
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

2022

DBSnap-Eval: Identifying Database Query Construction Patterns DBSnap-Eval: Identifying Database Query Construction Patterns

Yasin N. Silva
Loyola University Chicago, ysilva1@luc.edu

Alexis Loza
Arizona State University, aloza9@asu.edu

Humberto Razente
Universidade Federal de Uberlândia, humberto.razente@ufu.br

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
Y. N. Silva, A. Loza, H. Razente. DBSnap-Eval: Identifying Database Query Construction Patterns. The 27th
ACM Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE), Dublin,
Ireland, 2022.

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© Yasin N Silva , Alexis Loza , Humberto Razente, 2022.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

DBSnap-Eval: Identifying Database Query Construction
Patterns

Yasin N. Silva
 Loyola University Chicago

 ysilva1@luc.edu

Alexis Loza
 Arizona State University

aloza9@asu.edu

Humberto Razente
 Universidade Federal de Uberlândia

humberto.razente@ufu.br

ABSTRACT
Learning to construct database queries can be a challenging task
because students need to learn the specific query language
syntax as well as properly understand the effect of each query
operator and how multiple operators interact in a query. While
some previous studies have looked into the types of database
query errors students make and how the availability of expected
query results can help to increase the success rate, there is very
little that is known regarding the patterns that emerge while
students are constructing a query. To be able to look into the
process of constructing a query, in this paper we introduce
DBSnap-Eval, a tool that supports tree-based queries (similar to
SQL query plans) and a block-based querying interface to help
separate the syntax and semantics of a query. DBSnap-Eval
closely monitors the actions students take to construct a query
such as adding a dataset or connecting a dataset with an
operator. This paper presents an initial set of results about
database query construction patterns using DBSnap-Eval.
Particularly, it reports identified patterns in the process students
follow to answer common database queries.

CCS CONCEPTS
• Social and professional topics → Computing education;
Information systems education.

KEYWORDS
Relational algebra, SQL, block-based system, database systems,
database queries

ACM Reference format:

Yasin Silva, Alexis Loza, Humberto Razente. 2022. DBSnap-Eval:
Identifying Database Query Construction Patterns. In Proceedings of
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE’22). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3502718.3524822

1 Introduction
Database queries are the main mechanisms to interact with
database systems. Multiple querying languages have been
proposed for relational databases such as relational calculus
(RC), relational algebra (RA), and the Structured Query Language
(SQL). A good understanding of fundamental languages like RA
provides an excellent basis to learn SQL, which is also supported
in multiple Big Data systems due to its expressive power [20].
Learning how to construct a database query can be challenging.
Not only does one have to learn the specific syntax of a query
language, but also the data processing logic associated with each
operator and the ways multiple operators interact in a query.
The study of how learners create queries and the methodologies
that can help students to better understand database querying
has received relatively little attention in previous work. While
some previous studies have reported the types of query errors
students make, potential reasons behind these errors, and how
the availability of expected query results can help to increase
student success rate, there is very little that is known regarding
the process students follow to construct a query and the way this
information can be used to help students and educators.

A core goal of this paper is to shed light on the patterns that
emerge during query creation. To facilitate this, we implemented
DBSnap-Eval, an extended version of DBSnap [10, 11]. DBSnap is
a block-based querying tool that enables learners to specify
database queries by dragging and connecting visual blocks
(datasets and operators). DBSnap supports the construction of
query trees that represent the core structure of relational algebra
and SQL queries. A benefit of using this tool is that it helps to
separate the syntax and semantics of a query. We extended
DBSnap adding a monitoring module that obtains some initial
non-identifying information about the student and monitors the
steps or actions the student completes to create a query. We used
DBSnap-Eval to collect information about ten common types of
queries. The main contributions of the paper are:

• We introduce DBSnap-Eval [21], an open-source tool
to monitor the query construction process. This tool
supports tree-based query representations and can be
used by other researchers to perform further analysis
of query construction patterns.

• We present an initial set of results about database
query construction patterns (with 712 submitted query
answers from 78 database class students and manual
evaluation of query correctness). This includes: (1)

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07…$15.00
https://doi.org/10.1145/3502718.3524822

ITiCSE’22, July, 2022, Dublin, Ireland Y. N. Silva, A. Loza, and H. Razente

query correctness rates across different query types, (2)
high-level temporal properties, e.g., average times to
complete specific query types, and (3) query
construction details such as the percentage of time
used on specific operators, and the number and type of
steps used to build each type of query.

• We highlight some identified patterns that could help
educators to better teach database querying (in
DBSnap and potentially other tools), e.g., common
student misunderstandings during query construction
and approaches that could increase the likelihood to
produce correct answers.

2 Related Work
Learning database query languages. Some of the few studies
in this area focused on understanding the types of errors
students make. Taipalus et al. investigated the types of errors
that students make in SQL exercises (particularly errors that are
likely to be left uncorrected) and identified concepts that are
harder for the students to learn, such as joins and aggregations
[12]. This study found that syntax errors are less likely to persist
than logical errors. Ahadi et al. identified the most common
semantic mistakes students make while writing SQL queries and
suggested reasons behind these mistakes [2]. This study reported
that the most common errors were related to omitting needed
query constructs. Migler and Dekhtyar reported the average
number of attempts students made while writing SQL queries
and the associated success rates for different query types [7]. In
most of the evaluated exercises in this work, students were able
to access the expected query output. Some studies applied data
mining techniques to better identify and predict database query
errors. Lino et al. used clustering and decision trees to classify
different types of SQL errors and identify the most frequently
committed ones [6]. Ardiansah et al. built a model to identify
possible logic SQL errors and report them as warnings [3]. This
model was integrated into a web-based SQL compiler that can be
used by students. The work by Ahadi et al. evaluated several
SQL syntactical errors and developed a rule-based classifier to
predict student success in writing queries [1]. Kleerekoper et al.
developed and investigated the effectiveness of an online testing
tool (SQL Tester) for SQL [4]. This work found a strong
correlation between the number of practice tests and the test
scores. Fully evaluating whether a query is correct or not is
challenging. Many of the previous studies, including [2, 3, 4, 6,
7], consider a query to be correct if it generates the expected
output. It is well-known, however, that incorrect queries can
generate the correct answer on a specific state of the data. Our
work differs from previous contributions in that we focus on
better understanding the process in which queries are
constructed. Our work also includes manual evaluation of query
correctness.

Block-based querying systems. Multiple tools have been
proposed to simplify the process of specifying database queries.
The query- by-example model [15] is an early approach that
supported visual elements to write queries. Several contributions
enabled the specification of queries using a set of icons. The SQL

Figure 1: DBSnap-Eval interface and query tree example

Visualiser [8] allows the specification of simple queries by
dropping icons representing data items into a box. The system
then transforms the visual specification into an SQL query.
iDFQL [5] and RALT [17] use icons to represent relational
algebra operators and make use of flow diagrams to specify the
sequence of operations in a query. More recently, several
contributions enabled constructing queries using blocks, e.g.,
SQLsnap [16], BlocklySQL [9], Bags [14], DBSnap [10, 11] and
DBSnap++ [19]. Several of these tools are extensions of Snap!
[13] and Blockly [18], block-based tools for specifying standard
computer programs. In our study, we decided to extend a block-
based querying tool (DBSnap) as the basis of our query
construction evaluation tool because it enables learners to focus
on the query logic instead of its syntax.

3 DBSnap-Eval and Data Collection
In order to gain insights about the process that students follow
while building queries, we implemented DBSnap-Eval extending
DBSnap [10, 11]. DBSnap-Eval contains all the interface elements
of DBSnap (see Fig. 1): dataset and block palettes (left), query
area (middle), and results panels (right). Students build queries,
like the one shown in Fig. 1, by dragging and connecting blocks.
The results are dynamically generated after each query
construction action (e.g., adding a new operator). DBSnap uses
query trees to represent queries. Query trees have been used by
many educators and textbooks as an intuitive way to represent
relational algebra and SQL queries. They show the organization
of the different operators and the way intermediate results flow
(bottom-up) in the query pipeline. DBSnap-Eval extends DBSnap
by adding support for surveys, enabling the selection of
questions and submission of answers, and a monitoring
component that records a log of the query actions completed by
the student. The actions include moving a block from a palette to
the query area (Move), updating the fields of a block (Update),
and connecting (Connect), disconnecting (Disconnect) and
deleting (Delete) blocks. For every action, the tool records the
time and type of the action, and the involved blocks. At query
submission time, it also records the query representation and
output. The actions executed by a student in DBSnap correspond
to writing specific query elements in the text version of a query
(e.g., moving/updating a Select block corresponds to writing the
Select keyword and its parameters).

DBSnap-Eval: Identifying Database Query Construction Patterns ITiCSE’22, July, 2022, Dublin, Ireland

Table 1 Database schema and list of database query
questions

Database Schema

 Students (SID, LName, FName, Level, Age), Courses (CID, CName),
 Professors (PID, LName, FName), Course_Student (CID, SID),
 Course_Professor (CID, PID), Student_Club (studentID, clubName),
 StudentsA and StudentsB have the same schema as Students

Query Description + {Needed Number of Actions} - SQL Operators

Sel Find the students that are older than 23 {3} Selection
SELECT * FROM Students WHERE Age>23

Proj Find the first and last name of every professor {3} Projection
SELECT FName, LName FROM Professors

Int

Find the students that are both Student A’s and
Student B’s {3} Intersection
SELECT * FROM StudentsA INTERSECT SELECT * FROM
StudentsB

Join Find the list of students and the courses they take {3} Natural Join
SELECT * FROM Students NATURAL JOIN Course_Student

SJoin

Find the courses that professors with the last name
‘Kelly’ teach {5} Selection,

Natural Join SELECT * FROM Professors NATURAL JOIN
Course_Professor WHERE Professors.LName = 'Kelly'

SPJ

Find the student ID, the last name, and the course ID
of ‘Junior’ students who are between 18 and 20 years
old inclusive {7}

Selection,
Projection,
Natural Join SELECT SID, LName, CID FROM Students NATURAL JOIN

Course_Student WHERE Level = 'Junior' and Age>=18 and
Age<=20

PJoin

Find the list of courses (CID, CName) and the
professors teaching them (PID, LName) {5} Projection,

Natural Join SELECT CID, CName, P.PID, P.LName FROM Professors AS
P NATURAL JOIN Course_Professor

Thet
a

Find the students participating in clubs {4}
Theta Join SELECT * FROM Students, Student_Club WHERE SID =

studentID

Aggr
Find the avg. age of students for every year level {4} Group By

 SELECT Level, AVG(Age) FROM Students GROUP BY Level

JAgg

How many students are in every course (CName) {6}
Natural Join,
Group By

SELECT CName, COUNT(CS.SID)
FROM Courses as C NATURAL JOIN Course_Student as CS
GROUP BY C.CID, CName

In our study, we used DBSnap-Eval to collect a total of 712

submissions from 78 students taking a database class. We used
10 of the most common types of database queries (schema and
queries shown in Table 1). Each student also completed a survey
providing information about gender, previous database
experience, and previously completed database classes. Students
were trained on the visual elements of DBSnap-Eval before they
participated in this study. They were also informed about the
nature of this study, how the querying steps they would
complete were going to be monitored (without recording
identifying information like student name or IP address), and
how the collected data was going to be used (aggregated report).
Participation was optional but most students participated. Unlike
most of the previous work in this area (which consider that a
query is correct when it generates the expected output), we
manually evaluated the correctness of each submitted query.
Manually evaluating queries was a time-consuming task and
limited the number of students and submissions we included in
our study. On the other hand, this step provided an accurate
assessment of query correctness as incorrect queries can easily
generate the expected output on a given state of the dataset.

Figure 2: The total number of submissions per query

Figure 3: Correctness rate per query

Figure 4: Correctness rate for questionnaire categories

4 Results
In this section, we present the results of various data analysis

tasks. Specifically, we explore aspects related to query success
rates, temporal properties, and query construction patterns. Out
of the 78 students who submitted solutions, 77% (60) were male,
21% (16) female, 1% (1) selected other gender, and 1%(1) did not
share this information. 26% (20) of the students had previously
taken a database class and 49% (38) had some prior basic
exposure or experience with databases, e.g., internship, work,
etc. (not necessarily using querying languages). Fig. 2 shows the
number of submissions received for each question. We received
at least 72 submissions for each query question.

Query correctness rate per query type and questionnaire
category. Fig. 3 shows the correctness rate for each query
question. Across all the queries, between 62% to 87% of the
submissions were correct. In general (and as expected), the

72
73
74

77
78
78

77
77

76
76

0 10 20 30 40 50 60 70 80

JAgg
Aggr

Theta
PJoin

SPJ
SJoin

Join
Int

Proj
Sel

Number of Submissons

Q
ue

ry
73.6%

80.8%
78.4%

81.8%
61.5%

84.6%
83.1%
83.1%
82.9%

86.8%

26.4%
19.2%
21.6%

18.2%
38.5%

15.4%
16.9%
16.9%
17.1%

13.2%

0% 20% 40% 60% 80% 100%

JAgg
Aggr

Theta
PJoin

SPJ
SJoin

Join
Int

Proj
Sel

Percentage of Correct/Incorrect Answers

Q
ue

ry

Incorrect Correct

78.3%

81.1%

77.1%
87.0%

20.0%
100.0%

82.7%
79.6%

21.7%

22.9%
13.0%

80.0%
0.0%

17.3%
20.5%

0% 20% 40% 60% 80% 100%

No Prev DBExp
Prev DBExp

No Prev DBClass
Prev DBClass

Not Shared
Other

Female
Male

Percentage Correct/Incorrect

Ca
te

go
ry

Incorrect Correct

18.9

ITiCSE’22, July, 2022, Dublin, Ireland Y. N. Silva, A. Loza, and H. Razente

correctness rate is lower in queries with larger number of
operators. The average rate for queries with one, two, and three
operators was 82.5%, 80%, and 61%, respectively. This, however,
is not a strict or uniform rule. We can observe, for instance, that
queries with aggregation and Theta join operations had smaller
success rates. We also observe that while the difference between
queries with one and two operators is small, the difference
between queries with two and three operators is significantly
larger. Since our study focused on relatively simpler queries in
an introductory database class, we did not evaluate queries with
large number of operators. Fig. 4 shows the correctness rates for
the categories used in the survey across all queries. We found
that female students (82.7%) performed slightly better than male
students (79.6%) and that the success rate for students who took
a database course previously (87%) was relatively higher than the
one for students who were taking their first database class (77%).

Query correctness vs. time and number of actions. Fig. 5 and
Fig. 6 show the time and number of actions that students took to
complete each type of query, respectively. Queries with a single
operator are represented with black dots while the ones with
two or more with gray dots. As reported in previous work, we
found that, in general, queries with aggregations and joins have
smaller success rates. We found, however, significant differences
between the query with aggregation only (Aggr) and the one that
combines aggregation and join (JAgg). The Aggr query took a
time (1m 48s) similar to other single-operator queries (1m 33s)
but significantly smaller than JAgg (2m 20s). Likewise, Aggr took
a number of actions (9.4) that is similar to other single-operator
queries (average: 12.8), but significantly smaller than that of
JAgg (18.6). Observe also that while Aggr and JAgg, required a
minimum of 4 and 6 actions, respectively, students took on
average 9 and 19 actions to complete them. These results seem to
indicate that the concept of aggregation by itself may not be
much more complex than other operators such as selection and
projection but that students find the combination of join and
aggregation particularly more challenging. We also observe that
in general, students took significantly more actions to complete a
query than needed. While the smallest number of actions to
correctly build a query (see Table 1) ranged from 3 (e.g., Sel, Proj,
and Int) to 7 (SPJ), the actual number of completed actions
ranged from around 8 (Sel, Proj, Int, Aggr), to around 24 (PJoin,
Theta, SJoin). This highlights the value of interactive querying
interfaces that show students the results of a query as it is being
constructed. We also observe that all the queries with join
operators take more time and actions than other queries. The
divide is even more evident in terms of number of actions. While
SJoin takes more time and actions than other join queries, this
may be related to the fact that in most cases, this was the first
multi-operator query that students answered (queries could be
answered in any order).

Time spent in top-3 query blocks. Figuring out how much time
students spend on a query block can highlight the parts of the
query they struggled the most with. Fig. 7 shows the top-3 query
blocks (datasets and operators) for each query type based on the
time spent with that type of block while constructing the query.

Figure 5: Query construction time vs. correctness

Figure 6: Number of actions vs. correctness

Figure 7: Percentage of time spent in top 3 query blocks

Two general and somewhat expected observations are that, in
most queries, datasets are the most common blocks and the
required operators to solve the query are also among the top-3
operators. There are, however, interesting insights we can infer
from the presence of operators that were not needed to answer
the queries. There are four specific cases. (1) Selection-
Projection: In Proj, the query did not require the selection
operator, however this block was a top-3 block. This seems to be
a common confusion since both operators can be seen as types of
“filtering” operators. Selection filters the rows of a table while
projection filters the columns. (2) Set operators: The Int query
required the intersection operator, but the union operator was
also commonly used here. This shows that not properly
recognizing the differences among set operations is a common
mistake. (3) Grouping-Selection: In Aggr, the query only needed
the grouping operator but the select operator was a top-3 block.

JAgg

Aggr
Theta

PJoin

SPJ

SJoinJoinInt Proj
Sel

60

65

70

75

80

85

90

00:00 01:00 02:00 03:00 04:00

%
 o

f C
or

re
ct

 A
ns

w
er

s

Avg Query Construction Time (Minutes)

Sel

Proj Int Join
SJoin

SPJ

PJoin

ThetaAggr

JAgg

60

65

70

75

80

85

90

0 5 10 15 20 25 30

%
 o

f C
or

re
ct

 A
ns

w
er

s
Average Number of Actions

Data

Group

Data
Data

Select

Data

Data

Data

Data

Group

Data

Theta Join

Nat. Join

Data

Select

Nat. Join

Intersection

Proj

Nat. Join

Select

Project
Project

Project

Nat. Join

Project

Union

Select

0% 20% 40% 60% 80% 100%

JAgg

Agr

Theta

PJoin

SPJ

SJoin

Join

Int

Proj

Percentage of total query construction time

Q
ue

ry

Top 1 Top 2 Top 3 Other

DBSnap-Eval: Identifying Database Query Construction Patterns ITiCSE’22, July, 2022, Dublin, Ireland

This seems to indicate that some students want to express the
grouping predicate as a selection predicate. This confusion may
be related to the fact that both operators usually generate an
output that is significantly smaller than the input data. Some
students fail to recognize that these operators reduce the data
cardinality in very different ways. (4) Join-Projection: This was
an unexpected finding. Both, Join and Theta, required a single
join operator. However, in both cases, the projection operator
was among the top-3 blocks. The reason may be related to the
fact that students learn that the projection operator controls the
set of attributes that will be included in the output. Students
understand that the output of a join query should include
attributes from different tables. They seem to fail to understand,
however, that projection by itself cannot include attributes of
datasets that are not included in the query. These four identified
cases represent potential common sources of confusion.

Number of different types of actions per query type. Fig. 8 and
Fig. 9 show the number of actions for each query among correct
and incorrect responses, respectively. Across all submissions and
query types, we can observe that the Move and Connect actions
are the most common ones. Disconnect and Delete actions are less
common but are present in both correct and incorrect
submissions. Disconnect and Delete represent corrections made
during the query construction process. Update actions are less
common because only certain operators (the ones with predicate
fields) allow this action. We observe that the number of actions
between correct and incorrect submissions are, in general,
similar. There are, however, two outliers: Join and JAgg. In Join,
the number of Move and Connect actions in incorrect
submissions are 49% and 82% larger than those in correct ones,
respectively. We believe this is the case because this was the first
multi-table query most students answered. The practice
answering this question probably helped in subsequent join
queries. In JAgg, the number of Connect and Disconnect actions
in incorrect submissions are 2.4x and 4x larger than those in
correct ones, respectively. This result is aligned with our
previous finding about the increased difficulty of combining
joins and aggregations.

Closer look into the first five minutes of query construction.
Fig. 10 and Fig. 11 show the average number of different types of
actions during the first 5 minutes (in 1-min intervals) for correct
and incorrect Join query submissions, respectively. Similar
trends were observed in other queries. We notice that the
number of actions changes over time with most actions
happening in the first 2 minutes. While both correct and
incorrect submissions show significant levels of activity, we
observe some differences. In the correct submissions, the Move
and Connect actions dominate in the entire time range. The
number of corrective actions (Disconnect and Delete) are overall
small but tend to increase over time. In the incorrect
submissions, the Move and Connect actions are the most common
ones but the number of corrective actions is significantly larger
than in correct submissions. These results indicate that, while a
trial-and-error process appears to be used in both correct and
incorrect queries, this process is more active in incorrect queries.

Figure 8: No. of actions per question (correct answers)

Figure 9: No. of actions per question (incorrect answers)

Figure 10: First 5 minutes of Join (correct answers)

Figure 11: First 5 minutes of Join (incorrect answers)

Data-first vs operator-first. Knowing how to start a query can
be quite challenging when learning database query languages.
We analyzed the collected data to identify early actions that can
help students build correct queries. Fig. 12 shows the percentage
of correct and incorrect queries comparing submissions that
started the query construction process with dataset blocks vs.

0
1
2
3
4
5
6
7
8
9

10
11

Sel Proj Int Join SJoin SPJ PJoin Theta Aggr JAgg

Nu
m

be
r O

f A
ct

io
ns

Query

Move
Connect
Update
Disconnect
Delete

0
1
2
3
4
5
6
7
8
9

10
11

Sel Proj Int Join SJoin SPJ PJoin Theta Aggr JAgg
Nu

m
be

r O
f A

ct
io

ns
Query

Move
Connect
Update
Disconnect
Delete

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Nu
m

be
r O

f A
ct

io
ns

Time (minutes)

Moved
Connected
Updated
Disconnected
Deleted

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Nu
m

be
r O

f A
ct

io
ns

Time (minutes)

Moved
Connected
Updated
Disconnected
Deleted

ITiCSE’22, July, 2022, Dublin, Ireland Y. N. Silva, A. Loza, and H. Razente

Figure 12: Operator-first vs. Data-first

Figure 13: Selection-first vs. Join-first

submissions that started with operator blocks. This figure shows
that in most query types (seven out of ten: Pro, Int, Join, SPJ,
PJoin, Theta, and Aggr), submissions that started with the
database blocks have higher success rate than the ones that
started with the operator blocks. While the advantage is not
large (e.g., the success rate increases by 10% in Theta and 6.5% in
Int), these results seem to indicate that, for certain queries,
starting the process thinking about what datasets (tables) are
necessary may be a beneficial query construction strategy.

Query optimization opportunities. Our evaluation was
performed in an introductory database class where there were
no expectations on generating optimized query plans. DBSnap
being based on query-tree representations, however, is a good
platform to introduce the concepts of query optimization. One of
the key ideas in query optimization is the use of query plans that
filter large amounts of data early in the query execution process.
This way later operators (higher in the query tree) will work on
reduced amounts of data. In our study, we observed that most
students wrote queries that in practice would correspond to
potentially inefficient plans. Fig. 13 shows that for queries SJoin
and SPJ, 66% of the submitted queries executed the join first
while only 34% of the queries executed the selection operator
first (in general, the latter is expected to be more efficient). This
highlights the opportunity to introduce concepts of query

optimization using simple queries in introductory database
classes.

5 Discussion, Limitations and Extensions
Our study of patterns that emerge while students write queries
revealed multiple results that could be used by database
educators to better teach query languages. The reported results
include: (1) queries that combine aggregation and join operators
are particularly challenging for students, (2) there are common
pairs of operators where one operator is incorrectly used instead
of the other one (Selection-Projection, Set operators, Grouping-
Selection, Join-Projection), (3) the trial and error process is
actively used by query language learners, using interfaces that
facilitate this process by dynamically showing the results as the
query is constructed can be specially beneficial to students, (4)
starting a query thinking about the data needed to answer the
query may be a beneficial strategy in certain cases, (5) there are
opportunities to introduce query optimization concepts even
with simple queries. Given the limited number of studies in this
area, this field can benefit from more empirical evidence.

This experience report has some limitations. It only includes
students from a single instructor. This may have influenced
some of the identified query construction patterns. Also, while
the manual evaluation of query correctness eliminated the
possibility of false-positives (incorrect queries with correct
output), this also limited the number of submissions included in
our study. We plan to evaluate more submissions from multiple
instructors and report additional findings in the future.

While DBSnap-Eval provides researchers with some features
not supported in other tools, e.g., the ability to monitor query
construction while queries are constructed, it can be extended in
multiple ways. For instance, it can be adapted to support other
languages such as domain calculus and a text-oriented version of
SQL. It can also be adapted to detect significant deviations from
the correct answers and suggest corrective actions. It could also
be used to study additional query construction properties, e.g.,
(1) identify commonly occurring correct/incorrect submissions
for a given query, (2) study complex operators (e.g., division) and
multi-operator queries, (3) study the use of views to construct
complex queries, (4) identify rates in which incorrect query
submissions produce the correct output, and (5) identify cross-
query trends among the queries submitted by a student.

6 Conclusion
Very little is known about how query language learners write

database queries. Identifying query construction patterns and
common errors in the process of building queries can help
educators to better teach query languages. To this end, in this
paper we introduce DBSnap-Eval, an open-source system to
monitor the process of creating tree-based database queries
(similar to the query evaluation trees used by many database
textbooks and educators) and present an initial set of identified
query construction patterns. A goal of making DBSnap-Eval
publicly available is to enable the research community to
perform further studies regarding the query construction
process.

0 20 40 60 80 100

JAgg-Data First
JAgg-Op First

Aggr-Data First
Aggr-Op First

Theta-Data First
Theta-Op First

PJoin-Data First
PJoin-Op First
SPJ-Data First

SPJ-Op First
SJoin-Data First

SJoin-Op First
Join-Data First

Join-Op First
Int-Data First

Int-Op First
Proj-Data First

Proj-Op First
Sel-Data First

Sel-Op First

Percentage of Correct/Incorrect Answers

Q
ue

ry
 a

nd
 A

pp
ro

ac
h

Incorrect Correct

0 10 20 30 40 50

Join First

Selection First

Number of Submissons

Ap
pr

oa
ch

SJoin SPJ

DBSnap-Eval: Identifying Database Query Construction Patterns ITiCSE’22, July, 2022, Dublin, Ireland

REFERENCES
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond

Lister. 2016. Students’ Syntactic Mistakes in Writing Seven Different Types of
SQL Queries and Its Application to Predicting Students’ Success. In ACM
Technical Symposium on Computing Science Education (SIGCSE’16)
(Memphis, TN). ACM, 401–406. https://doi.org/10.1145/2839509.2844640.

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016.
Students’ Semantic Mistakes in Writing Seven Different Types of SQL
Queries. In ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’16) (Arequipa, Peru). ACM, 272–277.
https://doi.org/10.1145/2899415.2899464.

[3] Jevri Tri Ardiansah, Aji Prasetya Wibawa, Triyanna Widyaningtyas, and
Okazaki Yasuhisa. 2017. SQL Logic Error Detection by Using Start End Mid
Algorithm. Knowledge Engineering and Data Science 1, 1 (2017), 33–38.
https://doi.org/10.17977/um018v1i12018p33-38.

[4] Anthony Kleerekoper and Andrew Schofield. 2018. SQL Tester: An Online
SQL Assessment Tool and Its Impact. In ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE’2018) (Larnaca, Cyprus).
ACM, 87–92. https://doi.org/10.1145/3197091.3197124.

[5] Ana Paula Appel, Elaine Quintino da Silva, Caetano Traina Jr., and Agma J. M.
Traina. 2004. iDFQL: a query-based tool to help the teaching process of the
relational algebra. In World Congress on Engineering and Technology
Education (WCETE). 179–184.

[6] Adriano Lino, Álvaro Rocha, Luís Macedo, and Amanda Sizo. 2019.
Application of clustering-based decision tree approach in SQL query error
database. Future Generation Computer Systems 93 (2019), 392–406.
https://doi.org/10.1016/j.future.2018.10.038.

[7] Andrew Migler and Alex Dekhtyar. 2020. Mapping the SQL Learning Process
in Introductory Database Courses. In ACM Technical Symposium on
Computer Science Education (SIGCSE’20) (Portland, OR). ACM, 619–625.
https://doi.org/10.1145/3328778.3366869.

[8] George Obaido, Abejide Ade-Ibijola, and Hima Vadapalli. 2019. Generating
SQL Queries from Visual Specifications. In ICT Education. Springer, 315–330.
https://doi.org/10.1007/978-3-030-05813-5_21.

[9] Nicolai Pöhner, Timo Schmidt, André Greubel, Martin Hennecke, and
Matthias Ehmann. 2019. BlocklySQL: A New Block-Based Editor for SQL. In
Workshop in Primary and Secondary Computing Education (WiPSCE’19)
(Glasgow, Scotland). ACM. https://doi.org/10.1145/3361721.3362104.

[10] Yasin N. Silva and Jaime Chon. 2015. DBSnap: Learning Database Queries by

Snapping Blocks. In ACM Technical Symposium on Computer Science
Education (SIGCSE’15) (Kansas City, MO). ACM, 179–184.
https://doi.org/10.1145/2676723.2677220.

[11] Yasin N. Silva and Jaime Chon. 2015. Querying databases by snapping blocks.
In International Conference on Data Engineering (ICDE) (Seoul, South Korea).
IEEE, 1472–1475. https://doi.org/10.1109/ICDE.2015.7113404.

[12] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in
SQL Query Teaching. In ACM Technical Symposium on Computer Science
Education (SIGCSE’19) (Minneapolis, MN). ACM, 198–203.
https://doi.org/10.1145/3287324.3287359.

[13] UC Berkeley. 2013. Snap! Website. http://snap.berkeley.edu/.
[14] Jason Gorman, Sebastian Gsell, and Chris Mayfield. 2014. Learning Relational

Algebra by Snapping Blocks. In ACM Technical Symposium on Computer
Science Education (SIGCSE’14) (Atlanta, GA). ACM, 73–78.
https://doi.org/10.1145/2538862.2538961.

[15] Moshé M. Zloof. 1975. Query by Example. In Proceedings of the National
Computer Conference and Exposition (AFIPS’75) (Anaheim, CA). ACM, 431–
438. https://doi.org/10.1145/1499949.1500034.

[16] Eckart Modrow. 2018. SQLsnap!. Retrieved May 18, 2020 from
http://snapextensions.uni-goettingen.de/.

[17] Pritam Mitra. 2009. Relational Algebra Learning Tool. Technical Report, Dept.
Computing, Imperial College London. Retrieved May 18, 2020 from
https://www.doc.ic.ac.uk/~pjm/teaching/student_projects/pm105_report.pdf.

[18] Blockly. 2012. Blockly: A JavaScript library for building visual programming
editors. Retrieved from https://developers.google.com/blockly.

[19] Yasin N. Silva, Anthony Nieuwenhuyse, Thomas G. Schenk, and Alaura
Symons. 2018. DBSnap++: Creating Data-Driven Programs by Snapping
Blocks. In ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’2018) (Larnaca, Cyprus). ACM, 170–175.
https://doi.org/10.1145/3197091.3197114.

[20] Yasin N. Silva, Isadora Almeida, and Michell Queiroz. 2016. SQL: From
Traditional Databases to Big Data. In ACM Technical Symposium on
Computing Science Education (SIGCSE’16) (Memphis, Tennessee). ACM, 413–
418. https://doi.org/10.1145/2839509.2844560.

[21] Yasin N. Silva. 2022. DBSnap-Eval source-code. Retrieved from
https://ysilva.cs.luc.edu/dbsnap/files/dbsnap-eval.zip.

	DBSnap-Eval: Identifying Database Query Construction Patterns
	Author Manuscript
	Recommended Citation

	Microsoft Word - Query Construction Patterns V9 - Camera Ready WITH HEADERS.docx

