
HAL Id: hal-03669664
https://hal.inria.fr/hal-03669664

Submitted on 26 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One vote is enough for analysing privacy
Stéphanie Delaune, Joseph Lallemand

To cite this version:
Stéphanie Delaune, Joseph Lallemand. One vote is enough for analysing privacy. ESORICS 2022
- 27th European Symposium on Research in Computer Security, Sep 2022, Copenhague, Denmark.
�hal-03669664�

https://hal.inria.fr/hal-03669664
https://hal.archives-ouvertes.fr


One vote is enough for analysing privacy⋆

Stéphanie Delaune and Joseph Lallemand

Univ Rennes, CNRS, IRISA, France

Abstract. Electronic voting promises the possibility of convenient and
efficient systems for recording and tallying votes in an election. To be
widely adopted, ensuring the security of the cryptographic protocols used
in e-voting is of paramount importance. However, the security analysis of
this type of protocols raises a number of challenges, and they are often
out of reach of existing verification tools.
In this paper, we study vote privacy, a central security property that
should be satisfied by any e-voting system. More precisely, we propose the
first formalisation of the state-of-the-art BPRIV notion in the symbolic
setting. To ease the formal security analysis of this notion, we propose a
reduction result allowing one to bound the number of voters and ballots
needed to mount an attack. Our result applies on a number of case
studies including several versions of Helios, Belenios, JCJ/Civitas, and
Prêt-à-Voter. For some of these protocols, thanks to our result, we are
able to conduct the analysis relying on the automatic tool Proverif.

1 Introduction

Remote electronic voting systems aim at allowing the organisation of elections
over the Internet, while providing the same guarantees as traditional paper voting.
Although relying on e-voting for large-scale elections is controversial, it is already
in use in many lower-stakes elections today (e.g. the Helios [3] voting system has
been used to elect the IACR board of directors since 2010), and is likely to be
used even more in the future, for better or for worse. These elections may involve
a large number of voters and may have an important impact on democracy when
it comes to elect political leaders. It is therefore of paramount importance to
ensure the security of these systems.

As for security protocols in general, formal methods provide powerful tech-
niques to analyse e-voting systems, and prove their security. Identifying what
makes a good, secure e-voting system is a complex problem that has not yet
been completely solved, and is actively being researched. It is however rather
universally acknowledged that a central security guarantee e-voting systems
should provide is vote privacy. Intuitively, this property states that votes must
remain secret, so that no one can learn who voted for which candidate.
⋆ The research leading to these results has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 714955-POPSTAR), as well as from the French National
Research Agency (ANR) under the project TECAP.



One common way of formalising vote privacy, which we will call SWAP, is
to require that an attacker is not able to distinguish between the situation
where Alice is voting yes and Bob is voting no from the situation where the two
voters swapped their vote. That formalisation was first proposed by Benaloh [9],
originally in a computational model. It has since been adapted to the symbolic
setting [26], and applied to many voting schemes, e.g. [5,23,4,24,20,7]. The SWAP
notion was originally written considering the specific case of a referendum, where
the result is the number of yes and no votes. It has then been generalised to cover
other kinds of elections [8], but remains limited w.r.t. the way of counting votes –
essentially, it only makes sense when the result of the election is the number of
votes for each candidate, excluding more complex counting procedures such as
Single Transferable Vote (STV).

More recently, a new definition, called BPRIV for “ballot privacy”, has been
proposed to overcome such limitations [10]. Intuitively, BPRIV allows the attacker
to interact with the voting protocol, and see either the real ballots, or fake ballots
containing fake votes. Using oracles, he can choose the values of the real and fake
votes, and cast any ballot he can construct (in the name of a corrupted voter).
In the end, the result of tallying the real ballots is published. To be BPRIV, the
adversary should not be able to distinguish these two situations.

Privacy-type properties, and in particular vote privacy, are often expressed
using a notion of behavioural equivalence [25]. A notable exception is the definition
of (α, β)-privacy [31] which nevertheless relies on some notion of static equivalence.
Proving equivalences is cumbersome, and is difficult to do in details by hand, as
witnessed by the manual analysis of the SWAP property done for e.g. the Helios
protocol [23] and the Norwegian one [24]. Regarding mechanisation, several mature
tools are available for analysing trace properties such as secrecy or authentication
in the symbolic setting: most notably, Proverif [11,12] and Tamarin [30]. These
tools support equivalence properties [13,6], although they remain limited to a
restricted form of equivalence, called diff-equivalence. Some e-voting schemes
have been analysed with these automated tools in the symbolic model, e.g. the
Neuchâtel [20] or BeleniosVS [19] protocols. Proverif even has an extension called
ProSwapper [14], that specifically handles swapped branches that typically occur
in the SWAP definition. These tools have proved very helpful for the study of
e-voting systems. However, they still suffer from limitations that restrict their
applicability, as they e.g. cannot handle homomorphic encryption, or manipulate
lists of arbitrary size to encode the bulletin board, and tend to quickly run into
performance issues when the number of agents in parallel increases.

An interesting option to ease the security analysis is to rely on reduction
results. This approach has been used to bound the number of agents involved in
an attack for both reachability [17], and equivalence properties [18]. Reduction
results bounding the number of sessions [28,27] have also been proposed in
more restricted settings. All these results do not apply in the context of e-
voting protocols. Here, we would like to bound the number of voters (agents)
participating in the election. However, since only one vote is counted for each
voter, we can not replace a session played by A by one played by B, as was

2



done e.g. in [18]. The only existing result in that context is the result proposed
in [4], where the authors give bounds on the number of voters and ballots –
respectively 3 and 10 – needed for an attack on the SWAP notion This allows
them to carry out several case studies using Proverif. No such results, however,
exist for the newer and more general BPRIV definition.

Contributions. Our contributions are threefold. First, we propose a definition
of BPRIV adapted for the symbolic model. BPRIV has been first introduced in
the computational setting where some subtleties regarding the communication
model have been overlooked. Second, we identify some conditions under which
BPRIV can be analysed considering only one honest voter and k dishonest ones.
Actually, in most usual cases, we have k = 1, and the number of ballots being
tallied is reduced to 1. These reduction results are generic, in particular we do
not assume anything regarding the equational theory,and our result applies for
different counting functions. Revoting is also allowed. Finally, we apply our result
on several e-voting protocols from the literature relying on the tool Proverif. Our
bounds for BPRIV, better than those obtained in [4] when considering SWAP,
allow us to analyse many protocols in a reasonable time (whereas several hours
were needed in some cases in [4]). We also identify an issue in the security analysis
performed in [4] where a protocol has been declared secure while it is not.

2 Modelling security protocols

We model security protocols in the symbolic model with a process algebra inspired
from the applied pi-calculus [2]. Our model is mostly standard, except that in
order to model the stateful nature of e-voting protocols, we consider memory cells,
that can store a persistent state across processes. We need to avoid concurrent
accesses to memory cells while updating them: to that end, we use a specific
instruction that atomically appends a message to the content of a memory cell.

2.1 Messages

We assume an infinite set N of names used to model keys, nonces, etc. We
consider two infinite and disjoint sets of variables X and W. Variables in X are
used to refer e.g. to input messages, and variables in W , called handles, are used
as pointers to messages learned by the attacker. Lastly, we consider two disjoint
sets of constant symbols, denoted Σ0 and Σerr. Constants in Σ0 represent public
values, e.g. identities, nonces or keys drawn by the attacker. This set is assumed
to be infinite. Constants in Σerr will typically refer to error messages. We fix
a signature Σ consisting of a finite set of function symbols together with their
arity. We denote Σ+ = Σ ⊎ Σ0 ⊎ Σerr. We note T (F , D) the set of terms built
from elements in D by applying function symbols in the signature F . The set of
names (resp. variables) occurring in a term t is denoted names(t) (resp. var(t)).
A term t is ground if var(t) = ∅. We refer to elements of T (Σ+, N ) as messages.

3



Example 1. We consider the signature Σerr = {errvote, errinvalid} to model error
messages. The signature Σlist = {nil, hd, tl, ::} allows us to model lists of arbi-
trary size. We often write [t1, . . . , tn] for t1 :: · · · :: tn :: nil. The operators hd
and tl are used to retrieve the head and the tail of a list. Lastly, we consider
Σex = {aenc, adec, pk, zkp, checkzkp, true, ⟨ ⟩3, proj31, proj32, proj33, yes, no} to model
asymmetric encryption, zero-knowledge proofs, and pairing operators. As a run-
ning example, we will consider a model of the Helios protocol (in its original
version, as seen in [23]) and ΣHelios = Σex ∪ Σlist.

Let idH ∈ Σ0, r, sk ∈ N , and pk = pk(sk). Intuitively, idH represents the
identity of a honest voter, and yes her vote (these data are known to the attacker),
whereas r and sk are private names, modelling respectively the randomness used
in the encryption and the private key of the authority. Let eyes = aenc(yes, pk, r),
and bidH

yes = ⟨idH, eyes, zkp(eyes, yes, r, pk)⟩3. The first term encrypts the vote, and
the second one is the ballot sent by the voter in the voting phase of Helios.

An element of T (Σ+, W) is called a recipe and models a computation per-
formed by the attacker using his knowledge. A substitution σ is a mapping from
variables to messages, and tσ is the application of σ to term t, which consists in
replacing each variable x in t with σ(x). A frame ϕ is a substitution that maps
variables from W to messages, and is used to store an attacker’s knowledge.

In order to give a meaning to function symbols, we equip terms with an
equational theory. We assume a set E of equations over T (Σ, X ), and define =E
as the smallest congruence containing E that is closed under substitutions.

Example 2. Continuing Example 1, we consider the equational theory Eex given
below and Elist := {hd(x :: y) = x, tl(x :: y) = y}.

Eex =
{

adec(aenc(x, pk(y), z), y) = x proj3i (⟨x1, x2, x3⟩3) = xi with i ∈ {1, 2, 3}
checkzkp(zkp(aenc(x, y, z), x, z, y), aenc(x, y, z), y) = true

}
We have adec(eyes, sk) =Eex v, and checkzkp(proj33(bidH

yes), v, r, pk) =Eex true.

In the following, we consider an arbitrary signature Σ+ = Σ ⊎ Σ0 ∪ Σerr
together with its equational theory E (equations built over Σ only), and we
assume it contains at least the formalisation of lists given in Example 1 and
Example 2, i.e. Σlist ⊆ Σ and Elist ⊆ E.

2.2 Processes

We model protocols using a process calculus. We consider an infinite set of
channel names Ch = Chpub ⊎ Chpri, partitioned into infinite sets of public and
private channel names. We also assume an infinite set M of names to represent
memory cells (used to store states). The syntax of processes is:

P, Q ::= 0
| P | Q
| ! P
| new n. P
| new d. P

| out(c, u). P
| in(c, x). P
| ! new d. out(c, d). P
| let x = u in P
| if u = v then P else Q

| m := u. P
| read m as x. P
| append(c, u, m). P
| phase i. P

4



where n ∈ N , x ∈ X , m ∈ M, u ∈ T (Σ+, X ∪ N ), d ∈ Chpri, c ∈ Ch, i ∈ N.

This syntax is rather standard, except for the memory cell operations. In-
tuitively, read m as x stores the content of m in the variable x, whereas
append(c, u, m) represents the agent with channel c appending u to memory m.
In addition, we use a special construct ! new d. out(c, d). P , to generate as many
times as needed a new public channel d and link it to channel c, in a single
step. This could be encoded using the other instructions, but having a separate
construction lets us mark it in the execution traces, which is convenient for the
proofs. The constructs in(c, x).P , let x = u in; P , and read m as x. P bind x in P .
Given a process P , fv(P ) denotes its free variables, and we say that it is ground
when fv(P ) = ∅. Moreover, we usually omit the final 0 in processes.

Example 3. Continuing our running example, we consider the process P :
P = in(c, b). if ⟨checkzkp(proj33(b), proj32(b), pk(sk)), proj31(b)⟩ = ⟨true, idD⟩

then out(c, b). append(c, b, mbb) else out(b, errinvalid).
where b ∈ X , sk ∈ N , and idD ∈ Σ0. This represents an agent that receives
a ballot b as input, and then checks the validity of the zero knowledge proof
contained in b, as well as the identity of the voter. Depending on the outcome of
this test, it either outputs the ballot and appends it in the cell mbb modelling
the ballot box, or simply outputs an error message.

Definition 1. A configuration is a tuple (i; P; ϕ; M), composed of an integer i,
a multiset P of ground processes, a frame ϕ, and a mapping M from a subset of
memory names M to messages. We write P instead of (0; P; ∅; ∅).

The semantics of our calculus is defined as a transition relation a=⇒ on con-
figurations. Each transition step is labelled with an action a representing what
the attacker can observe when performing it (it can be an input, an output, an
append action, or a silent action ϵ). This relation is defined in a standard manner.
As a sample, depicted below are the rules for input, errors, and append.
(i; {|in(c, u). P |} ∪ P; ϕ; M) in(c,R)====⇒ (i; {|Pσ|} ∪ P; ϕ; M)

if c ∈ Chpub, and R is a recipe such that var(R) ⊆ domϕ
and Rϕ =E uσ for some σ with dom(σ) = var(u)

(i; {|out(c, cerr). P |} ∪ P; ϕ; M) out(c,cerr)======⇒ (i; {|P |} ∪ P; ϕ; M) if c ∈ Chpub, cerr ∈ Σerr

(i; {|append(c, u, m)|}. P ∪ P; ϕ; M) append(c)======⇒ (i; {|P |} ∪ P; ϕ; M{m 7→ u :: M(m)})
if m ∈ dom(M)

For instance, considering an input on a public channel, the attacker can
inject any message he is able to build using his current knowledge. The outputs
performed on a public channel are made available to the attacker either directly
through the label (when it corresponds to an error message), or indirectly through
the frame (this rule is not shown). Lastly, we present the rule corresponding
to our new append action append(c, u, m) which simply consists in appending a
term u to the memory cell m. The full formal semantics is given in Appendix A.

5



Definition 2. The set of traces of a configuration K is defined as

traces(K) = {(tr, ϕ) | ∃i, P, M such that K
tr=⇒

⋆
(i; P; ϕ; M)}

where ·=⇒
⋆

is the reflexive transitive closure of ·=⇒, concatenating all (non-silent)
actions into the sequence tr.

Example 4. Continuing Example 3 with ϕyes = {w0 7→ pk(sk), w1 7→ bidH
yes}, and

Kyes
0 = (2; {P}; ϕyes; {mbb 7→ nil}). We have that:

Kyes
0

in(c,w1).out(c,errinvalid)==============⇒ (2; ∅; {w0 7→ pk(sk), w1 7→ bidH
yes}; {mbb 7→ nil})

Kyes
0

in(c,R0).out(c,w2).append(c)=================⇒ (2; ∅; {w0 7→ pk(sk), w1 7→ bidH
yes , w2 7→ bidD

yes}; {mbb 7→ b})

with R0 = ⟨idD, proj32(w1), proj33(w1)⟩3, and bidD
yes = R0ϕidH

yes =Eex ⟨idD, eyes, zkp⟩3.
The term zkp here denotes the zero-knowledge proof from bidH

yes . It does not
contain the identity of the voter who computes it, and can therefore be reused
by a dishonest voter to cast the ballot in her own name.

2.3 Equivalences

Our definition of the BPRIV property relies on two usual notions of equivalence
in the symbolic model: static equivalence, for the indistinguishability of sequences
of messages, and trace equivalence, for the indistinguishability of processes.

Definition 3. Two frames ϕ and ϕ′ are statically equivalent, denoted by ϕ ∼ ϕ′,
if dom(ϕ) = dom(ϕ′) and for any recipes R1, R2 ∈ T (Σ+, dom(ϕ)), we have that
R1ϕ =E R2ϕ ⇔ R1ϕ′ =E R2ϕ′.

Definition 4. Two ground processes P , Q are in trace inclusion, denoted by
P ⊑t Q, if for all (tr, ϕ) ∈ traces(P ), there exists ϕ′ such that (tr, ϕ′) ∈ traces(Q)
and ϕ ∼ ϕ′. We say that P and Q are trace equivalent, denoted by P ≈t Q, if
P ⊑t Q and Q ⊑t P .

Example 5. We can consider a configuration Kno
0 similar to Kyes

0 but with no
instead of yes in the initial frame. We can establish that Kno

0 ≈t Kyes
0 . This is a

non trivial equivalence. Now, we replace P by P + in both configurations, adding
a simple process modelling the tally (for one vote), e.g.

P + = P | phase 3. read mbb as bb. let res = adec(proj32(bb), sk) in out(cr, res).
We have that the resulting equivalence does not hold. This is simply due

to the fact that tr = in(c, R0).out(c, w2).append(c).phase 3.out(cr, w3) can be
executed starting from both configurations, and the resulting frames contains
w3 7→ no on the left, and w3 7→ yes on the right. This breach of equivalence is
not, strictly speaking, an attack, as the processes do not formalise the BPRIV
property. However it follows the same idea as the ballot copy attack against
Helios from [23]: a dishonest voter copies a honest voter’s ballot, introducing
an observable difference in the result. This attack can be prevented by patching
Helios, either by weeding out duplicate ballots from the ballot box, or by adding
the voter’s id to the ZKP, which then becomes invalid for any other voter.

6



3 Modelling the general BPRIV notion

In this section, we explain how we formally model e-voting protocols and state
our BPRIV notion used to model vote privacy.

3.1 Modelling e-voting protocols

When modelling voting systems, we often need to encode some computations (e.g.
performed by the ballot box) that cannot be represented by recipes (e.g. iterating
through an arbitrary-sized list). We encode these computations as processes, that
do not share any names, channels, or memory cells with the rest of the process,
except for a channel to return the result of the computation.

Definition 5. A computation is a process Cd( #„p ) without free names, channels,
or variables (not counting those in d, #„p ), without memory cell operations, and
without phases. It is parametrised by a channel d, and terms #„p , meant to be the
channel where the result is output, and the terms given as input parameters.

This process must be such that for all inputs #„p , there exists a ground term t0
such that for all channel name d, we have

traces(Cd( #„p )) = {(ϵ, ∅)} ∪ {(out(d, w), {w 7→ t0}) | w ∈ W}.

We then call t0 the result of the computation. As it does not depend on the channel,
we will often omit it and let C( #„p ) denote the result.

To use such a process to compute a term inside a process P , we will typically
run it in parallel with an input waiting to retrieve the result on d, followed by
the continuation process. We will write as a shortcut let x = C( #„p ) in P for
new d. (Cd( #„p ) | in(d, x). P ), where d is a fresh private channel name (i.e. that
does not appear anywhere else in the ambiant process).

We assume a finite set Votes ⊆ T (Σ, Σ0) of public ground terms representing
the possible values of the votes. A voting system is modelled by a collection
of processes that model the behaviour of voters, and a process modelling the
tallying authority. The election process is composed of several phases.

Phases 0 and 1: Setup. The election material is generated and published.

Phase 2: Casting. The voters send their ballots to the ballot box. In our model,
a memory mbb will play the role of the ballot box, recording all ballots received
by the voting server. The voters’ processes will first publish their ballot on a
dedicated public channel, and then append it to the memory cell mbb. This
models the fact that voters are authenticated when they submit their ballot, and
the ballot cannot be modified on its way to the ballot box. However, the attacker
is able to block a ballot before it reaches the ballot box.

Each voter has a private credential cr ∈ N , with an associated public cre-
dential computed by a recipe Pub(cr , u), that may use a random value u. Some
protocols, such as Civitas, use this value to randomise the public credential, while

7



others, such as Belenios, do not use it – in such cases we can omit it. To model
the construction of ballots, we assume a recipe Vote with 5 variables: the term
Vote(pk, id, cr , v, r) represents a ballot generated for voter id with credential cr ,
public election key pk, randomness r, and containing a vote v.

When modelling vote privacy, the attacker chooses the vote v he wants the
voter to use to construct the ballot. Hence, we will need to check that v is indeed
a possible value for a vote, i.e. v ∈ Votes. In a voting scheme, once a ballot is
received by the voting server, another verification is performed to ensure that
the ballot is valid, i.e. was correctly constructed. Typically, it can consist in
verifying signatures or zero-knowledge proofs included in the ballot. To keep our
model generic, we simply assume a recipe Valid with four variables: the term
Valid(id, pcr, b, pk) represents the validity test performed for the agent id, whose
public credential is pcr, who submits a ballot b. The term it computes is meant
to be equal to true if, and only if, ballot b cast by id is valid w.r.t. her public
credential pcr and the public key of the election pk. We incorporate this validity
check directly in the process modelling the voter, before publishing and adding
the ballot to mbb. In reality, this check is performed by the ballot box, but this
modelling choice is both simpler (as we do not model an extra process) and closer
to the cryptographic game (where the voting oracle performs the test).

The formal definition of the voter’s process is given in Section 3.2 as it
incorporates elements specific to the modelling of the property.

Example 6. Continuing Example 2, for Helios, we use the following recipes:
VoteHelios(pk, id, v, r) = ⟨id, aenc(v, pk, r), zkp(aenc(v, pk, r), v, r, pk)⟩3

ValidHelios(id, b, pk) = checkzkp(proj33(b), proj32(b), pk).

Phase 3: Tallying. In the final phase, the Tally(sk) process is in charge of reading
the contents of the ballot box, and using the key sk to compute and publish the
result on a dedicated channel cr. To leave it as generic as possible, we simply
assume a computation CTally(bb, sk), that takes as parameters a list bb of ballots,
and sk, and computes the result as specified by the protocol. We then assume
the following form for Tally:

Tally(sk) = read mbb as bb. let res = CTally(bb, sk) in out(cr, res).

Example 7. We continue Example 6 and we consider for simplicity the case of
a referendum with two possible votes yes and no. We assume function symbols
zero/0 and incr/1, without any associated equations, that we use to count in
unary. Slightly abusing notations with the use of pattern-matching in input, the
tallying computation can be written as follows:
CTally(bb, sk) =

new c.
(

out(c, ⟨zero, zero, bb⟩3)
| in(c, ⟨x, y, nil⟩3). out(cr, ⟨x, y⟩)
| ! in(c, ⟨x, y, ⟨id, b, p⟩3 :: l)⟩3). let v = adec(b, sk) in

if v = yes then out(c, ⟨incr(x), y, l⟩3) else out(c, ⟨x, incr(y), l⟩3).
)

8



3.2 A symbolic definition of BPRIV
We model vote privacy by adapting the BPRIV notion, originally formulated as
a cryptographic game [10], to our symbolic setting. The idea remains the same
as for the original notion: an attacker should not learn any information on the
votes contained in the ballots, other than the final result of the election. This is
modelled by letting the attacker suggest two possible values for the vote of each
honest voter: a “real” one and a “fake” one. The attacker then sees the honest
voters’ ballots, containing either the real or fake votes, and then in the end the
real result of the election, computed on the real votes. We model the behaviour
of honest voter id, who uses channel c, private and public credentials cr , pcr , and
election public key pk in these two scenarios by the two following processes.

HVoterL(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b0, pk) = true

then out(c, b0). append(c, b0, mbb)
else out(c, errinvalid)

else out(c, errvote)

HVoterR(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b1, pk) = true

then out(c, b1). append(c, b0, mbb)
else out(c, errinvalid)

else out(c, errvote)

In both cases, the process receives the two possible vote instructions (v0, v1)
from the attacker, and constructs two corresponding ballots b0, b1. It then tests
for validity, and publishes, either the real b0 (on the left), or the fake b1 (on the
right). However, since the result is always computed on the real votes, the ballot
secretly added to the ballot box mbb is always b0. If any of the tests fail, we
return error messages errinvalid, errvote ∈ Σerr.

The attacker has complete control over the ballots submitted by dishonest
voters. Hence, we model them by a process that receives an arbitrary ballot from
the attacker, and adds it to the ballot box mbb after checking its validity:
DVoter(c, id, cr , pcr , pk) = in(c, b). if Valid(id, pcr , b, pk) = true

then out(c, b). append(c, b, mbb) else out(c, errinvalid).
To a reader used to symbolic modelling of protocols, it may seem strange that

dishonest voters are modelled by a process, rather than being left completely
under the control of the attacker. It may similarly be surprising that the voters’
processes include the validity checks and write directly to the ballot box, while
these operations are not actually performed by the voter but by an independent
entity (typically the server storing the ballot box). We decided to adopt this style
of modelling to follow more closely the original formulation as a cryptographic
game. In that formalism, the protocol and the scenario considered are modelled
as oracles. Our symbolic processes are written in the same spirit: they should be
seen as models of what happens when a voter votes, rather than directly models
of the voter’s behaviour.

9



We then consider n voters: for each i ∈ J1, nK, we let #„vi = (ci, idi, cr i, pcr i),
where ci ∈ Chpub is a dedicated public channel, idi ∈ Σ0 is the voter’s identity,
cr i ∈ N her private credential, and pcr i = Pub(cr i, ui) her public credential
randomised with ui ∈ N . We will say that for i ̸= j, #„vi and #„vj are distinct
voters, to signify that they have different identities, credentials, and channels, i.e.
ci ̸= cj ∧ idi ̸= idj ∧ cr i ̸= crj ∧ ui ̸= uj ∧ ui ̸= crj ∧ cr i ̸= uj .

We then define the BPRIV property as follows.

Definition 6. A voting scheme is BPRIV for p honest voters and n−p dishonest
voters, written BPRIV(p, n − p), if

ElectionL
p,n−p( #„v1, . . . , # „vn) ≈t ElectionR

p,n−p( #„v1, . . . , # „vn)

where ElectionX
p,n−p( #„v1, . . . , # „vn) =

new sk. mbb := nil. out(ch, pk(sk)).(
phase 1. out(c1, pcr1). phase 2. HVoterX( #„v1, pk(sk))

| . . .

| phase 1. out(cp, pcrp). phase 2. HVoterX( #„vp, pk(sk))
| phase 1. out(cp+1, ⟨crp+1, pcrp+1⟩). phase 2. DVoter( #„v p+1, pk(sk))
| . . .
| phase 1. out(cn, ⟨crn, pcrn⟩). phase 2. DVoter( # „vn, pk(sk))
| phase 3. Tally(sk)

)
with ch ∈ Chpub, X ∈ {L, R}.

While we designed our symbolic definition to follow as closely as possible the orig-
inal computational formulation of the property, there are two notable differences.

First, in the original notion, the oracle modelling honest voters was executed
atomically: once the adversary submits his vote instructions, the generated ballot
is immediately placed in the ballot box. That is not the case here. This difference
is an important one, and is fully intentional: we wanted to model a scenario
where the attacker can intercept and block ballots on their way to the ballot
box. This gives him more power, and thus makes for a stronger privacy property.
A consequence of that choice however, is that our definition is not suited to
studying protocols that rely on weeding out duplicate ballots from the ballot box
(e.g. some fixed versions of Helios). Indeed, the weeding operation only makes
sense when assuming that all generated ballots have reached the ballot box.

Second, many voting schemes include mechanisms allowing everyone to check
that the tallying authority computed the result correctly. Typically, the talliers
publish, alongside the result itself, zero-knowledge proofs showing that they e.g.
correctly decrypted the ballots in the ballot box. In BPRIV however, having them
output this proof would immediately break the property. The proof only holds
for the actual ballots being tallied, so the attacker could just check it against the
ballots he saw, which would succeed on the left but fail on the right. The original
formalisation handles this by using a simulator for the proof on the right. This
sort of operation does not really have a counterpart in the symbolic model, and
we decided (for now) to simply abstract this proof away and not model it.

10



3.3 Auxiliary properties
In [10], the authors propose two companion properties to BPRIV, called strong
correctness and strong consistency. Together with BPRIV, they imply a strong
simulation-based notion of vote privacy. Although we do not prove such a simula-
tion – these are not really used in the symbolic model – we still define symbolic
counterparts to the original computational side-conditions. They are useful when
establishing our reduction result, and we will from now on assume they hold.
Strong correctness. Honest voters should always be able to cast their vote, i.e.
their ballots are always valid. Formally, for any id, cr , r, u, sk ∈ Σ0 ∪N , v ∈ Votes,
we must have: Valid(id, Pub(cr , u), Vote(pk(sk), id, cr , v, r), pk(sk)) =E true.
Strong consistency. The tally itself should only compute the result of the
election, and nothing else – it cannot accept hidden commands from the attacker
coded as special ballots, etc. Formally we assume two functions extract and count:

– extract(b, sk) is meant to extract the vote, and the voter’s id and credential
from b, using key sk, or return ⊥ if b is not readable (ill-formed, etc.).

– count is the counting function, meant to compute the result from the list of
votes. It is assumed to always return a public term in T (Σ, Σ0).
We assume that: if Valid(id, Pub(cr , u), b, pk(sk)) =E true then extract(b, sk) =

(id, cr , v) for some v ∈ Votes. In other words, extraction always succeeds on valid
ballots. Moreover, extract must behave as expected on honestly generated ballots,
i.e. v = v0 when b = Vote(pk(sk), cr , v0, r). We let extract([b1, . . . , bn], sk) be the
list of non-⊥ values in [extract(b1, sk), . . . , extract(bn, sk)].

Lastly, we assume that these functions characterise the behaviour of the CTally
computation, i.e. for all list bb of messages, for all sk ∈ N , we have:

CTally(bb, sk) = count(lst(extract(bb, sk)))
where lst is a function that only keeps the vote in each tuple returned by extract.
Later on, when considering the case of revote, lst will be replaced with a function
applying a revoting policy to determine which vote to keep for each voter.
Example 8. The Valid recipe and Ctally computation from Examples 6 and 7
satisfy these assumptions, where extract simply decrypts the ciphertext in the
ballot, and count returns the pair of the numbers of votes for yes and no.

4 Reduction

We first establish our reduction in the case where voters vote only once. Some
systems allow voters to vote again by submitting a new ballot that will e.g.
replace their previous one, in the interest of coercion-resistance. We extend our
result to that setting in Section 5. Our BPRIV definition stated in Section 3 is
parametrized by the number n of voters among which p are assumed to be honest.
We prove our reduction result in two main steps. We first establish that it is
enough to consider the case where p = 1, i.e. one honest voter is enough, and
then we establish the conditions under which the number of dishonest voters can
be bounded as well.

11



4.1 Reduction to one honest voter

In order to remain faithful to the original computational BPRIV notion, and to
define a strong privacy property, we decided to write our symbolic BPRIV property
in a general way, i.e. considering an arbitrary number of honest voters. Each
voter receives two vote instructions (v0, v1) from the attacker, and shows him the
ballot for one or the other. Reducing the number of honest voters by replacing
them by dishonest ones is non trivial. This comes from the fact the behaviour of
an honest voter is not exactly the same on both sides of the equivalence, as it
is the case for a dishonest voter. Nevertheless, we establish the following result:
one honest voter is enough.

Proposition 1. Consider a voting scheme V, and p, n such that 1 ≤ p ≤ n. If
V does not satisfy BPRIV(p, n − p), then it does not satisfy BPRIV(1, n − 1).

Proof (Sketch). The general idea of this proof is to show we can isolate one
specific honest voter whose ballot is the one causing BPRIV(p, n − p) to break.
We then leave that voter as the only honest one, and use dishonest voters to
simulate the p − 1 others, and obtain an attack against BPRIV(1, n − 1).

The difficulties are (i) how to find this particular voter, and (ii) how to
simulate the honest voters with dishonest ones. The simulation would be easy
for a honest voter id voting for the same candidate v on both sides: simply use
the dishonest voter to submit a ballot Vote(pk, id, cr , v, r) for some random r,
and the correct credential cr . However, in the Election processes, id uses different
values v0, v1 on the left and on the right, so that we cannot easily construct a
single dishonest ballot simulating id’s on both sides at the same time.

To solve both issues, the main idea is to go gradually from the ElectionL

process, where all HVoters are HVoterL and use the real vote (their v0), to the
ElectionR process, where they are HVoterR and use the fake one (their v1). We
consider intermediate processes P0, . . . , Pp: in Pi, the first i HVoters are HVoterR,
and the others are HVoterL. Since BPRIV(p, n − p) does not hold, P0 = ElectionL

and Pp = ElectionR are not equivalent. Hence, there must exist some i0 such
that Pi0+1 and Pi0 are not equivalent. These two processes differ only by the
i0 + 1th HVoter, who is HVoterL in Pi0 , and HVoterR in Pi0+1. This voter will be
our particular voter, who will remain honest, solving issue (i). All other HVoters
behave the same in Pi0 and Pi0+1: they vote with their right vote for the first i0,
and their left for the last p − i0 − 1. For them, issue (ii) is thus solved, and we
can simulate them with dishonest voters. This way, we recover an attack with
only one honest voter, and (n − p) + (p − 1) = n − 1 dishonest voters.

Note that, in the case of the earlier reduction result from [4] for the SWAP
definition, a simple version of vote privacy is used from the start. They consider
only two honest voters who swap their votes, and not the general definition (as
stated e.g. in [8,10]) involving an arbitrary permutation between an arbitrary
number of honest voters. Due to this, in [4], this first step was trivial. The
argument in our case is more involved, as we start from the general notion.

12



4.2 Bounding the number of dishonest voters

This second reduction result allows one to bound the number of dishonest voters
when considering BPRIV. More precisely, we consider a unique honest voter, and
we show that k dishonest voters are sufficient to mount an attack against vote
privacy (if such an attack exists). Here, we reduce the number of voters from
n to k + 1 (k dishonest voters plus one honest voter), and the resulting bound
depends on the counting function. Roughly, as formally stated below, we have
to ensure that when there is a difference in the result when considering n votes,
then a difference still exists when considering at most k votes.

Definition 7. A counting function count is k-bounded if for all n, for all lists
ltally = [v1, . . . , vn] and l′

tally = [v′
1, . . . , v′

n] of size n > k of elements in Votes,
such that count(ltally) ̸=E count(l′

tally), there exist k′ ≤ k, and i1 < . . . < ik′ , such
that count([vi1 , . . . , vik′ ]) ̸=E count([v′

i1
, . . . , v′

ik′ ]).

This assumption needed to establish our reduction results captures the most
common counting functions such as multiset, sum, majority (see Appendix D).

Lemma 1. The functions count#, countΣ, and countMaj are 1-bounded.

This can be easily established by noticing that, when considering count#
(resp. countΣ or countMaj), as soon as two lists [v1, . . . , vn] and [v′

1, . . . , v′
n] of

votes give different results, it means that there exists at least an indice i0 such
that vi0 ̸= v′

i0
. Hence, keeping this vote is enough to keep a difference. We can

also consider more involved counting functions, such as Single Transferable Vote
(STV), used e.g. in Australian legislative elections, for which we have established
that it is 5-bounded when considering 3 candidates. Under this k-boundedness
assumption, we are then able to bound the number of dishonest voters.

Proposition 2. Let V be a voting scheme whose associated counting function is
k-bounded for k ≥ 1. If V does not satisfy BPRIV(1, n) for some n ≥ 1, then V
does not satisfy BPRIV(1, k′) for some k′ ≤ k. Moreover, in that case there exists
a witness of this attack where no more than k′ ballots reached the ballot box.

Proof (Sketch). If BPRIV(1, n − 1) does not hold, the difference appears either
(i) when the honest voter outputs her ballot, or (ii) when outputting the result.
Indeed, the behaviour of a dishonest voter who simply outputs the message
he received does not help to mount an attack. Moreover, the only test that a
dishonest voter performs is a public test from which the attacker will not infer
anything. In case (i), no dishonest voters are even needed, and the claim holds.

In case (ii), we know that that the public terms representing the final result are
different on both sides. We apply our k-boundedness hypothesis, and we know that
a difference is still there when considering k voters (or even less). Removing the
corresponding actions performed by dishonest voters, the trace still corresponds
to an execution assuming that the validity tests do not depend on the the other
ballots on the bulletin board. Hence, we have a witness of non-equivalence with
at most k ballots, and thus at most k − 1 dishonest voters.

13



4.3 Main result

Combining Propositions 1 and 2, we get our main reduction theorem establishing
that it suffices to consider one honest voter, and at most k dishonest ones.

Theorem 1. Let V be a voting scheme whose associated counting function is
k-bounded for some k ≥ 1, and p, n be two integers such that 1 ≤ p ≤ n. If V
does not satisfy BPRIV(p, n − p), then V does not satisfies BPRIV(1, k′) for some
k′ ≤ k. Moreover, in that case there exists a witness of this attack where no more
than k′ ballots reached the ballot box.

Example 9. The ballot copy attack on Helios (with the 1-bounded multiset count)
from [23], mentioned in Example 5, can be performed against BPRIV(p, n − p): a
honest voter is told to vote yes or no, her ballot is copied by a dishonest voter
but remains valid, and the result is then {|yes, yes|} on the left (as the “yes” ballot
was seen and copied), and {|yes, no|} on the right (as the “no” ballot was seen).

In accordance with Theorem 1, one honest voter, one dishonest, and one
accepted ballot are actually sufficient: the attacker can simply block the honest
ballot, so that only the copy is counted leading to {|yes|} on the left and {|no|} on
the right, which suffices for the attack.

5 Dealing with revoting

We now consider the case where re-voting is allowed. We first adapt the BPRIV
definition to this setting. The processes HVoter, DVoter, and Tally are left un-
changed. Only the main Election processes, and the consistency assumption
change. The tallying now takes into account a revote policy, indicating how to
proceed when a voter casts multiple votes. A revote policy is a function:

policy : (Σ0 × Npriv × Votes) list → Votes list.
This policy function replaces lst in the strong consistency assumption (Sec-

tion 3.3). We consider here the two most common revote policies. The last and
first policies, that select resp. the last or the first vote from each voter.

We reuse the notations from Section 3.2, and we introduce in addition # „wi =
(di, idi, cr i, pcri) for each i ∈ {1, . . . , n} where di are different private channel
names. The privacy property BPRIVR(p, n − p) is written as follows:

ElectionRevoteL
p,n−p( #„v1, . . . , # „vn) ≈t ElectionRevoteR

p,n−p( #„v1, . . . , # „vn)

where ElectionRevoteX
p,n−p( #„v1, . . . , # „vn) =

new sk. mbb := nil. out(ch, pk(sk)).(
phase 1. out(c1, pcr1). phase 2. ! new d1. out(c1, d1). HVoterX( #„v1, pk(sk))

| . . .

| phase 1. out(cp, pcrp). phase 2. ! new dp. out(cp, dp). HVoterX( #  „wp, pk(sk))
| phase 1. out(cp+1, pcrp+1). phase 2. ! new dp+1. out(cp+1, dp+1).DVoter( #        „wp+1, pk(sk))
| . . .
| phase 1. out(cn, pcrn). phase 2. ! new dn. out(cn, dn). DVoter( #  „wn, pk(sk))
| phase 3. Tally(sk)

)
with ch ∈ Chpub, X ∈ {L, R}.

14



Note that a replication operator has been added in front of the voter processes
to model the fact that revote is now possible.

Theorem 2. Let V be a voting scheme whose associated counting function is
k-bounded for some k ≥ 1, and p, n be two integers such that 1 ≤ p ≤ n. If
V does not satisfy BPRIVR(p, n − p), then V does not satisfy BPRIVR(1, k′) for
some k′ ≤ k. Moreover, in that case there exists a witness of this attack where
no more than k′ ballots reached the ballot box (each from a different voter).

The proof of this Theorem follows the same lines as the one when revote
is not allowed – see Appendix F. We may note that replication operators are
still there, and thus establishing such an equivalence property (even when p = 1,
and k = 1) is not trivial. Traces of unbounded length still must be considered.
However, as we are able to establish that, in a minimal attack trace, at most k
ballots reached the ballot box (each by a different voter), we can easily remove
the replication operator in front of a dishonest voter. This reasoning does not
apply for the honest voter, as the output she performed may be useful to mount
an attack (contrary to the output of a dishonest voter who outputs a term known
by the attacker). This has been overlooked in the reduction result presented in [4].
The security analysis of Helios with revote has been done without considering
this replication operator, leading to erroneous security analysis.

6 Applications and case studies

To illustrate the generality of our result, and to showcase how useful it can be in
practice, we apply it to several well-known voting protocols from the literature.
For our case study, we chose the following protocols: two variants of Helios [3],
corresponding to its original version, subject to the attack discussed earlier, and
a fixed version that includes identities in the ZKP; Belenios [21], and the related
BeleniosRF [15] and BeleniosVS [19]; Civitas [29]; and Prêt-à-Voter [16,32].

We modelled these protocols as processes satisfying our assumptions, and
analysed them using Proverif. All model files for our case study are available
at [1]. The results are presented in Figure 1.

We conduct the analysis for different counting functions, using our result to
bound the number of agents and ballots. We considered majority, multiset, sum,
and STV (restricted to 3 candidates). In fact, in the case of 1-bounded functions,
since only one ballot needs to be accepted by the ballot box, the tallying is trivial,
and ends up being the same for different functions (majority, multiset, etc.).
Thus, a single Proverif file is enough to model several counting functions as once.

We considered both the cases without and with revote, for protocols that sup-
port revoting (except Civitas, which in that case uses rather complex mechanisms
that do not fit our setting). As mentioned earlier, when revote is allowed, our
result does not get rid of the replication operator. Bounding the number of voters
is still useful in that case, as it simplifies our models. More importantly, bounding
the number of ballots means we can encode the ballot box as a fixed-length list,
which is very helpful as Proverif does not support arbitrary length lists.

15



Protocols
Counting Multiset/Maj/Sum Single Transferable Vote

(2 voters/1 ballot) (6 voters/5 ballots)

w
ith

ou
t

re
vo

te
Helios (id in ZKP) ✓ ≤ 1s ✓ ∼ 24 min
Helios (ZKP without id) ✗ ≤ 1s ✗ ∼ 27 min
Belenios ✓ ≤ 1s ✓ ∼ 27 min
BeleniosRF ✓ ∼ 3s �

BeleniosVS ✓ ∼ 3s �
Civitas ✓ ≤ 1s ✓ ∼ 39 min
Prêt-à-Voter ✓ ≤ 1s �

re
vo

te Helios (id in ZKP) ✓ ≤ 1s ✓ ∼ 23 min
Helios (ZKP without id) ✗ ≤ 1s ✗ ∼ 42 min
Belenios ✓ ≤ 1s ✓ ∼ 23 min

Fig. 1. Summary of our results. ✓: Proverif proves the property. ✗: Proverif finds an
attack trace. �: timeout (≥ 24h). Execution times are on an Intel i7-1068NG7 CPU.

In some cases, we made slight adjustments to the protocols, so that they fit
our framework. Detailed explanations on these modelling choices can be found
in the files. Notably, many protocols use homomorphic encryption: talliers add
all encrypted votes before decryption. While our result still applies in principle
to such primitives, Proverif cannot handle the associated equations. Hence, we
instead verify versions of the protocols that use a mixnet, i.e. mix ballots in a
random order before decryption.

Overall, as can be seen in the table, our result allows for efficient verification
of all protocols we considered. Thanks to the small bounds we establish, we get
even better performance than previous work [4] in scenarios where that result
applies – i.e. the first column, for multiset counting. In that case, some analyses
took several hours/days in [4], due to the higher bounds. Our result is more
general and can handle e.g. STV counting. On most tested protocols, performance
remains acceptable in that case. However Proverif did not terminate on three
files after 24h: this is likely due to the combination of the complex equational
theories used by these protocols, and the theory for STV, which is itself large.

7 Conclusion
We have proposed a symbolic version of the state-of-the art BPRIV vote privacy
notion, and established reduction results that help us efficiently verify it on
several voting protocols, with different counting functions, using automated tools.

As mentioned earlier, a limitation of our definition is the modelling of the
correct tallying proofs, which we abstracted away. In the computational definition,
they are handled using simulators. It remains to be seen whether such techniques
can be adapted to the symbolic setting, and how.

Our attacker already controls the channel between voters and the ballot box.
A natural further step is to consider an even stronger attacker, that can modify
the content of the ballot box (altering already cast ballots, etc.). BPRIV has
recently been extended to such a scenario in the computational model [22], at
the cost of a much more complex definition – adapting that work to the symbolic
setting constitutes exciting future work.

16



References

1. Delaune, S., Lallemand, J.: One vote is enough for analysing privacy (2022),
https://hal.inria.fr/hal-03669664

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London,
UK, January 17-19, 2001. pp. 104–115. ACM (2001)

3. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)
Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA. pp. 335–348. USENIX Association (2008)

4. Arapinis, M., Cortier, V., Kremer, S.: When are three voters enough for privacy
properties? In: Proceedings of the 21st European Symposium on Research in
Computer Security (ESORICS’16). LNCS, Springer (2016)

5. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania,
USA, 23-25 June 2008. pp. 195–209. IEEE Computer Society (2008)

6. Basin, D.A., Dreier, J., Sasse, R.: Automated symbolic proofs of observational
equivalence. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015. pp. 1144–1155. ACM (2015)

7. Basin, D.A., Radomirovic, S., Schmid, L.: Alethea: A provably secure random
sample voting protocol. In: 31st IEEE Computer Security Foundations Symposium,
(CSF’18). IEEE Computer Society (2018)

8. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (1987)
9. Benaloh, J.C., Yung, M.: Distributing the power of a government to enhance the

privacy of voters (extended abstract). In: Halpern, J.Y. (ed.) Proceedings of the
5th Annual ACM Symposium on Principles of Distributed Computing, Calgary,
Alberta, Canada, August 11-13, 1986. pp. 52–62. ACM (1986)

10. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive
analysis of game-based ballot privacy definitions. In: Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P’15). IEEE Computer Society Press, San
Jose, CA, USA (2015)

11. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14). pp. 82–96.
IEEE Computer Society, Cape Breton, Nova Scotia, Canada (2001)

12. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Foundations and Trends in Privacy and Security 1(1–2), 1–135 (2016)

13. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equiv-
alences for Security Protocols. In: 20th IEEE Symposium on Logic in Computer
Science (LICS 2005). pp. 331–340. IEEE Computer Society, Chicago, IL (2005)

14. Blanchet, B., Smyth, B.: Automated reasoning for equivalences in the applied pi
calculus with barriers. Journal of Computer Security 26(3), 367–422 (2018)

15. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: A non-interactive
receipt-free electronic voting scheme. In: 23rd ACM Conference on Computer and
Communications Security (CCS’16). pp. 1614–1625. ACM, Vienna, Austria (2016)

16. Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A practical voter-verifiable election
scheme. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) Computer
Security - ESORICS 2005, 10th European Symposium on Research in Computer

17

https://hal.inria.fr/hal-03669664


Security, Milan, Italy, September 12-14, 2005, Proceedings. LNCS, vol. 3679, pp.
118–139. Springer (2005)

17. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. In:
Proc. 12th European Symposium on Programming (ESOP’03). LNCS, vol. 2618,
pp. 99–113. Springer, Warsaw, Poland (2003)

18. Cortier, V., Dallon, A., Delaune, S.: Bounding the number of agents, for equivalence
too. In: Proc. 5th International Conference on Principles of Security and Trust
(POST’16). pp. 211–232. LNCS, Springer (2016)

19. Cortier, V., Filipiak, A., Lallemand, J.: BeleniosVS: Secrecy and verifiability against
a corrupted voting device. In: 32nd IEEE Computer Security Foundations Sympo-
sium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE (2019)

20. Cortier, V., Galindo, D., Turuani, M.: A formal analysis of the Neuchâtel e-voting
protocol. In: 3rd IEEE European Symposium on Security and Privacy (Euro
S&P’18). pp. 430–442. London, UK (2018)

21. Cortier, V., Gaudry, P., Glondu, S.: Belenios: A simple private and verifiable
electronic voting system. In: Foundations of Security, Protocols, and Equational
Reasoning - Essays Dedicated to Catherine A. Meadows. LNCS, vol. 11565, pp.
214–238. Springer (2019)

22. Cortier, V., Lallemand, J., Warinschi, B.: Fifty shades of ballot privacy: Privacy
against a malicious board. In: 33rd IEEE Computer Security Foundations Sympo-
sium, CSF 2020, Boston, MA, USA, June 22-26, 2020. pp. 17–32. IEEE (2020)

23. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy.
Journal of Computer Security 21(1), 89–148 (2013)

24. Cortier, V., Wiedling, C.: A formal analysis of the Norwegian e-voting protocol.
Journal of Computer Security 25(15777), 21–57 (2017)

25. Delaune, S., Hirschi, L.: A survey of symbolic methods for establishing equivalence-
based properties in cryptographic protocols. Journal of Logical and Algebraic
Methods in Programming 87, 127–144 (2017)

26. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

27. D’Osualdo, E., Ong, L., Tiu, A.: Deciding secrecy of security protocols for an
unbounded number of sessions: The case of depth-bounded processes. In: Proc.
30th Computer Security Foundations Symposium, (CSF’17). pp. 464–480. IEEE
Computer Society (2017)

28. Fröschle, S.: Leakiness is decidable for well-founded protocols? In: Proc. 4th Con-
ference on Principles of Security and Trust (POST’15). LNCS, Springer (2015)

29. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski,
M., Adida, B. (eds.) Towards Trustworthy Elections, New Directions in Electronic
Voting. LNCS, vol. 6000, pp. 37–63. Springer (2010)

30. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: Computer Aided Verification, 25th
International Conference, CAV 2013, Princeton, USA, Proc. LNCS, vol. 8044, pp.
696–701. Springer (2013)

31. Mödersheim, S., Viganò, L.: Alpha-beta privacy. ACM Trans. Priv. Secur. 22(1),
7:1–7:35 (2019)

32. Ryan, P.Y.A., Schneider, S.A.: Prêt à voter with re-encryption mixes. In: Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) Computer Security - ESORICS 2006, 11th
European Symposium on Research in Computer Security, Hamburg, Germany,
September 18-20, 2006, Proceedings. LNCS, vol. 4189, pp. 313–326. Springer (2006)

18



Appendix A Semantics of our calculus

Figure 2 displays the full semantics of our calculus introduced in Section 2.2.

Appendix B Characterisation of an attack trace

In this section, we establish a property characterising the form of all potential
attack traces on our election processes.

Definition 8. A configuration K is action-deterministic if for any tr, any con-
figurations K1 = (i1; P1; ϕ1; M1) and K2 = (i2; P2; ϕ2; M2) such that K

tr=⇒ K1

and K
tr=⇒ K2, we have that i1 = i2 and ϕ1 and ϕ2 are equal modulo α-renaming

of names generated during the execution.

Given two action-deterministic ground processes PL and PR such that PL ̸⊑t

PR, a witness of non-inclusion is a trace tr for which there exists ϕL such that
(tr, ϕL) ∈ traces(PL), and

– either there does not exist ϕR such that (tr, ϕR) ∈ traces(PR);
– or such a ϕR exists and ϕL ̸∼ ϕR.

Lemma 2. The two ground election processes ElectionL
p,n−p( #„v1, #„v2, . . . , # „vn) and

ElectionR
p,n−p( #„v1, #„v2, . . . , # „vn) are action-deterministic for any n, and any p ≤ n.

Proof. For these two processes, until phase 3, each process in parallel has its own
public dedicated channel. Thus, the action mentioned on the trace tr indicates
which action will be triggered, there is no ambiguity, and it is therefore clear
that the resulting frames are equal up to α-renaming.

Now, when reaching phase 3, the process Tally is a computation process that
may involved private channels, and thus leads to non-determinism. However, by
definition of a computation process, we know that this process will result on a
unique output on the public channel cr, and the value of this output only depends
on the parameters given to the computation process, here sk and the content
of mbb. The content of mbb is entirely determined by tr and the content of the
frame. When considering the same trace tr, we obtain frame which are equal up
to α-renaming, and we will obtain the same public term for the tally.

A trace tr is Σerr-free if tr does not contain any occurrence of cerr for any
cerr ∈ Σerr.

Proposition 3. Let V be a voting scheme such that

ElectionL
p,n−p( #„v1, #„v2, . . . , # „vn) ̸≈t ElectionR

p,n−p( #„v1, #„v2, . . . , # „vn).

Let tr be a witness of this non-equivalence of minimal length. We have that tr is
such that:

19



(i; {|P1 | P2|} ∪ P; ϕ; M) ϵ=⇒ (i; {|P1, P2|} ∪ P; ϕ; M) Par

(i; {|0|} ∪ P; ϕ; M) ϵ=⇒ (i; P; ϕ; M) Zero

(i; {|new n. P |} ∪ P; ϕ) ϵ=⇒ (i; {|P {n 7→ n′}|} ∪ P; ϕ; M) NewN
if n ∈ N , and n′ ∈ N is a fresh name not occurring in any message considered

(i; {|new c. P |} ∪ P; ϕ) ϵ=⇒ (i; {|P {c 7→ c′}|} ∪ P; ϕ; M) NewC
if c ∈ Chpri, and c′ ∈ Chpri is a fresh channel not occurring in any process considered

(i; {|out(c, cerr). P |} ∪ P; ϕ; M) out(c,cerr)======⇒ (i; {|P |} ∪ P; ϕ; M) OutErr
if c ∈ Chpub, cerr ∈ Σerr

(i; {|out(c, u). P |} ∪ P; ϕ; M) out(c,w)=====⇒ (i; {|P |} ∪ P; ϕ ∪ {w 7→ u}; M) Out
if c ∈ Chpub, u ground term not equal (modulo E) to a constant in Σerr, w ∈ W \ dom(ϕ)

(i; {|in(c, u). P |} ∪ P; ϕ; M) in(c,R)====⇒ (i; {|P σ|} ∪ P; ϕ; M) In
if c ∈ Chpub, and R is an attacker term such that var(R) ⊆ domϕ

and Rϕ =E uσ for some σ with dom(σ) = var(u)

(i; {|out(c, u). P, in(c, x). Q|} ∪ P; ϕ; M) ϵ=⇒ (i; {|P, Q{x 7→ u}|} ∪ P; ϕ; M) Priv
if c ∈ Chpri, and u is a ground term

(i; {|let x = u in P |} ∪ P; ϕ; M) ϵ=⇒ (i; {|P {x 7→ u}|} ∪ P; ϕ; M) Let-In
if u is ground

(i; {|if u = v then P else Q|} ∪ P; ϕ; M) ϵ=⇒ (i; {|P |} ∪ P; ϕ; M) If-Then
if u, v are ground and u =E v

(i; {|if u = v then P else Q|} ∪ P; ϕ; M) ϵ=⇒ (i; {|Q|} ∪ P; ϕ; M) If-Else
if u, v are ground and u ̸=E v

(i; {|!P |} ∪ P; ϕ; M) ϵ=⇒ (i; {|P, !P |} ∪ P; ϕ; M) Repl

(i; {|! new d.out(c, d).P |} ∪ P; ϕ; M) sess(c,d′)======⇒ (i; {|P {d 7→ d′}, ! new d.out(c, d).P |} ∪ P; ϕ; M) Repl-Ch

(i; {|m := u. P |} ∪ P; ϕ; M) ϵ=⇒ (i; {|P |} ∪ P; ϕ; M{m 7→ u}) Write
if u is ground

(i; {|read m as x. P |} ∪ P; ϕ; M) ϵ=⇒ (i; {|P {x 7→ u}|} ∪ P; ϕ; M) Read
if M(m) is a message

(i; {|append(c, u, m)|}. P ∪ P; ϕ; M) append(c)======⇒ (i; {|P |} ∪ P; ϕ; M{m 7→ u :: M(m)}) Append
if m ∈ dom(M)

(i; P; ϕ; M) phase i+1======⇒ (i + 1; P ′; ϕ; M) Phase
where P ′ = {|P | phase i + 1. P ∈ P|} ∪ {|phase j. P | phase j. P ∈ P ∧ j > i + 1|}

(keeping multiplicity)

Fig. 2. Semantics of our calculus

20



– ElectionL
p,n−p( #„v1, #„v2, . . . , # „vn) tr=⇒ (iL; PL; ϕL; ML) for some (iL; PL; ϕL; ML);

– ElectionR
p,n−p( #„v1, #„v2, . . . , # „vn) tr=⇒ (iR; PR; ϕR; MR) for some (iR; PR; ϕR; MR);

– iL = iR, ϕL ̸∼ ϕR, and tr is Σerr-free.

Moreover, for any i ∈ {1, . . . , p}, if in(ci, R) occurrs in tr in phase 2 (for some
R), then there exists (v0, v1) ∈ Votes × Votes such that RϕL =E RϕR =E (v0, v1).

Proof. Assume first that the minimal witness of this non-equivalence is actually
a witness for the following non-inclusion:

ElectionL
p,n−p( #„v1, #„v2, . . . , # „vn) ̸⊑t ElectionR

p,n−p( #„v1, #„v2, . . . , # „vn).

This witness is a trace tr such that ElectionL
p,n−p( #„v1, . . . , # „vn) tr=⇒ (iL; PL; ϕL; ML),

and for which

1. either there does not exist (iR; PR; ϕR; MR) such that ElectionR
p,n−p( #„v1, . . . , # „vn) tr=⇒

(iR; PR; ϕR; MR);
2. or such a trace exists, i.e. ElectionR

p,n−p( #„v1, . . . , # „vn) tr=⇒ (iR; PR; ϕR; MR) but
ϕL ̸∼ ϕR (note that we necessarily have that iL = iR).

Let us first show the first three points.

We first assume that such a witness of minimal length satsifies the require-
ments stated in item 1, i.e. there does not exist (iR; PR; ϕR; MR) such that
ElectionR

1,n( #„v0, #„v1, . . . , # „vn) tr=⇒ (iR; PR; ϕR; MR). Note that, it means that, at some
point, the outcome of a test is not the same on both sides, and this leads to
an output that can not be mimicked on the other side. When the test under
consideration is public (i.e corresponds to a computation that can be performed
by the attacker), we get a contradiction since the trace tr without its last output
will already lead to a witness of non-inclusion. The only remaining case is the
validity test performed by the honest voter but here we know that such a test
can not failed. Indeed, we have assumed that:

Valid(id, Pub(cr , u), Vote(pk(sk), id, cr , v, r), pk(sk)) =E true

Therefore, we know that such a minimal witness is due to a problem regarding
static equivalence, i.e. we know that there exists (iL; PL; ϕL; ML) such that

ElectionR
1,n( #„v0, #„v1, . . . , # „vn) tr=⇒ (iR; PR; ϕR; MR)

but ϕL ̸∼ ϕR.

It remains to establish that tr can be considered to be Σerr-free. Assume
that tr contains an action of the form out(ci, cerr) for some ci and some cerr ∈ Σerr.
Then the trace tr′ without this action still passes on both sides, and leads to the
exact same frames. Indeed, in the processes considered, the errors are always

21



placed at the end of a branch, and hence not executing them does not change
anything else in the trace. Therefore such an action can not occur in a minimal
witness.

Finally, for any honest voter i, if in(ci, R) occurs in tr in phase 2, it must
be that the test “if v0, v1 ∈ Votes” succeeds on the left and eventually the
corresponding output is performed, or the test fails on the left and eventually an
error message is outputted. In the first case, there exist (v0, v1) ∈ Votes2 such
that RϕL =E (v0, v1) and thus by minimality of the witness RϕR =E (v0, v1). In
the second case, we have that RϕL ̸=E (v0, v1) for any (v0, v1) ∈ Votes2, and again
by minimality of the witness, we have that RϕR ̸=E (v0, v1) for any (v0, v1). Since
tr is Σerr-free, we know that the corresponding error message is not outputted in
the trace, but in this case, by minimality of tr, we know that this input is not
useful to get a witness of non-equivalence.

Lemma 3. Let tL and tR be two public terms, i.e. tL, tR ∈ T (Σ, Σ0). Let ϕL, ϕR
be two frames such that ϕL ∼ ϕR, and wtall ∈ W \ dom(ϕL). We have that
ϕL ∪ {wtall 7→ tL} ̸∼ ϕR ∪ {wtall 7→ tR} if, and only if, tL ̸=E tR.

Proof. First, assume that tL ≠E tR. In such a case, let M = wtall, and N = tL ∈
T (Σ, Σ0). We have that the test M = N holds in ϕL ∪ {wtall 7→ tL}, and not in
ϕR ∪ {wtall 7→ tR}. Indeed, we have that:

MϕL = wtallϕL = tL = NϕL; and MϕR = wtallϕR = tR ̸=E tL = NϕR.

Therefore, we have that ϕL ∪ {wtall 7→ tL} ̸∼ ϕR ∪ {wtall 7→ tR}.
Now, we assume that ϕL ∼ ϕR, and tL =E tR. Consider w.l.o.g. a test M = N

that holds in ϕL ∪{wtall 7→ tL}. Let M ′ = M{wtall 7→ tL}, and N ′ = N{wtall 7→ tL}.
We have that M ′ = N ′ is a test that holds in ϕL, and thus in ϕR (thanks to our
hypothesis ϕL ∼ ϕR). Since, tL =E tR, we easily conclude that M = N holds in
ϕR ∪ {wtall 7→ tR}. This allows us to conclude.

Appendix C Proof of the reduction to 1 honest voter

Before proving the reduction result, let us first observe that since the Valid recipe
and the CTally computation process do not use any private names, and always
return public values, their output cannot depend on the random values used
in the ballots/credentials. More precisely, these random values can be renamed
and/or replaced with public fresh names without changing the outcome of Valid
or CTally. This property, which we will refer to as randomness independence, is a
direct consequence of the construction of terms and semantics of processes in our
symbolic model. We will use it in the proof of the reduction theorem, and for
this reason we state it formally below.

Lemma 4. Consider a key sk ∈ N , with the associated pk = pk(sk), and n
distinct voters id1, . . . , idp, idp+1, . . . , idn ∈ Σ0, morally p honest voters and

22



n − p dishonest ones, each with their credential cr i ∈ N . Let ϕ0 denote the frame
of public keys and credentials

ϕ0 = { w0 7→ pk, w1 7→ Pub(cr1, u1), . . . , wp 7→ Pub(crp, up))},
wp+1 7→ ⟨crp+1, Pub(crp+1, up+1)⟩, . . . , wn 7→ ⟨crp+1, Pub(crp+1, up+1)⟩.

Consider a frame ϕ1 of m ballots, honestly generated by honest voters idi1 , . . . , idim

(two ballots can potentially be generated by the same voter):

ϕ1 = {w′
1 7→ Vote(pk, idi1 , cr i1 , v1, r1), . . . , w′

m 7→ Vote(pk, idim
, cr im

, vm, rm)}

with votes v1, . . . , vn ∈ Votes, using distinct random values r1, . . . , rm ∈ N \
{sk, u1, . . . , un}. Let ϕ denote ϕ0 ∪ϕ1. Consider recipes R1, R2, R3, R4 on dom(ϕ).
Also consider an arbitrary injective renaming σ : {r1, . . . , rm, u1, . . . , um} →
Σ0 ∪ N \ {sk}, such that for any r in its domain, σ(r) does not appear in any
R1, R2, R3, R4, Valid, CTally. Then we have

Valid(R1ϕ, R2ϕ, R3ϕ, pk) =E true ⇔ Valid(R1ϕσ, R2ϕσ, R3ϕσ, pk) =E true

and
Ctally(R4ϕ, sk) =E Ctally(R4ϕσ, sk).

We can now recall and prove Proposition 1.

Proposition 1. Consider a voting scheme V, and p, n such that 1 ≤ p ≤ n. If
V does not satisfy BPRIV(p, n − p), then it does not satisfy BPRIV(1, n − 1).

Proof. We first define intermediate processes we will use to prove the equivalence.
We fix n distinct voters #„v1, . . . , # „vn, with for all i #„vi = (ci, idi, cr i, pcr i), pcr i =
Pub(cr i, ui), and p ∈ {1, . . . , n}. For any i ∈ {0, . . . , p}, we define:

Pi = new sk. mbb := nil. out(ch, pk(sk)).(
phase 1.out(c1, pcr1). phase 2. HVoterR( #„v1, pk(sk))

| . . .

| phase 1.out(ci, pcr i). phase 2. HVoterR( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterL( #     „vi+1, pk(sk))
| . . .

| phase 1.out(cp, pcrp). phase 2. HVoterL( #„vp, pk(sk))
| phase 1.out(cp+1, ⟨crp+1, pcrp+1⟩). phase 2. DVoter( #      „vp+1, pk(sk))
| . . .
| phase 1.out(cn, ⟨crn, pcrn⟩). phase 2. DVoter( # „vn, pk(sk))
| phase 3. Tally(sk)

)
We will show that under our assumptions we have Pi ≈t Pi+1 for any i ∈

{0, . . . , p − 1}. Since we have that P0 = ElectionLp,n−p( #„v1, . . . , # „vn) and Pp =
ElectionRp,n−p( #„v1, . . . , # „vn), by transitivity of ≈t, this property suffices to prove
the theorem.

23



Fix some index i ∈ {0, . . . , p − 1}. Observe that Pi and Pi+1 differ only in
the behaviour of the (i + 1)th voter idi+1, which is modelled by the process
HVoterL( #     „vi+1, pk(sk)) in process Pi, and by the process HVoterR( #     „vi+1, pk(sk)) in
Pi+1. All other honest voters are identical in Pi and Pi+1: they always follow
the attacker’s instructions in the same way, either always voting for the right
vote (for voters idj , j ≤ i) or the left vote (for voters idj , j ≥ i + 2). Therefore,
the main idea of the proof is that all these other voters can be simulated by the
attacker, since their behaviour is known and the same on both sides. The only
remaining honest voter will be idi+1, to which we will apply the assumption that
BPRIV holds for one honest voter.

To prepare the terrain for applying this assumption later on, we define two
additional processes QL, QR, where this “simulation” is performed, i.e. where
all voters except idi+1 are controlled by the attacker. Formally, the processes for
these voters are replaced by instances of process DVoter. The processes QL, QR

are defined as follows:

QL =
new sk. mbb := nil. out(ch, pk(sk)).(

phase 1.out(c1, ⟨cr1, pcr1⟩). phase 2. DVoter( #„v1, pk(sk))
| . . .
| phase 1.out(ci, ⟨cr i, pcr i⟩). phase 2. DVoter( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterL( #     „vi+1, pk(sk))
| phase 1.out(ci+2, ⟨cr i+2, pcr i+2⟩). phase 2. DVoter( #     „vi+2, pk(sk))
| . . .
| phase 1.out(cn, ⟨crn, pcrn⟩). phase 2. DVoter( # „vn, pk(sk))
| phase 3. Tally(sk)

)
and

QR =
new sk. mbb := nil. out(ch, pk(sk)).(

phase 1.out(c1, ⟨cr1, pcr1⟩). phase 2. DVoter( #„v1, pk(sk))
| . . .
| phase 1.out(ci, ⟨cr i, pcr i⟩). phase 2. DVoter( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterR( #     „vi+1, pk(sk))
| phase 1.out(ci+2, ⟨cr i+2, pcr i+2⟩). phase 2. DVoter( #     „vi+2, pk(sk))
| . . .
| phase 1.out(cn, ⟨crn, pcrn⟩). phase 2. DVoter( # „vn, pk(sk))
| phase 3. Tally(sk)

)
In fact, up to permutation of the parallel branches, these two processes are

instances of the generic election process, with one honest voter (idi+1) and n − 1
dishonest voters (idj , j ̸= i + 1):

QL = ElectionL1,n−1( #     „vi+1, #„v1, . . . , #„vi,
#     „vi+2, . . . , # „vn)

24



and
QR = ElectionR1,n−1( #     „vi+1, #„v1, . . . , #„vi,

#     „vi+2, . . . , # „vn)

Thanks to the assumption that BPRIV holds for one honest voter, we thus
have

QL ≈t QR. (1)

By contradiction, let us now assume

Pi ̸≈t Pi+1. (2)

Using the same arguments as for Lemma 2, Pi, Pi+1, QL, QR are action-
determinate. Let tr be a witness of this non-equivalence of minimal length.
By the exact same argument used to prove Proposition 3, tr is such that:

– Pi
tr=⇒ (i; PL; ϕL; ML) for some i, PL, ϕL, ML;

– Pi+1
tr=⇒ (i; PR; ϕR; MR) for some PR, ϕR, MR;

– ϕL ̸∼ ϕR;
– tr is Σerr-free;
– for any j ∈ J1, pK, if in(cj , R) occurs in tr in phase 2, then there exist

(v0, v1) ∈ Votes2 such that RϕL = RϕR = (v0, v1). When such an input
exists, let instr(j) denote this pair of votes, which is the instruction given by
the attacker to voter j in tr.

In addition, by action-determinacy, ϕL and ϕR are unique up to α-renaming of
fresh names – without loss of generality, let us assume that the same symbols
are used for matching private fresh names in both frames, i.e. the random values
used for constructing a honest ballot on either side are given the same name, and
similarly for the election key.

Our next step is to construct a sequence of actions tr, that describes how to
simulate the execution tr of Pi (resp. Pi+1) in an execution of QL (resp. QR).

Intuitively, the attacker interacting with QL or QR performs the same actions
as the original one interacting with Pi or Pi+1, except that all honest voters but
idi+1 are simulated using dishonest voters. Hence, whenever the attacker (for
Pi, Pi+1) provides two votes (v0, v1) to an honest voter idj (with 1 ≤ j ≤ p and
j ̸= i + 1), we instead let the attacker (for QL, QR) construct the corresponding
ballot Vote(pk, idj , crj , v0, r0) and provide it to the process for idj , who is now
dishonest. Note that, since the result computed in the end by the tally always
counts the “left” vote v0, we must construct the ballot containing that vote, so
that the result obtained in the end is the right one.

A subtle detail is that when constructing this ballot, the attacker will not
be able to use the same private name r0 originally used by the honest voter in
tr. He must instead use a public name. To keep notations relatively light, we
introduce, for each private name r generated by the process for an honest voter
other than idi+1 in Pi or Pi+1 an associated public name, that the attacker may

25



use instead, which we will call r̃. This name must be fresh, i.e. not appear in
any of the processes or recipes considered until now (including those used in the
inputs in tr). We also let σ denote the function mapping each such public r̃ to
the corresponding private r.

Due to the form of the processes, we can assume w.l.o.g. that tr is a prefix of:

out(ch, w0).phase 1.out(ci1 , wi1). . . . .out(cip , wip).phase 2.trcast.phase 3.out(cres, wtall)

where trcast contains only inputs and outputs on the channels {ci}1≤i≤n, with at
most one input on each ci, and, when this input is present, at most one output on
ci, placed after the input. Without loss of generality, call Ri the recipe provided
in the input on ci in trcast, and w′

i the frame variable recording the output on ci

(if they exist).

We now define recipes that we will use to let the attacker compute ballots for
honest voters simulated by dishonest ones. For any j ∈ J1, pK with j ̸= i + 1 such
that an input in(cj , Rj) occurs in trcast, we let B0

j = Vote(w0, idj , proj21(wj), v0, r̃0)
and B1

j = Vote(w0, idj , proj21(wj), v1, r̃1) where (v0, v1) = instr(j) and r̃0, r̃1 are
fresh public names associated by σ to the private names r0, r1 used to construct
the ballots for voter j in Pi and Pi+1.

Let tr be the trace containing the same actions as tr, except that in trcast (if
tr reaches trcast at all),

– any input in(cj , Rj) for 1 ≤ j ≤ p, j ̸= i + 1, i.e. the input of the attacker’s
instructions for honest voter j, is replaced with in(cj , B0

j ).
– any input in(cj , Rj) for j > p, i.e. the attacker’s instruction for dishonest

voter j, os replaced with in(cj , Sj), where

Sj = Rj

{
w′

k 7→ B1
k

}
1≤k≤i

{
w′

k 7→ B0
k

}
i+1<k≤p

.

By construction of t, and from the shape of the processes QL, QR, it is clear
that t is executable in QL and QR. All inputs and outputs in phases 0, 1, and 3
can be performed as expected. There are only two points where t might a priori
be non-executable in phase 2, that are related to the validity checks:

– If the validity check in a DVoter process for a voter idj with j > p failed,
preventing an output on cj that was possible in tr: by construction, the ballot
b′ on which the validity check fails in tr and the ballot b output by this voter
in tr, on which the test succeeds, are obtained by the same recipe applied to
two frames of honest ballots that differ only on the random values used (the
r̃ or the r). By the randomness independence property (Lemma 4), this is
not possible.

– If the validity check in a DVoter process for a voter idj with j ≤ p failed,
preventing an output on cj that was possible in tr: by the consistency
assumption (Section 3.3), validity tests always succeed on honestly generated
ballots, and this is not possible.

26



Executing tr in QL and QR respectively produces frames ϕL, ϕR. By action-
determinacy, they are unique up to α-renaming fresh names – without loss of
generality, let us assume that the same symbols are used for matching private
fresh names in both frames, i.e. the random values used for constructing a honest
ballot on either side are given the same name, and similarly for the election key. In
addition, we will also assume these symbols are the same as for the corresponding
names in ϕL, ϕR.

Note that, by construction, the recipes B0
j , B1

j from earlier, when applied
to ϕL and ϕR, compute ballots b0, b1 such that b0σ and b1σ are the two ballots
computed by honest voter j in tr in Pi and Pi+1 respectively. Similarly, the recipe
Sj used in tr to compute dishonest ballots produces, when applied to ϕL and ϕR,
a ballot b such that bσ is the ballot provided by the attacker to dishonest voter j
in tr in Pi and Pi+1 respectively.

The last step of our proof will be to describe the relation between ϕL, ϕR,
and ϕL, ϕR. As we will see, this will bring out a contradiction, as the first two
are assumed statically equivalent and the other two are not.

We construct a frame of recipes R, giving for each variable w ∈ dom(ϕL) =
dom(ϕR) a recipe R(w) with variables in dom(ϕL) = dom(ϕR), such that ϕL =
(RϕL)σ and ϕR = (RϕR)σ, i.e.

∀w ∈ dom(ϕL). ϕL(w) = (R(w)ϕL)σ ∧ ϕR(w) = (R(w)ϕR)σ (3)

R is constructed as follows:

– For w0, storing the election key output in phase 0: this output is also performed
in tr, and R(w0) = w0 is adequate.

– For all wj present in dom(ϕL), storing credentials output in phase 1:
• if j = i + 1, ϕL and ϕR as well as ϕL, ϕR contain the public credential

pcrj in wj , and thus R(wj) = wj works;

• if 1 ≤ j ≤ p and j ̸= i + 1, ϕL and ϕR contain the public credential
pcrj in wj , while ϕL and ϕR contain ⟨crj , pcrj⟩; thus R(wj) = proj22(wj)
works;

• if j > p, ϕL and ϕR as well as ϕL, ϕR contain the credentials ⟨crj , pcrj⟩
in wj , and thus R(wj) = wj works.

– For all w′
j present in dom(ϕL), storing all ballots output during phase 2:

• if j < i + 1, according to the processes, ϕL and ϕR contain in w′
j the

ballot Vote(pk, idj , crj , v1, r1), where (v0, v1) = instr(j), and r1 is the
nonce generated by the voter. Thus R(w′

j) = B1
j is adequate.

• if j = i + 1, according to the processes, ϕL as well as ϕL contain in w′
j

the ballot Vote(pk, idj , crj , v0, r0), while ϕR and ϕR contain the ballot
Vote(pk, idj , crj , v1, r1), where (v0, v1) = instr(j), and r0, r1 the random
values used. Thus R(w′

j) = w′
j is appropriate.

27



• if i + 1 < j ≤ p, according to the processes, ϕL and ϕR contain
Vote(pk, idj , crj , v0, r0) in w′

j , where (v0, v1) = instr(j) and r0 is the
nonce generated by the voter. Thus R(w′

j) = B0
j is adequate.

• if j > p, according to the processes, ϕL, ϕR, ϕL, ϕR each contain in w′
j

the ballot received as an input from the attacker earlier by voter j’s
process. As explained earlier, the recipe used in tr to construct that input
is such that this ballot verifies ϕL(w′

j)σ = ϕL(w′
j) and ϕR(w′

j)σ = ϕR(w′
j).

Hence, picking R(w′
j) = w′

j satisfies 3.

– Finally, the only remaining variable is wtall, storing the result output in phase
3. Our argument is that the tally actually outputs the same result in the
execution of tr in Pi and tr in QL, and similarly for Pi+1 and QR. Indeed,
consider the inputs received by Tally on the private channel containing the
internal state. In Pi and tr, these are the “left” ballots computed by all honest
voters, and the dishonest ballots. In QL and tr, they are

• the left ballot of voter i + 1

• the ballots given as input to dishonest voters j ∈ J1, pK computed using
B0

j , which, as explained earlier, are the left ballots of the original honest
voters where r0 is replaced with r′

0

• the ballots given as input to dishonest voters j > p, computed using RRj ,
which, as explained earlier, are computed in the same way as the ballots
of the original dishonest voters, from the list of honest ballots where all
random values r are replaced with the corresponding r̃.

Hence, the randomness-independence property (Lemma 4) applies, and guar-
antees that tallying the ballots in Pi with tr, and in QL with tr produces the
same result. The same argument applies to Pi+1 and QR. Thus, R(wtall) = wtall
satisfies 3.

Using property 3, we can now conclude the proof. Indeed, by 1, QL and QR

are trace equivalent, which, applied to tr, implies that that ϕL ∼ ϕR. Since R is
a frame of recipes, it follows immediately from the definition of static equivalence
that

RϕL ∼ RϕR.

On the other hand, tr was obtained as a non-equivalence witness for Pi

and Pi+1, meaning that ϕL ̸∼ ϕR. Thus there exist recipes M , N such that
MϕL = NϕL and MϕR ̸= NϕR, i.e.

M
(
(RϕL)σ

)
= N

(
(RϕL)σ

)
and M

(
(RϕR)σ

)
̸= N

(
(RϕR)σ

)
.

Since none of the public names r′ appear in ϕL or ϕR, we may always w.l.o.g.
choose M and N that do not contain these names either. We then have(

M(RϕL)
)
σ =

(
N(RϕL)

)
σ and

(
M(RϕR)σ

)
̸=

(
N(RϕR)σ

)
.

28



Since σ is a bijective renaming, this means

M(RϕL) = N(RϕL) and M(RϕR) ̸= N(RϕR),

i.e. MR
?= NR is a test distinguishing ϕL and ϕR. This contradicts 1. Therefore,

assumption 2 was false, i.e. Pi ≈t Pi+1, which concludes the proof.

Appendix D Some counting functions

D.1 Some 1-bounded counting functions

Multiset. Intuitively, we simply output the list of votes after mixing them. More
formally, in our setting, a term representing the multiset of votes is computed,
i.e. for all n, we have that: count#([v1, . . . , vn]) = f({|v1, . . . , vn|}) where f is a
function from multisets of votes to terms such that: f(M1) =E f(M2) (equality
between terms) if, and only if, M1 =# M2 (equality between multisets). For
instance, if we decide to simply output the list of all the votes, it is important
that the order does not matter, and thus e.g. count#([a, b]) =E count#([b, a]).

Sum. We may assume that a total of points total is given to each voter who
decides to distribute them among the candidates of his choice. The result is given
by a vector of integers representing the total of points obtained by each candidate.
Assuming that we have c candidates, for all n, we have that: countΣ([v1, . . . , vn]) =
f(

∑n
i=1 vi) where vi = (p1, . . . , pc) with 1 ≤ i ≤ n, and p1, . . . , pc ∈ N with

p1 + . . . + pc ≤ total, and f is a function from vectors of integers of size c to
terms such that f( # „u1) =E f( # „u2) (equality between terms) if, and only if, # „u1 = # „u2
(equality between vectors of integers).

Majority. We consider the majority function between two choices yes and no
which simply outputs yes if #yes > n/2 where n is the number of voters, and
no otherwise. For all n, we have that: countMaj([v1, . . . , vn]) = yes if #{i | vi =
yes} > n/2; and countMaj([v1, . . . , vn]) = no otherwise. Here, yes and no are two
public constants (yes ̸=E no).

Lemma 1. The functions count#, countΣ, and countMaj are 1-bounded.

Proof. Let [v1, . . . , vn] and [v′
1, . . . , v′

n] be two lists of votes with n > 1, and such
that count#([v1, . . . , vn]) ̸= count#([v′

1, . . . v′
n]). Since count# is a function, we

have that {|v1, . . . , vn|} ≠ {|v′
1, . . . , v′

n|}, and thus there exists 1 ≤ i0 ≤ n such that
vi0 ̸= v′

i0
. Hence, count([vi0 ]) ̸= count([v′

i0
]), and this concludes the proof when

considering count#. A similar reasoning applied for for countΣ , and countMaj.

D.2 Single Transferable Vote

Single transferable vote (STV) is a system where each voter casts a single ballot
where all the candidates are ranked, and votes are transferred. Each elector
provides a total ordering of all the candidates. A vote goes to the voter’s first

29



preference if possible, but if the first preference is eliminated, instead of being
thrown away, the vote is transferred to an alternate preference. At the first
round, the least popular candidate is eliminated and votes for this candidate are
transferred based on voters’ marked subsequent preferences, and we proceed like
this until it remains only one candidate who is declared to be the winner. In
case of a tie, a total order is assumed between the candidates and the eliminated
candidate is decided on this basis. The STV counting function outputs a term
representing the candidate who wins the election according to the process above,
and is parametrised by a set of candidates and a total order on this set. Let
Count3

STV the STV counting function for three candidates {a, b, c} with a ≺ b ≺ c.
An element of Votes is a tuple of size 3: (c1; c2; c3) where {c1, c2, c3} = {a, b, c}
and ci represents the ith choice.

Example 10. Let v = (a; b; c) and v′ = (a; c; b). We have that v ̸= v′, but
nevertheless Count3

STV([v]) = Count3
STV([v′]) = a. Thus, the reasoning performed

on the other counting functions to establish 1-boundedness does not apply here.

Lemma 5. We have that Count3
STV is 5-bounded.

Proof. We assume that a ≺ b ≺ c. Let ℓ = [v1, . . . , vn] and ℓ′ = [v′
1, . . . , v′

n] be
two lists of Votes such that Count3

STV(ℓ) ̸= Count3
STV(ℓ′). For each 1 ≤ i ≤ n, we

denote (ci,1; ci,2; ci,3) the vote vi and (c′
i,1; c′

i,2; c′
i,3) the vote v′

i.
Case 1: There exists 1 ≤ i0 ≤ n such that vi0 = (ci0,1; ci0,2; ci0,3) and v′

i0
=

(c′
i0,1; c′

i0,2; c′
i0,3) with ci0,1 ̸= c′

i0,1. In such a case, we keep this vote, and we have
ci0,1 = Count3

STV([vi0 ]) ̸= Count3
STV([v′

i0
]) = c′

i0,1.

Case 2: Otherwise, for 1 ≤ i ≤ n, we have that ci,1 = c′
i,1. Therefore, at the first

round, the eliminated candidate is the same on both sides. We denote it c0. In
case c0 does not occur at the first choice on a vote, i.e. c0 ̸= ci,1 for 1 ≤ i ≤ n
(and thus c0 ̸= c′

i,1 for 1 ≤ i ≤ n as ci,1 = c′
i,1), then the eliminated candidate at

the second round will be the same on both sides, and the winner (the remaining
candidate) will be the same on both sides. This contradicts our hypothesis.

Hence, we know that c0 occurs at the first choice on some votes. Let i0, . . . , ik

the indices of all the votes for which c0 occurs at the first choice (on both sides).
We have that cij ,1 = c′

ij ,1 = c0 for any j ∈ {0, . . . , k}. If the second choice is the
same on all these votes, i.e. for j ∈ {0, . . . , k}, we have that cij ,2 = c′

ij ,2, then
the eliminated candidate at the second round will be the same on both sides,
and the winner will be the same on both sides. This contradicts our hypothesis.

Therefore, there exists j ∈ {i0, . . . , ik} such that vj = (c0, c1, c2), v′
j =

(c0, c2, c1) where {c0, c1, c2} = {a, b, c}. We keep this vote, but we need to consider
some others since Count3

STV([vj ]) = Count3
STV([v′

j ]) = c0. We remark that, since c0
is eliminated at the first round, it means that:

1. Either c0 = a and there exist j1, j2 such that cj1,1 = c′
j1,1 = b, and

cj2,1 = c′
j2,1 = c. Keeping these two votes in addition to vj/v′

j , we have
that Count3

STV([vj , vj1 , vj2 ]) ̸= Count3
STV([v′

j , v′
j1

, v′
j2

]).

30



2. Or c0 = b and there exist j1, j2, j3 (all distinct) such that cj1,1 = c′
j1,1 = a,

cj2,1 = c′
j2,1 = a, and cj3,1 = c′

j3,1 = c. Keeping these three votes in addition to
vj/v′

j , we have that Count3
STV([vj , vj1 , vj2 , vj3 ]) ̸= Count3

STV([v′
j , v′

j1
, v′

j2
, v′

j3
]).

3. Or c0 = c and there exist j1, j2, j3, j4 (all distinct) such that cj1,1 = c′
j1,1 = a,

cj2,1 = c′
j2,1 = a, cj3,1 = c′

j3,1 = b, and cj4,1 = c′
j4,1 = b. Keeping these four

votes in addition to vj/v′
j , we have that Count3

STV([vj , vj1 , vj2 , vj3 , vj4 ]) ̸=
Count3

STV([v′
j , v′

j1
, v′

j2
, v′

j3
, v′

j4
]).

We conclude that at most 5 votes are needed to ensure the result will be different.

Appendix E Proof of the reduction to k dishonest voters

In this section, we recall and prove Proposition 2.

Proposition 2. Let V be a voting scheme whose associated counting function is
k-bounded for k ≥ 1. If V does not satisfy BPRIV(1, n) for some n ≥ 1, then V
does not satisfy BPRIV(1, k′) for some k′ ≤ k. Moreover, in that case there exists
a witness of this attack where no more than k′ ballots reached the ballot box.

Proof. First, relying on Lemma 2, we know that the processes under study are
action-deterministic, and therefore, thanks to Proposition 3, we can assume that
a witness of an attack of minimal length has some specific shape. Following the
notation introduced in Section 3, we consider n + 1 distinct voters #„v0, . . . , # „vn, and
we consider a witness tr of non-equivalence of minimal length. We know that:

– ElectionL
1,n( #„v0, #„v1, . . . , # „vn) tr=⇒ (iL; PL; ϕL; ML) for some (iL; PL; ϕL; ML);

– ElectionR
1,n( #„v0, #„v1, . . . , # „vn) tr=⇒ (iR; PR; ϕR; MR) for some (iR; PR; ϕR; MR);

– iL = iR, ϕL ̸∼ ϕR, and tr is Σerr-free.
In case n ≤ k, then the result is straightforward. Indeed, thanks to action-

determinism, such a witness is also a witness of non-equivalence regarding:

ElectionL
1,k( #„v0, #„v1, . . . , #„vk) ≈t ElectionR

1,k( #„v0, #„v1, . . . , #„vk).

Now, we consider the case where n > k. We are going to show that this minimal
witness tr is also a witness of the follwing non-equivalence

ElectionL
1,k( #„v0, #„v1, . . . , #„vk) ̸≈t ElectionR

1,k( #„v0, #„v1, . . . , #„vk).

In the following, we will distinguish cases depending on the form of tr. Due
to the form of the processes, we can assume w.l.o.g. that tr is a prefix of:

out(ch, w0).phase 1.out(ci1 , wi1). . . . .out(cip , wip).phase 2.trcast.phase 3.out(cres, wtall)

Case 1: tr only contains actions from phase 0 and phase 1. In such a case, we
have that tr can not be a witness of non-equivalence. Indeed, the frames on both
sides are necessarily in static equivalence.
Case 2: tr contains actions from phases 0, 1, and 2 (but no action from phase 3).
We distinguish two cases:

31



– We first assume that there are some actions performed by a dishonest voter idj

in phase 2, i.e. there is in(cj , Rj) ∈ tr and possibly out(cj , wj) ∈ tr, and
append(cj) as well. In such a case, we consider tr′ = tr{wj 7→ Rj} where tr is
tr in which the input, output, and append actions performed during phase 2
on channel cj have been removed. The resulting trace tr′ is smaller than tr.
To conclude, it remains to show that tr′ is a witness of non equivalence, thus
contradicting the minimality of the witness tr.
It is easy to see that this trace tr′ still passes in ElectionL

1,n( #„v0, #„v1, . . . , # „vn).
Note that the action append(cj) has no impact since the tallying phase has
not been executed. The frame ϕ′

L resulting from this new execution tr′ is
such that ϕL = ϕ′

L ∪ {wj 7→ b0
L} where b0

L = Rjϕ′
L for some recipe Rj such

that vars(Rj) ⊆ dom(ϕ′
L).

Similarly to the reasoning performed on the left side, this trace tr′ also passes
in ElectionR

1,n( #„v0, #„v1, . . . , # „vn) (since tr passes too). Moreover, we have that the
frame ϕ′

R resulting from this execution tr′ is such that ϕR = ϕ′
R ∪ {wj 7→ b0

R}
where b0

R = Rjϕ′
R ↓ considering the exact same recipe Rj as the one mentioned

above. We have that ϕ′
L ∼ ϕ′

R implies that ϕL ∼ ϕR, and thus since we know
that ϕL ̸∼ ϕR, we deduce that ϕ′

L ̸∼ ϕ′
R. This allows us to conclude that tr′ is

a witness of non-inclusion, and this leads to a contradiction as tr′ is smaller
than tr.

– We now assume that there is no input/output/append action performed
by a dishonest voter during the casting phase (phase 2). In such a case,
we have that either trcast = in(c0, R0).out(c0, w0).append(c0) or trcast =
in(c0, R0).out(c0, w0) or trcast = in(c0, R0). Note that actually the first and the
last case are impossible since the input and the append actions do not modify
the frame, and thus are not necessary to obtain a witness of non-equivalence
(of the shape mentioned above) leading a contradiction regarding minimality.
In case phase 1 contains an output on ci with i > 0, i.e. we have that out(ci, wi)
occurs in phase 1, and we have that wiϕL = ⟨cr i, Pub(cr i, ui)⟩, we consider
tr′ = tr{wi 7→ ⟨cr ′

i, Pub(cr ′
i, u′

i)⟩}, where tr is tr in which this output has been
removed, and cr ′

i and u′
i are fresh public constants. We have that tr′ passes in

ElectionL
1,n( #„v0, #„v1, . . . , # „vn) and also in ElectionR

1,n( #„v0, #„v1, . . . , # „vn). Indeed, we
have that cr i and ui do not occur anymore in the remaining process to be
executed since DVoter is not executed for idj .
We have that this trace tr′ leads to the frames ϕ′

L (on the left) and ϕ′
R (on the

right) such that ϕX = ϕ′
X{cr ′

i 7→ cr i}{u′
i 7→ ui} ∪ {wi 7→ ⟨cr i, Pub(cr i, ui)⟩}

for X ∈ {L, R}. Since, we know that ϕL ̸∼ ϕR, we conclude that ϕ′
L ̸∼ ϕ′

R, and
thus we are done. Note that, in case the distinguishing test relies on wi, we
can easily reconstruct the corresponding term ⟨cr ′

i, Pub(cr ′
i, u′

i)⟩ to obtain a
witness of ϕ′

L ̸∼ ϕ′
R.

Otherwise (no output on ci with i > 0 during phase 1), we have that
the trace tr passes also starting from ElectionL

1,k( #„v0, #„v1, . . . , #„vk), or from
ElectionR

1,k( #„v0, #„v1, . . . , #„vk), and the resulting frames are the same than those
obtained when starting the executions from ElectionL

1,n( #„v0, #„v1, . . . , # „vn), and
ElectionR

1,k( #„v0, #„v1, . . . , # „vn). Therefore, we have that tr is a witness of non-

32



equivalence for ElectionL
1,k( #„v0, #„v1, . . . , #„vk) ̸≈t ElectionR

1,k( #„v0, #„v1, . . . , #„vk) contra-
dicting our main hypothesis.

Case 3: tr contains actions from phase 3 (actually only one). We distinguish
three cases:

– If during phase 2, there is some action on channel ci with i > 0 – in(ci, R), and
out(ci, w) but not the append(ci) one – then we can consider tr′ = tr{w 7→ R}
where tr is equal to tr without these actions (input and output) on channel ci,
and we can show that this trace tr′ is a witness of non-equivalence obtaining
a contradiction regarding the minimality of tr.

– Now, in case phase 1 contains an action of the form out(ci, wi) corresponding
to the output of a credential of a dishonest voter idi (i.e. i > 0), whereas
there is no in(ci, Ri) during phase 2 for this particular (dishonest) voter, then
we consider the trace tr′ which is equal to tr without this output out(ci, wi),
and we also replace the occurrences of wi in tr by ⟨cr ′

i, Pub(cr ′
i, u′

i)⟩ where cr ′
i

and u′
i are fresh public constants. As before, we conclude that tr′ is a smaller

witness.
– We now consider the case of a trace tr that is composed of a phase 1 during

which only dishonest voters who cast their ballot (action append) participate
to phase 1, then a phase 2, and then tr contains the output on channel cres
done in phase 3. We also know that the last output (the one on cres) is
needed to get a witness of non-equivalence, and we have that ϕL ̸∼ ϕR where
ϕL and ϕR are the two resulting frames. Thus, the test distinguishing these
two frames relies on wtall (the message outputted on cres). Actually, relying
on Lemma 3, we have that that wtallϕL ≠E wtallϕR. Moreover, we know that
wtallϕL = count(extract(BBL)) and wtallϕL = count(extract(BBR)) where BBL

(resp. BBR) is the bulletin board (i.e. the content of the memory cell mbb)
resulting from trace tr on the left (resp. on the right).
If at most k voters voted (i.e. cast their vote - action append), then we know
that only the dishonest voters who casted a vote outputted their credential
during the initialization phase, and thus we have that this witness tr is also
a witness regarding ElectionL

1,k( #„v0, #„v1, . . . , #„vk) ̸≈t ElectionR
1,k( #„v0, #„v1, . . . , #„vk).

Otherwise, we know that n′ voters with n′ > k have casted their vote. Thanks
to our k-bounded hypothesis, we know that there exists k′ ≤ k, and 0 ≤ i1 <
. . . < ik′ ≤ n such that counting the votes of idi1 , . . . , idik′ still leads to a
difference in the result.
In the trace tr, we know that there are actions append(ci1), . . . , append(cik′ )
corresponding to the append actions of these voters idi1 , . . . , idik′ . We con-
sider tr′ obtained from tr by removing all these actions.
It is easy to see that this trace tr′ still passes in ElectionL

1,n( #„v0, #„v1, . . . , #„vk) and
in ElectionR

1,n( #„v0, #„v1, . . . , #„vk). The resulting bulletin board BB′
L (resp. BB′

R)
contain less ballots than before, and these ballots have been choosen to
satisfy:

count(extract(BB′
L)) ̸= count(extract(BB′

R))

33



Therefore, the resulting frames ϕ′
L and ϕ′

R are almost the same as ϕL and ϕR
except the result outputted during the tallying phase, but we know that they
are different public terms. As our processes are action-deterministic thanks
to Lemma 2, there is no other choice to obtain another frame, and thus tr′

is a witness of ElectionL
1,n( #„v0, #„v1, . . . , #„vk) ̸≈t ElectionR

1,n( #„v0, #„v1, . . . , #„vk). Hence
the result.

Appendix F Handling the case of revote

In this section, we recall and prove Theorem 2.

Theorem 2. Let V be a voting scheme whose associated counting function is
k-bounded for some k ≥ 1, and p, n be two integers such that 1 ≤ p ≤ n. If
V does not satisfy BPRIVR(p, n − p), then V does not satisfy BPRIVR(1, k′) for
some k′ ≤ k. Moreover, in that case there exists a witness of this attack where
no more than k′ ballots reached the ballot box (each from a different voter).

Proof. The proof follows the same lines as the proof of Theorem 1 and is composed
of two main steps:

1. reducing the number of honest voters to 1;
2. reducing the number of dishonest voters to k.

For each step, rather than redoing the proof completely, we highlight the differ-
ences with the “no revote” case.

Step 1. We show that if BPRIVR(1, n − 1) holds, then so does BPRIV(p, n − p).
The proof for step 1 has the same structure as the one for Proposition 1. The
only difference, essentially, is that instead of each honest voter only submitting
one ballot, which we have to simulate for a dishonest voter, they may submit
any number of ballots. Thanks to the actions sess(cj , d) added to the trace, we
know however which voter each ballot belongs to. Using this information, we can
simulate the honest ballots, just as in the previous proof.

We start with n distinct voters #„v1, . . . , # „vn, with for all i #„vi = (ci, idi, cr i, pcr i),
pcr i = Pub(cr i, ui), and p ∈ J1, nK.

We define intermediate processes Pi (for i ∈ J0, pK) similarly to the previous
proof. Pi is like ElectionRevoteX

p,n−p( #„v1, . . . , # „vn), except that the first i honest
voters use process HVoterR, and the other p − i use process HVoterL.

As in the “no revote” proof, we show by contradiction that

∀i ∈ J0, p − 1K. Pi ≈t Pi+1

which suffices to prove the claim.
Assuming some i such that Pi ̸≈t Pi+1, as before, we define two processes

QL, QR, where all voters except voter i + 1 are modelled by process DVoter, and

34



voter i + 1 uses HVoterL in QL and HVoterR in QR. Since BPRIVR(1, n − 1) holds,
we get QL ≈t QR.

We consider a minimal trace tr witnessing Pi ̸≈t Pi+1, with associated frames
ϕL, ϕR. Its shape is slightly different from the one in the previous proof, because
of the sess(cj , d) actions added whenever voter j is replicated for a new session.
However the ideas are the same.

We obtain a contradiction, as before, by constructing a trace for processes QL

and QR that simulates tr, and is therefore a non-equivalence witness, contradicting
QL ≈t QR.

Ignoring the nonce renaming issues (which are handled just as in Proposi-
tion 1), this trace is constructed as before. For each j ∈ J1, pK, we can read in
tr (and the frames) the voting instructions submitted by the attacker for each
session of voter j. We can read in the trace which instruction is addressed to
which voter, thanks to the action sess(cj , d) that binds the channel d used in a
given session to the voter running that session (or rather, her channel cj).

For each session of each honest voter j ≠ i + 1, we can thus construct recipes
computing two ballots, containing the attacker’s instruction for that session.

We then consider the sequence tr of actions obtained from tr by replacing
any input on a honest session’s channel d with an input of the recipe for the
appropriate ballot: the left ballot if that session belongs to voter j > i + 1, the
right one otherwise. Just as in the previous proof, we also replace any dishonest
ballot input of a recipe R with a recipe S, which is R where all frame variables
for honest ballots (except idi+1’s) are replaced with the appropriate ballot recipe.

These actions effectively simulate the behaviour of all honest voters in Pi,
Pi+1, except i + 1, with dishonest voters in QL, QR. The same arguments as
before show that tr is executable in QL, QR, and produces some frames ϕL,
ϕR. We then only need to show that ϕL, ϕR can be reconstructed from ϕL, ϕR

using the same recipe. As in the “no revote” case, this shows ϕL ̸∼ ϕR, which
constitutes the contradiction that concludes the proof.

We construct that recipe, as before, with a recipe that
– constructs the public credential associated to the private credential in ϕL,

ϕR, for voters j ∈ J1, pK \ {i + 1};
– constructs the right ballot, using the ballot recipe from earlier, for the sessions

of all voters j ≤ i, and the left ballot for the sessions of voters j ∈ Ji + 2, pK;
– reads everything else, i.e. voter i + 1’s credentials and ballots (from all

her sessions), all dishonest ballots and credentials, and the election results,
directly from ϕL or ϕR.

As before, it is clear that this accurately reconstructs all ballots and credentials
for all sessions of all voters. The subtle point is that the result is also accurately
reconstructed: that is the case, since we used the ballot recipes to submit the
correct ballots to dishonest voters simulating voters j ∈ J1, pK \ {i + 1}.
Step 2. The shape of the witness of non-equivalence is a bit different from the
one used in Proposition 2 as we now have sess(cj , d) actions that will occur.
Nevertheless the reasoning remains the same. We only focus on the case where tr
contains actions from phase 3 (actually only one), and we distinguish 3 cases:

35



– If during phase 2, there is some actions (e.g. sess(ci, d), in(d, R), out(d, w))
on channel ci (with i > 0) but not the corresponding append(d) action,
then we can consider tr′ = tr{w 7→ R} where tr is equal to tr without these
actions, and we can show that tr′ is a witness of non-equivalence obtaining a
contradiction regarding the minimality of tr.

– Now, in case phase 1 contains an action of the form out(ci, wi) with i > 0,
whereas there is no sess(ci, d) in phase 2, then we can consider the trace tr′

which is equal to tr without this output out(ci, wi), and we also replace the
occurrences of wi in tr by ⟨cr ′

i, Pub(cr ′
i, u′

i)⟩ where cr ′
i and u′

i are fresh public
constants. As before, we conclude that tr′ is a smaller witness.

– We now consider the case of a trace tr that is composed of a phase 1 (only
voters who outputs a ballot participate to this phase 1), then a phase 2, and
then the output of the result during phase 3. We have that ϕL ̸∼ ϕR where
ϕL and ϕR are the two resulting frames, and actually relying on Lemma 3,
we have that wtallϕL ̸==E wtallϕR. Moreover, we know that:

wtallϕL = count(policy(extract(BBL))) and wtallϕR = count(policy(extract(BBR)))

where BBL (resp. BBR) is the bulletin board (i.e. the content of the memory
cell mbb) resulting from the trace tr on the left (resp. on the right).
If at most k distinct voters casted their vote (action append), then we
know that only these dishonest voters outputted their credential during the
initialization phase, and thus we have that this witness is also a witness
regarding

ElectionRevoteL
1,k( #„v0, #„v1, . . . , #„vk) ̸≈t ElectionRevoteR

1,k( #„v0, #„v1, . . . , #„vk).

This relies on the fact that our processes are action-deterministic (Lemma 2),
and thus there is no other possibility to get another frame. Moreover, this
witness satisfies our requirements. Therfore, we are done.
Otherwise, we know that n′ votes with n′ > k have been casted (possibly by
the same voter), i.e. we have that:

BBL = [bL
1, . . . , bL

n′ ] and BBR = [bR
1 , . . . , bR

n′ ].

Moreover, we know that for each pair of ballots (bL
j , bR

j ), we have that there
exists id, cr , vL, and vR such that:

extract(bL
j ) = (id, cr , vL) and extract(bR

j ) = (id, cr , vR)

In case a voter casted more than one ballot, then we know that only one has
been taken into account due to the revote policy, and thus there is i0 such
that bL

i0
and bR

i0
do not influence the result (since it has been removed by the

revote policy). Therefore, we can remove the corresponding append(d) action,
and we obtain a smaller trace tr′ leading to the exact same frames, and same
result.
Otherwise, each voter has voted only once but we have n′ > k. Therefore
the policy will consider all the ballots to compute the result. Thanks to our

36



k-bounded hypothesis, we know that there exists k′ ≤ k, and 0 ≤ i1 < . . . <
ik′ ≤ n such that

count(extract([bL
i1

, . . . , bL
ik′ ])) ̸= count(extract([bR

i1
, . . . , bR

ik′ ]))

Note that, since each voter only votes once, this implies that

count(policy(extract([bL
i1

, . . . , bL
ik′ ]))) ̸= count(policy(extract([bR

i1
, . . . , bR

ik′ ]))).

We now consider tr′ which is tr without the actions append(d) corresponding
to all the ballots that have been removed. Note that, if we want to remove
the i

th
0 ballot from the bulletin board, this corresponds to removing the i

th
0

append actions from the trace tr. The resulting trace tr′ is smaller than tr,
and leads to the exact same frames but its last element corresponding to the
output of the result. We have pay attention to maintain a difference on both
sides, and thus tr′ is still a witness of non-equivalence. Hence, this allows us
to conclude the proof.

37


	One vote is enough for analysing privacy

