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Abstract

We present algorithmic, complexity, and implementation results on the problem of sampling
points from a spectrahedron, that is, the feasible region of a semidefinite program.

Our main tool is geometric random walks. We analyze the arithmetic and bit complexity of
certain primitive geometric operations that are based on the algebraic properties of spectrahedra
and the polynomial eigenvalue problem. This study leads to the implementation of a broad col-
lection of random walks for sampling from spectrahedra that experimentally show faster mixing
times than methods currently employed either in theoretical studies or in applications, including
the popular family of Hit-and-Run walks. The different random walks offer a variety of advan-
tages, thus allowing us to efficiently sample from general probability distributions, for example
the family of log-concave distributions which arise in numerous applications. We focus on two
major applications of independent interest: (i) approximate the volume of a spectrahedron, and
(ii) compute the expectation of functions coming from robust optimal control.

We exploit efficient linear algebra algorithms and implementations to address the aforemen-
tioned computations in very high dimension. In particular, we provide a C++ open source im-
plementation of our methods that scales efficiently, for the first time, up to dimension 200. We
illustrate its efficiency on various data sets.

Keywords: spectahedron, semidefinite-programming, sampling, random walk, Monter Carlo,
polynomial eigenvalue problem, volume approximation, optimization

1. Introduction

Spectrahedra are probably the most well studied shapes after polyhedra. We can represent
polyhedra as the intersection of the positive orthant with an affine subspace. Spectrahedra gen-
eralize polyhedra, in the sense that they are the intersection of the cone of positive semidefinite
matrices —i.e., symmetric matrices with non-negative eigenvalues— with an affine space. In
other words, a spectrahedron S ⊂ Rn is the feasible set of a linear matrix inequality. That is, if

F(x) = A0 + x1 A1 + · · · + xn An, (1)

where Ai are symmetric matrices in Rm×m, then S = {x ∈ Rn | F(x) ⪰ 0}, where ⪰ denotes
positive semidefiniteness. We assume throughout that S is bounded of dimension n. Spectrahedra
Preprint submitted to ... May 9, 2022



Figure 1: Left, the pillow: a spectrahedron bounded by an irreducible quartic surface (image from [6, Chapter 5]). It
is a 3D linear slice of a 4D (quartic) elliptope. The latter is a special case of spectrahedron defined as the set of all real,
square symmetric matrices whose diagonal entries are all equal to one and whose eigenvalues are all non-negative. Right,
a spectrahedron from [9]; it is a cubic spectrahedron (elliptope).

are convex sets (Figure 1) and every polytope is a spectrahedron, but not the opposite. They are
the feasible regions of semidefinite programs [53] in the way that polyhedra are feasible regions
of linear programs.

Efficient methods for sampling points in spectrahedra are crucial for many applications, such
as volume approximation [18], integration [43], semidefinite optimization [43, 31], and applica-
tions in robust control analysis [13, 12, 60]. To sample in the interior or on the boundary of S ,
we employ geometric random walks [63]. A geometric random walk on S starts at some interior
point and at each step moves to a ”neighboring” point that we choose according to some distri-
bution, depending only on the current point; thus it is a special category of Markov chains. For
example, in the so-called ball walk, we move to a point p that we choose uniformly at random
in a ball of fixed radius δ, if p ∈ S . The complexity of a random walk depends on its mixing
time —the number of steps required to bound the distance between the current and the stationary
distribution— and the complexity of the basic geometric operations performed at each step of
the walk; we call the latter per-step complexity.

The majority of geometric random walks are applicable to general convex bodies and they
depend on an oracle; usually the membership oracle. There are also a few walks, e.g., Vaidya
walk [16] and the sub-linear ball walk [46], that are specialized for polytopes. The majority of the
results on the analysis of the walks focuses on convergence and mixing time, while they define
abstractly the operations they perform at each step and they enclose them in the corresponding
oracle. That is why the complexity bounds involve the number of oracle calls.

To specialize a random walk for a family or representation of convex bodies one has to come
up with efficient algorithms for the basic geometric operations to realize the (various) oracles.
These operations should exploit the underlying geometric and algebraic properties and are of
independent interest. They depend on efficient (numerical) linear algebra computations. More
importantly, they dominate the per-step complexity and are crucial both for the overall complex-
ity to sample a point from the target distribution, as well as for an efficient implementation.

The study of basic geometric operations to sample from non-linear convex objects finds its
roots in non-linear computational geometry. During the last two decades, there are combined
efforts [8, 25] to develop efficient algorithms for the basic operations (predicates) that are behind
classical geometric algorithms, like convex hull, arrangements, Voronoi diagrams, to go beyond
points and lines and handle curved objects. For this, one exploits efficiently the structure and the
symmetry in the corresponding linear algebra computations and develops novel algebraic tools.
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To our knowledge, only the Random Directions Hit and Run (W-HnR) random walk [56] has
been studied for spectrahedra [12]. To exploit the various other walks, like Ball walk [63], Bil-
liard walk (W-Billard) [26], and Hamiltonian Monte Carlo with boundary reflections (W-HMC-
r) [1], one needs to provide certain geometric operations. For example, we need to compute the
reflection of a curve at the boundary and the intersection point of a curve with the boundary (of
a spectrahedron).

We should mention that there is a gap [19, 5] between the theoretical worst case bounds for
the mixing times and the practical performance of the random walk algorithms. Furthermore,
there are random walks without known theoretical mixing times, such as Coordinate Directions
Hit and Run (W-CHnR), W-Billard and W-HMC-r. To study them experimentally, it is impera-
tive to provide an efficient realization of the corresponding oracles.

Previous Work. Sampling convex sets via random walks has attracted a lot of interest in the last
decades. Most of the works assume that the convex sets are polytopes; [46] provides an overview
of the state-of-the-art. Random walks on spectrahedra are studied in [52, 20], where they exploit
the W-HnR and the computation of the intersection of the walk with the boundary reduces to a
generalized eigenvalue problem.

The W-Billard [26] is a general way of sampling in convex or non-convex shapes from
the uniform distribution. A mathematical billiard consists of a domain D and a point-mass that
moves freely inD [58]. When this point-mass hits the boundary, it performs a specular reflection,
albeit without losing velocity. An application of billiards is the study of optical properties of
conics [58, Section 4].

If the trajectory is not a line, but rather a parametric curve, then the intersection operation
reduces to solving a polynomial eigenvalue problem (PEP); W-HMC-r requires this operation.
PEP is a well-studied problem in computational mathematics, e.g., [44, 28], and it appears in
many applications. There are important results both for the perturbation analysis of PEP [44,
28, 4, 21], as well as for the condition-based analysis of algorithms for the real and complex
versions of PEP, if we assume random inputs [2, 3]; see also [66] for a numerical algorithm
based on homotopy continuation.

For the closely related problem of volume computation, there is also an extensive bibliog-
raphy [11]. The bulk of the theoretical studies are either for general convex bodies [22, 18]
or polytopes [39]. Practical algorithms and implementations exist only for polytopes [23, 19].
Nevertheless, there are notable exceptions that consider algorithms for computing the volume of
compact (basic) semi-algebraic sets. For example, in [35] they exploit the periods of rational in-
tegrals. In the same setting, [34, 29, 59] introduce numerical approximation schemes for volume
computations which rely on the moment-based algorithms and semi-definite programming.

Finally, sampling from a multivariate distribution is a central problem in numerous applica-
tions. For example, it is useful in robust control analysis [12, 13, 60] to overcome the worst case
hardness as well as in integration [43] and convex optimization [20, 31].

Our contribution. We present a framework of basic geometric operations for computations with
spectrahedra. In particular, we analyze the arithmetic and bit complexity of the three fundamental
operations, membership, intersection, and reflection, by reducing them to linear algebra compu-
tations. Based on this framework, we support a rich class of geometric random walks, which in
turn we employ to build efficient methods for sampling points from spectahedra, under various
probability distributions. We apply these tools to approximate the volume of spectrahedra, as
well as to integrate over spectrahedral domains. This extends the limits of the state-of-the-art
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methods that sample from spectrahedra, which actually involve only the W-HnR [20, 12]. We
offer an efficient C++ implementation of our algorithms as a development branch of the pack-
age volesti1, an open source library for high dimensional sampling and volume computation.
While the implementation is in C++, there is also an R interface for easier access to its func-
tionality. Our implementation is based on state-of-the-art algorithms in numerical linear algebra
to address computation in high dimension. Our software uses powerful C++ libraries, such as
Eigen [27] and Spectra [57], for various basic operations.

We demonstrate the efficiency of our approach and implementation on problems from robust
control and optimization. First, as a special case of integration, we approximate the volume of
spectrahedra up to dimension 100; this is, to the best of our knowledge, the first time (at least
when the representation is dense) such computations for non-linear objects are performed in high
dimensions. However, let us also mention the recent extension of the moment-SOS hierarchy
approach [59] that is able to approximate the volume of high-dimensional semialgebraic sets
with a sparse description. Then, we approximate the expected value of a function f : Rn →

[0, 1], whose argument is a random variable having uniform distribution over a spectrahedron of
dimension 200.

Finally, we sample from the Boltzmann distribution using W-HMC-r; this exploits a random
walk in a spectrahedron that employs a polynomial trajectory of degree two. Sampling using
W-HMC-r from truncated distributions is a classical problem in computational statistics [17, 1];
alas, existing approaches handle either special distributions or special cases of constraints [48,
36]. We equip W-HMC-r with geometric operations to handle log-concave densities truncated
by linear matrix inequalities (LMI) constraints. A combination of Boltzmann distribution with
a simulated annealing technique [31] can lead to a practically efficient solver for semidefinite
programs (SDP).

A very short version of this paper has appeared as a poster in [15].

Paper organization. First, we introduce our notation. In Section 2 we introduce the basic geo-
metric operations used to efficiently implement membership and boundary oracles. In Section 3,
we develop the different types of random walks. Finally, Section 4 presents our implementation,
our applications, and various experiments.

Notation. We denote by O, respectively OB, the arithmetic, respectively bit, complexity and
we use Õ, respectively ÕB, to ignore (poly-)logarithmic factors. The bitsize of a univariate
polynomial A ∈ Z[x] is the maximum bitsize of its coefficients. We use bold letters for matrices,
A, and vectors, v; we denote by Ai, j, respectively vi, their elements; A⊤ is the transpose and A∗
the adjoint of A. If x = (x1, . . . , xn), then F(x) = A0 +

∑n
i=1 xi Ai, see (1). For two points x and y,

we denote the line through them by ℓ(x, y) and their segment as [x, y]. For a spectrahedron S , let
its interior be S ◦ and its boundary ∂S . We represent a probability distribution πwith a probability
density function π(x). When π is truncated to S the support of π(x) is S . If π is log-concave, then
π(x) ∝ e−α f (x), where f : Rd → R a convex function. Finally, let Bn be the n-dimensional unit
ball and denote by ∂Bn its boundary.

2. Basic geometric operations

Our toolbox for computations with spectrahedra and implementing random walks, consists
of three basic geometric operations: membership, intersection, and reflection.

1https://github.com/GeomScale/volume_approximation/tree/v1.1.0-3
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For a spectrahedron S , membership decides whether a point lies inside S , intersection com-
putes the intersection of an algebraic curved trajectory C with the boundary ∂S , and reflection
computes the reflection of an algebraic curved trajectory when it hits ∂S . We need the last two
operations because random walks can move along non-linear trajectories inside convex bodies.
We consider only trajectories that are parametric polynomial curves of various degrees; the ex-
tension to rational parametric curves is straightforward. Computation with these curves reduces
to solving the polynomial eigenvalue problem (PEP).

2.1. Analysis of PEP
To estimate the Boolean complexity of intersection we need to bound the complexity of the

Polynomial Eigenvalue Problem (PEP). It consists in computing λ ∈ C and x ∈ Cm that satisfy
the (matrix) equation

P(λ) x = 0⇔ (Bdλ
d + · · · + B1λ + B0)x = 0 , (2)

where P(λ) is a univariate matrix polynomial whose coefficients are matrices Bi ∈ Rm×m. We
further assume that Bd and B0 are invertible. In general, there are δ = m d values of λ. We
refer the reader to [44, 28] for a thorough exposition of PEP. In LMI, Eq. (1), the matrices
are symmetric and for intersection we are interested only for the smallest real eigenvalue of
PEP. Unfortunately, the Boolean complexity analysis that we present cannot exploit neither the
symmetry nor the fact that we need only the smallest positive real eigenvalue. For this we need
to rely our analysis on geometric conditioning (and probably exploit different algorithms), see
e.g., [10]. In this case, the symmetry plays an essential role in the analysis, as it is also plays an
essential role in the practical performance of the various dedicated algorithms. Such an analysis,
even though important, is beyond the scope of our presentation. Thus, the bit (and the arithmetic)
complexity bounds correspond to the worst case instances in the Turing model (or the real RAM
model) and do not give an accurate view of the practical performance of the various algorithms.
Moreover, they consider the general PEP problem and do not distinguish between the symmetric
and the non-symmetric case.

One approach for solving PEP is to linearalize the problem and to express the λ’s as the eigen-
values of a larger matrix. For this, we transform Equation (2) into a linear pencil of dimension
δ. Following [4], the Companion Linearization consists in solving the generalized eigenvalue
problem C0 − λC1, where

C0 =


Bd 0 · · · 0

0 Im
. . .

...
...
. . .

. . . 0
0 · · · 0 Im

 and C1 =


Bd−1 Bd−2 · · · B0
−Im 0 · · · 0
...

. . .
. . .

...
0 · · · −Im 0

 ,
and Im denotes the m × m identity matrix. The eigenvectors x and z are related as follows:
z = [1, λ, . . . , λd−2, λd−1]⊤ ⊗ x.

To obtain an exact algorithm for PEP we exploit the assumption that Bd is invertible so as to
transform the problem to the following classical eigenvalue problem (λId − C2)z = 0, where

C2 =


Bd−1B−1

d Bd−2B−1
d · · · B0B−1

d
−Im 0 · · · 0
...

. . .
. . .

...
0 · · · −Im 0

 .
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The eigenvectors are roots of the characteristic polynomial of C2. Now the problem is to compute
the eigenvalues of C ∈ Rδ×δ.

There are various approaches to tackle PEP, e.g. [44, 28] and references therein. There are
also specialized algorithms for linearization that exploit the fact that the matrices might be sym-
metric, like in (1), [30] and also algorithms that fully exploit the structure of the linearization
pencils [62]. These are the methods that are used, very successfully, in practice. However, from
a (Boolean) complexity point of view, the best algorithm relies on computing the roots, real and
complex, of the characteristic polynomial [55], which is the approach that we follow to derive
Boolean complexity estimates for PEP.

Lemma 2.1. Consider a PEP of degree d, involving matrices of dimension m × m, with integer
elements of bitsize at most τ, see Equation (2). There is a randomized algorithm for approximat-
ing the eigenvalues and the eigenvectors of PEP up to precision ϵ = 2−L, in ÕB(δω+3L), where
δ = md, L = Ω(δ3τ), and ω is the exponent in the complexity of matrix multiplication. The
arithmetic complexity of a deterministic algorithm is Õ(δω + δ lg(1/ϵ)).

Proof. We can compute the characteristic polynomial of an N ×N matrix M in ÕB(N2.697 lg∥M∥)
using a randomized algorithm, see [32] for the precise value of the exponent and related refer-
ences . Here ∥M∥ denotes the largest entry in absolute value. In our case, the elements of C2 have
bitsize Õ(δτ) and its characteristic polynomial is of degree d and coefficient bitsize ÕB(δ2τ). We
compute it in ÕB(δ2.697δτ) = ÕB(δ3.697τ) and isolate all its real roots in ÕB(δ5 + δ4τ) [49]; they
correspond to the real eigenvalues of PEP. We can decrease the width of the isolating interval
by a factor of ϵ = 2−L for all the roots in ÕB(δ3τ + δL) [50]. Thus, the overall complexity is
ÕB(δ5 + δ3.697τ + δL).

It remains to compute the corresponding eigenvectors. For each eigenvalue λ we may com-
pute the corresponding eigenvector z by Gaussian elimination and back substitution to the (aug-
mented) matrix [λIδ − C2 | 0]. This requires Õ(δω) arithmetic operations. However, as λ is a
root of the characteristic polynomial, one has to operate on algebraic numbers, which is highly
non-trivial, and one needs to bound the number of bits needed to compute the elements of z
correctly and to recover x. Hence, we employ separation bounds for polynomial system adapted
to eigenvector computation [24]. One needs, as in the case of eigenvalues, ÕB(δ4 + δ3τ) bits to
isolate the coordinates of the eigenvectors. To decrease the width of the corresponding isolating
intervals by a factor of ϵ = 2−L, the number of bits becomes ÕB(δ4 + δ3τ+ L). Thus, we compute
the eigenvectors in ÕB(δω(δ4 + δ3τ + L)) = ÕB(δω+4 + δω+3τ + δωL).

For the arithmetic complexity we proceed as follows: We compute the characteristic poly-
nomial in Õ(δω) [47] with a deterministic algorithm and we approximate its roots up to ϵ in
Õ(δ lg(1/ϵ)) [49]. Finally, we compute the eigenvectors with Õ(δω) arithmetic operations. So the
overall cost is Õ(δω + δ lg(1/ϵ)).

2.2. membership
The operation membership(F, p) decides whether a point p lies in the interior of a spectra-

hedron S = {x ∈ Rn | F(x) ⪰ 0}. For this, first, we construct the matrix F(p). If it is positive
definite, then p ∈ S ◦. If it is positive semidefinite, then p ∈ ∂S , otherwise p ∈ Rn \ S . The
pseudo-code appears in Algorithm 1.

Lemma 2.2. Algorithm 1, membership(F, p), requires Õ(nm2+mω) arithmetic operations (deter-
ministic), where ω is the exponent of matrix multiplication. If F and p have integer elements of
bitsize at most τ, respectivelyσ, then the bit complexity is ÕB((nm2+m2.697)(τ+σ)) (randomized).
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Algorithm 1: membership(F, p)
Input : An LMI F(x) ⪰ 0 representing a spectrahedron S and a point p ∈ Rn.
Output: true if p ∈ S , false otherwise.

1 λmin ← smallest eigenvalue of F(p);
2 if λmin ≥ 0 then return true ;
3 return false ;

Figure 2: A spectrahedron S described by F(x) and a parameterized curve Φ. The point p0 = Φ(0) lies in the interior of
S , and the points p+ = Φ(t+) and p− = Φ(t−) on the boundary. Vector w is the surface normal of ∂S at p+ and u is the
direction of Φ at time t = t+.

Proof. We construct F(p) in O(nm2). Then, with O(mω) operations we compute its characteristic
polynomial [47] and in Õ(m) we decide whether it has negative roots, for example by solving
[49] or using fast subresultant algorithms [37, 40]. For the bit complexity, the construction costs
ÕB(nm2(τ + σ)) and the computation of the characteristic polynomial costs ÕB(m2.697(τ + σ)),
using a randomized algorithm [32]. One may test for negative roots, and thus eigenvalues, in
ÕB(m2n(τ + σ)) [40].

2.3. intersection

Consider a parametric polynomial curve C such that it has a non-empty intersection with a
spectrahedron S . Throughout, we consider only the real trace of C. Assume that the value of
the parameter t = 0 corresponds to a point p0, that lies in C ∩ S ◦. Furthermore, assume that the
segment of C on which p0 lies, intersects the boundary of S transversally at two points, say p−
and p+. The operation intersection computes the parameters, t− and t+, corresponding to these
two points. Figure 2 illustrates this discussion and the pseudo-code of intersection appears in
Algorithm 2.

To prove correctness and estimate the complexity we proceed as follows: As before (see also
Equation 1), S is the feasible region of linear matrix inequalities (LMI) F(x) ⪰ 0. Consider the
real trace of a polynomial curve C, with parameterization

Φ : R → Rn

t 7→ Φ(t) := (p1(t), . . . , pn(t)), (3)
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where pi(t) =
∑di

j=0 pi, jt j are univariate polynomials in t of degree di, for i ∈ [m]. Also let
d = maxi∈[m]{di}. If the coefficients of the polynomials are integers, then we further assume that
the maximum coefficient’s bitsize is bounded by τ.

As t varies over the real line, there may be several disjoint intervals, for which the corre-
sponding segment of C lies in S ◦. We aim to compute the endpoints, t− and t+, of a maximal
such interval containing t = 0. Let p0 = Φ(0); by assumption it holds F(Φ(0)) = F(p0) ≻ 0.

The input of intersection (Algorithm 2) is F, the LMI representation of S , and Φ(t), the
polynomial parameterization of C. Its crux is a routine, pep, that solves a polynomial eigenvalue
problem. The following lemma exploits this relation.

Algorithm 2: intersection(F,Φ(t))
Input : An LMI F(x) ⪰ 0 for a spectrahedron S and a parameterization Φ(t) of a

polynomial curve C.
Require: Φ(0) ∈ S ◦.
Output : t−, t+ s.t. Φ(t−),Φ(t+) ∈ ∂S .

1 T := {t1 ≤ t2 ≤ · · · ≤ tℓ} ← pep(F(Φ(t)));
2 t− ← max{t ∈ T | t < 0}; // max negative polynomial eigenvalue
3 t+ ← min{t ∈ T | t > 0}; // min positive polynomial eigenvalue
4 return t−, t+;

Lemma 2.3 (pep and S ∩ C). Consider the spectrahedron S = {x ∈ Rn | F(x) ⪰ 0}. Let Φ :
R → Rn be a parameterization of a polynomial curve C, such that Φ(0) ∈ S ◦. Let [t−, t+] be
the maximal interval containing 0, such that the corresponding part of C lies in S . Then, t−,
respectively t+, is the maximum negative, respectively minimum positive, polynomial eigenvalue
of F(Φ(t))x = 0, where F(Φ(t)) = B0 + tB1 + · · · + td Bd.

Proof. The composition of F(x) and Φ(t) gives

F(Φ(t)) = A0 + p1(t)A1 + · · · + pn(t)An. (4)

We rewrite (4) by grouping the coefficients for each ti, i ∈ [d], then

F(Φ(t)) = B0 + tB1 + · · · + td Bd, (5)

where Bk =
∑n

j=0 p j,k A j, for 0 ≤ k ≤ d. We use the convention that p j,k = 0, when k > d j.
For t = 0, it holds, by assumption, that F(Φ(0)) = B0 ≻ 0: thus the point Φ(0) lies in the

interior of S . Actually, for any x ∈ S ◦ it holds F(x) ≻ 0. On the other hand, if x ∈ ∂S , then
F(x) ⪰ 0. Our goal is to compute the maximal interval [t−, t+] that contains 0 and for every t in
it, we have F(Φ(t)) ⪰ 0.

Starting from point Φ(0), by varying t, we move on the trajectory that C defines (in both
directions) until we hit the boundary of S . When we hit ∂S , the matrix F(Φ(t)) is not strictly
definite anymore. Thus, its determinant vanishes.

Consider the function θ : R→ R, where θ(t) = det F(Φ(t)) is a univariate polynomial in t. If
a point Φ(t) is on the boundary of the spectrahedron, then θ(t) = 0. We opt to compute t− and t+,
such that t− ≤ 0 ≤ t+ and θ(t−) = θ(t+) = 0. At t = 0, θ(0) > 0 and the graph of θ is above the
t-axis. So C intersects the boundary when the graph of θ touches the t-axis for the first time at
t1 ≤ 0 ≤ t2. It follows that t− = t1 and t+ = t2 are the maximum negative and minimum positive
roots of θ, or equivalently the corresponding polynomial eigenvalues of F(Φ(t)).
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Lemma 2.4. Algorithm 2, intersection(F,Φ(t)), uses Õ((md)ω +md lg L) arithmetic operations
to compute the intersection, up to precision ϵ = 2−L, of an LMI, F, consisting of n matrices
of dimension m × m with a parametric curve, Φ(t), of degree d, where ω is the exponent in the
complexity of matrix multiplication.

Proof. We have to construct PEP and solve it. Since Φ(t) has degree d, then F(Φ(t)) = B0 +

tB1 + · · · + td Bd is a PEP of degree d. This construction costs O(dnm2) operations. The solving
phase, using Lemma 2.1, requires Õ((md)ω + md lg L) arithmetic operations and dominates the
complexity bound of the algorithm.

2.4. reflection

Algorithm 3: reflection (F,Φ(t))
Input : An LMI F(x) ⪰ 0 for a spectrahedron S and a parameterization Φ(t) of a

polynomial curve C.
Require: (i) Φ(0) ∈ S ◦.

(ii) C intersects ∂S transversally at a smooth point.
Output : t+ such that Φ(t+) ∈ ∂S and the direction of the reflection, s+, at this point.

1 t−, t+ ← intersection (F,Φ(t));
2 w← ∇ det F(Φ(t+));
3 w← w

∥w∥ ; // Normalize w
4 s+ ← dΦ

dt (t+) − 2 ⟨∇ dΦ
dt (t+),w⟩w;

5 return t+, s+;

The reflection operation (Algorithm 3) takes as input an LMI representation, F, of a spec-
trahedron S and a polynomial curve C, given by a parameterization Φ. Assume that t = 0
corresponds to a point Φ(0) ∈ S ◦ ∩ C. Starting from t = 0, we increase t along the positive real
semi-axis. As t changes, we move along the curve C through Φ(t), until we hit the boundary of
S at the point p+ := Φ(t+) ∈ ∂S , for some t+ > 0. Then, a specular reflection occurs at this
point with direction s+; this is the reflected direction. We output t+ and s+. Figure 2 depicts the
procedure.

The boundary of S , ∂S , with respect to the Euclidean topology, is a subset of the real alge-
braic set {x ∈ Rn | det(F(x)) = 0}. The latter is a real hypersurface defined by one (determinantal)
equation. For any x ∈ ∂S we have rank(F(x)) ≤ m − 1. We assume that p+ = Φ(t+) is such that
rank(F(p+)) = m − 1. The normal direction at a point p ∈ ∂S , is the gradient of det F(p).

We compute the reflected direction using the following formula

s+ = u − 2
|w|2 ⟨u,w⟩w, (6)

where w is the normalized gradient vector at the point Φ(t+) and u = dΦ
dt (t+) is the direction of

the trajectory at this point. We illustrate the various vectors in Figure 2.

Lemma 2.5 (Gradient of det(F(x))). Assume that x ∈ ∂S and the rank of the m×m matrix F(x)
is m − 1. Then

∇ det(F(x)) = c · (v⊤A1v, · · · , v⊤Anv), (7)

where c = µ(F(x))
|v|2 , µ(F(x)) is the product of the nonzero eigenvalues of F(x), and v is a non-trivial

vector in the kernel of F(x). If rank(F(x)) ≤ m − 2, then the gradient is the zero.
9



Proof. Using the lemma in Appendix A.2:

∂ det F(x)
∂xk

= Trace (F(x)∗Ak) . (8)

If rank(F(x)) ≤ −2, then F(x)∗ is the zero matrix. If we assume that rank(F(x)) = m − 1,
then using the lemma in Appendix A.3:

Trace (F(x)∗Ak) = Trace
(
µ(F(x))

vu⊤

u⊤v
Ak

)
=
µ(F(x))

u⊤v
· Trace

(
vu⊤Ak

)
=
µ(F(x))

u⊤v
· u⊤Akv.

However, since F(x) is symmetric, we can choose v = u, so:

µ(F(x))
u⊤v

· u⊤Akv =
µ(F(x))
|v|2

· v⊤Akv,

which concludes the proof.

The algorithm reflection exploits Lemma 2.5. Nevertheless, it is not necessary to perform all
the computations that the lemma indicates. For example, because we will normalize the resulting
vector and we do not need its actual direction (internal or external), we can omit the computation
of c. Moreover, the nonzero vector v, which satisfies F(p)v = 0, corresponds to the eigenvector
w.r.t. the eigenvalue t+ from the PEP (Lemma 2.3). This is true because p = Φ(t+) ∈ ∂S and thus
det F(Φ(t+)) = 0.

At this point we should note that we compute the eigenvalues of PEP up to some precision.
Since the matrix-vector multiplication is backward stable, a small perturbation on v does not
affect the computation of each coordinate of ∇ det(F(x)) [61, p. 104]. We quantify the accuracy
of the computed ∇ det(F(x)) using floating point arithmetic as follows:

Lemma 2.6. The relative error of each coordinate of the gradient given in Lemma 2.5 when
we compute it using floating point arithmetic with machine epsilon ϵM is O( ϵM

σmax(Ai)
), for i ∈ [n],

where σmax is the largest singular value of Ai.

Proof. Let A ∈ Rm×m be a symmetric matrix and consider the map f : v 7→ vT Av. The relative
condition number of f as defined in [61, p. 90] is

k(v) =
||J(v)||
|| f (v)||/||v||

= 2
||Av||
vT Aiv

= 2
σmax(A)
σ2

max(A)
=

2
σmax(A)

,

where J(·) is the Jacobian of f . According to Theorem 15.1 in [61, p. 111], since the matrix-
vector multiplication is backward stable, the relative error of each coordinate in the gradient
computation of Lemma 2.5 is O( ϵM

σmax(Ai)
), for 1 ≤ i ≤ n.

Lemma 2.7. Let S be a spectrahedron represented by an LMI, F(x), consisting of n matri-
ces of dimension m × m. Also let C be a parametric curve with parameterization Φ(t), in-
volving polynomials of degree at most d. Algorithm 3, reflection(F,Φ(t)), computes the in-
tersection, up to precision ϵ = 2−L, of S with C, and the reflection of C at ∂S , by performing
Õ((md)ω + md lg L + dnm2) arithmetic operations, where ω is the exponent in the complexity
of matrix multiplication.

10



Figure 3: The i-th step of the W-Billard [Algorithm 5] (left) and of the W-HMC-r [Algorithm 6] (right) random walks.

Proof. By inspecting Algorithm 3 we notice that the complexity of the algorithm depends on the
construction of ∇ det(F(x)) and the call to intersection.

To compute ∇ det(F(x)) we just need to compute (v⊤A1v, · · · , v⊤Anv). If we have already
computed v, then this computation requiresO(nm2) operations. The computation of the derivative
of Φ(t) is straightforward, as Φ is a univariate polynomial. Taking into account the complexity
of intersection, the total complexity for reflection is Õ((md)ω + md lg L + dnm2 + nm2) =
Õ((md)ω + md lg L + dnm2).

2.5. An example in 2D

Consider a spectrahedron S in the plane (Figure 3), given by an LMI F(x) = A0+x1 A1+x2 A2.
The matrices Ai, 0 ≤ i ≤ 2, are in the appendix.

Starting from the point p0 = (−1, 1)⊤, we walk along the line L with parameterization: Φ(t) =
p0 + tu, where u = (1.3, 0.8)⊤. Then, intersection finds the intersection of S with L, by solving
the degree one PEP, (B0 + tB1)x = 0, where B0 = F(p0) and B1 = u1 A1 + u2 A2. Acquiring
t− = −0.8 and t+ = 0.5, we obtain the intersection point p1, which corresponds to p0 + t+u =
(−0.3, 1.4)⊤.

To compute the direction of the trajectory, immediately after we reflect on the boundary of S
at p1, reflection computes

w =
∇ det F(Φ(t+))
|∇ det F(Φ(t+))|

= (v⊤A1v, v⊤A2v)⊤ = (−0.2,−1)⊤, (9)

where v is the eigenvector of (B0 + tB1)x = 0, with eigenvalue t+. The reflected direction is
u′ = u − 2⟨u,w⟩w = (0.8,−1.3)⊤.

3. Random walks

Using the basic geometric operations of Section 2, we implement and analyze three random
walks for spectrahedra: Hit and Run (W-HnR), its variant Coordinate Directions Hit and Run (W-
CHnR), Billiard Walk (W-Billard), and Hamiltonian Monte Carlo with reflections (W-HMC-r).
In Table 1 we present the per-step arithmetic complexity for each random walk.
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Random walk per-step Complexity
HR O(mω + m log(1/ϵ) + dm2)

Coordinate HR O(mω + m log(1/ϵ) + m2)
Billiard walk Õ(ρ(mω + m log(1/ϵ) + dm2))

ReHMC (collocation) Õ(ρ((nm)ω + mn log(1/ϵ) + dnm2))
ReHMC (leapfrog) Õ(Lρ(mω + m log(1/ϵ) + dm2))

Table 1: The per-step complexity of the random walks in Section 3.

3.1. Hit and Run

W-HnR (Algorithm 4) is a random walk that samples from any probability distribution π
truncated to a convex body K; in our case a spectrahedron S . We should mention that there exist
bounds for its mixing time only when π is log-concave distribution, for example the uniform
distribution; the bound is Õ(n3).

At the i-th step, W-HnR chooses uniformly at random a (direction of a) line ℓ, passing from its
current position pi. Let p1 and p2 be the intersection points of ℓ with S . Let πℓ be the restriction
of π on the segment [p2, p2]. Then, we choose pi+1 from [p1, p2] w.r.t. the distribution πℓ.

Algorithm 4: Hit-and-Run Walk (W-HnR)
Input : LMI F(x) ⪰ 0 for a spectrahedron S & a point pi.
Require: pi ∈ S
Output : The point pi+1 of the (i + 1)-th step of the walk.

1 BO (F, interior point pi) v←R U(∂Bn); // choose direction
2 Φ(t) := pi + tv; // define trajectory
3 t−, t+ ← intersection (F,Φ(t));
4 pi+1 ←R [pi + t−v, pi + t+v] w.r.t. πℓ;
5 return pi+1;

Lemma 3.1. The per-step complexity of W-HnR is Õ(mω + m lg 1/ϵ + nm2), where ω is the
exponent in the complexity of matrix multiplication algorithms and ϵ is the accuracy we want to
approximate the intersection with the boundary.

Proof. The per-step complexity of W-HnR is dominated by the intersection, which requires
O(nm2) operations for the construction of the pep and Õ(mω +m lg 1/ϵ) for solving it; in the case
where we want to approximate the intersection point up to a factor or ϵ = 2−L (Lemma 2.4).

There is also a variation of W-HnR, the coordinate directions Hit and Run (W-CHnR) [56].
This walk chooses the direction vector uniformly at random among the basis vectors {ei}i∈[n]. In
W-CHnR, for every step aside the first, the construction of the pep takes O(m2) operations and
the complexity does not depend on the dimension n. The reason for this improvement is that the
constructin of pep we have F(pi + te j) = F(pi) + tA j and we can obtain the value of F(pi) from
F(pi) = F(pi−1) + t̂Ak, assuming that at the previous step we have chosen ek as direction. There
is no theoretical mixing time for W-CHnR.
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3.2. Billiard walk

W-Billard [51], Algorithm 5, samples a convex body K under the uniform distribution; no
theoretical results for its mixing time exist. At the i-th step, being at position pi, it chooses uni-
formly a direction vector v and a number ℓ, where ℓ = −τ ln η, η ∼ U(0, 1), and τ is a chosen
constant. Then, it moves at the direction of v for distance ℓ. If during the movement it hits the
boundary without having covered the required distance ℓ, then it continues on a reflected trajec-
tory. If the number of reflections exceeds a bound ρ, it stays at pi. In [51] they experimentally
conclude that W-Billard mixes faster when τ ≈ diam(K), where diam(K) is the diameter of K.

Algorithm 5: Billiard Walk (W-Billard)
Input : An LMI F(x) ⪰ 0 for a spectrahedron S , a point pi, the diameter τ of S and a

bound ρ on the number of reflections.
Require: pi ∈ S
Output : The point pi+1 of the (i + 1)-th step of the walk.

1 ℓ ← −τ ln η ; η←R U((0, 1)); // choose length
2 v←R U(∂Bn); // choose direction
3 p← pi;
4 do
5 Φ(t) := p+ tv; // define trajectory
6 t+, s+ ← reflection (F,Φ(t));
7 t̂ ← min{t+, ℓ} ; p← Φ(t̂) ;
8 if t < ℓ then v← s+ ;
9 ℓ ← ℓ − t̂ ;

10 while ℓ > 0;
11 if #{reflections} > ρ then return pi+1 = pi ;
12 return pi+1 = p

Lemma 3.2. The per-step complexity of W-Billard is Õ(ρ(mω +m lg 1/ϵ +nm2)), where ρ is the
number of reflections, ω is the exponent in the complexity of matrix multiplication, and ϵ is the
accuracy we want to approximate the intersection with the boundary.

Proof. The per-step complexity of W-Billard is dominated by the reflection, which requires
Õ(mω + m lg 1/ϵ + nm2) arithmetic operations (Lemma 2.7), when we want to approximate the
intersection point up to a factor of ϵ = 2−L. Since we allow at most ρ reflections per step, the
total complexity becomes Õ(ρ(mω + m lg 1/ϵ + nm2)).

3.3. Hamiltonian Monte Carlo with Reflections

Hamiltonian Monte Carlo (HMC) is an important algorithm for sampling from any prob-
ability distribution π. Once more, our focus lies on log-concave distributions, that are of the
form π(x) ∝ e− f (x), where f (x) is a convex function. We exploit the approach presented in [38]
where they approximate the Hamiltonian trajectory with a polynomial curve. In this setting, if
we assume that f is a strongly convex function, then the mixing time of HMC is O(k1.5 log(n/ϵ)),
where κ is the condition number of ∇2 f [38]. If we truncate π by considering its restriction in
a convex body, then we can use boundary reflections (W-HMC-r), as in Algorithm 6, to ensure
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Algorithm 6: HMC w reflection (W-HMC-r)
Input : An LMI F(x) ⪰ 0 representing a spectrahedron S , a point pi, the diameter τ of

S and a bound ρ to the number of reflections.
Require: pi ∈ S
Output : The point pi+1 of the (i + 1)-th step of the walk.

1 ℓ ← τη; η←R U((0, 1)); // choose length
2 v←R N(0, In); // choose direction
3 do
4 Compute trajectory Φ(t) from ODE (10);
5 t+, s+ ← reflection (F,Φ(t));
6 t̂ ← min{t+, ℓ} ; p← Φ(t̂) ; v← s ; ℓ ← ℓ − t̂ ;
7 while ℓ > 0;
8 if # {reflections} > ρ then return pi+1 = pi ;
9 return pi+1 = p ;

that the random walk converges to the target distribution [17]; however, in this case the mixing
time is unclear.

HMC introduces an auxiliary random variable v, called momentum, and generates samples
from the joint density,

π(p, v) = π(v|p)π(p),

which ensures that if we marginalize out the momentum we immediately recover the target dis-
tribution. We consider the case where the auxiliary density is a multivariate normal that does not
depend on the position p,

v ∼ N(0, In),

where In is the n×n identity matrix; this is the most common case in applications. It turns out [5]
that the probability density function π(p, v) = e−H(p,v) defines a Hamiltonian,

H(p, v) = − log π(p, v) = U(p) + K(v) = f (p) +
1
2
|v|2,

where the term U(p) is called potential energy and the term K(v) is called Kinetic energy. In
this way, HMC simulates an imaginary particle moving in a conservative field determined by a
negative log-probability function f (x) and its gradient ∇ f (x).

HMC, starting from a position p, generates a new state in two stages. First, it draws a value
for the momentum independently of the current position, v ∼ N(0, In). Next, the joint state (p, v)
is given by the Hamilton’s system of Ordinary Differential Equations (ODE):

d p
dt
=
∂H(p, v)
∂v

dv
dt
= −
∂H(p, v)
∂p

⇒


d p(t)

dt = v(t)

dv(t)
dt = −∇ f (p)

. (10)

Thus, in each step of HMC one has to solve the ODE in (10). If π(x) is a log-concave den-
sity, then we can approximate the solution of the ODE with a low degree polynomial trajectory
[38], using the collocation method. A degree d = O(1/ log(ϵ)) suffices to obtain a polynomial
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Figure 4: Samples from the uniform distribution with W-Billard (left) and from the Boltzmann distribution π(x) ∝ e−cx/T ,
where T = 1, c = [−0.09, 1]T , with W-HMC-r (right). The volume of this spectrahedron is 10.23.

trajectory with error O(ϵ), for a fixed time interval, while we perform just Õ(1) evaluations of
∇ f (x).

Finally, Algorithm 6 (W-HMC-r) at the i-th step uniformly samples a step ℓ from a proper
interval to move on the trajectory implied by ODE (10), choses v randomly from N(0, In), and
updates p using the ODE in (10), for t ∈ [0, ℓ]. When π is truncated in a convex body, then W-
HMC-r fixes an upper bound ρ on the number of reflections and reflects a polynomial trajectory
as we describe in Section 2.4.

Each step of W-HMC-r, when π(x) is a log-concave density truncated by S , costs Õ(ρ((dm)ω+
md lg L+ dnm2)), if we approximate the intersection points up to a factor ϵ = 2−L, where d is the
degree of the polynomial that approximates the solution of the ODE (10).

Lemma 3.3. The per-step complexity of W-HMC-r is Õ(ρ((dm)ω +md lg 1/ϵ + dnm2)), where ρ
is the number of reflections, ω is the exponent in the complexity of matrix multiplication. and ϵ
is the accuracy we want to approximate the intersection with the boundary.

4. Applications and experiments

This section demonstrates and compares the algorithms of Section 3 and the efficiency of our
software on three applications that rely on sampling from spectrahedra.

We call walk length the number of the intermediate points that a random walk visits before
producing a single sample. The longer the walk length of a random walk is, the smaller the
distance of the current distribution to the stationary (target) distribution becomes. Typically we
choose a sufficiently large length for the first sample, this procedure is often called ”burning”.

Our code is parameterized by the floating point precision of the computations. We use
Eigen [27] for basic linear algebra operations, such as Cholesky decomposition and matrix mul-
tiplication. For eigenvalue computations, we employ Spectra [57], which is based on Eigen

and offers crucial optimizations. First, it solves generalized eigenvalue problems of special struc-
ture; that is (B0 − λB1)v = 0, when B0 is positive semidefinite and B1 symmetric. This oper-
ation is encountered when W-Billard or W-HnR call intersection. Second, it offers directly
the computation of the largest eigenvalue which corresponds to t+ after a simple transformation.
Finally, Spectra provides approximately × 20 speedup over the default eigenvalue computation
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by Eigen. To the best of our knowledge, our software is the first that can sample efficiently from
spectrahedra and estimates volumes up to a few hundred dimensions. It is accessible on github.2

For our experiments, we generate random spectrahedra following [20]. In particular, to con-
struct the LMI of Equation (1) we set A0 to be positive semidefinite, i.e., A0 = ZZT + Im, where
we pick the elements of Z ∈ Rm×m uniformly at random from [0, 1]. Then, for Ai, i = 1, . . . , n
we set,

Ai =

[
Q̃ 0
0 −Q̃

]
, Q̃ = Q + QT ,

where we pick the elements of Q ∈ R(m/2)×(m/2) uniformly at random from [−1, 1]. We performed
all the experiments on PC with Intel Core i7-6700 3.40GHz × 8 CPU and 32GB RAM.

Interior point. A crucial pre-processing step for the applications we consider is to find an interior
point of a spectrahedron so that we could use it as (or compute) a starting point for a random
walk. Let a spectrahedron S given by the LMI, S = {x ∈ Rn | A0 +

∑n
i=1 xi Ai ⪰ 0} as in (1). One

can introduce an auxiliary variable λ ∈ R to transform the LMI representation to the following
Semidefinite Program (SDP),

min λ, subject to F(x) = A0 +
∑n

i=1
xi Ai + λIm, F(x) ⪰ 0, (11)

where Im is the m × m identity matrix. If the SDP in (11) has a feasible solution (x̂, λ̂) with a
non-positive objective function then, x̂ lies in the interior of spectrahedron S . Moreover, it is
straightforward to compute a λ+ > 0 such that (0, λ+) is a feasible solution of (11). Then, we
can use an algorithm that solves SDPs to compute an interior point of S . When, in particular,
the algorithm is iterative one could stop as soon as it computes a non-negative feasible solution.
Finally, sampling from spectrahedra with random walks could be used to compute an interior
point in S , as we could use the randomized iterative algorithm of Section 4.3 to solve the SDP
in (11).

4.1. Volume computation

We use the geometric operations (Section 2) and the random walks (Section 3) to compute
the volume vol(S ) of spectrahedron S . Our implementation approximates vol(S ) within relative
error 0.1 with high probability in a few minutes, for dimension n = 100.

A typical randomized algorithm for volume approximation exploits a Multiphase Monte
Carlo (MMC) technique, which reduces volume approximation of convex body S to computing
a telescoping product of ratios of integrals over S . In particular, for any sequence of functions
{ f0, . . . , fk}, where fi : Rn → R, we have:

vol(S ) =
∫

S
1dx =

∫
S

fk(x)dx

∫
S fk−1(x)dx∫

S fk(x)dx
· · ·

∫
S 1dx∫

S f0(x)dx
. (12)

Notice that
∫

P fi−1(x)dx∫
P fi(x)dx

=
∫

P
fi−1(x)
fi(x)

fi(x)∫
P fi(x)dx

dx. To estimate each ratio of integrals, we sample N

points from a distribution proportional to fi and, we use the unbiased estimator 1
N

∑N
j=1

fi−1(x j)
fi(x j)

. To

2https://github.com/GeomScale/volume_approximation/tree/v1.1.0-3
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S -n-m µ ± tα,ν−1
s
√
ν

Points T ime (sec) error

S -40-40 (1.34 ± 0.12)e-06 9975.2 6.7 ??
S -60-60 (1.23 ± 0.11)e-20 20370.9 28.5 ??
S -80-80 (4.24 ± 0.26)e-33 31539.1 124.4 ??

S -100-100 (1.21 ± 0.10)e-51 52962.7 362.3 ??
*S -28-8 14.31 ± 0.64 4547.4 10.2 0.05

*S -45-10 0.6334 ± 0.03 19558.1 56.2 0.07
*S -66-12 (1.73 ± 0.034)e-03 1.01e+05 324.2 0.07

Table 2: (Volume of spectrahedra) For each S -n-m we run ν = 10 experiments, where m is the matrix dimension in LMI
and n the ambient dimension. The spectrahedra marked with ”*” are elliptopes, µ stands for the average volume and
s for the standard deviation. We give a confidence interval with level of confidence α = 0.05, while tα,ν−1 is the critical
value of student’s distribution with ν− 1 degrees of freedom. Points denotes the average number of points generated and
Time the average runtime in seconds. Finally, error stands for the relative error of the estimation and ?? means that the
exact volume is unknown. For all the experiments we set the error parameter to e = 0.1.

exploit Equation (12) we have to (i) fix the sequence such that k is as small as possible, (ii) select
fi’s such that we can compute efficiently each integral ratio, and (iii) compute

∫
P fk(x)dx. The

best theoretical result of [18] fixes a sequence of spherical Gaussians { f0, . . . , fk} with the mode
being in S , parameterized by the variance. The overall complexity is Õ(n3) membership calls.
The implementation in [19] is based on this algorithm but handles only convex polytopes in H-
representation as it requires the facets of the polytope and an inscribed ball to fix the sequence
of Gaussians. Both the radius of the inscribed ball and the number of facets strongly influence
the performance of the algorithm. So, it cannot handle efficiently the case of convex bodies
without a facet description, e.g., zonotopes [19], as it results a big sequence of ratios that spoil
practical efficiency.

Our approach is to consider the fi’s as a sequence of indicator functions of concentric balls
centered in S , as in [23]. In particular, let fk and f0 be the indicator functions of rBn and RBn

respectively, while rBn ⊆ S ⊆ RBn and S i = (2(k−i)/nrBn) ∩ S for i = 0, . . . , k. Thus, it suffices
to compute vol(rBn) and apply the following:

vol(S ) = vol(S k)
vol(S k−1)
vol(S k)

· · ·
vol(S 0)
vol(S 1)

, k = ⌈n lg(R/r)⌉. (13)

Furthermore, we employ the annealing schedule from [14] to minimize k, without computing
neither an enclosed ball rBn nor an enclosing ball RBn of S . We do so by probabilistically
bounding each ratio of Equation (13) in an interval [r, r + δ], which is given as input. To approx-
imate each ratio of volumes, we sample uniformly distributed points from S i and count points in
S i−1. We follow the experimental results of Section 4.2 and use W-Billard which mixes faster
than W-HnR.

Table 2 reports the average volume, runtime, number of points generated for each S -n-m over
10 trials. We also compute a 95% confidence interval for the volume. For elliptopes since we
know the exact volume [64] we report also the relative error of the estimation. Notice that for all
cases the extreme values of each interval imply an error ≤ 0.1, which was the requested error. For
n = 40 just a few seconds suffice to approximate the volume and for n = 100 our implementation
takes a few minutes.
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Figure 5: The standard deviation of ÊN [ f ] over M = 20 trials, estimating 2 functions with E[ f1] = 0.0993 and E[ f2] =
0.588. For each walk length we sample N = 200 points and we repeat M = 20 times.

4.2. Expected value of a function
Randomized algorithms are commonly used for problems in robust control analysis to over-

come the (worst case) hardness, especially in probabilistic robustness [7, 33, 60, 13]. A central
problem is to approximate the integral of a function over a spectrahedron, e.g. [12, 54] and thus
uniform sampling is of particular interest. To put our experiments into perspective, we present
experiment up to n = 200, while in [12] and [13] they use only W-HnR for experiments in n ≤ 10.

Our goal is to compute the expected value of a function f : Rn → [0, 1], with respect to the
measure given by the uniform distribution π over S , i.e., I =

∫
S f (x)π(x)dx. A standard approach

is the Monte Carlo method, which suggests to sample N independent samples from π. Then,

ÊN[ f ] =
1
N

∑N

i=1
f (xi)

is an unbiased estimator for I. We employ the random walks of Section 3 to sample uniformly
distributed points from S (i.e., W-HnR, W-CHnR, and W-Billard) and we experimentally com-
pare their efficiency. It turns out that W-Billardmixes much faster and results to better accuracy
(see Figures 5 & 6). This observation agrees with the experiments on the rate of convergence for
W-HnR and W-Billard in [51]. To come to a decisive conclusion we need to perform a more
detailed practical study on the mixing time of these random walks; we leave this study as future
work.

The variance of an estimator is a crucial as it bounds the approximation error. Using Cheby-
shev’s inequality and [41], we have

Prob[|ÊN[ f ] − E[ f ]| ≤ ϵ] ≤
var(ÊN[ f ])
ϵ2

≤
4Mϵ
Nϵ2
, (14)

where Mϵ is the mixing time of the random walk one uses to sample “ϵ close” to the uniform
distribution from S . Thus, for fixed N and ϵ, the smaller the mixing time of the random walk is,
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Figure 6: The mean value of the estimator ÊN [ f ] over M = 20 trials, estimating two functions with E[ f1] = 0.0993 and
E[ f2] = 0.588. For each walk length we sample N = 200 points and we repeat M = 20 times.

the smaller the variance of estimator ÊN[ f ] and hence, the better the approximation. We estimate
I when f := 1(S ∩ H), where H is the union of two half-spaces H := {x | cx ≤ b1 or cx ≥ b2},
where b2 > b1 and 1(·) is the indicator function. Note that I = vol(S ∩ H)/vol(S ). To estimate it
we sample approximate uniformly distributed points from S and we count the number of points
that lie in S ∩ H.

walk length 1 5 10 20 30 40 50
S -100-100 1.4 3.2 7.7 9.5 16.1 21.4 28.2
S -200-200 16.2 75.7 148 303 443 584 722

Table 3: Average time in sec to sample 200 points with W-Billard from 10 random spectrahedra S -n-m; n for the
dimension that S -n-m lies; m for the dimension of the matrix in LMI.

We estimate two functions f1, f2 with E[ f1] = 0.0993 and E[ f2] = 0.5880 in dimension
n = 50 and for various walk lengths. For each walk length we sample N = 200 points and we
repeat M = 20 times. Then, for each N-set we compute 1

N
∑N

i=1 f (xi) and we take the average
and the standard deviation (st.d.) over M. Figures 5, & 6 illustrates these values, while the
walk length increases. Notice that the st.d. is much smaller and the approximation more stable
when W-Billard is used compared to both W-HnR and W-CHnR. As W-Billard mixes faster,
we report in Table 3 the average time our software needs to sample N = 200 points for various
walk lengths for W-Billard in n = 100, 200. The average time to generate a point is ≈ 0.3 and
≈ 7.2 milliseconds respectively.

4.3. Sampling from non-uniform distributions
The random walks of Section 3 open a promising avenue for approximating the optimal

solution of a semidefinite program, that is

min⟨c, x⟩, subject to x ∈ S . (15)
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Figure 7: Sample a point from π(x) ∝ e−cx/Ti and update the objective current best in each iteration, with T0 ≈ diam(S )
and Ti = Ti−1(1−1/

√
n), i = 1, . . . 70. The walk length equals to one for W-HMC-r and 500+4n2 = 10 500 for W-HnR.

We parameterize the optimization algorithm in [31] with the choice of random walk and demon-
strate that its efficiency relies heavily on the sampling method. We perform experiments with
W-HMC-r and W-HnR, as both can sample from the distribution the algorithm requires. De-
terministic approximations to the optimal solutions of these tests, were acquired via the SDPA

library [65].
The strategy to approximate the optimal solution x∗ of Equation (15), is based on sampling

from the Boltzmann distribution, i.e., π(x) ∝ e−cx/T , truncated to S . The scalar T , is called
temperature. As the temperature T diminishes, the mass of π tends to concentrate around its
mode, which is x∗. Thus, one could obtain a uniform point using the algorithm in [42], and then
use it as a starting point to sample from π0 ∝ e−cx/T0 , where T0 = R and S ⊆ RBn. Then, the
cooling schedule Ti+1 = Ti(1 − 1/

√
n) guarantees that a sample from πi yields a good starting

point for πi+1. After Õ(
√

n) steps the temperature will be low enough, to sample a point within
distance ϵ from x∗ with high probability.
In [31], they use only W-HnR. We also employ W-HMC-r. To sample from Boltzmann dis-
tributions with W-HMC-r, at each step, starting from pi and with momenta vi, the ODE of
Equation (10) becomes

d2

dt2 p(t) = −
c
T
,

d
dt

p(0) = vi, p(0) = pi. (16)

The solution of the ODE is the polynomial p(t) = − c
2T t2 + vit + pi, which is a parametric repre-

sentation of a polynomial curve, see Equation (3).
In Table 4 we follow the cooling schedule described, after setting T0 ≈ R and sampling the

first uniform point with W-Billard. We give the optimal solution as input and we stop dropping
T when an error ϵ ≤ 0.05 is achieved. Even in the case when the walk length is set equal to one,
W-HMC-r still converges to the optimal solution. To the best of our knowledge, this is the first
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S -n-m W-HMC-r W-HnR W1 W-HnR W2

S -30-30 20.1 / 2.9/ 0 184.3 / 3.4 / 1 52.1 / 5.2 / 0
S -40-40 24.6 / 7.9 / 0 223.3 / 9.9 / 2 61.9 / 17.1 / 0
S -50-50 29.2 / 12.7 / 0 251.2 / 22.3 / 3 72.3 / 44.6 / 0
S -60-60 32.8 / 24.32 / 0 272.7 / 41.1 / 3 81.5 / 98.9 / 0

Table 4: The average #iteration / runtime / failures over 10 generated S -n-m, to achieve relative error ϵ ≤ 0.05. The walk
length is one for W-HMC-r and W1 = 4

√
n and W2 = 4n for W-HnR. With ”failures” we count the number of times the

method fails to converge. Also m is the dimension of the matrix in LMI and n is the dimension that S -n-m lies.

time that a randomized algorithm, which is based on random walks, is functional even when the
walk length is set to one. On the other hand, we set the walk length of W-HnR O(

√
n) or O(n) in

our experiments. Notice that for the smaller walk length, its runtime decreases, but the method
becomes unstable, as it sometimes fails to converge. For both cases its runtime is worse than that
of W-HMC-r.

5. Conclusion

We have presented a framework to analyze and implement the various primitive geometric
operations need to perform random walks, and hence sample, from spectrahedra. These leads to
algorithms for computing the volume, integrate, and solve semidefinite programs. We also intro-
duce an efficient open-source implementation of our algorithms and we demonstrate its efficiency
on various data sets.
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Appendix A. Additional proofs

To prove lemma 2.5 we will need the following lemmas.

Lemma Appendix A.1 (Partial Derivative of Determinant). Let A be a symmetric m×m matrix.
Then

∂ det A
∂Ai j

= ci j,

where ci j the cofactor of Ai j.

Proof. From the Laplace expansion we have det A =
m∑

j=1
Ai jci j. Then, we notice that c1 j, · · · , cm j

are independent of Ai j, and it holds ∂ det A
∂Ai j
= ci j.
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Lemma Appendix A.2. Let F(x) = A0 + x1 A1 + · · · + xn An. Then

∂ det F(x)
∂xk

= Trace (F(x)∗Ak)) .

Proof. The function det F(x) is the composition of det A and A = F(x), so from the lemma in
Appendix A.1 and the chain rule:

∂ det F(x)
∂xk

=

m∑
i=1

m∑
j=1

∂ det F
∂Fi j

·
∂Fi j

∂xk
=

m∑
i=1

m∑
j=1

ci jAk
i j = Trace (F(x)∗Ak) ,

where Ak
i j the i j-th element of matrix Ak.

Lemma Appendix A.3 (Adjoint Matrix of A). Let A be a m × m matrix of rank r(A) = m − 1.
Then

A∗ = µ(A)
vu⊤

u⊤v
,

where µ(A) is the product of the m − 1 non-zero eigenvalues of A, and x and y satisfy Av =
A⊤u = 0 (see chapter 3.2 in [45]).

Appendix B. Matrices of the Example

The spectrahedron was randomly generated as in [20]. Due to space considerations, the
entries of the matrices are rounded to the first decimal.

A0 =



16.7 3.7 12.3 8.7 5.1 10.4
3.7 9.4 2.3 4 −2.3 −1

12.3 2.3 26.8 18.7 7.1 16.7
8.7 4 18.7 20 3.7 12.3
5.1 −2.3 7.1 3.7 6.1 5.4

10.4 −1 16.7 12.3 5.4 18.7


(B.1)

A1 =



0.5 −0.4 2.7 0 0
−0.4 1.4 −0.2 0 0 0
2.7 −0.2 1.7 0 0 0
0 0 0 0.5 −0.4 2.7
0 0 0 −0.4 1.4 −0.2
0 0 0 2.7 −0.2 1.7


(B.2)

A2 =



2.6 −0.1 3 0 0 0
−0.1 1 −0.1 0 0 0

3 −0.1 −1 0 0 0
0 0 0 2.6 −0.1 3
0 0 0 −0.1 1 −0.1
0 0 0 3 −0.1 −1


(B.3)
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[11] B. Büeler, A. Enge, and K. Fukuda. Exact Volume Computation for Polytopes: A Practical Study. In G. Kalai and

G. M. Ziegler, editors, Polytopes — Combinatorics and Computation, DMV Seminar, pages 131–154. Birkhäuser,
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