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ABSTRACT 
Learning to construct database queries can be a challenging task 
because students need to learn the specific query language 
syntax as well as properly understand the effect of each query 
operator and how multiple operators interact in a query. While 
some previous studies have looked into the types of database 
query errors students make and how the availability of expected 
query results can help to increase the success rate, there is very 
little that is known regarding the patterns that emerge while 
students are constructing a query. To be able to look into the 
process of constructing a query, in this paper we introduce 
DBSnap-Eval, a tool that supports tree-based queries (similar to 
SQL query plans) and a block-based querying interface to help 
separate the syntax and semantics of a query. DBSnap-Eval 
closely monitors the actions students take to construct a query 
such as adding a dataset or connecting a dataset with an 
operator. This paper presents an initial set of results about 
database query construction patterns using DBSnap-Eval. 
Particularly, it reports identified patterns in the process students 
follow to answer common database queries. 
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1 Introduction 
Database queries are the main mechanisms to interact with 
database systems. Multiple querying languages have been 
proposed for relational databases such as relational calculus 
(RC), relational algebra (RA), and the Structured Query Language 
(SQL). A good understanding of fundamental languages like RA 
provides an excellent basis to learn SQL, which is also supported 
in multiple Big Data systems due to its expressive power [20]. 
Learning how to construct a database query can be challenging. 
Not only does one have to learn the specific syntax of a query 
language, but also the data processing logic associated with each 
operator and the ways multiple operators interact in a query. 
The study of how learners create queries and the methodologies 
that can help students to better understand database querying 
has received relatively little attention in previous work. While 
some previous studies have reported the types of query errors 
students make, potential reasons behind these errors, and how 
the availability of expected query results can help to increase 
student success rate, there is very little that is known regarding 
the process students follow to construct a query and the way this 
information can be used to help students and educators.  

A core goal of this paper is to shed light on the patterns that 
emerge during query creation. To facilitate this, we implemented 
DBSnap-Eval, an extended version of DBSnap [10, 11]. DBSnap is 
a block-based querying tool that enables learners to specify 
database queries by dragging and connecting visual blocks 
(datasets and operators). DBSnap supports the construction of 
query trees that represent the core structure of relational algebra 
and SQL queries. A benefit of using this tool is that it helps to 
separate the syntax and semantics of a query. We extended 
DBSnap adding a monitoring module that obtains some initial 
non-identifying information about the student and monitors the 
steps or actions the student completes to create a query. We used 
DBSnap-Eval to collect information about ten common types of 
queries. The main contributions of the paper are:   

• We introduce DBSnap-Eval [21], an open-source tool 
to monitor the query construction process. This tool 
supports tree-based query representations and can be 
used by other researchers to perform further analysis 
of query construction patterns. 

• We present an initial set of results about database 
query construction patterns (with 712 submitted query 
answers from 78 database class students and manual 
evaluation of query correctness). This includes: (1) 
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and the full citation on the first page. Copyrights for components of this work 
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query correctness rates across different query types, (2) 
high-level temporal properties, e.g., average times to 
complete specific query types, and (3) query 
construction details such as the percentage of time 
used on specific operators, and the number and type of 
steps used to build each type of query. 

• We highlight some identified patterns that could help 
educators to better teach database querying (in 
DBSnap and potentially other tools), e.g., common 
student misunderstandings during query construction 
and approaches that could increase the likelihood to 
produce correct answers.  

2 Related Work 
Learning database query languages. Some of the few studies 
in this area focused on understanding the types of errors 
students make. Taipalus et al. investigated the types of errors 
that students make in SQL exercises (particularly errors that are 
likely to be left uncorrected) and identified concepts that are 
harder for the students to learn, such as joins and aggregations 
[12]. This study found that syntax errors are less likely to persist 
than logical errors. Ahadi et al. identified the most common 
semantic mistakes students make while writing SQL queries and 
suggested reasons behind these mistakes [2]. This study reported 
that the most common errors were related to omitting needed 
query constructs. Migler and Dekhtyar reported the average 
number of attempts students made while writing SQL queries 
and the associated success rates for different query types [7]. In 
most of the evaluated exercises in this work, students were able 
to access the expected query output. Some studies applied data 
mining techniques to better identify and predict database query 
errors. Lino et al. used clustering and decision trees to classify 
different types of SQL errors and identify the most frequently 
committed ones [6]. Ardiansah et al. built a model to identify 
possible logic SQL errors and report them as warnings [3]. This 
model was integrated into a web-based SQL compiler that can be 
used by students. The work by Ahadi et al. evaluated several 
SQL syntactical errors and developed a rule-based classifier to 
predict student success in writing queries [1]. Kleerekoper et al. 
developed and investigated the effectiveness of an online testing 
tool (SQL Tester) for SQL [4]. This work found a strong 
correlation between the number of practice tests and the test 
scores. Fully evaluating whether a query is correct or not is 
challenging. Many of the previous studies, including [2, 3, 4, 6, 
7], consider a query to be correct if it generates the expected 
output. It is well-known, however, that incorrect queries can 
generate the correct answer on a specific state of the data. Our 
work differs from previous contributions in that we focus on 
better understanding the process in which queries are 
constructed. Our work also includes manual evaluation of query 
correctness. 

Block-based querying systems. Multiple tools have been 
proposed to simplify the process of specifying database queries. 
The query- by-example model [15] is  an early approach that 
supported visual elements to write queries. Several contributions 
enabled the specification of queries using a set of icons. The SQL 

 

Figure 1: DBSnap-Eval interface and query tree example 

Visualiser [8] allows the specification of simple queries by 
dropping icons representing data items into a box. The system 
then transforms the visual specification into an SQL query. 
iDFQL [5] and RALT [17] use icons to represent relational 
algebra operators and make use of flow diagrams to specify the 
sequence of operations in a query. More recently, several 
contributions enabled constructing queries using blocks, e.g., 
SQLsnap [16], BlocklySQL [9], Bags [14], DBSnap [10, 11] and 
DBSnap++ [19]. Several of these tools are extensions of Snap! 
[13] and Blockly [18], block-based tools for specifying standard 
computer programs. In our study, we decided to extend a block-
based querying tool (DBSnap) as the basis of our query 
construction evaluation tool because it enables learners to focus 
on the query logic instead of its syntax. 

3 DBSnap-Eval and Data Collection 
In order to gain insights about the process that students follow 
while building queries, we implemented DBSnap-Eval extending 
DBSnap [10, 11]. DBSnap-Eval contains all the interface elements 
of DBSnap (see Fig. 1): dataset and block palettes (left), query 
area (middle), and results panels (right). Students build queries, 
like the one shown in Fig. 1, by dragging and connecting blocks. 
The results are dynamically generated after each query 
construction action (e.g., adding a new operator). DBSnap uses 
query trees to represent queries. Query trees have been used by 
many educators and textbooks as an intuitive way to represent 
relational algebra and SQL queries. They show the organization 
of the different operators and the way intermediate results flow 
(bottom-up) in the query pipeline. DBSnap-Eval extends DBSnap 
by adding support for surveys, enabling the selection of 
questions and submission of answers, and a monitoring 
component that records a log of the query actions completed by 
the student. The actions include moving a block from a palette to 
the query area (Move), updating the fields of a block (Update), 
and connecting (Connect), disconnecting (Disconnect) and 
deleting (Delete) blocks. For every action, the tool records the 
time and type of the action, and the involved blocks. At query 
submission time, it also records the query representation and 
output. The actions executed by a student in DBSnap correspond 
to writing specific query elements in the text version of a query 
(e.g., moving/updating a Select block corresponds to writing the 
Select keyword and its parameters). 
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Table 1 Database schema and list of database query 
questions 

Database Schema 

 Students (SID, LName, FName, Level, Age), Courses (CID, CName),  
 Professors (PID, LName, FName), Course_Student (CID, SID),    
 Course_Professor (CID, PID), Student_Club (studentID, clubName),  
 StudentsA and StudentsB have the same schema as Students 

Query Description + {Needed Number of Actions} - SQL Operators 

Sel Find the students that are older than 23 {3} Selection 
SELECT * FROM Students WHERE Age>23 

Proj Find the first and last name of every professor {3}  Projection 
SELECT FName, LName FROM Professors 

Int 

Find the students that are both Student A’s and 
Student B’s {3} Intersection 
SELECT * FROM StudentsA INTERSECT SELECT * FROM 
StudentsB 

Join Find the list of students and the courses they take {3} Natural Join 
SELECT * FROM Students NATURAL JOIN Course_Student 

SJoin 

Find the courses that professors with the last name 
‘Kelly’ teach {5} Selection, 

Natural Join SELECT * FROM Professors NATURAL JOIN 
Course_Professor WHERE Professors.LName = 'Kelly' 

SPJ 

Find the student ID, the last name, and the course ID 
of ‘Junior’ students who are between 18 and 20 years 
old inclusive {7} 

Selection, 
Projection, 
Natural Join SELECT SID, LName, CID FROM Students NATURAL JOIN 

Course_Student WHERE Level = 'Junior' and Age>=18 and 
Age<=20 

PJoin 

Find the list of courses (CID, CName) and the 
professors teaching them (PID, LName) {5} Projection, 

Natural Join SELECT CID, CName, P.PID, P.LName FROM Professors AS 
P NATURAL JOIN Course_Professor 

Thet
a 

Find the students participating in clubs {4} 
Theta Join SELECT * FROM Students, Student_Club WHERE SID = 

studentID 

Aggr 
Find the avg. age of students for every year level {4} Group By 

 SELECT Level, AVG(Age) FROM Students GROUP BY Level 

JAgg 

How many students are in every course (CName) {6} 
Natural Join, 
Group By 

SELECT CName, COUNT(CS.SID) 
FROM Courses as C NATURAL JOIN Course_Student as CS 
GROUP BY C.CID, CName 

 
In our study, we used DBSnap-Eval to collect a total of 712 

submissions from 78 students taking a database class. We used 
10 of the most common types of database queries (schema and 
queries shown in Table 1). Each student also completed a survey 
providing information about gender, previous database 
experience, and previously completed database classes. Students 
were trained on the visual elements of DBSnap-Eval before they 
participated in this study. They were also informed about the 
nature of this study, how the querying steps they would 
complete were going to be monitored (without recording 
identifying information like student name or IP address), and 
how the collected data was going to be used (aggregated report). 
Participation was optional but most students participated. Unlike 
most of the previous work in this area (which consider that a 
query is correct when it generates the expected output), we 
manually evaluated the correctness of each submitted query. 
Manually evaluating queries was a time-consuming task and 
limited the number of students and submissions we included in 
our study. On the other hand, this step provided an accurate 
assessment of query correctness as incorrect queries can easily 
generate the expected output on a given state of the dataset. 

 

Figure 2: The total number of submissions per query 

 

Figure 3: Correctness rate per query 

 

Figure 4: Correctness rate for questionnaire categories 

4 Results 
In this section, we present the results of various data analysis 

tasks. Specifically, we explore aspects related to query success 
rates, temporal properties, and query construction patterns. Out 
of the 78 students who submitted solutions, 77% (60) were male, 
21% (16) female, 1% (1) selected other gender, and 1%(1) did not 
share this information. 26% (20) of the students had previously 
taken a database class and 49% (38) had some prior basic 
exposure or experience with databases, e.g., internship, work, 
etc. (not necessarily using querying languages). Fig. 2 shows the 
number of submissions received for each question. We received 
at least 72 submissions for each query question. 

Query correctness rate per query type and questionnaire 
category. Fig. 3 shows the correctness rate for each query 
question. Across all the queries, between 62% to 87% of the 
submissions were correct. In general (and as expected), the 

72
73
74

77
78
78

77
77

76
76

0 10 20 30 40 50 60 70 80

JAgg
Aggr

Theta
PJoin

SPJ
SJoin

Join
Int

Proj
Sel

Number of Submissons

Q
ue

ry
73.6%

80.8%
78.4%

81.8%
61.5%

84.6%
83.1%
83.1%
82.9%

86.8%

26.4%
19.2%
21.6%

18.2%
38.5%

15.4%
16.9%
16.9%
17.1%

13.2%

0% 20% 40% 60% 80% 100%

JAgg
Aggr

Theta
PJoin

SPJ
SJoin

Join
Int

Proj
Sel

Percentage of Correct/Incorrect Answers

Q
ue

ry

Incorrect Correct

78.3%

81.1%

77.1%
87.0%

20.0%
100.0%

82.7%
79.6%

21.7%

22.9%
13.0%

80.0%
0.0%

17.3%
20.5%

0% 20% 40% 60% 80% 100%

No Prev DBExp
Prev DBExp

No Prev DBClass
Prev DBClass

Not Shared
Other

Female
Male

Percentage Correct/Incorrect

Ca
te

go
ry

Incorrect Correct

18.9



ITiCSE’22, July, 2022, Dublin, Ireland Y. N. Silva, A. Loza, and H. Razente 
 

 

 

correctness rate is lower in queries with larger number of 
operators. The average rate for queries with one, two, and three 
operators was 82.5%, 80%, and 61%, respectively. This, however, 
is not a strict or uniform rule. We can observe, for instance, that 
queries with aggregation and Theta join operations had smaller 
success rates. We also observe that while the difference between 
queries with one and two operators is small, the difference 
between queries with two and three operators is significantly 
larger. Since our study focused on relatively simpler queries in 
an introductory database class, we did not evaluate queries with 
large number of operators. Fig. 4 shows the correctness rates for 
the categories used in the survey across all queries. We found 
that female students (82.7%) performed slightly better than male 
students (79.6%) and that the success rate for students who took 
a database course previously (87%) was relatively higher than the 
one for students who were taking their first database class (77%). 

Query correctness vs. time and number of actions. Fig. 5 and 
Fig. 6 show the time and number of actions that students took to 
complete each type of query, respectively. Queries with a single 
operator are represented with black dots while the ones with 
two or more with gray dots. As reported in previous work, we 
found that, in general, queries with aggregations and joins have 
smaller success rates. We found, however, significant differences 
between the query with aggregation only (Aggr) and the one that 
combines aggregation and join (JAgg). The Aggr query took a 
time (1m 48s) similar to other single-operator queries (1m 33s) 
but significantly smaller than JAgg (2m 20s). Likewise, Aggr took 
a number of actions (9.4) that is similar to other single-operator 
queries (average: 12.8), but significantly smaller than that of 
JAgg (18.6). Observe also that while Aggr and JAgg, required a 
minimum of 4 and 6 actions, respectively, students took on 
average 9 and 19 actions to complete them. These results seem to 
indicate that the concept of aggregation by itself may not be 
much more complex than other operators such as selection and 
projection but that students find the combination of join and 
aggregation particularly more challenging. We also observe that 
in general, students took significantly more actions to complete a 
query than needed. While the smallest number of actions to 
correctly build a query (see Table 1) ranged from 3 (e.g., Sel, Proj, 
and Int) to 7 (SPJ), the actual number of completed actions 
ranged from around 8 (Sel, Proj, Int, Aggr), to around 24 (PJoin, 
Theta, SJoin). This highlights the value of interactive querying 
interfaces that show students the results of a query as it is being 
constructed. We also observe that all the queries with join 
operators take more time and actions than other queries. The 
divide is even more evident in terms of number of actions. While 
SJoin takes more time and actions than other join queries, this 
may be related to the fact that in most cases, this was the first 
multi-operator query that students answered (queries could be 
answered in any order). 

Time spent in top-3 query blocks. Figuring out how much time 
students spend on a query block can highlight the parts of the 
query they struggled the most with. Fig. 7 shows the top-3 query 
blocks (datasets and operators) for each query type based on the 
time spent with that  type of  block while constructing the query. 

 

Figure 5: Query construction time vs. correctness 

 

Figure 6: Number of actions vs. correctness 

 

Figure 7: Percentage of time spent in top 3 query blocks  

Two general and somewhat expected observations are that, in 
most queries, datasets are the most common blocks and the 
required operators to solve the query are also among the top-3 
operators. There are, however, interesting insights we can infer 
from the presence of operators that were not needed to answer 
the queries. There are four specific cases. (1) Selection-
Projection: In Proj, the query did not require the selection 
operator, however this block was a top-3 block. This seems to be 
a common confusion since both operators can be seen as types of 
“filtering” operators. Selection filters the rows of a table while 
projection filters the columns. (2) Set operators: The Int query 
required the intersection operator, but the union operator was 
also commonly used here. This shows that not properly 
recognizing the differences among set operations is a common 
mistake. (3) Grouping-Selection: In Aggr, the query only needed 
the grouping operator but the select operator was a top-3 block. 

JAgg

Aggr
Theta

PJoin

SPJ

SJoinJoinInt Proj
Sel

60

65

70

75

80

85

90

00:00 01:00 02:00 03:00 04:00

%
  o

f C
or

re
ct

 A
ns

w
er

s

Avg Query Construction Time (Minutes)

Sel

Proj Int Join
SJoin

SPJ

PJoin

ThetaAggr

JAgg

60

65

70

75

80

85

90

0 5 10 15 20 25 30

%
  o

f C
or

re
ct

 A
ns

w
er

s
Average Number of Actions

Data

Group

Data
Data

Select

Data

Data

Data

Data

Group

Data

Theta Join

Nat. Join

Data

Select

Nat. Join

Intersection

Proj

Nat. Join

Select

Project
Project

Project

Nat. Join

Project

Union

Select

0% 20% 40% 60% 80% 100%

JAgg

Agr

Theta

PJoin

SPJ

SJoin

Join

Int

Proj

Percentage of total query construction time

Q
ue

ry

Top 1 Top 2 Top 3 Other



DBSnap-Eval: Identifying Database Query Construction Patterns ITiCSE’22, July, 2022, Dublin, Ireland 
 

 

This seems to indicate that some students want to express the 
grouping predicate as a selection predicate. This confusion may 
be related to the fact that both operators usually generate an 
output that is significantly smaller than the input data. Some 
students fail to recognize that these operators reduce the data 
cardinality in very different ways. (4) Join-Projection: This was 
an unexpected finding. Both, Join and Theta, required a single 
join operator. However, in both cases, the projection operator 
was among the top-3 blocks. The reason may be related to the 
fact that students learn that the projection operator controls the 
set of attributes that will be included in the output. Students 
understand that the output of a join query should include 
attributes from different tables. They seem to fail to understand, 
however, that projection by itself cannot include attributes of 
datasets that are not included in the query. These four identified 
cases represent potential common sources of confusion. 

Number of different types of actions per query type. Fig. 8 and 
Fig. 9 show the number of actions for each query among correct 
and incorrect responses, respectively. Across all submissions and 
query types, we can observe that the Move and Connect actions 
are the most common ones. Disconnect and Delete actions are less 
common but are present in both correct and incorrect 
submissions. Disconnect and Delete represent corrections made 
during the query construction process. Update actions are less 
common because only certain operators (the ones with predicate 
fields) allow this action. We observe that the number of actions 
between correct and incorrect submissions are, in general, 
similar. There are, however, two outliers: Join and JAgg. In Join, 
the number of Move and Connect actions in incorrect 
submissions are 49% and 82% larger than those in correct ones, 
respectively. We believe this is the case because this was the first 
multi-table query most students answered. The practice 
answering this question probably helped in subsequent join 
queries. In JAgg, the number of Connect and Disconnect actions 
in incorrect submissions are 2.4x and 4x larger than those in 
correct ones, respectively. This result is aligned with our 
previous finding about the increased difficulty of combining 
joins and aggregations.  

Closer look into the first five minutes of query construction. 
Fig. 10 and Fig. 11 show the average number of different types of 
actions during the first 5 minutes (in 1-min intervals) for correct 
and incorrect Join query submissions, respectively. Similar 
trends were observed in other queries. We notice that the 
number of actions changes over time with most actions 
happening in the first 2 minutes. While both correct and 
incorrect submissions show significant levels of activity, we 
observe some differences. In the correct submissions, the Move 
and Connect actions dominate in the entire time range. The 
number of corrective actions (Disconnect and Delete) are overall 
small but tend to increase over time. In the incorrect 
submissions, the Move and Connect actions are the most common 
ones but the number of corrective actions is significantly larger 
than in correct submissions. These results indicate that, while a 
trial-and-error process appears to be used in both correct and 
incorrect queries, this process is more active in incorrect queries.  

 

Figure 8: No. of actions per question (correct answers) 

 

Figure 9: No. of actions per question (incorrect answers) 

 

Figure 10: First 5 minutes of Join (correct answers) 

 

Figure 11: First 5 minutes of Join (incorrect answers) 

Data-first vs operator-first. Knowing how to start a query can 
be quite challenging when learning database query languages. 
We analyzed the collected data to identify early actions that can 
help students build correct queries. Fig. 12 shows the percentage 
of correct and incorrect queries comparing submissions that 
started  the query  construction  process with  dataset  blocks  vs.  
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Figure 12: Operator-first vs. Data-first 

 

Figure 13: Selection-first vs. Join-first 

submissions that started with operator blocks. This figure shows 
that in most query types (seven out of ten: Pro, Int, Join, SPJ, 
PJoin, Theta, and Aggr), submissions that started with the 
database blocks have higher success rate than the ones that 
started with the operator blocks. While the advantage is not 
large (e.g., the success rate increases by 10% in Theta and 6.5% in 
Int), these results seem to indicate that, for certain queries, 
starting the process thinking about what datasets (tables) are 
necessary may be a beneficial query construction strategy.  

Query optimization opportunities. Our evaluation was 
performed in an introductory database class where there were 
no expectations on generating optimized query plans. DBSnap 
being based on query-tree representations, however, is a good 
platform to introduce the concepts of query optimization. One of 
the key ideas in query optimization is the use of query plans that 
filter large amounts of data early in the query execution process. 
This way later operators (higher in the query tree) will work on 
reduced amounts of data. In our study, we observed that most 
students wrote queries that in practice would correspond to 
potentially inefficient plans. Fig. 13 shows that for queries SJoin 
and SPJ, 66% of the submitted queries executed the join first 
while only 34% of the queries executed the selection operator 
first (in general, the latter is expected to be more efficient). This 
highlights the opportunity to introduce concepts of query 

optimization using simple queries in introductory database 
classes.  

5 Discussion, Limitations and Extensions 
Our study of patterns that emerge while students write queries 
revealed multiple results that could be used by database 
educators to better teach query languages. The reported results 
include: (1) queries that combine aggregation and join operators 
are particularly challenging for students, (2) there are common 
pairs of operators where one operator is incorrectly used instead 
of the other one (Selection-Projection, Set operators, Grouping-
Selection, Join-Projection), (3) the trial and error process is 
actively used by query language learners, using interfaces that 
facilitate this process by dynamically showing the results as the 
query is constructed can be specially beneficial to students, (4) 
starting a query thinking about the data needed to answer the 
query may be a beneficial strategy in certain cases, (5) there are 
opportunities to introduce query optimization concepts even 
with simple queries. Given the limited number of studies in this 
area, this field can benefit from more empirical evidence.  

This experience report has some limitations. It only includes 
students from a single instructor. This may have influenced 
some of the identified query construction patterns. Also, while 
the manual evaluation of query correctness eliminated the 
possibility of false-positives (incorrect queries with correct 
output), this also limited the number of submissions included in 
our study. We plan to evaluate more submissions from multiple 
instructors and report additional findings in the future.  

While DBSnap-Eval provides researchers with some features 
not supported in other tools, e.g., the ability to monitor query 
construction while queries are constructed, it can be extended in 
multiple ways. For instance, it can be adapted to support other 
languages such as domain calculus and a text-oriented version of 
SQL. It can also be adapted to detect significant deviations from 
the correct answers and suggest corrective actions. It could also 
be used to study additional query construction properties, e.g., 
(1) identify commonly occurring correct/incorrect submissions 
for a given query, (2) study complex operators (e.g., division) and 
multi-operator queries, (3) study the use of views to construct 
complex queries, (4) identify rates in which incorrect query 
submissions produce the correct output, and (5) identify cross-
query trends among the queries submitted by a student.  

6 Conclusion 
Very little is known about how query language learners write 

database queries. Identifying query construction patterns and 
common errors in the process of building queries can help 
educators to better teach query languages. To this end, in this 
paper we introduce DBSnap-Eval, an open-source system to 
monitor the process of creating tree-based database queries 
(similar to the query evaluation trees used by many database 
textbooks and educators) and present an initial set of identified 
query construction patterns. A goal of making DBSnap-Eval 
publicly available is to enable the research community to 
perform further studies regarding the query construction 
process.  
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