hence Y1 = t2 − t) on some processor Pq0 , which is then
rejuvenated. Because of the memoryless property, knowing this information does not change the distribution
of the next failure on any other processor, and Y2 ∼ Exp(pλ) for the very same reason that Y1 ∼ Exp(pλ).

3.4 Extension without final checkpoint nor initial recovery, and D Exponential

Consider a parallel job J with p processors, which is partitioned into segments. This section deals with the
case where no checkpoint is enforced at the end of the last segment. By symmetry, we also deal with the
case where no recovery is paid when re-executing the first segment after a failure. Let pλ denote the failure
rate for job J , assuming that job failures obey an Exponential law D = Exp(pλ).

The job is partitioned into N segments of length Wi, with checkpoint cost Ci and recovery cost Ri. Let
Ctot =

∑N
i=1 Ci and Rtot =

∑N
i=1Ri. In the model of Sections 3.2 and 3.3, we had Ci = C, Ri = R for

1 ≤ i ≤ N , Ctot = NC, and Rtot = NR. If no checkpoint is taken after the last segment, CN = 0 and
Ctot = (N − 1)C. If no recovery is paid when re-executing the first segment, R1 = 0 and Rtot = (N − 1)R.

What is the optimal strategy to minimize the expected execution time EN of the job? From Lemma 1,
we have

EN =

N∑
i=1

E(Wi, Ci, Ri)=

(
1

pλ
+D

) N∑
i=1

epλRi
(
epλ(Wi+Ci) − 1

)
, (3)

where
∑N
i=1Wi = Tbase. Given N , EN is minimized when the sum

∑N
i=1 e

pλ(Wi+Ci+Ri) is minimized. By
convexity of the Exponential function, or by using Lagrange multipliers, we see that EN is minimized when
the Wi + Ci +Ri’s take a constant value Wseg. This value is given by

NWseg = Tbase + Ctot +Rtot, (4)

and the length Wi of each segment is then computed as Wi = Wseg − Ci −Ri. If CN = 0, the last segment
involves an additional amount C of work duration. Similarly, if R1 = 0, the first segment involves an
additional amount R of work duration. Then, we can derive the optimal value of N and Wseg as follows:
Equation (4) gives N = Tbase−R−C+R1+CN

Wseg−R−C . Plugging this value into

EN =

(
1

pλ
+D

)[
(N − 1)epλR + epλR1 +NepλWseg

]
enables to solve for Wseg, using the Lambert function in a similar way as in [7].

While the derivation is painful, the conclusion is comforting: in the optimal solution, all segments have
same length of work, up to an additional recovery for the first segment and an additional checkpoint for
the last one. The Young/Daly approximation still holds, as well as all the results of this paper (whose
presentation is much simpler with all segments followed by a checkpoint).

3.5 Uni-processor job, and D arbitrary

When failures inter-arrival times obey an arbitrary distribution D, they are still IID, because the processor
is rejuvenated (replaced by a spare) after each failure. To the best of our knowledge, even the optimal value
Wopt for the slowdown function is not known analytically. For some distributions, Wopt can be computed
numerically, using partial moments for the expectation of the time lost due to failures. But note that Wopt

does no give the optimal checkpointing period for infinite jobs, contrarily to the memoryless case. In fact,
the optimal checkpointing strategy is not known for infinite jobs, let alone for finite jobs.
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For instance, consider a Weibull distribution D ∼ Weibull(k, λ) of shape k and scale λ; its PDF is

P(X = t) = k
λ ( tλ )k−1e−( tλ )k for t > 0. If k < 1, the instantaneous failure rate of D is decreasing with time

(infant mortality), checkpoints should be spaced more and more as time progresses since the last failure.
On the contrary, if k > 1, the instantaneous failure rate of D is increasing with time (ageing) and, hence,
checkpoints should be spaced less and less. This explains that the optimal checkpointing strategy is aperiodic.
See [29, 24, 31] for more details.

3.6 Parallel job, and D arbitrary

When D is arbitrary, even though the failure inter-arrival times Xq
i are IID on each processor, they are

not for (the p processors executing) job J . In other words, the Yi are not IID, unless D is Exponential.
However, owing to the theory on the superposition of renewal processes, whenever D is continuous and of
finite expectation µind, we know that the following limit exists:

lim
n→∞

E
(∑n

i=1 Yi
n

)
=
µind

p
. (5)

This result is given as Formula 1.4 in [26]. See also [22] for an elementary proof using Wald’s equation.
Equation (5) is good news because we can define the job MTBF as µind

p : in average, a failure will strike the

job every µind

p seconds. Note that the MTBF is given a new definition here: the failures striking the parallel
job J are not IID, so there is no longer a mean time before the next failure of the job. Instead, there is a
limit on the average time between failures. At any time, the distribution of the next failure is complicated
because it must account for the history of the p− 1 processors that have not been rejuvenated when the last
failure stroke. Indeed, assume that the execution of job J was started on p fresh processors {Pq}1≤q≤p, and
that the last failure stroke on processor Pq at time tq (where tq = 0 if Pq has never been struck). Let i(q)
be the index of the last failure on Pq (where i(q) = 0 if Pq has never been struck). To simplify notations,
say that the last failure stroke processor P1, meaning that tq < t1 for q ≥ 2. The probability that the next
failure strikes at time t on Pq (it will be failure number i(q) + 1) is

P(Xq
i(q)+1 = t|Xq

i(q)+1 ≥ t− tq).

In other words, only Xq
1 follows the distribution D, while each Xq

i , q ≥ 2, is shifted. To compute the distri-
bution of the next failure of job J , we need to compute the distribution of the minimum of all the Xq

i(q)+1’s,

which are not identical because of their history.
There is a theoretical approach that simplifies the problem, namely rejuvenating all the p processors of

the job after each failure (and before starting the execution of the job). Of course, this is impossible in
practice when p exceeds a small number, but it is nice from a theory perspective: with total rejuvenation,
each failure becomes a renewal point for the whole job, and the failure inter-arrival times that strike the
job become IID: their distribution is the minimum of p IID distributions D. Even better, there are a few
failure distributions D such that the minimum of p IID instances also obey the same distribution D (with
scaled parameters). For instance, consider a Weibull distribution D ∼Weibull(k, λ) of shape k and scale
λ, whose expectation is µind = λΓ(1 + 1

k ), where Γ denotes the Gamma function Γ(t) =
∫∞

0
xt−1e−xdx for

t > 0. Then the minimum Y of p IID Weibull(k, λ) is also a Weibull distribution Y ∼Weibull(k, λ
p1/k ).

We observe that the MTBF does not scale linearly with p, unless k = 1: the expectation of Y is µ = µind

p1/k .

This discussion explains the errors in [17]: (i) the platform cannot obey a Weibull distribution, unless total
rejuvenation is used; and (ii) assuming total rejuvenation, the MTBF of a job is not inversely proportional
to its number of processors.

A realistic approach to cope with the not-IID problem is to discretize time into small quanta, and to use
dynamic programming to compute the best checkpoint strategy for job J up to the next failure [7]. Obviously,
the smaller the quanta, the more accurate the results, but the more costly the dynamic programming
algorithm. The approach in [7] greedily uses this strategy from one failure to another, up to the completion
of the job. However, optimizing checkpoints up to the next failure, while optimal from one failure to the next
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(up to the precision of the quanta), may well be sub-optimal for the whole job. A main contribution of this
paper is to introduce a new greedy strategy and to prove an approximation bound for its performance. To
the best of our knowledge, this is the first theoretical result for parallel jobs with non-memoryless failures.

4 The NextStep heuristic

In this section, we present the NextStep heuristic to checkpoint parallel jobs under any failure probability
distribution. The main idea of NextStep is the following: after each failure, NextStep is able to find the
checkpointing strategy that maximizes the expected efficiency (see below) before the next failure or the end
of the job. Intuitively, optimizing the expected efficiency on a failure-by-failure basis should lead to a good
approximation on the optimal solution, at least for large job sizes. One major contribution of this work is
to show that NextStep is asymptotically optimal for arbitrary failure distributions.

We first introduce notations in Section 4.1, before formally describing NextStep in Section 4.2. Finally,
we prove the asymptotic optimality in Section 4.3.

4.1 Preliminaries

Consider a parallel job J of length Tbase executing on p processors, with checkpoint time C. Assume that
the job just experienced a failure, and it is ready to resume execution of the remaining W work units (or
the job is just starting, and then W = Tbase). For any processor Pj , 1 ≤ j ≤ p, let τj be the time elapsed
since its last failure. In particular, if Pj has been hit by the last failure, then τj = 0; note also that we do
not assume fresh processors when starting the job. We call ~τ = (τ1, τ2, . . . , τp) the history vector.

Given a checkpointing strategy, a job with W remaining work units and a history vector ~τ , the function
first(W |~τ) returns the size W1 of the segment preceding the first checkpoint.

Work. Let W(W |~τ) be the random variable that quantifies the amount of work successfully executed
before the next failure. We have the following recursion:

W(0|~τ) = 0

W(W |~τ) =


W1 +W(W −W1|~τ +

−−−−−→
W1 + C)

if the processor does not fail during
the next W1 + C units of time,

0 otherwise.

(6)

In Equation (6), given a scalar quantity x, −→x = (x, x, . . . , x) denotes the vector with p identical components
equal to x. Weighting the two cases in Equation (6) by their probabilities of occurrence, we obtain the
expected amount of work successfully computed before the next failure:

E(W(W |~τ))=Psuc(W1 + C|~τ)(W1 + E(W(W −W1|~τ +
−−−−−→
W1 + C))), (7)

where the probability of success Psuc is computed as

Psuc(x|~τ) =

p∏
i=1

P(X ≥ x+ τi|X ≥ τi). (8)

X is a generic random variable following the probability distribution D, the failure inter-arrival time on each
processor. Given any such distribution D, Psuc(x|~τ) can be computed in time O(p).

Efficiency. Rather than focusing solely on the work done, we aim at maximizing the expected efficiency,
which also depends on the number of checkpoints that have been taken. This is particularly crucial at the
end of the job, where maximizing the amount of work until the next failure may not be the best strategy
if the job is about to complete. Indeed, the efficiency also depends on the time spent computing; if no
failures occur, it depends on the number of checkpoints that are taken. Hence, we define EW (W,~τ,Nc) as
the maximum expected work until the next failure (or the completion of the job if no failure occurs) using Nc
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checkpoints; similarly, ETnext (W,~τ,Nc) is the expected time until the next failure, or before the completion
of the job if no failure occurs. Note that the number Nc of checkpoints only matters in the latter case where
the job has completed.

Finally, if a job still needs to be processed for W units of time, with a history ~τ , we define the maximum
possible efficiency among all possible numbers of checkpoints Nc:

Ee(W,~τ) = max
Nc

EW (W,~τ,Nc)

ETnext
(W,~τ,Nc)

. (9)

Time discretization. We introduce a time quantum u, and discretize time into quanta. This means that
all quantities (segment sizes, checkpoint and recovery times) are integer multiples of u, and that failures
strike at the end of a quantum. More precisely, the probability that a failure happens at the end of quantum

i is
∫ iu

(i−1)u
f(x|~τ)dx, where f(x|~τ) is the probability density function of the platform failure distribution D

in the continuous case conditioned by the history. This discretization restricts the search for an optimal
execution to a finite set of possible executions. The trade-off is that a smaller value of u leads to a more
accurate solution, but also to a higher number of states in the algorithm, hence, to a higher computing time.

In what follows, if a variable y is defined in seconds (or work units), y∗ = y/u is the corresponding
number of quanta, which we always suppose integer. For instance, the job size becomes W ∗ = W/u and the
checkpoint size C∗ = C/u. Similarly, we let P∗suc(x∗| ~τ∗) , Psuc(ux|u~τ) be the probability that the next x∗

quanta succeed given the history ~τ∗, expressed in number of quanta.

4.2 NextStep

We define NextStep formally as: find a function returning the size of the first segment to be checkpointed,
such that Ee(W, ~τ0) is maximized. Here, ~τ0 corresponds to the initial history of the platform when the exe-
cution starts. Solving NextStep analytically seems out of reach, but the recursive definition of E(W(W |~τ))
(see Equation (7)), together with time discretization, allows us to compute the maximum efficiency. Indeed,
there is no need to keep the time elapsed since the last failure of each processor as a parameter of the recur-
sive calls. This is because the τ variables of all processors evolve identically: recursive calls only correspond
to cases where no failure has occurred. The algorithm is called again each time a failure occurs, to decide
where checkpoints should be taken.

Thanks to the discretization, all the EW (W, ~τ0, Nc) values can be computed with a time quantum u. We
let x∗ be the number of quanta that remain to proceed (where initially, x∗ = W ∗). We need to find and store
the best solutions for any possible values of x∗ and Nc in the recursive call. Hence, we further consider Np,
the number of checkpoints already taken, and Nf , the number of checkpoints that can still be taken (where
Np + Nf = Nc). This corresponds to Algorithm 1: the compE procedure fills a table solve that contains,
for any triple (x∗, Np, Nf ), the maximum expected work until the next failure for these parameters, and the
best segment size W ∗1 that achieves this. For Nf = 1, the only possibility is to compute x∗ in its entirety and
then checkpoint. Otherwise, we try all possible places for the first checkpoint, and recursively call compE .
If a value with a given (x∗, Np, Nf ) had been computed before, we retrieve the corresponding result line 7.

There remains to compute ETnext (W
∗, ~τ∗, Nc), i.e., the expected time until next failure or job completion.

The following lemma helps us compute these values efficiently with discrete segments:

Lemma 3. Using discrete quanta of size u, the expectation of the time before the next failure or the com-
pletion of the job, expressed in number of quanta, is the following:

ETnext
(W ∗, ~τ∗0 , Nc) =

W∗+NcC
∗−1∑

i=0

P∗suc(i| ~τ∗0 ).

Proof. Let X denote the random variable of the number of quanta executed before the next failure (or the

completion of the job) given the history ~τ∗0 , the total number of quanta of the job W ∗ and the number of
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Algorithm 1: compE (x∗,Np,Nf )

1 if x∗ = 0 then return 0;
2 if Nf = 1 then

3 ~τ∗ ← ~τ∗0 +
−−−−−−−−−−−−→
W ∗ − x∗ +NpC

∗;

4 best← x∗P∗
suc(x

∗ + C∗| ~τ∗) ;
5 solve[x∗][Np][Nf ]← (best, x∗);
6 return best;

7 if solve[x∗][Np][Nf ] = (best,W ∗
1 ) then return best;

8 else
9 best← −∞;

10 ~τ∗ ← ~τ∗0 +
−−−−−−−−−−−−→
W ∗ − x∗ +NpC

∗;
11 for i = 1 to x∗ do
12 work ← compE(x∗ − i,Np + 1, Nf − 1);

13 cur ← P∗
suc(i+ C∗| ~τ∗)× (i+ work);

14 if cur > best then
15 best← cur;
16 W ∗

1 ← i ;

17 solve[x∗][Np][Nf ]← (best,W ∗
1 );

18 return best;

checkpoints Nc. Clearly, X is taking integer values in [1,W ∗ +NcC
∗], thus

E(X) =

W∗+NcC
∗∑

i=1

iP{X = i} =

W∗+NcC
∗∑

i=1

P{X ≥ i}

=

W∗+NcC
∗∑

i=1

P∗suc(i− 1| ~τ∗0 ) =

W∗+NcC
∗−1∑

i=0

P∗suc(i| ~τ∗0 ),

which concludes the proof.

From Lemma 3, we derive that ETnext
(W ∗, ~τ∗0 , nc + 1) = ETnext

(W ∗, ~τ∗0 , nc) +
∑W∗+(nc+1)C∗−1
i=W∗+ncC∗ P∗suc(i| ~τ∗0 ).

This is used in Algorithm 2 to compute all the ETnext
values more efficiently on lines 1–6. Algorithm 1 is

called to fill the solve table with all values of EW on line 7. We obtain the efficiency Ee(W ∗, ~τ∗0 ) for all
possible number of checkpoints and keep the maximum, see lines 8–13. Finally, the algorithm returns the
values for Nc and W ∗1 corresponding to the maximum efficiency, which allows us to rebuild completely the
corresponding solution using the table solve.

Proposition 1. Using a time quantum u, and for any failure inter-arrival time distribution, Algorithm 2
computes the solution to NextStep (maximizing efficiency) in time O(p(W ∗)4).

Proof. The NextStep algorithm consists of three steps.
In the first step, it computes all values of ETnext (W

∗, ~τ∗0 , nc) for nc ∈ [1,W ∗]. To do so, two loops
are executed. The first one has W ∗ steps, where each step computes a single addition. The value of
P∗suc(W ∗+ (nc− 1)C∗+ i| ~τ∗0 ) is the product of the individual probability of failure of the p processors (as in
Equation (8)). We assume that the individual probabilities of failure can be computed in O(1), thus the loop
takes a time O(pW ∗). The second loop is similar, with two nested loops, and its complexity is O(pW ∗C∗).
We can safely assume that C∗ ≤W ∗, otherwise doing any checkpoint is straightforwardly bad (if we succeed
the checkpoint, we would have succeeded the entire job), and the complexity is at most O(p(W ∗)2).

In the second step, the algorithm fills the table solve and calls compE (W ∗, 0, nc) for nc ∈ [1,W ∗].
The function compE (x, y, z) fills the table entry corresponding to its parameters if necessary, with eventual
recursive calls to compE where y + z is constant and x decreases. Given the initial calls with x = W ∗ and
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Algorithm 2: NextStep (W ∗)

/* Compute ETnext (W
∗, ~τ∗0 , nc) for nc ∈ [1,W ∗] */

1 S ← 0;

2 for i = 0 to W ∗ − 1 do S ← S + P∗
suc(i| ~τ∗0 );

3 for nc = 1 to W ∗ do
4 for i = 1 to C∗ do

5 S ← S + P∗
suc(W

∗ + (nc − 1)C∗ + i| ~τ∗0 );
6 ETnext (W

∗, ~τ∗0 , nc)← S;

/* Compute EW (W ∗, ~τ∗0 , nc) (array solve) */

7 for nc = 1 to W ∗ do compE(W ∗, 0, nc);

/* Solution of NextStep */

8 best← −∞; Nc ← 0; W ∗
1 ← 0;

9 for nc = 1 to W ∗ do

10 cur ← first(solve[W ∗][0][nc])/ETnext (W
∗, ~τ∗0 , nc);

11 cursegment← second(solve[W ∗][0][nc]);
12 if cur > best then
13 best← cur; Nc ← nc ; W

∗
1 ← cursegment;

14 return (Nc,W
∗
1 );

y + z ∈ [1,W ∗] the number of entries written in the table is at most W∗3

2 . To upper bound the overall
complexity of this step, we first note that an entry may only be written in the table if the compE function
is called with the same parameters. In the sub-case Nf = 1, this takes few operations and involves a call to
P∗suc, thus a time O(p). Otherwise, this means compE has been called with parameters corresponding to the
last sub-case. If so, a loop is executed x∗ ≤ W ∗ times, and each iteration requires a call to compE , which
either takes time O(1) or fills another entry of the table (therefore the complexity is taken into account for
this other entry), and the other operations are in O(1), except the computation of P∗suc in O(p). Overall,
the individual cost of each entry of the table is at most in O(pW ∗). Finally the calls to compE that do not
fill the table may only be made recursively and were taken into account in the analysis. Given the size of
the table in O((W ∗)3), this second step is in O(p(W ∗)4).

Finally, the last step returning the solution consists of a loop with W ∗ iterations, where each iteration is
done in O(1), which gives a complexity in O(W ∗). The complexity is dominated by the second step; hence,
the result.

4.3 Asymptotic analysis

We proceed in two steps. First, we show that for an infinite job and for any integer n, the expected work
completed by NextStep before the n-th failure (which happens at a random time) is larger than or equal
to the one of any other strategy. Then, we show that the expected work processed within T units of time is
asymptotically optimal with T (Theorem 1).

4.3.1 Expected work completed before the n-th failure

We compare NextStep to any other strategy for an infinite job that has an infinite number of failures. We
assume that the job starts at time t0 = 0. For k ≥ 1, let tk be the random variable representing the date
of the k-th failure, and for k ≥ 0, let ~τk be the random variable representing the history of the machine at
time tk. Note that neither tk nor ~τk depend on the checkpointing strategy. For any n ≥ 1, let WFn be the
random variable corresponding to the expected work executed from the start up to failure n by NextStep,
and let OPTn denote the same variable for an optimal strategy, both depending on the initial history ~τ0.
We show that E(WFn) = E(OPTn).
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We define wfk (resp. optk) the random variable representing the work executed by NextStep (resp. an
optimal strategy) between times tk−1 and tk. At any decision point, i.e., after each failure, the expected
time before the next failure or the completion is the expected time before the next failure, because the job is
infinite; hence, this time does not depend upon the number of checkpoints. From Equation (9), we deduce
that, for any history, NextStep maximizes the expected work accomplished before the next failure. Hence,
we have for any k ≥ 1 and any possible history ~τ at the (k − 1)-th failure (or ~τ = ~τ0 if k = 1):

E(wfk|~τk−1 = ~τ) ≥ E(optk|~τk−1 = ~τ).

This inequality holds for any possible history ~τ , i.e., for any possible event {~τk−1 = ~τ}, and ~τk−1 does not
depend on the strategy. Therefore, this inequality can be directly extended to E(wfk|~τk−1) and E(optk|~τk−1).
Note that these expectations are conditioned by a random variable instead of an event, thus are random
variables themselves (constant for k = 1 if we consider ~τ0 as a constant random variable) which always verify
E(wfk|~τk−1) ≥ E(optk|~τk−1). In particular:

E(E(wfk|~τk−1)) ≥ E(E(optk|~τk−1)). (10)

This result can be combined with the property E(X) = E(E(X|Y )) (Law of Total Expectation) whenever
both sides exist [37, p. 179] to obtain, for all k ≥ 1,

E(wfk) = E(E(wfk|~τk−1)) ≥ E(E(optk|~τk−1)) = E(optk).

Finally, we obtain:

E(WFn) = E

(
n∑
k=1

wfk

)
=

n∑
k=1

E(wfk)

≥
n∑
k=1

E(optk) = E

(
n∑
k=1

optk

)
= E(OPTn).

This shows that the expected work completed by NextStep before the n-th failure is larger than or equal
to the one of any other strategy.

4.3.2 NextStep is asymptotically optimal

For any T , we show how to define n(T ), the index of a failure striking at a time close enough to T , so that
the relative work difference performed between T and tn(T ) (whichever comes first) is negligible:

Lemma 4. Let n(T ) = pb T
E(X)c, then lim

T→∞
E(|T−tn(T )|)

T = 0.

Proof. Consider an infinitely long job executing on p processors Pi, 1 ≤ i ≤ p. Let X denote the random
variable for failure inter-arrival times on each processor if there is no history. For T > 0, we fix K(T ) =⌊

T
E(X)

⌋
, thus n(T ) = pK(T ).

Let ti,j be the random variable representing the time when processor Pi fails for the j-th time. Clearly, for
all i and k > 0, ti,k+1−ti,k follows the distribution X, because Pi is rejuvenated after each failure. Therefore,
E(ti,j) = E(Xi,0) + (j − 1)E(X), where E(Xi,0) depends on the initial state of processor Pi. We then use a
variant of the strong law of large numbers [10, Ex. 8 p. 137]: If (X1, X2, . . . , Xj) are identically distributed

with finite expectations and Sj =
∑j
k=1Xk, then

Sj
j → E(X1) in L1, i.e., lim

j→∞ E
(∣∣∣Sjj − E(X1)

∣∣∣) = 0.

Applying this result with Xk = ti,k+1 − ti,k, we obtain Sj−1 = ti,j − ti,1 and

∀i, lim
j→∞ E

(∣∣∣∣ ti,j − ti,1j − 1
− E(X)

∣∣∣∣) = 0.
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For any given j, since the ti,j−ti,1’s are identically distributed for all i, we can define a function ε(j) verifying
lim
j→∞ ε(j) = 0 and such that, using triangular inequalities:

E(|ti,j − jE(X)|) ≤ jε(j) + E(X) + ti,1

for all i and j. Finally, min
1≤i≤p

ti,K(T ) ≤ tn(T ) ≤ max
1≤i≤p

ti,K(T ), because the total number of failures is the sum

of the number of failures of each processor and n(T ) = pK(T ). Hence,

E(|tn(T ) −K(T )E(X)|) ≤ E( max
1≤i≤p

(|ti,K(T ) −K(T )E(X)|))

≤ E(

p∑
i=1

(|ti,K(T ) −K(T )E(X)|))

≤ pK(T )ε(K(T )) + pE(X) +

p∑
i=1

ti,1.

By definition, K(T )E(X) ≤ T ≤ (K(T ) + 1)E(X), and, because of the triangular inequality, we have:

E(|T − tn(T )|)
T

=
E(|(T −K(T )E(X)) + (K(T )E(X)− tn(T ))|)

T

≤ E(X)

K(T )E(X)
+
K(T )pεK(T )

K(T )E(X)
+

pE(X)

K(T )E(X)
+

∑p
i=1 ti,1

K(T )E(X)

=
1

K(T )
+

p

E(X)
ε(K(T )) +

p

K(T )
+

∑p
i=1 ti,1

K(T )E(X)
.

Here, p, E(X), and
∑p
i=1 ti,1 are fixed, while lim

T→∞K(T ) =∞. Hence the result, using lim
K(T )→∞ ε(K(T )) = 0.

Theorem 1. For any T , with n(T ) = pb T
E(X)c, let w∗n(T ) be the optimal expected work done up to time tn(T )

(from the start to the n(T )-th failure). Then, for any checkpointing strategy, we have EW ([0,T ])
T ≤ w∗

n(T )

T +o(1).

Furthermore, with NextStep, we have EW ([0,T ])
T ≥ w∗

n(T )

T − o(1). Hence, NextStep is asymptotically
optimal.

Proof. Assuming EW ([a, b]) = 0 if a > b, thanks to Lemma 4, we obtain that, for any strategy,

EW (T )

T
≤

EW ([0, tn(T )])

T
+

EW ([tn(T ), T ])

T

≤
w∗n(T )

T
+

E(|T − tn(T )|)
T

=
w∗n(T )

T
+ o(1).

Furthermore, for NextStep, we have:

EW (T )

T
≥

EW ([0, tn(T )])

T
−

EW ([T, tn(T )])

T

≥
w∗n(T )

T
−

E(|T − tn(T )|)
T

=
w∗n(T )

T
− o(1),

which concludes the proof.

4.3.3 Counter-example to optimality

The NextStep heuristic is asymptotically optimal but not always optimal. This is because, for short jobs,
maximizing the efficiency until the next failure is not exactly equivalent to minimizing the makespan. In
Appendix C, we give an example where NextStep is not optimal, for an Exponential law. The example is
designed as a worst-case scenario and shows that the number of checkpoints may differ between NextStep
and the optimal.
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4.3.4 A note on the optimal solution for an Exponential law

Sections 3.2 and 3.3 have shown how to statically compute the optimal strategy to minimize the expected
makespan of a job when the failures obey an Exponential distribution. This optimal strategy is static,
meaning that we compute the number and length of the job segments once and for all, before starting the
execution. On the contrary, the NextStep strategy is dynamic, since it is called after each failure. One
may envision a dynamic version of the optimal static strategy, where one would recompute the number and
length of the job segments after each failure (and maybe after each checkpoint too), as a function of the
remaining size of the job. We show in Appendix B that this dynamic approach is identical to the static one.
This new result demonstrates the fairness of comparing NextStep with a static approach.

5 Performance Evaluation

In this section, we evaluate and compare the performance of NextStep with the Young/Daly periodic
checkpointing heuristic, using simulations on synthetic jobs with various parameters, and subject to failures
that are sampled from a wide range of probability distributions. Section 5.1 details job parameters and
failure distributions. Section 5.2 presents all simulation results.

5.1 Simulation Setup

Algorithms

We compare the performance of NextStep with YoungDaly, the Young/Daly periodic checkpointing
strategy (see Sections 3.2 and 3.3). For YoungDaly, a job J of length Tbase and using p processors is

divided into NME =
⌈
Tbase

WYD

⌉
equal-size segments, each followed by a checkpoint. Here, WYD =

√
2Cµind

p . By

default, we use µind = 10 years in the simulations.
Because YoungDaly is a periodic strategy, the size of its checkpointed segments are defined once and for

all. On the contrary, NextStep adapts its checkpointing strategy to the failure history. Hence, after each
failure, NextStep must recompute the size of its checkpointed segments. We take this recomputation time
into account in the simulation, and conservatively add it to the recovery time1. To keep the recomputation
time as low as possible, we introduce two optimizations to Algorithm 2. The goal is to dramatically shorten
its execution time while maintaining the quality of the produced solution.

The first optimization is about the loop at Line 9. In Algorithm 2, the loop is over all possible numbers
of checkpoints, ranging from a single checkpoint to one checkpoint per time quantum (i.e., W ∗ checkpoints).
This latter solution would lead to a huge number of checkpoints. A natural conjecture is that the expected
performance of NextStep would be a bell-shaped function of the number of checkpoints that are taken, first
increasing and then decreasing after a threshold number has been reached. Therefore, in our implementation,
we have replaced the for loop at Line 9 by a while loop that continues to look for a solution involving one
additional checkpoint only if at least one of the five prior attempts leads to the best solution overall.

The second optimization is about the computation of the probability of success in Algorithm 1, Lines 4
and 13; and Algorithm 2, Lines 2 and 5. This probability is the product of the individual probabilities
of the processors. Hence, the execution time of this step is linear in the number of processors, while we
want to consider platforms with tens of thousands of processors. Furthermore, this probability is computed
many times, for many different values of i and nc. We replace the exact computation by the following
approximation. We first sort the values in τ∗0 and we retain the smallest ten and largest ten values; then we
approximate the remaining values using 100 quantiles, according to the distribution. When i and nc vary,
they add an additive term to the history, which does not change the ranking of the values. We can thus
replace the exact computation by one that uses the 10 smallest and 10 largest values of the history, and the
100 quantiles with their frequency of occurrences (if there are k values for a quantile, we compute a single

1An alternative would be to perform this recomputation on dedicated resources, and in parallel to the recovery. We study
the most costly scenario for NextStep.
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probability and its exponentiation rather than k probabilities that we multiply). Hence, for a pre-processing
cost of O(p log p) we approximate in constant time the probability of success, since the processors that define
the 120 history values remain the same up to the next failure.

Probability Distributions

We experiment with a wide range of probability distributions:

• The Exponential distribution, with probability density function f(t) = e−t/µind
µind

;

• The Weibull distribution, with probability density function f(t; k, λ) = k
λ

(
t
λ

)k−1
e−(t/λ)k , where k is

the shape parameter and λ is the scale parameter. To obtain an MTBF of µind, we chose λ = µind

Γ(1+ 1
k )

,

and therefore the probability density function becomes f(t, k) =
kΓ(1+ 1

k )

µind

(
tΓ(1+ 1

k )

µind

)k−1

e
−
(
tΓ(1+ 1

k
)

µind

)k
. In the

experiments, k is varied in {0.5, 0.7, 1.5}. The first two shape values are realistic values taken from [32, 33, 15];
for k < 1, processors are more likely to fail if the processor is recent (infant mortality). The last shape value
k = 1.5 provides an example of a distribution whose instantaneous failure rate increases with time. Note
that k = 1 corresponds to the Exponential distribution;

• The Gamma distribution, with probability density function f(t, k,Θ) = tk−1e−
t
Θ

Γ(k)Θk
, where k is the shape

parameter and Θ is the scale parameter. To obtain an MTBF of µind, we scale it using Θ = µind

k and obtain

f(t, k) = kktk−1e
− kt
µind

Γ(k)µkind
, where k is the shape parameter and Γ is the Gamma function. In the experiments, k

is varied in {0.5, 0.7}. Note that k = 1 corresponds again to the exponential distribution;

• The Lognormal distribution, with probability density function f(t, µ, σ) = 1
tσ
√

2π
e

(
− (ln t−µ)2

2σ2

)
and

with expectation eµ+σ2/2, where µ and σ are respectively the expectation and the standard deviation of the
variable’s natural logarithm. We tested with two sets of (µ, σ), used in [13] and [42]: (µ1 = 6.6025, σ1 =
1.6206) and (µ2 = 10.89, σ2 = 1.08). In order to harmonize with the other probability distributions, we

aim at having µind = eµ+σ2/2 = 10 years. To achieve this without altering the shape of the probability
distribution, we fix a parameter k = µ/σ2, in order to express the probability density function with (µind, k).
After scaling, we obtain two sets (µind = 10, k = 2.51) and (µind = 10, k = 9.34) that we consider in the
experiments. We retrieve the probability density function with:

µ =
ln(µind)

1 + 1
2k

; σ =

√
µ

k
=

√
ln(µind)

k + k
2

.

Traces

We generate a failure trace for each failure distribution and for each processor. In that trace, failure inter-
arrival times obey the distribution, and the last failure happens after time h, where h is the horizon of the
failure trace. The horizon is set to two years (h = 730 days) for all the traces. The different heuristics are
then evaluated using the trace, thereby making sure that all heuristics are evaluated using the very same
failure scenario. If during a simulation, a checkpointing strategy reaches time h before the completion of the
job, the simulation is said to fail.

Simulation Parameters

In the experiments, we compare both checkpointing strategies under the following parameter settings:
• The number of processors p, logarithmically varied in the range 103 to 105. These values represent mid-size
to large parallel platforms.
• The checkpoint/recovery/downtime C = R = 10D, in seconds, varied in {60, 600}. In practice, the small
value of C is optimistic while the later is pessimistic; and the low value of D assumes that spares are
immediately available.
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Figure 1: Expected performance of both heuristics under all failure distributions for a 100 days old platform
with a workflow of Tbase = 48 hours.

Table 1: Ratio of the execution time achieved by YoungDaly to that of NextStep for the 8 failure
distributions, when Tbase = 48 and Tplat = 100, and when aggregating all results.

LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
2.51 0.5 0.5 0.7 0.7 1.5 9.34

Tbase =48, Tplat =100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11)
Aggregated 2.48 (2.26) 1.44 (1.6) 1.24 (1.43) 1.13 (1.28) 1.07 (1.21) 1.01 (1.07) 1.04 (1.07) 1.03 (1.09)

• The duration of the job Tbase, in hours, varied in {1, 3, 10, 48}. Tbase corresponds to the total length of
the job, excluding checkpoints, if no failure occurs, when it is run on p processors (weak scaling). This
corresponds to the duration range of typical HPC jobs, lasting from one hour up to two days.
• The age of the platform Tplat, in days, varied in {0, 10, 30, 100, 365}. This is the time from which we start
using the failure traces: either from their very beginning if Tplat = 0, or from a later time if Tplat > 0. The
age of the platform plays an important role for non-memoryless failure distributions. At the creation of
the platform, all the processors are new and without any failure history. After a failure, the processor that
failed is replaced/rejuvenated, but the other processors are not and keep their history. For instance, if the
processors experience infant mortality, we expect the number of failures to be much higher with Tplat = 0,
when all processors are new, than after a year of service (Tplat = 365).

Evaluation Methodology

For each possible choice of parameters, we generate 50 different failure scenarios. For each failure scenario,
the simulated makespan (duration of the whole execution) of both heuristics is computed. We include the
time spent to compute the segment sizes of NextStep. On the plots, we report the average makespan over
these 50 instances, together with the tenth and the ninetieth percentiles, as a function of the number of
processors. The YoungDaly heuristic is shown in red, and NextStep in blue. In all figures, the y-axis is
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the makespan in hours, and the x-axis corresponds in most cases to the number of processors; both axes are
in log-scale.

In the tables, we report the relative performance of YoungDaly and NextStep. More precisely, for
each failure scenario, we compute the ratio of the makespan achieved by YoungDaly divided by that of
NextStep. Hence, NextStep achieves a better makespan when the ratio is greater than 1; the larger
the ratio, the higher the benefice of using NextStep. To produce meaningful statistics on these ratios,
we compute and report their geometric mean and geometric standard deviation (in parentheses). For a
few configurations, YoungDaly does not succeed to complete the job before the trace horizon. For these
cases, in order to be able to compute statistics, we take for the execution time of YoungDaly a lower
bound, namely the time at which the execution was stopped: h − Tplat. We checked that using this lower-
bound or computing the statistics while just discarding these configurations leads to almost identical results
(differences below 1%). The simulation code for all experiments is publicly available at http://perso.

ens-lyon.fr/frederic.vivien/resilience/non-memoryless-checkpoint.

5.2 Results

We first compare the behavior of both checkpointing heuristics with the different probability distributions
on a particular set of parameters, before studying the impact of the different parameters. Only a selection
of results is presented here due to lack of space, but exhaustive results for all combinations of parameters
can be found in Apendix C.

5.2.1 Comparison of Probability Distributions

Figure 1 compares the two heuristics for the different failure distributions, with a checkpoint length of one
or ten minutes, where the job length is 48 hours and the platform is 100 days old. In this case, although
the platform is not new, we see that the NextStep heuristic is performing either better than or similarly
to YoungDaly. Moreover, the difference tends to be more important when the checkpoint length is higher
(bottom graphs). Recall that the lower is the better, since we plot execution times.

Although the MTBF of any individual processor is the same for all failure laws (µind = 10 years), the
shape of these laws significantly impacts the number of failures that occur during the processing of the
job, as well as the distribution of the failures. For instance, if the processors tend to have infant mortality
(which corresponds to distributions on the left of the figure), and if the platform is not very old, then jobs
may actually experience more failures than expected. This is the case for the Lognormal distribution with
k = 2.51 or Weibull with k = 0.5 in Figure 1. This explains the higher execution times of YoungDaly for
both heuristics.

Furthermore, YoungDaly does not checkpoint often enough, as it considers the global long term MTBF
of the platform instead of its actual instantaneous failure rate. This is because YoungDaly does not take
the failure history into account. On the contrary, NextStep does take that history into account. Therefore,
it correctly estimates the instantaneous failure rate. This results in a makespan that can be up to two times
lower.

There are some distributions for which processors tend to be more robust at the beginning because of
their young age (distributions on the right of the figure). In this case, when the platform is rather young,
the number of failures is lower than what would be expected regarding the MTBF of the platform. A good
example is the Weibull distribution with k = 1.5 in Figure 1. In that case, the actual instantaneous failure
rate of the platform is lower than expected, YoungDaly tends to over-checkpoint because it does not take
into account this actual failure rate, whereas NextStep adapts its checkpointing strategy according to this
history, showing once again its versatility. Yet this time, the difference between heuristics is low, because
the overall checkpointing cost remains small in both cases.

Finally, if the platform actual instantaneous failure rate is in accordance with the expected MTBF, as
is the case for an Exponential law, YoungDaly is optimal. We check that the performance of NextStep
and YoungDaly are similar in this setting.
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Table 2: Ratio of the execution time achieved by YoungDaly to that of NextStep for the 8 failure
distributions for the different platform sizes and when averaging over all the other parameters.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
size 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1000 1.34 (1.6) 1.14 (1.33) 1.08 (1.22) 1.03 (1.11) 1.01 (1.08) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
1778 1.53 (1.82) 1.18 (1.41) 1.11 (1.3) 1.03 (1.12) 1.02 (1.1) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
3162 1.88 (2.07) 1.26 (1.49) 1.16 (1.37) 1.05 (1.16) 1.02 (1.13) 1.01 (1.04) 1.02 (1.04) 1.01 (1.05)
5623 2.22 (2.28) 1.33 (1.54) 1.19 (1.38) 1.07 (1.19) 1.04 (1.14) 1.01 (1.06) 1.03 (1.04) 1.02 (1.06)

10000 2.72 (2.33) 1.38 (1.58) 1.23 (1.42) 1.09 (1.24) 1.06 (1.18) 1.01 (1.05) 1.03 (1.05) 1.02 (1.06)
17783 3.2 (2.33) 1.51 (1.66) 1.26 (1.44) 1.14 (1.29) 1.08 (1.22) 1.01 (1.07) 1.04 (1.06) 1.03 (1.07)
31623 3.74 (2.18) 1.72 (1.72) 1.36 (1.5) 1.22 (1.36) 1.12 (1.27) 1.02 (1.08) 1.07 (1.08) 1.05 (1.12)
56234 3.65 (2.02) 1.76 (1.63) 1.37 (1.5) 1.24 (1.35) 1.14 (1.3) 1.01 (1.1) 1.08 (1.09) 1.05 (1.13)

100000 3.5 (1.92) 1.85 (1.55) 1.41 (1.48) 1.33 (1.41) 1.15 (1.32) 1.01 (1.09) 1.08 (1.1) 1.07 (1.16)

Table 3: Ratio of the execution time achieved by YoungDaly to that of NextStep for the 8 failure
distributions as a function of platform age, with p = 56234 and Tbase = 48 and when averaging over the two
checkpoint sizes.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal Average
age 2.51 0.5 0.5 0.7 0.7 1.5 9.34

0 4.17 (2.06) 2.33 (1.48) 1.85 (1.44) 1.42 (1.38) 1.28 (1.32) 1.03 (1.08) 1.08 (1.07) 1.08 (1.07) 1.58 (1.78)
10 3.27 (2.26) 1.61 (1.66) 1.29 (1.46) 1.13 (1.29) 1.06 (1.2) 1.01 (1.06) 1.04 (1.06) 1.02 (1.06) 1.31 (1.71)
30 2.57 (2.17) 1.36 (1.55) 1.15 (1.32) 1.08 (1.21) 1.03 (1.16) 1 (1.06) 1.03 (1.06) 1 (1.06) 1.21 (1.58)

100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11) 1.12 (1.42)
365 1.42 (1.72) 1.05 (1.17) 1.01 (1.1) 1.02 (1.11) 1 (1.08) 1 (1.06) 1.01 (1.07) 1.03 (1.13) 1.06 (1.27)

Altogether, these results show that NextStep always adapts to the actual instantaneous failure rate,
because it accounts for the failure history of processors. Its versatility makes it a better strategy in all the
cases: Table 1 summarizes the results, reporting the ratio of the execution time achieved by YoungDaly to
that of NextStep (geometric average, geometric standard deviation). We point out that the difference is
more significant for the realistic distribution laws that have been advocated in the literature: namely Weibull
with a shape parameter smaller than one [32, 33, 15], and Lognormal [13, 42].

The previous study was for long jobs lasting 48 hours and Tplat = 100. We also present the aggregated
results over all job lengths and platform ages in Table 1. We observe that NextStep achieves even larger
gains. For instance, for Lognormal 2.51, the average ratio becomes 2.48, instead of 1.89 for the scenario with
Tplat = 100.

5.2.2 Impact of the Different Parameters

Impact of the number of processors. It can also be observed on Figure 1: the more processors,
the more failures, and the larger the makespan for both heuristics, as one could have foretold. In most
settings, the performance of YoungDaly worsens relatively to that of NextStep when the number of
processors increases (recall that the y-axis is in log-scale). Again, this can be explained as follows: the
difference between the estimated failure rate and the instantaneous failure rate increases with the number of
processors; hence, worse results for YoungDaly. On the contrary, NextStep adapts to the instantaneous
failure rate. Table 2 provides a comprehensive summary of results for each platform size, averaging over all
other parameters. The table confirms this observation.

Table 4: Ratio of the execution time achieved by YoungDaly to that of NextStep for the 8 failure
distributions for the two checkpoint durations (in seconds) when averaging over all the other parameters.

Checkpoint LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
duration 2.51 0.5 0.5 0.7 0.7 1.5 9.34

60 2.18 (2.27) 1.33 (1.52) 1.17 (1.37) 1.08 (1.2) 1.03 (1.14) 1 (1.03) 1.02 (1.04) 1.01 (1.04)
600 2.83 (2.2) 1.56 (1.66) 1.3 (1.47) 1.18 (1.34) 1.11 (1.26) 1.02 (1.09) 1.06 (1.08) 1.05 (1.12)
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Figure 2: Expected performance of both heuristics under all failure distributions, with p = 56234 and
Tbase = 48 hours.

Impact of the age of the platform. The age of the platform has a great impact on the performance of
both heuristics, because the instantaneous failure rate of the platform highly depends on it. When processors
have a high infant mortality, a more recent platform leads to more errors and thus to a higher makespan
for both heuristics. This can be observed in Figure 2, especially on the leftmost graphs. On this figure, the
x-axis is now the age of the platform (in a linear scale). The number of processors is fixed to p = 56234 and
the job execution time is Tbase = 48 hours.

For all distributions to the left of the Exponential, the newer the platform, the higher the difference
between the heuristics. Indeed, for younger platforms, processors are more likely to fail due to infant
mortality; and the older the platform, the more the instantaneous failure rate resembles an Exponential.
The same observation can be made for Weibull 1.5, although in this case, this is due to low infant mortality.
Indeed, with this distribution, less failures occur for younger platforms.

Lognormal 9.34 behaves slightly differently. For this distribution, once again, YoungDaly does not adapt
to the instantaneous failure rate: either it overestimates the instantaneous failure rate of a new platform
and does not checkpoint enough, or it underestimates the instantaneous failure rate of an old platform and
checkpoints too much. On the contrary, NextStep adjusts the checkpointing strategy for both cases. For
intermediate platform ages, both heuristics have close performance because this is where the instantaneous
failure rate is the closest to what is expected (µind

p ) by YoungDaly. Nevertheless, the variance is different
from that of the Exponential law, and NextStep achieves slightly better performance.

Table 3 summarizes these results. The last column provides an average over all distributions. Most gains
are obtained for young platforms. NextStep always achieves a performance at least similar to YoungDaly,
and much better in many cases.

Impact of the checkpoint time. As expected, the larger the checkpoint cost, the larger the execution
time for both heuristics, as shown in Figure 1. Having a larger checkpoint cost exacerbates the differences
between both heuristics. Indeed, when checkpoints cost more, both heuristics execute fewer checkpoints and
thus lose more time at each failure. In the end, this increases the relative errors due to a bad checkpointing
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Figure 3: Expected performance of both heuristics under all failure distributions on a 365 day old platform,
with C = 60 seconds.

Table 5: Ratio of the execution time achieved by YoungDaly to that of NextStep for the 8 failure
distributions for the different job lengths (in hours) and when averaging over all the other parameters.

Job LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
length 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1 2.36 (2.84) 1.42 (1.81) 1.25 (1.58) 1.12 (1.39) 1.07 (1.29) 1.02 (1.09) 1.05 (1.08) 1.04 (1.12)
3 2.83 (2.47) 1.52 (1.71) 1.29 (1.49) 1.15 (1.32) 1.09 (1.25) 1.01 (1.07) 1.04 (1.08) 1.03 (1.1)

10 2.63 (2) 1.47 (1.51) 1.25 (1.35) 1.14 (1.23) 1.07 (1.17) 1 (1.05) 1.04 (1.06) 1.03 (1.08)
48 2.16 (1.6) 1.35 (1.32) 1.16 (1.21) 1.11 (1.15) 1.05 (1.11) 0.997 (1.03) 1.03 (1.05) 1.02 (1.06)

strategy. Table 4 summarizes the results for the two checkpoint costs (one minute or ten minutes).

Impact of the job length. Again, the larger the job length, the larger the execution time for both
heuristics, as shown on Figure 3. Moreover, the error bars are much wider for a small workload, because
having larger jobs will smooth the impact of each individual failure. Table 5 summarizes results for the four
job lengths by aggregating all results. Overall, more gain can be achieved with smaller job lengths. Indeed,
relatively to the lengths of jobs, checkpoints are more expensive for small jobs. This conclusion is similar
to that on the impact of the cost of checkpoints. This phenomenon can be observed by comparing Tables 4
and 5, where the impact of increasing the checkpoint cost is similar to the impact of decreasing the job
length.

6 Conclusion

In this paper, we have investigated checkpointing strategies to protect parallel jobs from non-memoryless
fail-stop errors. Indeed, the optimal strategy has been well studied when failure inter-arrival times obey
an Exponential law, but not well understood for non-memoryless failure distributions. We have designed a
general strategy, NextStep, which maximizes the expected efficiency until the next failure. While it may not
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be optimal because of side-effects towards the end of the job, we proved that this strategy is asymptotically
optimal for very long jobs.

Instead of maximizing the expected efficiency until the next failure, traditional solutions consist in check-
pointing periodically according to the platform MTBF (YoungDaly strategy). Our extensive simulation
results show that this strategy works well for Exponential laws, but not for the other laws, because it either
underestimates or overestimates the actual instantaneous failure rate. On the contrary, NextStep is always
at least as good as YoungDaly for any failure distribution, and significantly outperforms it in many cases.
Overall, our study demonstrates the interest of always using NextStep instead of YoungDaly.

In particular, the difference between NextStep and YoungDaly is very important for distributions
whose infant mortality of the distribution is high, e.g. LogNormal 2.51 or Weibull 0.5. The latter distribu-
tions have been advocated to model failures on real-life platforms, which further evidences the impact and
significance of NextStep.

Future work will focus on checkpointing strategies for workflows composed of parallel jobs with depen-
dencies, instead of independent jobs as in this study. The criticality of some jobs in the workflow may lead to
checkpoint them more often than prescribed by the NextStep strategy tuned for a given non-memoryless
failure distribution.
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Appendices

A NextStep is not optimal for Exponential laws

A.1 Introduction to the example

Consider a single-processor job of length Tbase = T = 0.062249, which we need to checkpoint at the end.
The duration of a checkpoint is C = 0.001 and we have R = D = 0. The failure probability density function
is f(x) = e−x, an Exponential law with parameter λ = 1. We show that NextStep is not optimal for this
example.

We start in Section A.2 with the computation of a fundamental function: if a failure strikes between
instants a and b, what is the expected time Elost(a, b) elapsed between a and the time of the failure? Here,
a will always be either equal to 0 (a = 0), or to the time the last checkpoint was completed. Then, b can be
any instant before the end of the next checkpoint. Thus, Elost(a, b) corresponds to the expected work lost
after the last checkpoint.

Next, we compute in Section A.3 the expected makespan when a single checkpoint is taken E∗stat(T,Nc =
1). We show in Section A.4 that this is the best static strategy, by proving that the optimal makespan of a
static strategy which takes two checkpoints, E∗stat(T,Nc = 2), is strictly greater than E∗stat(T,Nc = 1). This
enables us to conclude using the results recalled in Section 3.2 of the main paper. Indeed, with the notations
of Section 3.2, if taking two checkpoints is worse than taking one, then the optimal number of checkpoints
Nopt is not greater than 2. Hence, NME ≤ 2.

Finally, we lower-bound the expected makespan of NextStep. To do so, we first find in Section A.5 the
optimal expected efficiency E∗e(T,Nc) achievable by NextStep for Nc = 1 and Nc = 2, and we show that
the efficiency is better for Nc = 2, implying that the initial strategy includes at least two checkpoints. Then,
in Section A.6, for any Nc ≥ 2, we suppose that NextStep does Nc checkpoints in the first call and we
lower-bound the expected makespan ÊNS (T,Nc) in this case. Rephrased differently, ÊNS (T,Nc) corresponds
to the expected makespan of the algorithm that optimizes the efficiency up to the next failure starting with
Nc checkpoints, and applies NextStep afterwards. We check that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1).
In particular, if the actual number of checkpoints of NextStep planned in the first call is N∗c ≥ 2, its
expected makespan ENS (T ) verifies ENS (T ) = ÊNS (T,N∗c ) > E∗stat(T, 1), which shows that it is not optimal.

A.2 Computation of Elost(a, b)

The expected time lost if we have a failure between a and b, when a checkpoint was completed exactly at
time a or when a = 0, is computed as follows:

Elost(a, b) =

∫ b

a

(x− a)P{X = x|a < X < b}dx

=
1

P{a < X < b}

∫ b

a

(x− a)f(x)dx

=
1

P{X < b} − P{X < a}

∫ b

a

(x− a)e−xdx

=
1

e−a − e−b

∫ b

a

(x− a)e−xdx

∫ b

a

(x− a)e−xdx =
[
−(x− a)e−x

]b
a
−
∫ b

a

−e−xdx

= −(b− a)e−b −
[
e−x

]b
a

= −(b− a)e−b + e−a − e−b
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Elost(a, b) =
−(b− a)e−b + e−a − e−b

e−a − e−b

= 1− (b− a)e−b

e−a − e−b

= 1− b− a
eb−a − 1

We check that Elost(a, b) only depends on b− a, which is comforting because the law is memoryless. In the
following, we will use the difference b− a as single parameter x, i.e.,

Elost(x) = 1− x

ex − 1
(11)

A.3 Computation of E∗
stat(T,Nc = 1)

With a single checkpoint, the makespan is T +C if there are no failures. Otherwise, we lose the time elapsed
before the first failure occurs, Elost(T + C), and we need to start again. Therefore, E∗stat(T,Nc = 1) can be
expressed as follows:

E∗stat(T, 1) = P{X > T + C}(T + C)

+ P{X < T + C}(E∗stat(T, 1) + Elost(T + C))

E∗stat(T, 1) = T + C +
1− e−(T+C)

e−(T+C)
Elost(T + C) (12)

With T = 0.062249 and C = 0.001, using Equation (11), we obtain E∗stat(T, 1) ≈ 0.06529206.

A.4 Computation of E∗
stat(T,Nc = 2)

In this case, recall from Section 3.2 (main paper) that the best solution is to have two equal-sized segments.
Therefore, we can use Equation (12) with E∗stat

(
T
2 , 1
)

and obtain:

E∗stat (T,Nc = 2) = 2× E∗stat
(
T

2
, 1

)
= 2

(
T

2
+ C +

1− e−(T2 +C)

e−(T2 +C)
Elost

(
T

2
+ C

))

Using Equation (11), we get E∗stat(T, 2) ≈ 0.06529212 > E∗stat(T, 1) with T = 0.062249 and C = 0.001. As
stated in Section A.1, this result shows that the optimal checkpointing heuristic uses a single checkpoint at
the end.

A.5 Computation of E∗
e(T,Nc = 1) and E∗

e(T,Nc = 2)

We now show that NextStep does at least two checkpoints in the first call, by computing the best expected
efficiency E∗e(T,Nc) using one or two checkpoints, and checking that indeed E∗e(T, 2) > E∗e(T, 1).

With a single checkpoint at the end, we can either process 0 units of work if we have a failure, or process
the whole job. Therefore,

E∗W (T, 1) = 0× P{X < T + C}+ TP{X > T + C}
= Te−(T+C)
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Furthermore, the expected time before the next failure or the end of the job can be computed as follows:

ETnext (T, 1) = P{X > T + C}(T + C)

+ P{X < T + C}Elost(T + C)

= e−(T+C)(T + C)

+ (1− e−(T+C))

(
1− T + C

eT+C − 1

)
Hence, with no additional checkpoint,

E∗e(T, 1) =

Te−(T+C)

e−(T+C)(T + C) + (1− e−(T+C))
(

1− T+C
eT+C−1

) (13)

With T = 0.062249 and C = 0.001, we obtain E∗e(T, 0, 1) ≈ 0.95339305.

If we add one checkpoint, we could place it anywhere; in that case, if we checkpoint after w ∈ (0, T )
units of work, the work done before the next failure or the end of the job can either be 0 if a failure occurs
in [0, w + C], w if a failure occurs in (w + C, T + 2C) or T if no failure occurs before T + 2C. Thus,

E∗W (T ,Nc = 2) = max
w

EW (T, 2, w)

= max
w

(wP{w + c < X < T + 2C}

+ TP{X > T + 2C})
= max

w
(w(e−(w+C) − e−(T+2C)) + Te−(T+2C))

= max
w

((T − w)e−(T+2C) + we−(w+C))

The expected time before the next failure or the end of the job is:

ETnext (T,Nc = 2) = P{X > T + 2C}(T + 2C)

+ P{X < T + 2C}Elost(0, T + 2C)

= e−(T+2C)(T + 2C)

+ (1− e−(T+2C))

(
1− T + 2C

eT+2C − 1

)
Altogether, these results give the formula for E∗e(T,Nc = 2):

E∗e(T, 2) =

maxw((T − w)e−(T+2C) + we−(w+C))

e−(T+2C)(T + 2C) + (1− e−(T+2C))
(

1− T+2C
eT+2C−1

)
The best choice for w is hard to express analytically, but with T = 0.062249 and C = 0.001, we numerically

obtain w∗ ≈ 0.0313732 and E∗e(T, 2) > 0.95339312 > E∗e(T, 1). This shows that NextStep will not execute

a single checkpoint at the end. We will finally show that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1).

A.6 Lower bound on ÊNS (T,Nc = 2)

We have shown that NextStep plans to take at least two checkpoints in its first call. We now move to
evaluating the expected makespan achieved by NextStep.
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We have already shown that if NextStep does two checkpoints in the first call, the first one is placed after
w∗ units of work executed and, by definition, the second one is taken at the end. To compute ÊNS (T, 2),
we note that if no failures happen, the makespan is T + 2C, whereas if the failure strikes in the second
segment, we lose Elost(T − w∗ + C) and we need to reprocess the remaining T − w∗ units of time, which
takes a time ENS (T − w∗) (because the law is memoryless and R = D = 0). Finally, if a failure strikes in

the first segment, we lose Elost(w∗+C) and we need to retry from the beginning. Overall, ÊNS (T, 2) can be
expressed as follows:

ÊNS (T, 2) = P{X > T + 2C}(T + 2C)

+ (P{X > w∗ + C} − P{X > T + 2C})
× (w∗ + C + Elost(T + C − w∗) + ENS (T − w∗))

+ (1− P{X > w∗ + C})(Elost(w∗ + C) + ÊNS (T, 2))

We isolate ÊNS (T, 2) on the left side of the equation and divide by P{X > w∗ + C} to obtain:

ÊNS (T, 2) =
1

e−(w∗+C)

× ((T + 2C)e−(T+2C) + (1− e−(w∗+C))Elost(w∗ + C))

+
e−(w∗+C) − e−(T+2C)

e−(w∗+C)

× (w∗ + C + Elost(T + C − w∗) + ENS (T − w∗)))

The only unknown value is ENS (T − w∗), which we may lower-bound by the optimal strategy given a
segment of length T −w∗. If we choose to do a single checkpoint (at the end of the segment) and stick with
this strategy, the expected makespan of the segment is E∗stat(T − w∗, 1) ≈ 0.0324. However, if we choose to
do at least one additional checkpoint, the expected makespan is larger than T − w∗ + 2C. Indeed, this will
be the case if there is no failure before the end of the first checkpoint because, in this case, we will have to
take at least one more checkpoint after the initial one. If, otherwise, a failure strikes before the completion
of this first checkpoint, the situation is exactly the same as before (the law being memoryless). Therefore,
the strategy will not change and, whatever the failure scenario, we will eventually execute two checkpoints.
Since T − w∗ + 2C ≈ 0.0329 > E∗stat(T − w∗, 1), an optimal strategy is initially to do a single checkpoint.

Clearly, if a failure occurs, changing the strategy can only result in an increase in expected makespan, so
we have ENS (T − w∗) ≥ E∗stat(T − w∗, 1). Finally,

ÊNS (T, 2) ≥
1

e−(w∗+C)

× ((T + 2C)e−(T+2C) + (1− e−(w∗+C))Elost(w∗ + C))

+
e−(w∗+C) − e−(T+2C)

e−(w∗+C)

× (w∗ + C + Elost(T + C − w∗) + E∗
stat(T − w∗, 1))

Using Equations (11) and (12), with T = 0.062249 and C = 0.001, we get ÊNS (T, 2) > 0.06529218 >
E∗stat(T, 1).

A.7 Lower bound on ÊNS (T,Nc = 3)

We now assume that NextStep initially splits the job into three segments. We consider the longest segment,
of length L ≥ T

3 , which starts after w units of work and s segments. In particular, w = 0 if s = 0,
w ∈ (0, T − L) if s = 1, and w = T − L if s = 2.

To lower-bound the expected makespan in that scenario, we consider several cases:
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• If no failure occurs, the makespan is T + 3C. This happens with probability e−(T+3C).

• If a failure occurs in the longest segment, the conditional expected makespan is at least T + C +
Elost

(
T
3 + C

)
, because we have to process at least T +C for the job in total, and we lose an additional

time Elost(L + C) ≥ Elost
(
T
3 + C

)
because a failure occurred in the longest segment. We denote by

f(w, s, L) the probability of this case.

• Finally, in all the other cases, whose total probability is 1− e−(T+3C)−f(w, s, L), we will have at least
to process the whole work and take a checkpoint for a time of T + C.

We are always in one and only one of these three scenarios, therefore we can lower-bound the expected
makespan using previous bounds on the conditional expected makespan combined with their probability of
occurrence:

ÊNS (T ,Nc = 3) ≥ (T + 3C)e−(T+3C)

+

(
T + C + Elost

(
T

3
+ C

))
f(w, s, L)

+ (T + C)
(

1− e−(T+3C) − f(w, s, L)
)

ÊNS (T ,Nc = 3) ≥ (T + 3C)e−(T+3C)

+ Elost
(
T

3
+ C

)
f(w, s, L) + (T + C)

(
1− e−(T+3C)

)
Clearly, the bound increases when f(w, s, L) increases. Therefore, we need to find a lower bound for

f(w, s, L) to be able to conclude. f(w, s, L) is the probability that a failure strikes the longest segment the
first time we try to process it. This is the conjunction of the success of the segments before and the failure
of the longest segment. Therefore,

f(w, s, L) = e−(w+sC)(1− e−(L+C)).

This function is clearly increasing with L and decreasing with w and s. The largest possible s is 2. As
L ≥ T

3 and w ≤ T − L, the smallest possible L is T
3 whereas the largest possible w is 2T

3 . Clearly,

f(w, s, L) ≥ f
(

2T
3 , 2,

T
3

)
, and the lower bound on ÊNS (T,Nc = 3) becomes:

ÊNS (T , 3) ≥ (T + 3C)e−(T+3C) + (T + C)
(

1− e−(T+3C)
)

+ Elost
(
T

3
+ C

)
e−( 2T

3 +2C)
(

1− e−(T3 +C)
)

Using Equation (11), with T = 0.062249 and C = 0.001, we get ÊNS (T, 3) > 0.06534 > E∗stat(T, 1).

A.8 Lower bound of ÊNS (T,Nc) for 4 ≤ Nc ≤ 1001

If NextStep initially chooses to do Nc checkpoints, the resulting makespan is T +NcC if no failures occur,
and at least T + C otherwise. Therefore,

ÊNS (T,Nc) ≥ (T +NcC)e−(T+NcC) + (1− e−(T+NcC))(T + C)

= T + C + (Nc − 1)Ce−(T+NcC)

= T + C + e−(T+C) × (Nc − 1)Ce−(Nc−1)C

The function f(x) = xe−x is increasing for 0 ≤ x ≤ 1. Hence, because (Nc − 1)C ≤ 1000 × 0.001 = 1, we
use NC = 4 to get

ÊNS (T,Nc) ≥ ÊNS (T, 4) = T + C + 3Ce−(T+4C).

With T = 0.062249 and C = 0.001, we get ÊNS (T,Nc) > 0.066 > E∗stat(T, 1) in this case.
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A.9 Lower bound of ÊNS (T,Nc) for Nc > 1001

Finally, if NextStep initially chooses to doNc checkpoints, the resulting makespan is at least Elost (T +NcC)
if a failure occurs. Thus,

ÊNS (T,Nc) ≥ (1− e−(T+NcC))Elost (T +NcC)

= (1− e−(T+NcC))

(
1− T +NcC

eT+NcC − 1

)
= (1− e−(T+NcC))

(
1− T +NcC

1− e−(T+NcC)
e−(T+NcC)

)
= 1− e−(T+NcC) − (T +NcC)e−(T+NcC)

= 1− (1 + T +NcC)e−(T+NcC)

Let f(x) = 1− (1 + x)e−x. Then, ÊNS (T,Nc) = f(T +NCC) and

f ′(x) = −e−x + (1 + x)e−x = xe−x.

For x > 0, f is therefore increasing with x and we have

f(T +NCC) ≥ f(T + 1001C).

With T = 0.062249 and C = 0.001, we obtain ÊNS (T,Nc) ≥ f(T+NCC) ≥ f(T+1001C) > 0.2 > E∗stat(T, 1).

We have shown that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1); therefore NextStep is strictly worse than
the best static strategy, which shows that it is not optimal. This concludes the analysis of the counter-
example.

B On the dynamic version of the optimal static strategy for an
Exponential law

In this section, we prove that the dynamic version of the optimal static strategy is identical to the static
version when failures obey an Exponential law. We start with notations before formally stating this result.

B.1 Notations

In the following, we consider a sequential or parallel job of length Tbase. A checkpointing strategy S is
defined as S = {c1, c2, . . . , cm}, where each ck ∈ (0, Tbase) denotes the amount of the work executed before
checkpoint number k. Note that we assume that there is a checkpoint at the end, i.e., cm = Tbase.

When a failure occurs, let E(R) be the expected time before the processors are ready to work again.
This includes the downtime and a recovery time, but may be longer if we encounter another failure during
the recovery time. For a given checkpointing strategy S and a work w ∈ S ∪ {0}, we denote by E([0, w],S)
the expected time between the start of the job and the completion of the checkpoint corresponding to w
units of work. Similarly, we denote by E([w, Tbase],S) the expected time between the moment the checkpoint
corresponding to w units of work is completed (or the start of the job if w = 0) and the moment the job
completes, including the last checkpoint. If we do not have w ∈ S ∪ {0}, both expectations are considered
infinite. With these definitions, we clearly have:

∀w ∈ S,E([0, Tbase],S) = E([0, w],S) + E([w, Tbase],S).
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Finally, given a work w ∈ [0, Tbase], we let S∗w be a checkpointing strategy such that for all S, we
have E([w, Tbase],S) ≥ E([w, Tbase],S∗w). Although multiple checkpointing strategies may minimize this
expectation, the value of this expectation E∗w , E([w, Tbase],S∗w) is unique and well defined. Intuitively,
S∗w is an optimal checkpointing strategy for the end of the job after w units have been processed and
checkpointed.

B.2 Main result

Theorem 2. For a job of length Tbase, consider the following two approaches:

• (A) Static Strategy: Find an optimal checkpointing heuristic S∗0 that minimizes the total expected
makespan E∗0 and does not update the strategy until the job is completed.

• (B) Dynamic Strategy: Start with the best static strategy S∗0 , then whenever an event occurs, i.e.,
a segment is completed or a failure happens, find an optimal static checkpointing strategy minimizing
the remaining expected makespan. If the remaining expected makespan is strictly smaller with the new
strategy, update the checkpointing strategy accordingly.

The static strategy (A) and the dynamic strategy (B) are identical.

The optimal static strategy (A) is well-known and uses NME segments, where NME is given in Section 3.2
(main paper). The value of NME depends upon the length of the job that remains to be processed, so
strategy (B) could compute a different value when called after the first checkpoint or the first failure. The
proof shows that this is never the case.

Proof. Initially, both strategies are identical by definition. We assume that strategy (B) and strategy (A)
are not always identical and obtain a contradiction. Suppose that both strategies are different. Then, there
exists a failure scenario in which both strategies diverge. Consider such a scenario and let W be the total
work executed and checkpointed when the first event e occurs, after which strategy (B) becomes different
from strategy (A).

After this event e, the expected resulting makespan of strategy (A) is EAremain = t(e) + E([W,Tbase],S∗0 ),
where t(e) = 0 if the event is the end of a segment, t(e) = D if the event is a failure in the first segment
for the model in which a recovery is not necessary for the first segment, and t(e) = E(R) otherwise. In any
case, t(e) is a duration independent of the checkpointing heuristic. We must finish the processing of the
job as planned with strategy S∗0 . The latter is identical to E([W,Tbase],S∗0 ), because the law is memoryless.
Therefore, we are exactly at the same point after event e as we were when we first succeeded the checkpoint
corresponding to W units of work.

Strategy (B) also needs to spend t(e) units of time to deal with event e. Then, by hypothesis, strategy B
finds a new checkpointing strategy such that the expected makespan for the remaining processing is reduced.
As before, because the law is memoryless, an optimal strategy is S∗W . By assumption, the new strategy
reduces the total expected makespan and we have:

t(e) + E([W,Tbase],S∗W ) < EAremain ⇔
t(e) + E([W,Tbase],S∗W ) < t(e) + E([W,Tbase],S∗0 ) ⇔

E([W,Tbase],S∗W ) < E([W,Tbase],S∗0 ).

Now, suppose that we had applied the strategy S2 = (S∗0 \ [W,Tbase]) ∪ (S∗W \ (0,W )). The total expec-
tation would have been:

E([0, Tbase],S2) = E([0,W ],S2) + E([W,Tbase],S2)

= E([0,W ],S∗0 ) + E([W,Tbase],S∗W )

E([0, Tbase],S2) < E([0,W ],S∗0 ) + E([W,Tbase],S∗0 )

E([0, Tbase],S2) < E([0, Tbase],S∗0 )

E([0, Tbase],S2) < E∗0
This contradicts the definition of S∗0 .
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C All simulation results
The following figures are the results of the simulations with all combinations of parameters.
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Figure 4: Expected performance of the two heuristics under all failure distributions on a 0 day old platform
and with a workflow W of 1 hour. Top: C = 60, bottom: C = 600.
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Figure 5: Expected performance of the two heuristics under all failure distributions on a 0 day old platform
and with a workflow W of 3 hours. Top: C = 60, bottom: C = 600.
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Figure 6: Expected performance of the two heuristics under all failure distributions on a 0 day old platform
and with a workflow W of 10 hours. Top: C = 60, bottom: C = 600.
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Figure 7: Expected performance of the two heuristics under all failure distributions on a 0 day old platform
and with a workflow W of 48 hours. Top: C = 60, bottom: C = 600.
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Figure 8: Expected performance of the two heuristics under all failure distributions on a 10 day old platform
and with a workflow W of 1 hour. Top: C = 60, bottom: C = 600.
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Figure 9: Expected performance of the two heuristics under all failure distributions on a 10 day old platform
and with a workflow W of 3 hours. Top: C = 60, bottom: C = 600.
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Figure 10: Expected performance of the two heuristics under all failure distributions on a 10 day old platform
and with a workflow W of 10 hours. Top: C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60

s
C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05

100

1000

10000

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
o
u
rs

YoungDaly NextStep

Figure 11: Expected performance of the two heuristics under all failure distributions on a 10 day old platform
and with a workflow W of 48 hours. Top: C = 60, bottom: C = 600.
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Figure 12: Expected performance of the two heuristics under all failure distributions on a 30 day old platform
and with a workflow W of 1 hour. Top: C = 60, bottom: C = 600.
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Figure 13: Expected performance of the two heuristics under all failure distributions on a 30 day old platform
and with a workflow W of 3 hours. Top: C = 60, bottom: C = 600.
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Figure 14: Expected performance of the two heuristics under all failure distributions on a 30 day old platform
and with a workflow W of 10 hours. Top: C = 60, bottom: C = 600.
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Figure 15: Expected performance of the two heuristics under all failure distributions on a 30 day old platform
and with a workflow W of 48 hours. Top: C = 60, bottom: C = 600.

Inria



Checkpointing strategies with non-memoryless fail-stop errors 39

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60

s
C
h
eck

p
oin

t:
6
0
0
s

1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05 1e+03 1e+04 1e+05

1

10

100

1000

1

10

100

1000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
o
u
rs

YoungDaly NextStep

Figure 16: Expected performance of the two heuristics under all failure distributions on a 100 day old
platform and with a workflow W of 1 hour. Top: C = 60, bottom: C = 600.
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Figure 17: Expected performance of the two heuristics under all failure distributions on a 100 day old
platform and with a workflow W of 3 hours. Top: C = 60, bottom: C = 600.
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Figure 18: Expected performance of the two heuristics under all failure distributions on a 100 day old
platform and with a workflow W of 10 hours. Top: C = 60, bottom: C = 600.
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Figure 19: Expected performance of the two heuristics under all failure distributions on a 100 day old
platform and with a workflow W of 48 hours. Top: C = 60, bottom: C = 600.
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Figure 20: Expected performance of the two heuristics under all failure distributions on a 365 day old
platform and with a workflow W of 1 hour. Top: C = 60, bottom: C = 600.
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Figure 21: Expected performance of the two heuristics under all failure distributions on a 365 day old
platform and with a workflow W of 3 hours. Top: C = 60, bottom: C = 600.
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Figure 22: Expected performance of the two heuristics under all failure distributions on a 365 day old
platform and with a workflow W of 10 hours. Top: C = 60, bottom: C = 600.
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Figure 23: Expected performance of the two heuristics under all failure distributions on a 365 day old
platform and with a workflow W of 48 hours. Top: C = 60, bottom: C = 600.
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