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Abstract1

Guided by insights on the mapping class group of a surface, we give experimental evidence2

that the upper bound recently proven on the diameter of the flip graph of a closed oriented3

hyperbolic surface by Despré, Schlenker, and Teillaud (SoCG’20) is largely overestimated.4

To this aim, we develop an experimental framework for the storage of triangulations. We5

show that the computations with algebraic numbers can be overcome by proving a density6

result on rationally described genus two surfaces, and we propose ways to generate surfaces7

that are meaningful for the experiments.8

Acknowledgements The authors want to thank Vincent Delecroix, Matthijs Ebbens, Hugo9

Parlier, Jean-Marc Schlenker, and Gert Vegter for helpful discussions over many years.10

Source code available at https://members.loria.fr/Monique.Teillaud/Exp-hyperb-flips/.11

Funding This work was partially supported by grant ANR-17-CE40-0033 of the French National12

Research Agency ANR (project SoS) https://SoS.loria.fr/.13

∗This work was done while this author was working at Université de Lorraine, CNRS, Inria, LORIA, F-54000
Nancy

†This work was done while this author was working at Université de Lorraine, CNRS, Inria, LORIA, F-54000
Nancy

mailto:vincent.despre@loria.fr
mailto:loic.dubois@ens-lyon.fr
mailto:benedikt.kolbe@physik.hu-berlin.de
https://hyperbolictilings.wordpress.com/
mailto:monique.teillaud@inria.fr
https://members.loria.fr/Monique.Teillaud
https://members.loria.fr/Monique.Teillaud/Exp-hyperb-flips/
https://SoS.loria.fr/


Contents

1 Introduction 1

2 Background 2
2.1 Hyperbolic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Triangulations and flips on hyperbolic surfaces . . . . . . . . . . . . . . . . . . . 2
2.3 Mapping class group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Admissible symmetric octagons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Representation of triangulations 4
3.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Flipping an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Solving arithmetic issues 5
4.1 Issues when using algebraic numbers . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Density of the rationally described surfaces . . . . . . . . . . . . . . . . . . . . . 6

5 The generation of the input for the experiments 7
5.1 The twists of admissible loosely-symmetric octagons . . . . . . . . . . . . . . . . 8
5.2 The generation of triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Comparison of flip strategies 10

7 Exploring the relationship between number of flips and diameter 13
7.1 Rationale for the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Exploring with power sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Exploring with random sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.4 Interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A Cross-ratios and Delaunay flips 18

B Details for the representation of triangulations (Section 3) 19
B.1 On combinatorial maps and the anchor (Section 3.1) . . . . . . . . . . . . . . . . 19
B.2 Flipping edges (Section 3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C Details for solving arithmetic issues (Section 4) 22
C.1 Experiment on algebraic numbers (Section 4.1) . . . . . . . . . . . . . . . . . . . 22
C.2 Approximation algorithm (Section 4.2) . . . . . . . . . . . . . . . . . . . . . . . . 22

D Details for the generation of input (Section 5) 24
D.1 Generating an initial rational 4-tuple (step 1) . . . . . . . . . . . . . . . . . . . . 24
D.2 Generating points in an admissible symmetric octagon (step 2) . . . . . . . . . . 25
D.3 Constructing the data structure (step 4) . . . . . . . . . . . . . . . . . . . . . . . 25

E Computation of the approximation of the diameter (Section 7) 26



Experimental analysis of Delaunay flips on hyperbolic surfaces

1 Introduction14

It was recently proven that the geometric flip graph of a closed oriented hyperbolic surface is15

connected [7]. A Delaunay flip algorithm can thus transform any input geometric triangulation16

T , i.e., a triangulation whose edges are embedded as geodesic segments only intersecting at17

common endpoints, into a Delaunay triangulation. This is particularly useful in practice as a18

crucial preprocessing step to computing Delaunay triangulations on a surface: it transforms a19

“bad” representation of a surface, e.g., by a very elongated fundamental domain, to a “nice”20

representation by a Delaunay triangulation with only one vertex.21

An upper-bound on the number of flips was proven [7, Theorem 19]: Ch ·∆(T )6g−4 ·n2, where22

Ch is a constant, ∆(T ) is the diameter of T , g is the genus of the surface, and n is the number23

of vertices. The diameter ∆(T ) is the smallest diameter of a fundamental domain that is the24

union of lifts of the triangles of T in H (note that this is not the diameter of the surface, which25

is independent of the representation). Computing it algorithmically seems difficult, however for26

a triangulation with only one vertex (thus with 4g− 2 triangles) some bounds are easily derived:27

LT ≤ ∆(T ) ≤ ∆(F ) ≤ LT .(4g − 2), where LT denotes the maximal length of an edge of T and28

F ⊂ H is any fundamental domain made of lifts of the triangles of T . From these bounds we29

see that ∆(T ) cannot differ too much from the diameter of any such F : in the case of a genus30

two surface they only differ by a factor of at most six. In the experiments, we will thus use the31

domain that naturally appears.32

In this paper, we experimentally study the dependence of the number of flips on ∆(T ) (Sec-33

tion 7), for surfaces of genus two. We suspect that the factor ∆(T )6g−4 is largely overestimated.34

It is derived from the number of paths of bounded length on a surface. Intuitively, for a length35

bounded by L, it roughly amounts to the volume of the ball of diameter L, so, it is exponential36

in L; if only simple paths are considered, this number reduces to L6g−4 [7], but there is no reason37

why the flip algorithm would use all the simple paths shorter than L instead of going straight.38

More formally, our expectation on the dependence in ∆(T ) is based on insights on the structure39

of the mapping class group (Section 2.3).40

To perform experiments, we set up a framework consisting of various tools. In Section 3,41

we present a data structure for triangulations of surfaces, which supports flips; it relies on the42

representation of genus two surfaces by octagons in H (Section 2.4). Not surprisingly, arith-43

metic issues quickly arise, as algebraic numbers are involved in the description of the octagons44

(Section 4.1). We overcome them by proving a density result on rationally described octagons45

(Section 4.2), which allows us to restrict to rational numbers in our experiments.46

The generation of input surfaces and triangulations is far from trivial; it is a non-negligible47

part of our work (Section 5). We obtain surfaces with a large diameter by twisting the above-48

mentioned octagons (Section 5.1).49

In Section 6, we run experiments comparing strategies on the sequence of edge flips, and50

conclude that the naive strategy is close to being the best one in practice. We adhere to it for51

our main experiments that study the dependence of the number of flips on ∆(T ).52

The way we conduct these experiments in Section 7 is inspired by previous work by Mark53

Bell [2] who studied flips in a topological setting. We focus on triangulations having only one54

vertex, both because the dependence on the number of vertices is easily seen, and because55

inserting a lot of points would rather be done by Bowyer’s incremental algorithm [13, 6], inspired56

from previous work in the flat case [17]. Quite surprisingly, in practice, we observe a behavior57

that is only expected asymptotically.58
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Experimental analysis of Delaunay flips on hyperbolic surfaces

2 Background59

2.1 Hyperbolic surfaces60

All the surfaces considered in this paper are closed (connected, compact and without boundary),61

oriented, and hyperbolic. Consider such a hyperbolic surface S of genus g ≥ 2 and the underlying62

topological surface Sg. Given a hyperbolic structure h on S, associated to a metric of constant63

curvature −1, the surface S = (Sg, h) is isometric to the quotient H/G, where H is the hyperbolic64

plane and G is a (non-Abelian) discrete subgroup of the isometry group of H isomorphic to the65

fundamental group π1(Sg).66

The universal cover of S is isometric to H equipped with a projection ρ : H → S that is a67

local isometry. The group G acts on H, so that for any p ∈ S, ρ−1(p) is an orbit under the action68

of G. A lift p̃ of a point p ∈ S is one of the elements of the orbit ρ−1(p).69

We use the Poincaré disk model of H, in which H is represented as the open unit disk D70

of the complex plane C. Every orientation preserving isometry f : D → D can be represented71

by a matrix
(
a b
c d

)
∈ C2×2 such that f(z) =

az + b

cz + d
for any z ∈ D. Observe that the matrix72

is not unique. In addition some matrices do not represent an isometry. Given two orientation73

preserving isometries f and g respectively represented by matrices A and B, the product A · B74

represents f ◦ g.75

2.2 Triangulations and flips on hyperbolic surfaces76

A topological triangulation of a hyperbolic surface S is any embedding of an undirected graph77

with a finite number of vertices onto S such that each resulting face is homeomorphic to an open78

disk and is bounded by exactly three distinct edge-embeddings. Observe that this graph may79

have loops or multiple edges, and recall that the terms embedding and embedded subsume that80

edges only intersect at common vertices. A geometric triangulation is a topological triangulation81

of S whose edges are embedded as geodesic segments [7]. All triangulations considered in this82

paper are geometric, so we just use the term triangulation. For any triangulation T of S, the lift83

T̃ of T is the (infinite) triangulation of H whose vertices and edges are the lifts of the vertices and84

the edges of T . A Delaunay triangulation T of S is a triangulation whose lift T̃ is a Delaunay85

triangulation in H. In other words, for each face t of T and any of its lifts t̃, the open disk in H86

circumscribing t̃ does not contain any vertex of T̃ . Recall that circles in the Poincaré disk model87

correspond to circles in the complex plane.88

Lifting an edge e of T to some ẽ, together with the two triangles incident to ẽ in the lifted89

triangulation T̃ , we say that e is Delaunay-flippable if the open disks of these two triangles contain90

the fourth vertex of the quadrilateral formed by the two triangles. In this case, the geodesic91

segment ẽ′ that is the other diagonal of the quadrilateral is contained in it. The Delaunay flip92

of e in T consists in replacing ẽ by ẽ′ and projecting it back to S by ρ.93

Every Delaunay flip algorithm takes as input a triangulation of S and flips Delaunay-flippable94

edges (in any order) until there is none left. Every such algorithm terminates and outputs a95

Delaunay triangulation [7].96

2.3 Mapping class group97

We use the same notation as Maher [15] and refer to his paper for details.98

The set Mod(Sg) of all homeomorphims (up to isotopy) of a topological surface Sg is called the99

mapping class group of Sg. Following Thurston’s classification [10], Mod(Sg) contains three kinds100

of elements: the periodic homeomorphims, which are of finite order and are not useful for our101

purposes; the reducible ones, which fix at least one curve on Sg; and the so-called pseudo-Anosov102

homeomorphims, also known as the hyperbolic elements of Mod(Sg).103
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Dehn twists (Figure 1, Left) are typical reducible elements, as they fix all the curves that do104

not intersect the curve used for twisting. A Dehn twist by a curve c at most adds to the length of105

a curve a constant that depends on the number of times the curve intersects c. A pseudo-Anosov106

element at most multiplies the length of a curve by a constant factor.107

c

z′t = ztzt

zt+1 z′t+1

zt+1

c c

Figure 1: (Left) A Dehn twist along the curve c modifies the blue curve as shown. (Right) A
t-twist on an admissible loosely-symmetric octagon.

Mod(Sg) can be generated by a finite set of Dehn twists [9]. The composition of generators108

or their inverses in a random order can be interpreted as a random walk in Mod(Sg): such a walk109

reaches pseudo-Anosov elements with asymptotic probability 1 [15]. However, this asymptotic110

result does not a priori describe the local structure of Mod(Sg).111

2.4 Admissible symmetric octagons112

The Teichmüller space TM2 of the topological surface S2 is the set of all the hyperbolic struc-113

tures (up to isotopy) that can be associated to S2. It admits various parametrizations. The114

most commonly used, though not well adapted to our needs, is the set of Fenchel-Nielsen coordi-115

nates [12, Section 7.6]. Here, we use a less usual set of parameters introduced by Aigon-Dupuy,116

Buser et al. [1], who proved that any surface of genus 2 has a fundamental domain that is an117

octagon in D. This versatile representation allows us to easily construct and manipulate such118

surfaces in our experiments. In this section we recall some definitions and results of the original119

paper [1], following its notation.120

Given j ≥ 3 and complex numbers z1, . . . , zj ∈ D in convex position, G[z1, . . . , zj ] denotes the121

hyperbolic polygon whose vertices are z1, . . . , zj in this order. Given a compact subset X ⊂ D,122

A(X) is the hyperbolic area of X. Given z ∈ C, we denote by Re [z] and Im [z] its real and123

imaginary parts, respectively, by z its conjugate, and by |z| its modulus; i denotes a root of −1.124

Let arg z ∈ [0, 2π[ denote the argument of a point z 6= 0C. Given z0, z1, z2, z3 ∈ D \ {0C}, the125

4-tuple (z0, z1, z2, z3) is valid if 0 = arg z0 < arg z1 < arg z2 < arg z3 < π; the hyperbolic octagon126

P[z0, z1, z2, z3] is then defined as G[z0, z1, z2, z3,−z0,−z1,−z2,−z3]. Such a hyperbolic octagon127

is called a symmetric octagon. The interior angles of a symmetric octagon cannot be greater than128

π. If moreover A(P[z0, z1, z2, z3]) = 4π, then P[z0, z1, z2, z3] and the 4-tuple (z0, z1, z2, z3) are129

called admissible. Each surface of genus 2 can be obtained by identifying the opposite sides of130

an admissible symmetric octagon [1]. Observe that the eight vertices of the octagon correspond131

to the same point on the surface.132

A valid 4-tuple (z0, z1, z2, z3) is admissible if and only if Im
[

3∏
k=0

(1− zkzk+1)

]
= 0 [1,133

Lemma 3.2]. The authors establish this condition after proving a preliminary result that we134

will reuse: for any two points z, z′ ∈ D \ {0C} if 0 ≤ arg z ≤ arg z′ ≤ π then [1, Appendix (A7)]135

2 arg(1− zz′) = A(G[0C, z, z
′]). (1)

An admissible 4-tuple can be constructed as follows [1, Section 3]. Start with z1, z2, z3 ∈ D136

satisfying 0 < arg(z1) < arg(z2) < arg(z3) < π. Abbreviate u = (1 − z1z2)(1 − z2z3), a =137

Im [−uz1z3], b = Im [u(z3 − z1)], and c = Im [u]. Assume a+ b+ c < 0 and let z0 = 2c
−b+
√
b2−4ac

.138

Then (z0, z1, z2, z3) is an admissible 4-tuple.139
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From now on indices are modulo 8. Let us consider an admissible 4-tuple (z0, z1, z2, z3)140

and define zl+4 = −zl for every l ∈ {0, 1, 2, 3}. For k ∈ {0, . . . , 7}, there exists a unique141

orientation preserving isometry τk : D → D satisfying τk(zk+5) = zk and τk(zk+4) = zk+1:142

the isometry τk maps a side of P[z0, z1, z2, z3] to the opposite side of P[z0, z1, z2, z3]. Define143

ωk =
zk(1− |zk+1|2) + zk+1(1− |zk|2)

1− |zkzk+1|2
and note that |ωk| < 1; the isometry τk is then given by144

τk(z) = (z + ωk)/(ωk + 1) for every z ∈ D [1, Lemma 4.1]. Observe that τk+4 = τ−1
k .145

3 Representation of triangulations146

In this section we describe our data structure for representing triangulations (Section 3.1) and147

we sketch how it is maintained through flips (Section 3.2).148

3.1 Data structure149

Although an ad hoc data structure was previously proposed for flipping triangulations [7], we150

choose to use combinatorial maps, which are commonly used to represent graphs embedded on a151

surface. We refer the reader to the literature for a formal definition [16, Section 3.3]. The data152

structure we use offers a representation of the triangulation that intrinsically lies on the surface,153

while the earlier data structure [7, Section 4.1] stuck to specific representatives of all vertices154

and faces of the lifted triangulation in the universal cover. See Appendices A and B.1 for details155

on this section.156

For our experiments, we use the flexible implementation of combinatorial maps that is publicly157

available in cgal [5]. The dart, also known as flag, is the central object in a combinatorial map:158

it gives access to all incidence relations of an edge of the graph (Figure 2). In our setting a159

combinatorial map can be thought of as a halfedge data structure.160

β1
β2

Figure 2: A dart in a combinatorial map (bold).

The geometric information for the triangulation is stored by adding a cross-ratio for each edge.161

Recall that the cross-ratio of four pairwise-distinct points in H represented by z1, z2, z3, z4 ∈ D162

is the complex number [z1, z2, z3, z4] =
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
[3]. Cross-ratios are suitable for a163

flip algorithm, due to their well-known property: assuming that the four points are oriented164

counterclockwise, Im [z1, z2, z3, z4] > 0 if and only if z4 lies inside the open disk circumscribing165

the triangle (z1, z2, z3).166

Given an edge e of a triangulation T of S we consider a lift ẽ = (ũ1, ũ3) of e in D and the167

remaining vertices ũ2 and ũ4 of the two faces incident to ẽ in T̃ , numbering vertices counter-168

clockwise. The cross-ratio RT (e) is defined as [ũ1, ũ2, ũ3, ũ4]; it is independent of the choice of169

the lift of e, as the cross-ratio is invariant under orientation preserving isometries of D. An edge170

e of T is Delaunay-flippable if and only if Im [RT (e)] > 0.171

Note that in our experiments, the lifts in D are only used to calculate the cross-ratios of a172

given input triangulation T ; they are ignored during the flips, thus preserving the property that173

the data structure only considers the embedding of the triangulation on the surface. However,174
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in order to be able to recover a lift in D in the end, e.g., for drawing a representation in D175

of the final Delaunay triangulation, we need to maintain an anchor during flips. The anchor176

A = (δ, a1, a2, a3) consists in a dart δ, chosen arbitrarily, together with a triple (a1, a2, a3) of the177

vertices of a lift of the face containing δ.178

A triangulation T is thus represented by (M,F,A), where M is the combinatorial map, F179

the map that associates a cross-ratio to each edge of M , and A = (δ, a1, a2, a3) is the anchor.180

3.2 Flipping an edge181

In this section, we quickly sketch how the data structure is maintained through an edge flip.182

First we modify the combinatorial map, then we update the anchor, and we finally update the183

cross-ratios. Some details and the pseudo-code are given in Appendix B.2.184

Performing a flip in the combinatorial map is a straightforward use of the functionalities185

given by the cgal package [5]. The triangulation obtained from T after flipping an edge e is186

denoted by T ?. By definition, the dart δ of the anchor A belongs to the face t of T represented187

by a lift t̃ = (a1, a2, a3) in D. If t does not contain e then A is not modified by the flip. However,188

if e is an edge of t then t will not belong to T ? and we must update A. A lift ẽ of e incident to189

t̃ is replaced by ẽ? when e is flipped. The anchor is updated so that it represents one of the two190

faces incident to ẽ? in T ?.191

Finally, the cross-ratios must be retrieved. Only the cross-ratios of the at most 5 edges of192

the two triangles forming the quadrilateral whose diagonal is to be flipped must be updated.193

Their values after the flip are expressed in terms of their values before the flip (see Lemma 5 in194

Appendix A).195

4 Solving arithmetic issues196

The construction recalled in Section 2.4 shows that the real and imaginary parts of the complex197

numbers involved when defining surfaces are in general algebraic numbers. Efficiency issues when198

computing with algebraic numbers have been known for decades. More recently, they appeared199

when constructing Delaunay triangulations of hyperbolic surfaces [13, 8], showing that the hope200

to get effective software was restricted to very simple cases. In Section 4.1 we describe a simple201

experiment on the Bolza surface illustrating that these arithmetic issues are actually prohibitive202

in practice for the Delaunay flip algorithm in the sense that they imply unreasonable running203

times.204

We show in Section 4.2 that any surface of genus 2 can be approximated by a surface de-205

scribed by rational numbers. It is straightforward to check that the computations made during206

a Delaunay flip algorithm only use the four basic operations +,−, ·, / (see Section 3.2 and Ap-207

pendix B.2). Thus if the input surface is represented by rational numbers all numbers arising208

throughout the algorithm stay rational. This fact allows us to run extensive experiments.209

4.1 Issues when using algebraic numbers210

Let ck =
exp

(
iπ 2k−1

8

)
21/4

, k ∈ {0, . . . , 7} be the vertices of a regular hyperbolic octagon in D;211

identifying the opposite sides of this octagon gives a surface of genus 2 known as the Bolza212

surface. Consider the triangulation T0 of the octagon shown in Figure 3. Identifying in T0213

the edges corresponding to opposite sides of the octagon yields a triangulation T of the Bolza214

surface. Let e0, . . . , e4 be the edges of T corresponding to the edges e′0, . . . , e′4 of T0. The algebraic215

numbers cos
(π

8

)
=

√
2 +
√

2

2
and sin

(π
8

)
=

√
2−
√

2

2
naturally appear when computing the216

cross-ratios RT (el) = [c0, cl+1, cl+2, cl+3], l ∈ {0, . . . , 4}.217
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c0

c1
e′0e′1

e′2

e′3

e′4

Figure 3: The triangulation T0 and the edges e′0, . . . , e′4.

As the points ck, k = 0, . . . , 7 are concyclic e0, . . . , e4 can be flipped although they are strictly218

speaking not Delaunay-flippable: the situation is degenerate. The experiment consists in com-219

puting the new values of the cross-ratios involved during the flips of e0, . . . , e4 in this order (see220

Appendix C.1 for the pseudocode). We used the cgal wrapper CORE::Expr [11] for the algebraic221

numbers provided by the CORE library [18]. It took minutes to finish on an Intel Core i5-8250u222

cpu (1.6Ghz, 8 cores) and 16Gb of ram. Such a running time severely restricts the possibility to223

run heavy experiments with a Delaunay flip algorithm.224

4.2 Density of the rationally described surfaces225

For any z ∈ D and any ε > 0, B(z, ε) denotes the open ball {z′ ∈ D : d(z, z′) < ε} where d(·, ·)226

is the hyperbolic distance in D.227

Definition 1. We say that a 4-tuple (z0, z1, z2, z3) is rational if zk ∈ Q + iQ for every k ∈228

{0, 1, 2, 3}. A rationally described surface is a surface obtained from a rational admissible 4-229

tuple (z0, z1, z2, z3) by identifying the opposite sides of P[z0, z1, z2, z3].230

Theorem 2. Let (z0, z1, z2, z3) be an admissible 4-tuple and ε > 0. There exists a rational231

admissible 4-tuple (z0, z1, z2, z3) such that ∀k ∈ {0, 1, 2, 3}, zk ∈ B(zk, ε).232

Proof. For two reals a and b, define ]a, b[= {z ∈ C : a < Re [z] < b and Im [z] = 0}. We first233

choose for every k ∈ {0, 1, 2, 3} a point zk ∈ B(zk, ε)∩ (Q+ iQ), with the additional requirement234

that z0 ∈]0, 1[, but without trying to satisfy the area condition A(G[−z0, z0, z1, z2, z3]) = 2π235

(equivalent to the condition A(P[z0, z1, z2, z3]) = 4π given in Section 2.4). Consider Figure 4.236

If ε is small enough, then (z0, z1, z2, z3) is valid. We will now show that if each zk is "close237

enough" to zk for every k, we can replace z3 by a point U in B(z3, ε)∩ (Q+ iQ) so that the area238

condition is satisfied. More details on the construction can be found in Appendix C.2.239

To do so we first define an isometry f : D→ D in the Poincaré disk: f(z) =
z + z0
z0z + 1

. Observe240

that f(−z0) = 0C. Since f and f−1 both map D ∩ (Q + iQ) to some subset of D ∩ (Q + iQ)241

our problem reduces to replacing f(z3) by an element V of B(f(z3), ε) ∩ (Q + iQ) satisfying242

A(G[0C, f(z0), f(z1), f(z2), V ]) = 2π. Indeed, by setting U = f−1(V ) we obtain U ∈ B(z3, ε) ∩243

(Q + iQ) and A(G[−z0, z0, z1, z2, U ]) = A(G[0C, f(z0), f(z1), f(z2), V ]) = 2π.244

To find such a point V , we define a polynomial P ∈ Q[X] by setting

P (X) = Im
[
(1− f(z0)f(z1))(1− f(z1)f(z2))(1−Xf(z2)f(z3))

]
.

Observe that the degree of P is at most 1, and thus P (X) = (P (1) − P (0))X + P (0). We first245

show that if we choose zk close to zk for every k ∈ {0, 1, 2, 3}, P (1) is close to 0 and P (0) close246

to κ > 0. Since 0 = arg f(z0) < arg f(z1) < arg f(z2) < arg f(z3) < π we can apply Equality (1)247

6



Experimental analysis of Delaunay flips on hyperbolic surfaces

0C = f(−z0) z0 = f(0C)
−z0

z3
z2

z1
f(z3) f(z2)

f(z1)

f(z0)

Figure 4: Illustration of the proof of Theorem 2
.

and obtain248

arg
[(

1− f(z0)f(z1)
)(

1− f(z1)f(z2)
)(

1− f(z2)f(z3)
)]

= arg
(

1− f(z0)f(z1)
)

+ arg
(

1− f(z1)f(z2)
)

+ arg
(

1− f(z2)f(z3)
)

=
1

2
[A (G[0C, f(z0), f(z1)]) +A (G[0C, f(z1), f(z2)]) +A (G[0C, f(z2), f(z3)])]

=
1

2
A (G[0C, f(z0), f(z1), f(z2), f(z3)]) =

1

2
A (G[−z0, z0, z1, z2, z3]) .

By observing that every expression in between the equalities belongs to [0, 2π[ we see that those249

equalities are indeed equalities and not only congruences modulo 2π. By choosing zk close to250

zk for every k ∈ {0, 1, 2, 3} we make the last expression approach 1
2A(G[−z0, z0, z1, z2, z3]) = π,251

which makes P (1) tend to 0. Similarly, we obtain252

arg
[(

1− f(z0)f(z1)
)(

1− f(z1)f(z2)
)]

=
1

2
A (G[−z0, z0, z1, z2]) .

By choosing zk closer and closer to zk, the last expression tends to 1
2A(G[−z0, z0, z1, z2]) which253

is not congurent to 0 modulo π. Thus P (0) is close to some constant κ > 0, whence we can254

assume that P (1) 6= P (0).255

To construct V set λ = P (0)
P (0)−P (1) and let V = λf(z3); we have both V ∈ Q + iQ and256

P (λ) = 0. We proved that P (1) tends to 0 and that P (0) tends to κ > 0 so λ tends to 1 and V257

tends to f(z3). Finally, observe that P (λ) = 0 implies A(G[0C, f(z0), f(z1), f(z2), V ]) = 2π by258

Equality (1).259

Remark 3. This theorem implies the density of the hyperbolic structures corresponding to ratio-260

nal admissible 4-tuples in TM2 with its canonical topology. However, a proof would go beyond261

the scope of this paper and would be quite technical.262

5 The generation of the input for the experiments263

We generate input for the Delaunay flips algorithms by triangulating admissible loosely-symmetric264

octagons; the latter are defined in Section 5.1 as a slight extension of the admissible symmet-265

ric octagons (Section 2.4). We generate such octagons whose vertices are represented in D by266

complex numbers with rational real and imaginary parts. To conduct experiments, we need to267

generate a large number of triangulations with a large diameter. An effective approach consists268

in generating octagons with a small diameter and twisting them (Section 5.1) many times to269

obtain octagons with a very large diameter. This approach has two advantages. Firstly it can270

generate triangulations with different diameters but lying on a single surface, hence eliminating271

any dependency on the choice of the surface if needed. Secondly thanks to this approach we will272

also study the dependency of the number of flips on those twists.273
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5.1 The twists of admissible loosely-symmetric octagons274

We say that a hyperbolic octagon P is loosely-symmetric if the opposite sides of P are isometric275

and the opposite interior angles of P are equal. If moreover A(P ) = 4π then we call P admissible.276

Clearly, the symmetric octagons of Aigon-Dupuy et al. (Section 2.4) are loosely-symmetric277

octagons. Identifying the opposite sides of an admissible loosely-symmetric octagon gives a278

surface of genus 2 [4, Theorem 1.3.5].279

Let G[z0, . . . , z7] be an admissible loosely-symmetric octagon. We will consider the Dehn280

twists along the axes of its side-pairings (Figure 1). These twists generate a subgroup of Mod(S2)281

(Section 2.3), which contains non-reducible elements of Mod(S2) since the generators do not all282

fix a common curve. Thus, this subgroup contains pseudo-Anosov elements [14].283

For every k ∈ {0, . . . , 7} we denote by τk the orientation preserving isometry of D that satisfies
τk(zk+5) = zk and τk(zk+4) = zk+1. We fix t ∈ {0, . . . , 7}. For k ∈ {0, . . . , 7} let

z′k =

{
τt(zk) if k − t ∈ {1, 2, 3, 4} mod 8,
zk otherwise.

By the Gauss-Bonnet formula, the interior angles of G[z0, . . . , z7] sum up to 2π; since opposite284

interior angles are equal, each interior angle is at most π. Thus the geodesic segment between zt+1285

and zt+5 is contained in G[z0, . . . , z7] and cuts the polygon into the two interior disjoint pentagons286

P1 = G[zt+1, zt+2, zt+3, zt+4, zt+5] and P2 = G[zt+5, zt+6, zt+7, zt, zt+1]; the intersection of P1 and287

P2 is the segment between zt+5 and zt+1 and the two pentagons are isometric. Similarly, τt(P1)288

and P2 are interior disjoint, they intersect on the segment between z′t = zt and z′t+4 = zt+1289

and their union is G[z′0, . . . , z
′
7]. It follows that G[z′0, . . . , z

′
7] is an admissible loosely-symmetric290

octagon; the surface that it defines is isometric to the one defined by G[z0, . . . , z7] as both can291

be obtained by the same identification of the sides of P1 and P2 (P1 and τt(P1) being isometric).292

We say that (z′0, . . . , z
′
7) is obtained by t-twisting (z0, . . . , z7). For every point z in the closure293

of G[z0, . . . , z7] at least z or τt(z) lies in the closure of G[z′0, . . . , z
′
7].294

Let us denote by (τ ′k)0≤k≤7 the isometries defined for z′0, . . . , z′7, in the same way as (τk)0≤k≤7

above. By definition of the t-twist, the following holds for every k ∈ {0, . . . , 7}

τ ′k =


τt ◦ τk if k − t ∈ {1, 2, 3} mod 8,

τk ◦ τ−1
t if t− k ∈ {1, 2, 3} mod 8,

τk if k = t mod 4.

For a word t = t1 · · · tm, we define the t-twist as the composition of the tk-twists, k = 1, . . . ,m,295

in this order. We pick t1, . . . , tm in {0, . . . , 3}m instead of {0, . . . , 7}m to only consider the296

generators without their inverses and obtain large diameters as quickly as possible.297

5.2 The generation of triangulations298

The input surfaces and triangulations are constructed in four steps. We refer to Appendix D for299

details.300

[step 1] We construct an initial rational admissible 4-tuple (z0, z1, z2, z3).301

[step 2] We choose np ≥ 0 and construct points (p1, . . . ,pnp) ∈ (Q + iQ)n lying within the closure302

of P[z0, z1, z2, z3].303

[step 3] We choose m ≥ 0 and a sequence t1 · · · tm of twists.304

[step 4] From the 4-tuple (z0, z1, z2, z3), the points (p1, . . . ,pnp), and the sequence t = t1 · · · tm,305

we construct a representation (M,F,A) of an input triangulation T . This is (roughly)306

done by t-twisting P[z0, z1, z2, z3], triangulating the octagon resulting from the twists,307

and inserting the points in the faces of the resulting triangulation. Together with the point308

corresponding to the vertices of the octagon, the triangulation T has n = np + 1 vertices.309
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Sections 6 and 7 refer to these four steps. Step 1 was applied a thousand times to construct310

the 1,000 rational admissible 4-tuples Q1, . . . , Q1,000; in our experiments we consider the first nq311

4-tuples. In step 3 we constructed 10,000 random sequences of twists denoted by S1, . . . , S10,000,312

each of length 10, of which some of the experiments use the first ns sequences. The values of313

np, nq, and ns are specified in the description of each experiment.314

Technicalities for steps 1, 2, and 4 are deferred to Appendix D. We only elaborate on step 3315

here. Consider a sequence of m twists represented by the word t = t1 . . . tm (see Section 5.1).316

We will study two kinds of sequences in the experiments of Sections 6 and 7:317

• A power sequence is represented by a word um for some u ∈ {0, . . . , 3}.318

• In a random sequence, t1, . . . , tm are chosen uniformly and independently in {0, . . . , 3}.319

It appears in practice that the length of a random sequence has a stronger impact on the320

computations than the length of a power sequence. When twisting, we update an 8-tuple321

(z0, . . . , z7) ∈ (Q+iQ)8 corresponding to an admissible loosely-symmetric octagon G[z0, . . . , z7],322

together with the orientation preserving isometries (τk)0≤k≤7 identifying its opposite sides. Both323

the vertices of the octagon and the isometries are represented by complex numbers: 8(m + 1)324

complex numbers for the 8(m + 1) points and 32(m + 1) complex numbers for the 8(m + 1)325

isometries. Each such complex number is represented by two rational numbers and each such326

rational number is represented by two integers: its numerator and its denominator. The running327

time of a sequence of m ≥ 0 twists thus depends on the sizes of these 160(m+ 1) integers; here328

the size of an integer is the number of digits of its decimal representation.329

Twisting promptly gives rise to big numbers. As an example, take the rational admissi-330

ble 4-tuple z0 = 10/11, z1 = 1/2 + 1/2i, z2 = −1/10 + 9/10i, z3 = −3/5 + 3/5i. Then331

twist (z0, . . . , z3,−z0, . . . ,−z3) by m twists and get (z0,m, . . . , z7,m) ∈ (Q + iQ)8 such that332

G[z0,m, . . . , z7,m] is an admissible loosely-symmetric octagon. Denote by τk,m the orientation333

preserving isometry of D mapping zk+5,m to zk,m and zk+4,m to zk+1,m, for k ∈ {0, . . . , 7}.334

Consider first the power sequence of twists 0m (the choice of 0 is without loss of generality)
for m ∈ {0, . . . , 3000}. A simple recursion gives the following for every m:

τk,m =


(τ0,0)m ◦ τk,0 if k ∈ {1, 2, 3} mod 8
τk,0 ◦ (τ0,0)−m if k ∈ {5, 6, 7} mod 8
τk,0 if k = 0 mod 4

zk,m =

{
(τ0,0)m(zk,0) if k ∈ {1, 2, 3} mod 8,
zk,0 otherwise.

From that it is easy to see that the sizes of the integers involved in the representations of335

(τk,m)0≤k≤7 and (zk,m)0≤k≤7 grow at most linearly in m. See Figure 5.336

number of twists

si
ze

Figure 5: Size of the numerator of Re [z1,m] as a function of the length m of a power sequence of
twists.
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When twisting with a random sequence, the growth in size of the integers involved does not337

appear to be linear in the number of twists. Examples are shown in Figure 6 for the random338

sequence 23330132013121032301 of m = 20 twists. Observe that the numerator of the real part339

of the top-left coefficient of the matrix representing τ0,20 contains more than 200, 000 digits in340

its decimal representation. In general the bottleneck for such computations seems to be the size341

of such coefficients of the isometries (τk,m)0≤k≤7.342

number of twists

si
ze

Figure 6: The size of integers as a function of the length m of a random sequence of twists. Left:
the numerator of the real part of the top-left coefficient of the matrix representation of τ0,m.
Middle: the numerator of Re [z1,m]. Right: the numerator of Re [z4,m].

6 Comparison of flip strategies343

As recalled in Section 2.2, a Delaunay flip algorithm can flip Delaunay-flippable edges in any344

order. In this section, we consider six strategies:345

• naive strategy: choose the first Delaunay-flippable edge given by the cgal combinatorial346

map iterator DartRange::iterator.347

• random strategy: choose uniformly among all the Delaunay-flippable edges.348

• minimag and maximag strategies: choose the edge e whose cross-ratio RT (e) minimizes349

(resp. maximizes) Im [RT (e)] among the Delaunay-flippable edges.350

• minratio and maxratio strategies: choose the edge e whose cross-ratio RT (e) minimizes351

(resp. maximizes) the quotient |Im [RT (e)]| / |RT (e)|.352

We present eight experiments A, B, C, D, E, F, G, and H, allowing us to compare the353

number of flips that the six strategies induce on a variety of inputs. The notation Qk, Sk and354

the parameters nq, ns, and np are defined in Section 5.355

exp. A B C D exp. E F G H
nq 50 30 10 1 nq 100 30 10 10
ns 50 30 10 10 Ω 0, 30, 60, 0, 30, 60, 0, 10, 0, 5,

90, 120 90, 120 20, 30 10
np 0 10 100 1, 000 np 0 10 100 1, 000

Table 1: Parameters for experiments A to H.

Let us first check that the strategy actually has an influence on the number of flips. Experi-356

ments A, B, C, and D use random sequences of twists. The values of nq, ns, and np are shown357

in Table 1. We first construct the set X containing the 11 prefixes of the sequence of twists Sl358

(including the empty sequence) for every l ∈ {1, . . . , ns}: X contains at most 10ns + 1 sequences359
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whose sizes vary between 0 and 10. Then for every k ∈ {1, . . . , nq} and every t ∈ X, we perform360

steps 2 and 4 with (z0, z1, z2, z3) = Qk, np interior vertices, and t1 · · · tm = t. In each case, we361

run the Delaunay flip algorithm six times: one for each strategy, and count the number of flips362

that were needed for the algorithm to terminate. Among those six integers we denote by αk,t the363

minimum and by βk,t the maximum. Figure 7 shows that choosing a strategy has an impact on364

the number of flips. A point lying far from the diagonal y = x represents a computation where365

one of the strategies clearly requires more flips than another, while a point lying close to the366

diagonal represents a computation where the strategies were essentially equivalent in the number367

of flips they induced.368

minimum number of flips induced by a strategy

m
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Figure 7: Experiments A, B, C, and D: points (αk,t, βk,t) for k ∈ {1, . . . , nq} and t ∈ X.

Experiments E, F, G, and H use power sequences of twists. They are parameterized by369

nq, np, and a set Ω of integers giving the lengths of the considered twists, see Table 1. For370

every k ∈ {1, . . . , nq}, every m ∈ Ω, and every u ∈ {0, 1, 2, 3}, we perform steps 2 and 4 with371

(z0, z1, z2, z3) = Qk, np interior vertices, and t1 . . . tm = um. Then we run the Delaunay flip372

algorithm for each of the six strategies. Here, the minimum and maximum number of flips are373

respectively denoted by αk,m,u and βk,m,u. Figure 8 shows a stronger impact of the strategy on374

the number of flips than experiments A, B, C, D.375

To compare the six strategies, we count for each experiment and each strategy the number376

of times (i.e., the number of pairs (αk,t, βk,t) for experiments A, . . . , D or pairs (αk,m,u, βk,m,u)377

for experiments E, . . . , H) when the strategy induced the minimum/maximum number of flips378

among the other strategies. Figure 9 summarizes the results. Overall the minratio and the379

maxratio strategies seem to regularly achieve the maximum and the minimum (respectively).380

Observe in particular that in experiments D and H the minratio and the maxratio strategies381

always induced more and fewer flips, respectively, than any other strategy.382

The naive strategy seems to rarely achieve the minimum or the maximum number of flips383

among the six strategies. In Figures 10 and 11, the y-coordinate is the number of flips induced384

by the naive strategy (instead of the maximum among the six strategies); the x-coordinate is385
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minimum number of flips induced by a strategy
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Figure 8: Experiments E, F, G, and H: points (αk,m,u, βk,m,u), k ∈ {1, . . . , nq},m ∈ Ω, u ∈
{0, 1, 2, 3}.

Figure 9: The number of times when each strategy induced the minimum/maximum number of
flips.
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still the minimum number of flips among the six strategies. The figures show that the number386

of flips required by the naive strategy is close to the minimum. As it runs much faster than all387

other strategies, we stick to the naive strategy for the experiments of Section 7.388
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minimum number of flips induced by a strategy

Figure 10: The number of flips induced by the naive strategy with respect to the minimum
among the six strategies in experiments A, B, C, and D.

Figure 12 illustrates a run of the program. The diameter of the initial domain is about 139389

and the diameter of the final domain is smaller than 5.390

7 Exploring the relationship between number of flips and diam-391

eter392

7.1 Rationale for the experiments393

Mark Bell [2] showed that the structure of the mapping class group has a very interesting effect394

on the flip graph of topological triangulations. In this topological setting, the objective is to395

reduce the number of intersections k of the input triangulation with a fixed curve. The main396

theorem of Bell’s paper states that one can always find a flip or a power of a Dehn twist that397

reduces the number of crossings by a fixed percentage. This result can be seen as follows: either a398

pseudo-Anosov transformation allows the number of crossings to decrease in a single application,399

or there exists a power of a Dehn twist that reduces the number of crossings. This gives an400

algorithm to compute the optimal triangulation using O(log(k)) operations.401

Our problem is different from Mark Bell’s: in his study, the number of crossings is an explicit402

measure of the distance to the goal, while there is no way to know in advance how far the input403

triangulation is from being Delaunay, and we do not know the homotopy classes of final edges.404

However, asymptotically, combinatorial intersection metrics are very similar to the hyperbolic405

metrics on surfaces of genus g ≥ 2. If a triangulation has very long edges (in terms of the406

number of crossings for the topological version, or in terms of the hyperbolic length in our407
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minimum number of flips induced by a strategy

Figure 11: Same as Figure 10, for experiments E, F, G, and H.

Figure 12: Triangulation with 3001 vertices before (left) and after (right) the flips.
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geometric setting), then in the first stage both strategies aim at reducing edge lengths. Thus the408

two problems might have a similar asymptotic efficiency.409

This raises two questions:410

• Is there any hope to experimentally observe such similarities in the efficiency? It looks a411

priori unpromising as the above only holds asymptotically.412

• Can Mark Bell’s result be transposed to the number of flips?413

We carry out two sets of experiments. The first set constructs the input triangulation by414

twisting the initial octagon in one direction only; as these twists correspond to reducible elements415

of Mod(S2) (Section 2.3) we expect to observe a linear number of flips. The second set of416

experiments twists the octagon in a random way; asymptotically, we should obtain pseudo-417

Anosov elements of the mapping class group and an asymptotic logarithmic behavior.418

We present five experiments named I, J, K, L, and M, all using the naive strategy (see419

Section 6). We use again the same notation as in Section 5. We follow steps 3 and 4 and420

keep track of the loosely-symmetric octagon G[z0
′, . . . , z7

′] obtained in step 4 after the twists;421

we compute (an approximation represented by a C++ double of) the hyperbolic diameter of422

G[z0
′, . . . , z7

′] (see Appendix E). As we are only interested in the influence of the diameter, we423

do not run step 2 (i.e., we set np = 0) and the triangulation thus has only one vertex.424

7.2 Exploring with power sequences425

Experiments I and J are parameterized by the number nq of 4-tuples: nq = 1 in I and nq = 1, 000426

in J. We perform step 4 with (z0, z1, z2, z3) = Qk, np = 0, and t1 . . . tm = u3m for k ∈ {1, . . . , nq},427

u ∈ {0, 1, 2, 3}, and m ∈ {0, . . . , 50}, and we compute the approximate hyperbolic diameter428

�k,m,u of G[z0
′, . . . , z7

′]. We run the Delaunay flip algorithm, counting the number αk,m,u of429

flips needed for the algorithm to terminate. Figure 13 shows the result.430
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Figure 13: Experiments I and J: the number of flips αk,m,u with respect to the (approximate)
diameter �k,m,u, k ∈ {1, . . . , nq},m ∈ {0, . . . , 50}, u ∈ {0, 1, 2, 3}.

7.3 Exploring with random sequences431

In the following experiments the values of nq and ns are respectively nq = 1, ns = 10, 000432

(experiment K), nq = 10, ns = 1, 000 (experiment L), and nq = 1, 000, ns = 100 (experiment433

M). We first construct the set X containing the 11 prefixes of Sl (including the empty sequence)434

for every l ∈ {1, . . . , ns}. Then for every k ∈ {1, . . . , nq} and every t ∈ X, we perform step 4 with435

(z0, z1, z2, z3) = Qk, np = 0, and t1 . . . tm = t. We compute the approximate diameter �k,t of436

G[z0
′, . . . , z7

′]. We run the Delaunay flip algorithm and count the number αk,t of flips needed for437

the algorithm to terminate. Figure 14 shows αk,t as a function of 10 ln(�k,t) for k ∈ {1, . . . , nq}438

and t ∈ X. Here ln denotes the natural logarithm (base e).439
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Figure 14: Experiments K, L, and M: the number of flips with respect to 10 ln(�k,t), k ∈
{1, . . . , nq}, t ∈ X; the maximum diameter is about 1500.

7.4 Interpretation of the results440

Our experiments show that controlling the elements of the mapping class group Mod(S2) used for441

twisting actually allows us to control the number of flips needed by the flip algorithm. Indeed, in442

the case of power sequences, we observe that the number of flips is linear in the diameter of the443

input triangulation: Delaunay flips untwist the triangulation by performing a constant number444

of flips per iteration of the twist. For random sequences, we observe that the number of flips is445

logarithmic in the diameter of the input triangulation. In practice the Delaunay flip algorithm446

actually realizes a strategy that is as efficient as Mark Bell’s.447

Surprisingly, the asymptotic behavior of random walks in the mapping class group can be448

observed in practice with relatively small sequences of twists: even rather short random sequences449

reach pseudo-Anosov homeomorphisms, yielding the logarithmic behavior.450

Some of the experiments use a single input surface while other experiments use up to 1,000451

different input surfaces. The behaviors observed do not depend on the surface.452

In light of our experimental results, we conjecture that the complexity of the Delaunay flip453

algorithm is worst-case linear in the diameter of the triangulation, and logarithmic on average.454

It should a priori not depend on the genus, as Mark Bell’s and Maher’s results hold for any455

genus g ≥ 2.456
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A Cross-ratios and Delaunay flips503

We define the map φ : C× C→ C by φ(x, y) = 1− (1− x) · y for every (x, y) ∈ C2.504

To prove Lemma 5, we first give a straightforward lemma. Here, the triangulation T may be505

infinite or finite.506

Lemma 4. Consider a triangulation T of H and an edge e of T . Denote by f, g, h, k the edges,507

oriented counter-clockwise, of the quadrilateral formed by the two triangles of T that are incident508

to e (hence assuming that e is incident to two bounded faces). Assume that e is Delaunay-flippable509

and let T ? be the triangulation obtained from T when replacing e by the other diagonal e? of the510

quadrilateral. Then:511

• RT ?(e?) = RT (e)/(RT (e)− 1).512

• RT ?(w) = φ(RT (w),RT (e)) for w ∈ {f, h}.513

• RT ?(w) = φ(RT (w)), 1/RT ?(e?)) for w ∈ {g, k}.514

It is clear that the cross-ratio of any edge of T other than {e, f, g, h, k} remains unchanged515

after the flip.516

Proof. Consider the notation defined by Figure 15.517

z1

z2

z3

z4

z5

z6z7

z8

ef
g h

k

Figure 15: Notation for the proof of Lemma 4 (geodesic edges are represented by straight line
segments).

A straightforward computation gives:518

[z1, z2, z5, z3] · [z1, z2, z3, z4] = [z1, z2, z5, z4]

[z2, z3, z6, z4] · [z2, z3, z4, z1] = [z2, z3, z6, z1]

[z3, z4, z7, z1] · [z1, z2, z3, z4] = [z3, z4, z7, z2]

[z4, z1, z8, z2] · [z2, z3, z4, z1] = [z4, z1, z8, z3].

The result follows.519

Let us now state the result on S.520

Lemma 5. Consider a triangulation T of S and an edge e of T . Let f, g, h, k be the edges of T521

such that e, f, g and e, h, k (oriented counter-clockwise) bound the triangles incident to e in T .522

Assume that e is Delaunay-flippable and let T ? be the triangulation obtained from T after the flip523

of e and e? be the new edge replacing e. Then the following holds:524
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• RT ?(e?) = RT (e)/(RT (e)− 1).525

• If f 6= h then RT ?(w) = φ(RT (w),RT (e)) for every w ∈ {f, h}.526

• If f = h then RT ?(f) = φ(φ(RT (f),RT (e)),RT (e)).527

• If g 6= k then RT ?(w) = φ(RT (w), 1/RT ?(e?)) for every w ∈ {g, k}.528

• If g = k then RT ?(g) = φ(RT (g), φ(RT (g), 1/RT ?(e?)), 1/RT ?(e?)).529

Before going to the proof, note that some edges in X = {e, f, g, h, k} may be equal. However,530

the edges e, f, g are pairwise-distinct and so are the edges e, h, k as they bound faces of T̃ . Also,531

f 6= k and g 6= h because the interior angles of the faces of T are all less than π. Hence the only532

two possible equalities in X are between f and h, and between g and k.533

One easily sees that the cross-ratio of any edge w /∈ X remains unchanged after the flip.534

Proof. Consider the lift T̃ of T . Choose a fixed lift ẽ of e and let f̃ , g̃, h̃, k̃ be the edges of T̃535

such that ẽ, f̃ , g̃ and ẽ, h̃, k̃ bound the two faces incident to ẽ in T̃ , oriented counter-clockwise.536

By renaming f̃ , g̃ to h̃, k̃ and vice versa if needed we can also assume that each w ∈ X is lifted537

by w̃. We define X̃1 as {f̃ , h̃} if f 6= h or as {f̃} if f = h. We define X̃2 similarly for g and k.538

Then we set X̃ = {ẽ} ∪ X̃1 ∪ X̃2. This way X̃ contains exactly one lift of each element of X.539

Define Ẽ as the set of all lifts of e that are incident to one of the faces of T̃ having an edge in X̃.540

The possible configurations are summarized in Figure 16. Consider the infinite triangulation T̃ ′

f 6= h and g 6= k f 6= h and g = k f = h and g 6= k f = h and g = k

f̃

g̃
k̃
h̃

ẽ

Figure 16: The possible configurations:ẽ is the black segment, X̃ \ {ẽ} = X̃1 ∪ X̃2 is in blue, and
Ẽ \ {ẽ} is in green.

541

of the hyperbolic plane obtained from T̃ after flipping each element of Ẽ. We denote by ẽ? the542

edge of T̃ ′ resulting from the flip of ẽ. Then for every w̃ ∈ X̃ \ {ẽ} we have RT ?(w) = R
T̃ ′(w̃)543

and RT (w) = R
T̃

(w̃). Also, RT ?(e?) = R
T̃ ′(ẽ?) and RT (e) = R

T̃
(ẽ). The result follows by544

computing R
T̃ ′(w̃) and R

T̃ ′(ẽ?) using Lemma 5.545

B Details for the representation of triangulations (Section 3)546

B.1 On combinatorial maps and the anchor (Section 3.1)547

A 2-dimensional combinatorial map can be described as a finite set whose elements are called548

darts together with three permutations β0, β1, and β2 of this set of darts. The permutations549

β0 and β1 are the inverse of each other while the permutation β2 is an involution. We use 2-550

dimensional combinatorial maps to describe graphs cellularly embedded on surfaces as follows.551

For each face of a graph we constitute a cycle of darts such that given a dart d the next dart552

in the cycle is β1(d) (and thus the previous one is β0(d)). The darts of the cycle represent the553

edges bordering the face. We "glue" faces along their borders by pairing darts: given two darts554

d and d′ we set β2(d) = β2(d′). It is possible to identify two darts that belong to a single face.555

We refer to the literature for a formal definition [16, Section 3.3].556

Now we explain the role played by the anchor A in the data structure (M, F, A) described in557

Section 3.1. If z1, z2, z3, and z4 denote 4 distinct complex numbers then the number z4 can be558

deduced from z1, z2, and z3 and from the cross-ratio [z1, z2, z3, z4]. This fact has a consequence559

useful to us: given an infinite triangulation T of the hyperbolic plane if one knows the coordinates560
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in D of the 3 vertices of some face of T together with the cross-ratio of every edge of T then one561

can recursively compute the coordinates of any point of T . In our setting T is the lift T̃ of a562

triangulation T of a surface and for every edge e of T we have R
T̃

(ẽ) = RT (e) by definition. In563

the data structure (M, F, A) representing the triangulation T the cross-ratios of T̃ are given by564

F and the anchor A provides the coordinates of the 3 vertices of some face of T̃ . Consequently565

given (M, F, A) one can construct the coordinates of the vertices of T̃ . That enables drawing566

some part of T̃ for example (this is our use of the anchor).567

B.2 Flipping edges (Section 3.2)568

In this section, we explain how the flip of an edge e of a triangulation T is encoded on the data569

structure (M,F,A) defined in Section 3.1 and representing T . We may not make the distinction570

between the edges of the triangulation T and those of the combinatorial map M . We are given571

as input a dart de of the combinatorial map M belonging to the edge e to be flipped. The edge572

flip is performed in three steps. Algorithms 1, 2, and 3 are performed in this order. In particular573

Algorithms 2 and 3 use the variables df , dg, . . . defined in Algorithm 1. We use the notation of574

Section 3.1. We recall here that F denotes the function that maps each edge of the combinatorial575

map M to its cross-ratio and A = (δ, a1, a2, a3) is the anchor.576

Algorithm 1 performs operations in the combinatorial mapM (Figure 17), and is implemented577

using the cgal package [5].578

df ← β1(de);
dg ← β1(df );
d′e ← β2(de);
dh ← β1(d′e);
dk ← β1(dh);
β1(df ), β1(de), β1(dk)← de, dk, df ;
β1(dg), β1(dh), β1(d′e)← dh, d

′
e, dg;

β0(de), β0(dk), β0(df )← df , de, dk;
β0(dh), β0(d′e), β0(dg)← dg, dh, d

′
e;

Algorithm 1: Flipping the edge containing a dart de in a combinatorial map.

de

df

dg

d′e

dh

dk

df

dg

de

d′e

dk

dh

Figure 17: Illustration of Algorithm 1

In Algorithms 2 and 3 given a dart d of the combinatorial map M we denote by [d] the edge579

that contains d. Algorithm 2 computes an anchor for the triangulation T ? obtained after the flip.580

Recall that the lift T̃ ? of T ? is precisely the infinite triangulation of H obtained by flipping the581

lifts of the edge e (there are infinitely many of them) in the lift T̃ of T . Before the flip the anchor582

A represents a face t̃ of T̃ . We assume that t̃ is adjacent to a lift ẽ of the edge e to be flipped583

(otherwise Algorithm 2 does nothing and the anchor is correctly not modified). Let e? be the edge584

obtained after the flip of e in T and ẽ? be the lift of e? obtained after the flip of ẽ in T̃ . We claim585

that after the execution of Algorithm 2 the new anchor represents one of the two faces of T̃ ? that586

are incident to ẽ?. First observe that such a face, name it t̃?, shares two vertices with t̃ and that587

the vertex of t̃? that is not shared with t̃ can be computed from the three vertices of t̃ and the588
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cross-ratio of e in T : this computation is done by a function φ that we now define. Let Ω ⊂ C4
589

be the set of 4-tuples (x, y, z, r) ∈ C4 such that x, y, z are pairwise-distinct and r(z−y) 6= (z−x).590

Then φ : Ω→ C is defined by φ(x, y, z, r) = (xr(z − y) + y(x− z))/(r(z − y) + x− z) on every591

(x, y, z, r) ∈ Ω. The map φ is well-defined. Now we briefly explain why φ computes this third592

vertex of t̃? and why Algorithm 2 always gives to φ inputs that are in Ω. Consider an infinite593

triangulation T of H and an edge w of T . Denote by u1 and u3 the vertices of w and by u2594

and u4 the two other vertices of the two faces of T containing w: assume that u1, u2, u3, u4595

are in counter-clockwise order. A simple computation shows that (u1, u2, u3,RT (w)) ∈ Ω and596

u4 = φ(u1, u2, u3,RT (w)). The correctness of Algorithm 2 follows by case analysis.597

switch δ do
case de do

δ ← dh;
a2 ← φ(a2, a3, a1, F ([de]));

end
case d′e do

δ ← df ;
a2 ← φ(a2, a3, a1, F ([de]));

end
case df or dh do

a3 ← φ(a1, a2, a3, F ([de]));
end
case dg or dk do

a3 ← φ(a3, a1, a2, F ([de]));
end

end
Algorithm 2: Updating the anchor A = (δ, a1, a2, a3). The dart δ is modified if δ ∈
{de, df , dg, d′e, dh, dk}.

The update of the cross-ratios encoded in the map F is done by Algorithm 3. Algorithm 3598

is a straightforward implementation of Lemma 5.599

F ([df ])← 1− (1− F ([df ])) · F ([de]);
if β2(df ) = dh then

F ([df ])← 1− (1− F ([df ])) · F ([de]);
else

F ([dh])← 1− (1− F (dh])) · F ([de]);
end
F ([de])← F ([de])/(F ([de])− 1);
F ([dg])← 1− (1− F ([dg]))/F ([de]);
if β2(dg) = dk then

F ([dg])← 1− (1− F ([dg]))/F ([de]);
else

F ([dk])← 1− (1− F ([dk]))/F ([de]);
end

Algorithm 3: Updating the cross-ratios.
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C Details for solving arithmetic issues (Section 4)600

C.1 Experiment on algebraic numbers (Section 4.1)601

Algorithm 4 updates the cross-ratios through the sequence of 5 flips described in Section 4.1. It602

is is a straightforward implementation of Lemma 5.603

Input: The cross-ratios R0, . . . , R4

for k = 0, . . . , 4 do
Rk ← Rk/(Rk − 1);
if k ≥ 1 then

Rk−1 ← 1− (1−Rk−1)/Rk;
end
if k ≤ 3 then

Rk+1 ← 1− (1−Rk+1)/Rk;
end

end
Algorithm 4: Updating R0, . . . , R4 along the sequence of 5 flips.

C.2 Approximation algorithm (Section 4.2)604

This section gives additional details on the construction of the rational admissible 4-tuple shown605

in the proof of Theorem 2 in Section 4.2.606

Definition 6. Let z0, z1, z2, z3 ∈ D \ {0C} and ε > 0. We say that (z0, z1, z2, z3) is ε-valid if for607

any k ∈ {0, 1, 2, 3} and 1 ≤ l < m ≤ 3 the following properties are satisfied:608

• arg z0 = 0609

• 0C /∈ B(zk, ε)610

• ∀x ∈ B(zl, ε), ∀y ∈ B(zm, ε), 0 < arg x < arg y < π.611

Now let µ > 0. If moreover |A(G[−z0, z0, z1, z2, z3])− 2π| < µ then we call the tuple (z0, z1, z2, z3)612

(ε, µ)-admissible.613

In what follows we consider some ε, µ > 0 and a rational (ε, µ)-admissible 4-tuple (z0, z1, z2, z3).614

Algorithm 5 returns a rational admissible 4-tuple (z′0, z
′
1, z
′
2, z
′
3) such that z′k ∈ B(zk, ε) for every615

k ∈ {0, 1, 2, 3}. We prove the correctness of the algorithm in Proposition 8 under certain assump-616

tions on ε, µ, and on the input 4-tuple. Before describing the algorithm we state a preliminary617

Lemma.618

Lemma 7. At least one of the 2 triangles G[−z0, z2, z3] and G[z0, z2, z1] has a hyperbolic area619

bigger than π
2 −

µ
2 .620

Proof. This is clear since G[−z0, z0, z2] is a triangle so its hyperbolic area is at most π.621

Proposition 8 (Correctness of Algorithm 5). Assume ε ∈]0, 1[ and µ ∈]0, π/6[. We introduce
the following parameter:

R = max
0≤k≤3

d(0C, zk).

If the following assumption is satisfied:622

ε > 12µe6R (2)

then Algorithm 5 is well-defined and correct.623
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Input : Reals ε, µ > 0 and a rational (ε, µ)-admissible 4-tuple (z0, z1, z2, z3)
Output: A rational admissible 4-tuple (z′0, z

′
1, z
′
2, z
′
3) s.t. z′k ∈ B(zk, ε), ∀k

if A(G[−z0, z2, z3]) > π
2 −

µ
2 then

f : z 7→ z+z0
z0z+1 ;

P0 ← Im
[
(1− f(z0)f(z1))(1− f(z1)f(z2))

]
;

P1 ← Im
[
(1− f(z0)f(z1))(1− f(z1)f(z2))(1− f(z2)f(z3))

]
;

λ← P0/(P0 − P1);
V ← λf(z3);
return (z0, z1, z2, f

−1(V ));
else

f : z 7→ z−z0
−z0z+1 ;

P0 ← Im
[
(1− f(z3)f(−z0))(1− f(z2)f(z3))

]
;

P1 ← Im
[
(1− f(z3)f(−z0))(1− f(z2)f(z3))(1− f(z1)f(z2))

]
;

λ← P0/(P0 − P1);
V ← λf(z1);
return (z0, f

−1(V ), z2, z3);
end

Algorithm 5: The approximation algorithm.

Proof. We only consider the case A(G[−z0, z2, z3]) > π
2 −

µ
2 as the same arguments hold for624

the other case after application of Lemma 7. Using the notations introduced in the algorithm625

we bound P0 and P1 and then deduce that λ is well-defined. Only then we prove that V ∈626

B(f(z3), ε). We have P0 = Im [Z0] and P1 = Im [Z1] with627

Z0 = (1− f(z0)f(z1))(1− f(z1)f(z2))

Z1 = (1− f(z0)f(z1))(1− f(z1)f(z2))(1− f(z2)f(z3)).

We already proved that argZ1 = 1
2A(G[−z0, z0, z1, z2, z3]). Also we have |argZ1 − π| < µ

2 since628

(z0, z1, z2, z3) is (ε, µ)-admissible. Since µ < π, |P1| < sin(µ2 ) < µ
2 . In addition,629

argZ0 =
1

2
A(G[−z0, z0, z1, z2])

=
1

2
(A(G[−z0, z0, z1, z2, z3])−A(G[−z0, z2, z3])).

By Definition 6, and since π
2 −

µ
2 < A(G[−z0, z2, z3]) < π,

π

2
− µ

2
< argZ0 <

3π

4
+

3µ

4
.

Moreover for every k ∈ {0, 1, 2, 3} one has d(0C, f(zk)) ≤ d(0C, f(0C)) + d(f(0C), f(zk)) =630

d(0C, z0) + d(0C, zk) ≤ 2R. Writing the Euclidean norm in term of the hyperbolic distance631

d (in the Poincaré disk model) the latter becomes |f(zk)| ≤ tanh(R). That proves 1 ≥ |Z0| ≥632

(1− tanh(R))2. Together with the bound on argZ0 we obtain a bound on P0:633

1 > P0 >
(
1− tanh(R)2

)2 · sin(3π

4
+

3µ

4

)
≥ e−4R · sin

(
3π

4
+

3µ

4

)
>

1

3
e−4R,
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since µ < π
6 and sin(7π

8 ) > 1
3 . From the bounds on P0 and P1, and using Assumption (2) we

deduce that P0 > P1, so λ is well defined. Also, we get that

1 < λ <
1

1− 3
2µe

4R
.

It remains to prove that V ∈ B(f(z3), ε). For the sake of clarity we denote by D the hyperbolic
distance d(0C, f(z3)). It is enough to show the following:

λ tanh

(
D

2

)
< tanh

(
D + ε

2

)
.

We first observe that x 7→ tanh(x) − x/2 is increasing on [0, 1/2[ and maps 0 to 0. Thus, since
ε/2 ∈]0, 1/2[, tanh(ε/2) ≥ ε/4. From that and by applying Assumption (2) we obtain

µe4R < tanh(ε/2)e−2R.

We conclude with the following implications:634

3µe4R < tanh(ε/2)e−2R

=⇒ 3

2
µe4R <

1

2
tanh(ε/2)(1− tanh(R)2)

=⇒ tanh(D/2) + tanh(D/2)2 tanh(ε/2)

tanh(D/2) + tanh(ε/2)
< 1− 3

2
µe4R

=⇒
tanh(D2 )

tanh(D+ε
2 )

< 1− 3

2
µe4R

=⇒ λ tanh

(
D

2

)
< tanh

(
D + ε

2

)
.

That concludes the proof.635

D Details for the generation of input (Section 5)636

D.1 Generating an initial rational 4-tuple (step 1)637

We follow the construction of 4-tuples [1, Section 3] recalled in Section 2.4 but only compute638

rational approximations of the algebraic numbers involved. Then we apply Algorithm 5. The639

generation process described below has the following advantage: the size of the integers involved640

in the output 4-tuple (z0, z1, z2, z3) are controlled by the parameter N defined below. Providing641

small fractions is important as the process described in this section is performed at the very642

beginning of the experiments.643

We first construct for k ∈ {1, 2, 3} the real and imaginary parts xk and yk of a complex644

number zk; they are represented as float numbers in python and constructed in [−1, 1] using645

the random method of the random package: xk = 2*random.random()-1. That simulates a646

uniform distribution. The construction fails if one of the points {z1, z2, z3} lies outside D, or if647

the condition a+ b+ c < 0 with a, b, and c as defined in Section 2.4 is not satisfied.648

Then we construct the float numbers x0 and y0 representing the real and imaginary parts649

of z0 as described in Section 2.4. From that we construct for each k ∈ {0, 1, 2, 3} the real650

and imaginary parts xk and yk of zk as rational approximations of xk and yk: we set xk =651

int(N * xk) / N, where the parameter N ∈ N\{0N} determines the quality of the approximation652

and int is native in python. We arbitrarily chose N = 100 in each computation. The construction653

fails if (z0, z1, z2, z3) is not valid.654

The rational 4-tuple (z0, z1, z2, z3) is not necessarily admissible. However, by the construc-655

tion method, it can be seen as a rational approximation of some admissible 4-tuple and it satisfies656
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the hypothesis of Proposition 8. We can thus compute an admissible 4-tuple using Algorithm 5657

(see also Section 4.2).658

To simplify notation, we still denote the rational admissible 4-tuple that we obtain by659

(z0, z1, z2, z3).660

D.2 Generating points in an admissible symmetric octagon (step 2)661

Consider the rational admissible 4-tuple (z0, z1, z2, z3) obtained after step 1. In this section, we662

describe our method to construct a point p ∈ Q+ iQ in the closure of the admissible symmetric663

octagon P[z0, z1, z2, z3], simulating a uniform distribution with respect to the hyperbolic metric.664

The method uses inexact computation so it can fail especially if the Euclidean area of665

P[z0, z1, z2, z3] is close to 0. This is also why we do not generate such points in the admis-666

sible loosely-symmetric octagons resulting from the twists in step 4.667

We start by dividing P[z0, z1, z2, z3] into 6 hyperbolic triangles ∆1, . . . ,∆6. We compute the668

hyperbolic area of each triangle as a C++ (native) double number using Equality (1). Then669

we choose the triangle ∆k that will contain p with probability
A(∆k)
6∑
l=1

A(∆l)

, k ∈ {1, . . . , 6}. By670

a translation we can assume that 0C is a vertex of ∆k. We construct as double numbers the671

real and imaginary parts of a complex number p ∈ D, simulating a uniform choice within the672

closure of ∆k. To construct p from p we cast the real and imaginary parts of p into CGAL::Gmpq673

numbers [11]. Then we check using Lemma 9 whether p actually belongs to the closure of ∆k; if674

this is the case we return p.675

Lemma 9. Consider pairwise-distinct points z1, z2, z3 ∈ D and the oriented geodesic l containing
z1 and z2, oriented from z1 to z2. The oriented geodesic l separates D into 2 open regions and
we consider the region R on the left of l. We define τ : D→ D by

τ(z) =
z − z1

1− z1z

for every z ∈ D. Then z3 ∈ R if and only if

Im
[
τ(z3)

τ(z2)

]
> 0

and the above expression is an equality if and only if z3 ∈ l.676

Proof. The result follows from observing that τ is an orientation preserving isometry of D sending677

z1 to 0C.678

D.3 Constructing the data structure (step 4)679

After step 1, step 2, and step 3, we are given a rational admissible 4-tuple (z0, z1, z2, z3), points680

(p1, . . . ,pnp) ∈ (Q + iQ)np lying in the closure of P[z0, z1, z2, z3] and a sequence t1, . . . , tm of681

twists. The rational admissible 4-tuple (z0, z1, z2, z3) defines the surface S.682

Applying the procedure in Section 5.1 we construct the vertices z0
′, . . . , z7

′ of the rational683

admissible loosely-symmetric octagon resulting from twisting P[z0, z1, z2, z3] according to the684

sequence t1, . . . , tm. From p1, . . . ,pnp we also construct new points (p1
′, . . . ,pnp

′) ∈ (Q+ iQ)np685

lying in the closure of G[z0
′, . . . , z7

′]. The latter is done twist by twist : when performing a twist686

on an octagon O we obtain a new octagon O′ and we update the list of points so that they lie in687

the closure of the octagon O′ after the twist. When a point p is replaced by a new point p′ we688

make sure that p and p′ are two lifts of the same point on the surface represented by O and O′.689

In the end we also compute the orientation preserving isometries (τ ′k)0≤k≤7 pairing the opposite690

sides of G[z0
′, . . . , z7

′] (see Section 5.1).691
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Recursively, we construct a sequence T0, . . . , Tnp of triangulations of the octagonG[z0
′, . . . , z7

′].692

We start with the triangulation T0 whose edges are the eight sides of G[z0
′, . . . , z7

′], and the693

five geodesic segments between z0
′ and z2

′, z3
′, z4

′, z5
′, z6

′. The triangulation T0 is represented694

by a combinatorial map M0 and a map P0 associating to each vertex v of M0 its position P0(v)695

in D. For k ∈ {1, . . . , np} the triangulation Tk is obtained from Tk−1 by splitting the triangle696

containing pk
′ into three triangles. In the end we get a triangulation Tnp together with its com-697

binatorial map Mnp and the map Pnp giving the position of each vertex in D. By identifying the698

edges of Tnp that are the opposite sides of G[z′0, . . . , z
′
7] we obtain a triangulation T of S.699

We finally construct the triple (M,F,A) representing the triangulation T from the com-700

binatorial map Mnp and the map Pnp (see Section 3.1). The combinatorial map M is easily701

obtained from Mnp by setting β2(d) = d′ and β2(d′) = d (see Figure 2) for any 2 distinct darts702

d and d′ of Mnp supporting 2 edges corresponding to opposite sides of G[z′0, . . . , z
′
7]. The anchor703

A = (δ, a1, a2, a3) is defined by choosing δ in Mnp : the dart δ belongs to a face (v1, v2, v3) of704

Mnp and is based at v1; we set ak = Pnp(vk) for every k ∈ {1, 2, 3}. Now consider some edge e705

of M . There are 2 cases. If e results from an edge of Mnp that was not a side of G[z0
′, . . . , z7

′]706

then computing its cross-ratio in Tnp or equivalently in T is straightforward. If e results from707

the identification of 2 edges e1 and e2 of Mnp then we compute F (e) as follows. We denote the708

vertices of e1 in Mnp by a, b and the vertices of e2 by c, d such that Pnp(a), Pnp(b), Pnp(c), Pnp(d)709

appear in counter-clockwise order on the boundary of G[z0
′, . . . , z7

′]: when identifying e1 and710

e2 to construct M from Mnp the vertex a is identified with d, and the vertex b is identified711

with c. We consider k ∈ {0, . . . , 7} such that orientation preserving isometry τ ′k maps Pnp(d)712

to Pnp(a) and maps Pnp(c) to Pnp(b). The edge e1 belongs to a unique face f1 of Mnp and713

we denote the vertex of f1 that is neither a nor b by u1. Similarly, the edge e2 belongs to a714

unique face f2 of Mnp and we denote the vertex of f2 that is neither c nor d by u2. Then715

F (e) = [Pnp(a), τk(Pnp(u2)), Pnp(b), Pnp(u1)].716

E Computation of the approximation of the diameter (Section 7)717

Consider a rational admissible loosely-symmetric octagon O given by the 16 rational numbers718

representing the real and imaginary parts of its 8 vertices. The hyperbolic diameter of O is the719

maximum of the hyperbolic distances between any two of its vertices. For every pair z1, z2 of720

two such distinct vertices we compute an approximation represented by a C++ double D of the721

hyperbolic distance between z1 and z2. The maximum (obtained using std::max) of these
(

8
2

)
722

values is an approximation of the hyperbolic diameter of O.723

We compute every such D as follows. The isometry f : z 7→ (z − z1)/(1 − z1z) maps Q ∩ D724

to a subset of Q and maps z1 to 0. We compute the exact rational value r2 of the square of the725

modulus of f(z2). Then we convert r2 to a CORE::Expr r′2 and set x = (1+CGAL::sqrt(r′2))/(1−726

CGAL::sqrt(r′2)). The number D is an approximation of the natural logarithm ln(x) of x ob-727

tained by first casting x to a string s. The string s contains the string representation s1 of728

the lower integer rounding k of log10(x). Also s contains the string representation s2 of an729

approximation of x · 10−k. The value of D is calculated as std::stoi(s1) ∗ std::log(10) +730

std::log(std::stod(s2)).731
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