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Abstract 

Power has revolutionized endurance athletics. Power is a function of the amount of force produced 

in a certain amount of time. Utilized correctly, it can be an effective metric of effort during 

endurance activities. Cycling saw the first fruits of this metric in the 1980s and 1990s with Tour 

de France athletes and has continued to provide immense benefits to cyclists. Power when applied 

to running, however, has seen a much slower progression toward effective use. Various attempts 

in the 1970s and 80s to use calculations to express running power as a function of multiple different 

kinematic variables proved futile. In recent years, significant technological developments have led 

to a revitalization of running power research, particularly in the Stryd pod, which is the most 

commercially successful “running power meter” available. This technology has been shown to be 

quite reliable, however results related to metabolic and cardiovascular metrics of effort such as 

running economy, RPE, and HR have shown a lot of variability and inconsistency. Though sensors 

such as the Stryd pod have propelled running power research into the 21st century, there is still so 

much that needs to be done. Perhaps a holistic model utilizing technology from multiple different 

disciplines in the field of exercise science would provide a more valid and accurate base from 

which to implement running power in training and racing for a wider range of people and settings. 
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2.1 Introduction 

Power may be one of the most revolutionary metrics applied to endurance sports in recent history, 

[1]. When the concept was first applied to cycling in the late 20th century, the applications 

foundationally changed not only the training, but also the competition and assessment of cycling 

forever [2, 3]. By training based on power, cyclists can make consistent efforts regardless of 

multiple different conditions that were not possible outside of an indoor ergometer previously. [3, 

4, 5, 6]. Power is reported in Watts (W) and is defined as the amount of work done over a period 

of time, or Joules (J) divided by seconds [2]. Because of the way power is calculated and measured, 

in cycling it is a more objective measure of effort than a metric such as speed. In addition, it is 

more rapidly assessed than heart rate due to current technology, and therefore is more applicable 

in monitoring shorter efforts such as intervals, [2, 4, 5, 7]. Power has also been shown to be highly 

correlated with metabolic effort measured by VO2, which validates its use in structuring training 

for aerobic athletes based on the attempts to improve various aspects of aerobic fitness including 

lactate threshold, VO2max, and economy, [1, 4, 5, 6]. 

While considerable progress has been made over the last few decades into the validation and 

application of power for cycling performance, much less advancement has been seen in applying 

the same concepts to running. This disparity between the two sports is largely due to the nature of 

measuring power in a rigid body compared to soft tissue. On a bicycle, power can be directly and 

accurately measured via a strain-gauge placed in the bottom bracket, the crankset, or the pedal, [2, 

3, 7]. The rigid nature of a modern bicycle allows forces to be easily conserved and transferred 

between the pedal and a power-meter. During running, however, determining power produced via 

a strain-gauge would be not only difficult, but also mildly entertaining. A human body is obviously 

not fully rigid, containing significant amounts of fluids and soft tissues, making a direct 

measurement of forces produced immensely complex. Therefore, efforts to develop various 

indirect measurements of running power have been undertaken to differing degrees of success. 

During the early development of running power as a research field, the most widely utilized 

methods of determining running power were mathematical calculations based largely on variables 

such as an individual’s weight, height, speed, stride frequency, etc. [8, 9, 10]. A downside of these 

early calculations was the fact that variables could not be assessed and recalculated in real time. 
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Therefore, this method was much less effective for prescribing training or determining differences 

of power needed for an individual to run different speeds or efforts.  

The new development of accelerometer technology has allowed for real-time measurement of set 

data points important for calculating power such as leg-length, stride frequency, stride length, 

vertical oscillation, ground contact time, and others, [11, 12, 13]. An obvious limitation of the 

accuracy or validation of these types of calculations is the indirect nature of the results. One is not 

truly measuring the power output during running, but rather measuring other variables to estimate 

running power. 

The purpose of this review, therefore, is to thoroughly assess the literature surrounding power and 

more specifically running power throughout the decades, discuss the gaps that exist within 

previous research and current methods, and hopefully provide viable solutions or suggestions to 

further the research behind running power to further the effectiveness and practicality of utilizing 

running power as both an assessment and programming tool for training and performance. By 

furthering our knowledge of how best to collect and calculate running power, we can potentially 

create a more intuitive way of prescribing training and performance programs based on effort as 

opposed to something simple such as pace or speed. 

 

2.2 Power Validation: Cycling, VO2, and HR 

Since the late 80s to early 90s, cycling has used power to assess, prescribe, and implement training 

and racing programs. Anecdotal evidence from Tour de France riders showed promise in the field, 

but one of the first true research studies assessing the effectiveness of power metrics compared to 

VO2 measurements was by Coyle et al., in 1991. A group of elite cyclists and sub-elite cyclists 

both rode a 40 km time-trial. Power and VO2 were monitored during the trial. While VO2max was 

not significantly different between the groups, the elite cyclists rode faster than the sub-elite. In 

addition, power and time to finish as well as 1-hr power and blood lactate threshold were 

significantly strongly correlated. This seemed to indicate that power was more indicative of 

performance than VO2max [6].  

Since then, research delved deeper into the relationships between physiological measures of effort 

and cycling power. Arts and Kuipers in 1994 showed a significant and strong correlation between 
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power, heart rate, and VO2max, as well as percentages of each, [4]. Less than five years later, 

Garcin et al., discovered that at consistent submaximal power output, heart rate would remain 

consistent for a significant period, while rate of perceived exertion (RPE) had a significant linear 

upward drift, indicating that while power output is an accurate measure of physiological effort, it 

may not be quite as accurate in determining psychological or perceived effort, [14].  

While the concept of “critical power” (CP) or use of power to help prescribe training zones based 

on metabolic efforts had been discussed previously, [2, 7]. Chidnok et al., took the idea to a direct 

and practical application. If power can truly be used to assess and prescribe training based on zones 

such as below “threshold” or above “threshold,” then assigning intervals to varying power zones 

based on the metabolic zones they reflect would reveal if they indeed are correlated. Cyclists each 

completed a maximal 3-min test to determine CP, and then completed five separate cycling tests 

to exhaustion: one with a constant effort, and then four with varying recovery intensities of 

“severe”, “heavy”, “moderate”, and “light”. It was shown that significant differences in the total 

duration of exercise was increased as the intensity of recovery decreased, and the total work done 

above CP was also increased by 46%, 98%, and 220% for the heavy, moderate, and light 

recoveries, respectively. This showed that the use of power to ascertain critical power was 

accurate, as the farther from a “calculated” CP the athletes got, the more total work they were able 

to do, [5]. 

 

2.3 Power Progression: Running Power Calculations 

The next step is to apply the concept of “power” to running. The interesting fact is that this was 

attempted long before “power” was applied to cycling. The late 1970s and early 1980s were a ripe 

time for research into running power. These first attempts were very rudimentary, using solely 

algorithms and complex equations to try to estimate power. Williams and Cavanagh in 1983 

summated a group of running power studies and proposed their own set of equations to calculate 

power, [10]. The issue is that these calculations were not only rudimentary, but thoroughly indirect. 

None of them could calculate immediate power, and almost every model assumed different values 

for various constants such as tendon elasticity, segmental energy transfer, and center-of-mass. As 

an example, using all the same values for variables and at speeds of 3.6-3.9 m*s-1, the 6 different 
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studies included in Williams and Cavanagh estimated the power output anywhere from 163W to 

931W and 1650W. 

This study identified three key factors that any running power calculation must be based on: 

muscular activity, elastic activity, and transfer of energy. These factors need to not only be 

accounted for, but also accurately assessed (or assumed) for the ending calculation to be valid, 

accurate, and precise. Muscular activity is a more obvious factor. The force of concentric and 

eccentric contractions needs to be accounted for to assess the propulsion force during running. A 

complication of this is that energy is utilized to engage in eccentric contractions. Actions such as 

the subconscious lateral stabilization of a stride, eccentric quad contraction to contrast landing 

forces, and even plantar flexion against the ground all require metabolic power without increasing 

the mechanical power. This was referred to the researchers as negative energy. 

Elastic energy consists of the stored energy in tendons and muscles that is released after a 

relaxation of that tension. The complication of this factor is more obvious; how does one determine 

exactly how “springy” tendons and muscles are while they are still in the body? The short answer 

(as shown by the wide range of results from the various calculations in Williams’ and Cavanagh’s 

study), is that quantifying the elasticity of in vivo tissues was difficult if not impossible. 

If these factors can be accounted for, the final step is to assess transfer of energy. If the energy of 

one segment, (for example the lower leg), increases while another segment such as the upper leg 

loses energy, this is likely not exclusively due to muscular contracts. It could simply be from a 

transfer of the energy between segments. The easiest way to think of this concept is to return to a 

bicycle. As one pushes into the pedal, that energy is transferred from the pedal to the crank arm, 

to the hub, to the chain, and finally out to the wheel to propel the bike forward. Similar principles 

can be applied to transfer of energy in the human body during running, however the obvious 

difference is that more energy is conserved in a bicycle because it is a rigid body. Significant 

energy can be lost due to dissipation through vibration or heat in the human body, [10]. 

Even the proposed model by the authors revealed values from 273-1775W for the same variables 

at a speed of 3.57 m*s-1 depending on the assumed constant values. After this paper, while a few 

studies were still conducted of this nature, research into representing running power as a 

mathematical model fizzled out.  
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Attempts have been made more recently, however, to create an effective algebraic model for 

running power. Jenny and Jenny released a paper in 2020 in the Journal of Biomechanics noting 

papers from the late 80s through current literature in which some headway had been made, [9]. 

Three factors were identified in creating this model: 1) dissipation of energy due to natural causes 

such as vertical oscillation, heat, etc., 2) overcoming breaking forces, and 3) overcoming 

aerodynamic drag. It is important to note that all these factors fall under an interpretation of 

“negative work” by Williams and Cavanagh, namely intrinsic (dissipation of energy) and extrinsic 

or environmental negative work. Breaking forces and aerodynamic drag can be considered 

negative work done by the environment around a runner because it does not require metabolic 

energy to produce, but it does require metabolic energy to overcome. 

This model from Jenny & Jenny was created based on significantly fewer assumptions than 

previous studies, however similar shortfalls can be said about this study as with all calculation-

based running power; namely it is not possible to make a model than accounts for individual and 

immediate changes without sensor measurement and it is not practical to implement for any 

training or performance purposes. Thus, the gap still existed between theoretical and practical 

running power. 

 

2.4 Power Application: Accelerometry 

In 2015, a seemingly breakthrough technology was introduced to the community which would 

change the face of running power and begin a revival of research into the field. This breakthrough 

is known as the Stryd Pod. The Stryd Pod is an inertial measurement unit or IMU which is able 

through accelerometry and gyroscopic technology to assess factors including stride length, stride 

frequency, vertical oscillation, speed, grade, wind speed, and many other factors, [12, 13, 15, 16 

17, 18]. Stryd then takes this information and, using a proprietary algorithm, provides users with 

an estimated numerical value of running power in real-time. 

Anthropometric, spatiotemporal, kinetic, and kinematic factors have all been shown to have links 

between each other. In 2017, Clark et al. produced a study showing that this relationship between 

vertical ground reaction forces and time-waveform patterns using wearable IMU sensors with body 

mass included can account for at least 94% of variance between the two, [11]. This provided 

evidence that wearable technology was theoretically strongly correlated with running forces in the 
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body, and therefore would be a possible avenue for real-time calculations of running power. 

However, research needed to be done to verify the Stryd sensor specifically. 

Research on the updated Stryd Pod began pushing in 2018, with multiple different studies 

attempting to determine the validity, accuracy, and reliability of the technology. Garcia-Pinillos 

and company took on the determination of overall reliability and spatiotemporal accuracy of the 

Stryd Pod, [15, 16, 17, 18]. Kinematic data measured by the Stryd pod showed reliable and valid 

results for most metrics, but overestimated flight time and underestimated ground contact time, 

[16]. A follow-up study revealed that the Stryd pod again was relatively valid and reliable, however 

once again the system overestimated flight time by 15% and underestimated ground contact time 

by 5% when compared to high-speed video analysis, [15]. Garcia-Pinillos also found high 

correlations between power and velocity as measured by the Stryd pod, (r > 0.92), and found no 

significant differences in power when measured at different time intervals from a 10-second 

average to a 180-second average, [17, 18]. 

Cerezuela-Espejo et al. found that Stryd was the most repeatable unit when compared to four other 

commercially available technologies on both a treadmill and outdoor track, [19]. In addition, they 

found that Stryd was also the most valid technology when compared to metabolic effort as 

measured by VO2, (r ≥ 0.911), [19]. In another study, Cerezuela-Espejo’s team found that the Stryd 

power meter showed a high agreement with two proposed running power calculations by Van Dijk 

& Van Megen’s work The Secret of Running in 2017 and a white paper released by Skiba in 2016, 

[8, 20, 21]. The Stryd pod has also been shown to be reliable during different intensities during 

trail running, [22]. It should be noted that Stryd was not reliable during walking in the same study. 

The results show a reliable and valid running kinematics sensor, but what of its accuracy and 

validity in determining power? The difficulty of determining the validity and accuracy of a 

technology such as the Stryd Pod is that there is no true “gold standard” in research to compare 

against. For example, if one were to compare a new body composition technique, it would 

immediately be compared to hydrostatic weighing. Accelerometry techniques are typically 

compared spatiotemporally against 3D motion-capture systems. New metabolic technology is 

compared against widely used metabolic carts. But there is no such “gold standard” in running 

power. The closest technology to a “gold standard” is an instrumented treadmill such as what was 

used to assess elite sprinting power by Rabita and company in 2015, [23]. However, instrumented 
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treadmills assess only mechanical power via the ground-reaction forces, and cannot account for 

inter-segmental forces, nor can it effectively account for any energy lost through heat. Therefore, 

running power techniques must be compared against the most valid measure of effort that we have, 

VO2. 

Van Dijk and Van Megen in their book The Secret of Running took to compare the Stryd power 

and VO2 data in a private study and found a coefficient of determination of 0.96 between the two, 

[21]. The next year saw two studies produce quite different results. Aubry found that amidst three 

different efforts both indoor and outdoor, an R-value of only 0.29 was found both a group of 

recreational and elite runners, and that no significant correlations were found between running 

power and VO2 when the groups were separated, [24]. It should be noted that a follow-up 

manuscript from the researchers at Stryd proposed major methodological flaws in the above paper, 

[25] however, the article was never rescinded. In another study, a positive correlation of 0.6 was 

found in seventeen well-trained athletes between Stryd power and running economy, [26]. As 

mentioned above, Cerezuela-Espejo et al. found a correlation of at least 0.911 when testing the 

Stryd pod compared to VO2 data, [19]. 

A study in 2021 compared the Stryd pod to “gold standard” determinations of VT1, VT2, and 

MAP via ventilatory criteria at specific speeds and found high correlation with speed at each 

threshold, but no significant correlation between these speeds and VO2, suggesting that the Stryd 

Pod’s “power” calculations are more related to speed than actual metabolic effort, [27]. In addition, 

a study based on New Zealand competitive U20 runners assessed running power via the Stryd pod 

on three separate surfaces including road, dry cross-country course (XC-dry), and wet cross-

country course (XC-wet) [28]. Earlier research has already suggested that it requires more energy 

and therefore more power to run on more difficult terrain than on firmer terrain, accounting for a 

150-180% increase in the energy required to run the same speed, [29, 30]. In the same way, one 

could assume that running at the same energy, speed would reduce by roughly the same amount. 

Therefore, one would suppose that the power required to run on XC-wet would be the highest, 

followed by XC-dry, and lastly road. 

However, according to the results, the highest power values were found in the exact reverse order. 

In addition, the speeds for each surface from firmest to softest were found at 5.0 m∙s-1, 4.8 m∙s-1, 

and 4.4 m∙s-1, [28]. If we follow the principles of previous research and assume that the athletes 
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were giving similar efforts, the slowest surface should have had a race speed of 3.33 m∙s-1 or 1.5x 

slower than the road surface. Obviously, the runners completed the race on average much faster 

than this. These results, in addition to the wide range of correlations found in previous studies, call 

into question the validity of utilizing Stryd power or any similarly related IMU to assess effort, 

and therefore to prescribe training or assess performance. 

 

2.5 Power Gaps: Where Research Needs to Go 

As we have seen, problems remain in running power, and many of these issues stem from the same 

roots as running power calculations. Muscular energy is still being accounted for via kinematic 

data. While kinematic data has been shown to have high correlations with kinetic data such as 

power, [8, 10, 11, 21, 31], it is still obvious that the most direct way to determine power would be 

via kinetic data. This kinetic data would allow for a much more accurate and valid assessment of 

the force produced by muscles, (as has been shown in cycling), [2, 4, 6, 7], which in turn fulfills 

one of the three parameters of running power calculations by accounting for muscular energy. 

Elastic energy and transfer of energy are still calculated the same way. Assumptions are made to 

satisfy the requirement of the variable in an algorithm, but no progress has been made in 

determining the true values of either for the purposes of calculating running power. 

What is needed is a novel approach. During the time of running power calculations, authors 

attempted what they could with the technology they had, however it was consistently obvious that 

the thoughts were not implementable due to lack of technology. Today we have the means to truly 

make a valid, accurate, and reliable determination of running power. A full, comprehensive, and 

interdisciplinary model has never been proposed, and up until now there has been good reason. It 

has not been feasible previously to combine multiple technologies and fields of exercise science 

towards the goal of a single metric. However, with the revitalization of running power research 

due to the advent of the Stryd Pod and other technologies, as well as the commercial interest in 

running power products, I believe that now is the time to dive into broadening the horizons of what 

power can do in distance running. 

By creating a model that is not only reliable, but also can accurately and immediately account for 

the objective effort of individual athletes as well as the progress of a team, we can begin to 
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construct a framework for a new running boom. The sport of distance running could see a 

revolution in training not observed since cycling discovered power for the first time. Not only the 

elite of the elite, but your everyday jogger trying to qualify for Boston, your high school cross-

country athlete, or the master’s competitor still trying to stay healthy will benefit from such a drive 

forward. 

Progress is not arrival. The improvement of a certain field does not mean that we can settle for 

“good” when we could chase what is “great.” We have the tools, technology, and the support to 

create a true measure of running power. It is time to chase it. 
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