
GENERAL PURPOSE GPUs AND DEEP LEARNING 1

General Purpose Computing on Graphics Processing Units for Accelerated Deep Learning

in Neural Networks

Conor Helmick

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2022

GENERAL PURPOSE GPUs AND DEEP LEARNING

2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Daniel O’Malley, Ph.D.

Thesis Chair

Melesa Poole, Ph.D.

Committee Member

David Schweitzer, Ph.D.

Assistant Honors Director

Date

GENERAL PURPOSE GPUs AND DEEP LEARNING

3

Abstract

Graphics processing units (GPUs) contain a significant number of cores relative to central

processing units (CPUs), allowing them to handle high levels of parallelization in multithreading.

A general-purpose GPU (GPGPU) is a GPU that has its threads and memory repurposed on a

software level to leverage the multithreading made possible by the GPU’s hardware, and thus is

an extremely strong platform for intense computing – there is no hardware difference between

GPUs and GPGPUs. Deep learning is one such example of intense computing that is best

implemented on a GPGPU, as its hardware structure of a grid of blocks, each containing

processing threads, can handle the immense number of necessary calculations in parallel. A

convolutional neural network (CNN) created for financial data analysis shows this advantage in

the runtime of the training and testing of a neural network.

GENERAL PURPOSE GPUs AND DEEP LEARNING

4

General Purpose Computing on Graphics Processing Units for Accelerated Deep Learning

in Neural Networks

Introduction

According to Amdahl’s Law, computing speeds and capabilities are plateauing with

respect to the processing cores used in systems (Pandey & Badal, 2019). Due to a power wall,

the processing cores normally found in a CPU have been optimized to a point where the

development of their architecture is no longer making significant changes to computing speeds –

which means that alternatives must be explored to enhance computing and surpass its current

limits (Breß et al., 2019). On conventional systems, computing is handled by a central processing

unit (CPU); it handles a large portion of computation as it is responsible for a variety of

functions that range from calculations to operating system processes to directing other computer

parts in how to execute a task. This unit can handle different general computer functions at the

same time by splitting them up across multiple processor cores, which the grand majority of

functioning and useful computer-driven machines have. It follows, then, that a computer with

more CPU cores would effectively be able to compute more all at once than one with fewer

cores, and it would be able to split complex tasks into more simple subtasks across the cores

(Geer, 2005).

Due to size and power usage, a CPU can only handle so many processors before their

power drain outweighs their computing advantage (Calore et al., 2020). Therefore, the problem

revisited is that there are not enough cores on a CPU to handle tasks of enough volume or

complexity to improve computing. A CPU, though, is not the only structure within the computer

that has processor cores constantly processing subtasks. A system’s Graphics Processing Unit

GENERAL PURPOSE GPUs AND DEEP LEARNING

5

(GPU), as suggested by the similar structural label, also takes care of processing. Rather than

central or general processing, it handles the processing of computer graphics and displays. This

Domain-Specific Architecture, in handling a specific task set, does not require large and

demanding cores, solving the problem that limits the number of processing cores that are found

on the CPU. However, GPUs can experience coordination overhead, which may cause a

slowdown when multiple distinct grids must communicate (Kale et al., 2020). GPUs are capable

of having thousands more cores than CPUs, and indeed already do have many more cores

(Nvidia Corporation, 2021). If the GPU could be harnessed in a way that takes advantage of its

numerous cores to process general computing tasks, then computing and its capabilities would be

open to all new possibilities and efficiencies. So, the solution to the current CPU core problem

and the limitations described by Amdahl’s Law is to develop General Purpose Graphics

Processing Units, or GPGPUs. Of course, Amdahl’s Law also states that parallelization provides

no speedup in the case of serial processes – the limit of speedup for processing is determined by

how fast serial processes can be handled (Pandey & Badal, 2019). Therefore, GPGPUs provide

speedup by optimizing aspects of processing which can be parallelized to a large scale.

Given the significant difference between running processes on GPGPUs and CPUs, there

are uses for a GPGPU that are not available to CPUs. One such application, and perhaps the one

with the most potential, is the creation of large neural networks that can handle extremely large

data sets efficiently (Fonseca & Cabral, 2017). A GPGPU can achieve this by spreading the

functions and calculations for neurons and synapses of a neural network across its different

cores, or threads, and running them next to each other. Neural networks are the foundation of

GENERAL PURPOSE GPUs AND DEEP LEARNING

6

deep learning, which allows artificial intelligence to recognize patterns and continually perfect

its own algorithm without any human interference (Schmidhuber, 2015).

Processing

 A computer has multiple components responsible for power, data storage, and function,

each of these being actual hardware for the machine. The component that handles actual

computation and general function within the computer is the central processor; while modern

machines tend to have multiple processors, the CPU is the processor that is in charge of

computer function and communication between other computer components (Ambaka, 2021).

Processing units use their unique architecture to maximize processing efficiency and their

ability to process multiple tasks. The core(s) on processing units can be used to split processes

into threads – smaller sub-parts of a process that can be run next to each other rather than

sequentially. Building on that concept, processors further increase their efficiency by

multithreading, which splits processes into threads and then runs those across the processing

cores (Gao et al., 2020). Some applications have grown to be so intense on volume of

calculations and/or complexity that multithreading is practically essential for them to run, and

multithreading capability must be considered in evaluating the overall effectiveness of any

processing component (Tino et al., 2020). Threading takes place when a thread or threads of a

process get assigned to individual processing cores – each core taking up to two threads at a time

on a CPU (Intel Corporation, 2019). Each core can handle the threads designated to it while the

other cores do the same, integrating their threads into one process. A GPU threads in a similar

manner, although the way data travels and is split is slightly different. All of the threads in a

warp, which is a group of threads on the processor, are responsible for the same instruction type,

GENERAL PURPOSE GPUs AND DEEP LEARNING

7

but each thread can still handle distinct data (Gao et al., 2020). Warps of threads make up blocks

on a GPU, and the blocks make up the grid of the GPU (Nvidia Corporation, 2022). Distributing

different instructions with large amounts of data to the blocks on the grid allows many aspects of

a process to be split into many different threads to be processed in parallel all at once. Depending

on how it is used, each processor has unique advantages and limitations to its use in computing.

CPU

 The CPU is perhaps the most critical part of the computer, directing its activities and

telling the other parts of the computer what to do. In reality, a modern CPU has multiple cores

that each take care of the responsibilities of individual processors; one central processing unit

holds multiple processing cores that can handle instructions and normal computation. The Intel

CPU with the most cores currently is the Xeon Platinum 8280, which has 28 processing cores

(Intel Corporation, 2019). Intel and AMD have also manufactured dual, quad, and octa

processors, which physically have more total cores, but this number is simply a result of multiple

units being implemented side-by-side, and often at increased heat and power costs (Georgis et

al., 2016). Intel architecture is used as a general example of CPU architecture as Intel is the

leading manufacturer of this component.

Despite being separate from other processors in a computer, such as the GPU, a CPU can

be responsible for scheduling and memory management of other processors being used for a task

(Villegas et al., 2019). For example, it can schedule the image processing done by a GPU, as

well as allocate memory for it to do so. In fact, in high performance computing and

supercomputer architecture, it is practically necessary that GPUs be repurposed as GPGPUs to

act as an accelerator for computing, as CPUs are not built for multithreading at the same degree

GENERAL PURPOSE GPUs AND DEEP LEARNING

8

as GPUs (Tian et al., 2021). Even if it is not the component primarily responsible for processing

a certain task, it is a head of operations that still must communicate with the other necessary

components (Ambaka, 2021). Its processing cores consist of registers, data buses, arithmetic

logic units (ALUs), and control units: registers hold data so that other data can be moved through

the processor; data buses transfer data in the form of electrical signals through the processor;

ALUs handle math operations and comparisons; and control units receive commands and then

tell the CPU how to execute them using instructions (Taştan et al., 2020).

Advantages of CPU Processing

 The CPU’s most noticeable advantages are found in the fact that it is created for general

processing – it is made to handle all of the general computing needs and demands of a machine.

Since it needs to be ready to handle any request that the system sends it, it is a necessity for the

CPU to have a robust design and low latency (Syberfeldt & Ekblom, 2017). Even in cases where

another processor is needed to process a function or data, the CPU is required to direct that

processor and allocate memory for the process. In fact, GPU and GPGPU processing usually

begin with figuring out how to receive data efficiently from memory that it shares with the CPU

in either a PCI express bus or RAM (Dong et al., 2021). That being said, perhaps the greatest

advantage of CPU computing is its management of memory. In using a much larger local cache

than other GPUs, the CPU spends a relatively small amount of its processing time with memory

reads and writes to memory structures external to the processor, such as RAM (Syberfeldt &

Ekblom, 2017). Memory and data management between a CPU and GPU are typically handled

by a PCI-Express bus, but the CPU also has access to RAM that shares memory with the GPU,

allowing it to use RAM to send large amounts of data to the GPU or other components that might

GENERAL PURPOSE GPUs AND DEEP LEARNING

9

otherwise get backed up within the PCI-Express bus (Rivera-Alvarado & Torres-Rojas, 2020).

Additionally, RAM can have its own clock speed and a dual data rate (DDR), meaning that

multiple reads and writes can occur to RAM in one clock cycle of the CPU (Srikar et al., 2020)

 A CPU also has a generally higher clock speed than GPUs; as an example, the

aforementioned Xeon Platinum 8280 has a clock speed of 2.7 GHz (Intel Corporation, 2019).

Higher clock speed, alongside DDR means that the processing cores can process sequential data

and tasks much faster, which is greatly beneficial for an architecture that is constantly receiving

input from various operating system components (Srikar et al., 2020). With less parallel cores

running at the same time than a GPU, a CPU can also maintain a high clock rate without

lowering the accuracy of its calculations.

Limitations of CPU Processing

 The CPU is designed for general processing, which defines the control of the system and

its functions/calculations, as well as scheduling for the computer’s resources; for a system to

operate, this component is necessary (T. Wang et al., 2019). On the opposite side of this general

purpose, then, is the lack of its ability to do exceptionally well at certain, specified tasks. The

GPU was designed and implemented for this very reason, as while a CPU technically has the

ability to process and render a graphic, a GPU is built in a way that does it much better and faster

using much more parallelization in multithreading, which renders videos and images much more

effectively (Georgis et al., 2016). The same is true for neural networks – a CPU can support a

neural network, but it can only handle one that is so big before the time and power costs render it

unable to support the structure of the network or the amount of data that must be processed for it

to learn effectively (Kulkarni et al., 2021). While a CPU handles general tasks and memory

GENERAL PURPOSE GPUs AND DEEP LEARNING

10

accesses very well, even with a high clock rate it is unable to handle specific tasks that require a

large amount to be done all at the same time.

GPU

 The graphics processing unit is still a processor, but, unlike the CPU, it is made for a

specialized purpose, making it a domain-specific architecture. For this reason, the cores on a

GPU do not need to be nearly as complex as the cores on a CPU, which must be designed with a

variety of instructions in consideration (Georgis et al., 2016). A core that is less complex does

not necessarily mean that the hardware is completely different – GPU cores still have

components such as registers for fast, core-local memory, units for accepting instructions, and a

multi-level cache memory system similar to that of multi-core CPU’s (Syberfeldt & Ekblom,

2017). The GPU having less complex cores also means that it gets many more cores than a CPU

can have on a single unit.

Advantages of GPU Processing

 The number of cores that a GPU can have is higher than the number of cores that is found

on any CPU, in fact it can be a few orders of magnitude greater (Gelado & Garland, 2019).

While Intel is the leading manufacturer of CPUs, Nvidia is by a large margin the leading

manufacturer of GPUs, so Nvidia architecture will be used for architecture examples and

application (Peddie & Dow, 2021). The Nvidia GeForce GTX Titan Z GPU has an extremely

high number of processing cores, with 5760 CUDA cores (Nvidia Corporation, 2021). The GPU

is able to use this extreme number of cores to handle all of the aspects of processing an image all

at once at a high speed, whether that be shading, pixel color, or transparency.

Limitations of GPU Processing

GENERAL PURPOSE GPUs AND DEEP LEARNING

11

 The limitations of a GPU stem from what ultimately provides its advantages as well – its

intended purpose of only processing display graphics. Since the CPU still essentially runs the

computer, operating system management and input/output stream data get to the GPU from the

CPU, so processing speeds and capabilities are greatly limited by the need for this interaction

(Dong et al., 2021). More specifically, instructions and commands can get backed up when the

CPU tries to send them all to the GPU at once – this is the case for instructions or processing that

must be done serially. Additionally, since so many cores are used in effective GPU processing,

there is often considerable overhead of both power and memory between caches when a large

number of threads are created (Vieira et al., 2021). In this way, the CPU is superior to the GPU

as in doing its own processing there are less memory accesses and data transfers needed to

execute tasks.

 Local to the GPU, memory is a problem as well. A series of caches, as well as Dynamic

Random-Access Memory (DRAM), is responsible for memory on the GPU during processing,

but there is a threshold of available memory that cannot be surpassed during processing; a GPU

cannot process more memory than it can hold or move between caches and RAM in the case of

shared memory (Syberfeldt & Ekblom, 2017). Due to the organization of a GPU, which is a grid

of blocks of threads, a lot of writes to the caches can be redundant or unnecessary, as threads on

different blocks do not typically share their most immediately accessible cache (Ibrahim et al.,

2020). There are shared memory caches local to blocks, and there is global memory between

blocks on the grid as a whole; in some cases, the processing done on one block replicates

processing on equivalent input data on another block, and this replication can lower processing

optimization when there is no need for two equal data points to both be processed.

GENERAL PURPOSE GPUs AND DEEP LEARNING

12

GPGPU

 A GPGPU is not too different from a GPU, and it is essentially of the exact same

hardware structure (B. Hu & Rossbach, 2020). The only difference is that it removes the domain-

specific nature of the GPU and instead, by a software implementation, allocates a GPU’s

resources towards general processing (Kenyon et al., 2019).

Advantages of GPGPU Processing

 A GPGPU, in being at the hardware level a GPU, is loaded with processing cores for

optimized graphics display and processing. The first researcher-recognized capability provided

by this design outside of processing resource-intensive graphics was matrix multiplication, and it

remains that this ability is the root of its superiority to other processors in certain

implementations (Du et al., 2012). Matrix multiplication, in practical implementation, is defined

by the multiplication of one multidimensional array of numerical data by another, which contains

a number of individual calculations with polynomial growth as the size and dimensions of the

input data grow (Alman & Williams, 2021). A CPU can handle this kind of computation, but it

cannot do so as efficiently as a GPGPU, as it has a very limited number of cores to run

calculations in parallel on a large scale (Gelado & Garland, 2019). That being said, some CPUs

do have vector registers, which can store a vector of data in a single register allowing vector

calculations to be made on one vector of data all at once; Intel develops processors with these

registers and then defines architectures for those processors that allow for vector instructions,

such as Advanced Vector Extensions 3 for Xeon line processors (Amiri & Shahbahrami, 2020).

A GPGPU, on the other hand, can disperse these calculations across thousands of cores to

split the work into threads and run a massive amount of input data in parallel. Not only that, but

GENERAL PURPOSE GPUs AND DEEP LEARNING

13

GPGPUs are now being built with tensor cores – cores that are designed with the purpose of

matrix and tensor multiplication in mind (Sioutas et al., 2020). These tensor cores further

enhance the ability of a GPGPU to process data for the purpose of deep learning, as tensors can

define matrices of higher dimensionality (Yan et al., 2020).

Limitations of GPGPU Processing

 GPGPUs share in large part the weaknesses of GPUs, outside of the weakness that they

are only built and programmed for graphics processing. An additional weakness to CPUs that

they share with normal GPUs, though, is their clock speed. GPUs have a lot of cores that are

meant to do many parallel calculations, so it is necessary that the clock speed be slower for

parallel threads and processes to be executed accurately (Harakannanavar et al., 2021). For

instance, the clock speed of the Nvidia GeForce GTX Titan Z GPU is 705 MHz, which is not

even half of the 2.7 GHz speed of the Intel Xeon Platinum 8280 CPU (Nvidia Corporation,

2021). When used for more general-purpose tasks, a high clock speed is beneficial for a

considerable increase in the diversity and amount of input to the processing unit, for which a

GPU is not inherently built. In other words, central processing involves taking many different

processes and calculations that often must be executed serially rather than in parallel, which

requires a high clock speed. Nevertheless, the parallel processing power of the GPGPU

effectively negates this weakness.

Deep Learning

 Deep learning is a derivative of artificial intelligence (AI) that uses a complex system of

interconnected nodes, or a neural network, to map inputs to outputs (Schmidhuber, 2015). Deep

learning itself refers to the computer or program’s ability to recognize patterns between certain

GENERAL PURPOSE GPUs AND DEEP LEARNING

14

inputs and their outputs simply by being exposed to real-world or theoretical examples. It should

be noted that deep learning, in implementation, needs a huge amount of data in order to develop

a successful model (Erickson, 2021).

Deep Learning and Machine Learning

 Machine learning and deep learning are not two distinct fields; rather, deep learning is

derivative of machine learning. This fact can be seen in some of the characteristics of machine

learning; it is algorithmic, data driven, has a utility that is rooted in prediction accuracy of an

instance, and is designed to work without human interference. Additionally, it shares the key

function of being able to learn, which implies that given more data or experience, it can adjust its

design or algorithms to better predict future cases (Jakhar & Kaur, 2020).

Their difference, then, is in their software implementations and the structures and

algorithms which they use to learn. The neural network structure of any deep learning system

will also define a machine learning structure, while any other machine learning algorithms are

outside the scope of deep learning, as deep learning is always built on layered neural networks.

Deep learning, though, does require much more data than other machine learning methods do in

order to learn, so there are scenarios where deep learning is either inefficient or implausible for a

problem (Fonseca & Cabral, 2017).

Potential Applications of Deep Learning in Artificial Intelligence

 Deep learning has strong applications in cases where there is some data set involved that

has material to serve as both input and expected output for training. For example, the medical

field has been using deep learning to look at imaging for years, whether it be x-rays, CT-scans,

or another image type, and then using the gathered data to detect what even trained surgeons or

GENERAL PURPOSE GPUs AND DEEP LEARNING

15

other equipment cannot identify. While this capability in medical imaging is in no way new, a

particularly relevant example of a deep learning machine’s ability to evaluate imaging is one

developed for radiologists trying to detect COVID-19 (Vaid et al., 2020). The model looks at x-

ray imaging of the chest, and then collects numerical data on various aspects of the lungs, such

as the contour of a commonly affected area in the lungs, to see if there are any unusual features

that would not be found in the lungs of a healthy patient.

 The need for a lot of data is not a total negative for deep learning, and it certainly is not a

reason to abandon the approach altogether. In the case of big data, there really is no other

category of machine learning that compares to deep learning. Big data itself is characterized by

massive data sets; these data sets are also ever changing and ever increasing in volume, and that

complexity yields itself towards the deep learning model. Deep learning is the key to handling

big data and leveraging artificial intelligence for its analysis in a time efficient manner (Fonseca

& Cabral, 2017).

Neural Networks

 Deep learning is rooted in neural networks, a software schema that has the intent of

functioning like a human brain by learning from experiences, which take the form of some set of

training data (Asghar et al., 2021). A neural network takes its current state and exposes itself to

input data, compares the output it produces with an expected output, and then adjusts itself to

better produce an output identical to what is expected in future iterations. It is important to note,

though, that if a neural network trains on the same exact data for too long and is allowed to over

adjust itself to that data, then it will memorize specifically how to handle only that data set and

not be prepared for different or unique data in the future; this concept is called overfitting. Some

GENERAL PURPOSE GPUs AND DEEP LEARNING

16

common methods to prevent overfitting are dropout, which drops random nodes on different

iterations of training, and data augmentation, which includes tactics such as removing parts of

the input on different iterations (Rice et al., 2020).

 Neural networks can be further divided into their own categories and purposes; there is

not necessarily one design that applies the best to all deep learning problems. Two of the most

general classifications of artificial neural networks are feedforward neural networks, or FNNs,

and recurrent neural networks, or RNNs (Schmidhuber, 2015). Feedforward indicates that data is

handled by one component and then immediately sent to the next; once one layer finishes with

data, it sends that data on through the network and essentially forgets about it. Recurrent, on the

other hand, means that data might pass through one layer more than once. This design is useful

for when it is desired that the algorithm remembers past inputs and their paths when processing

newer input, such as in the case of learning facial recognition (Li & Zhuang, 2020). There is also

a type of neural network that is purposed for problems that cannot be solved with a

conventionally layered neural network; graph neural networks (GNNs) are neural networks for

problems represented with complex, unlayered graphs (Wu et al., 2021).

RNNs can group what would be multiple layers all into one with its recurring nature,

meaning that FNNs generally require more processing power to support a neural network

running in parallel. However, by keeping layers separate and nonreusable, a feedforward neural

network can maintain a level of complexity that must be abandoned by recurrent neural networks

to be simplified into cyclical architecture. In terms of processing unit support of the network, an

RNN has a structure much better fit for a CPU’s number of processing cores, as less cores are

needed (Li & Zhuang, 2020). The RNN needs less cores because less nodes are needed to be

GENERAL PURPOSE GPUs AND DEEP LEARNING

17

supported by threads; the same node can be used for the recurring execution of the same

function. Still, a GPGPU is ideal for supporting both, and it is especially effective for the heavy

hardware needs of a feedforward neural network.

Neural Network Structure

 The structure of a neural network is also the basis of the name of deep learning – while

only the inputs and outputs are viewed by one training a deep learning machine, there are often

many hidden layers and nodes between that initial input and result(s). The neural network, then,

is multiple layers deep of self-adjusting nodes and edges, and the deeper the network is, the more

processors it needs to efficiently handle big data. In the case of gigantic data sets, such as data

needed to monitor and predict values of stocks, time efficiency is vital to having beneficial AI.

 The foundation of a neural network is each of its nodes, which is referred to as a neuron

in neural network structure. A layer refers to neurons that line up in proximity from the input

neurons or previous. In visual representation of the network, these neurons are grouped in a line

with each other to distinguish how deep in the network they are located. In GNNs, though,

neurons have interdependencies and edges that cannot be represented logically by layers (Wu et

al., 2021). Neurons handle calculations based on the neurons and edges found before them,

reading both as numerical data and doing a summation of some kind to send a value out to

receiving neurons.

 Connecting each of the neurons is a weighted edge, or a synapse. In a feedforward neural

network, each neuron has synaptic connections sending their output to following neurons, as well

as synaptic connections receiving the output of previous neurons. A fully connected neural

network is a configuration where each neuron is connected to every neuron in the layer before it

GENERAL PURPOSE GPUs AND DEEP LEARNING

18

and every neuron in the layer that follows, and it is better than most other configurations in

classification tasks (Sahlani et al., 2020). This design is typical of neural networks and allows for

more complexity in processing data and interconnecting the meaning of the different inputs, but

it is not a requirement for neural networks, nor is it impossible for neurons in nonadjacent layers

to have synaptic connections (Schmidhuber, 2015). Another configuration that does not involve

full connectivity is a convolutional neural network (CNN). CNNs use a process called

convolution to greatly reduce the volume of inputs being processed; this advantage is crucial in

image processing when learning by individual pixels (Basha et al., 2020). Convolution takes an

input matrix and multiplies a smaller matrix over itself in different locations to create a new

matrix that is the size of the smaller matrix. The common factor in all neural network designs is

that they use matrix multiplication to process data, which is greatly sped up by parallelization.

GPU architecture, then, is ideal for supporting neural networks due to its ability to run the same

calculations on thousands of parallel threads at once (Nvidia Corporation, 2021).

 Since neurons are defined by calculations and often summations, they rarely see any need

for change, as if a calculation method itself is constantly changing, then the network would need

to be repetitively retrained and become ineffective. Therefore, the learning component of deep

learning happens across the weights of synapses. Synaptic weight is typically defined within a

preset range, depending on what activation function, or function that decides whether a neuron

fires, is used and how it is leveraged (Parisi et al., 2022). These weights are most often integrated

into data passing through neurons through a process of multiplication – with the idea of a final

summation happening when all common synapses meet at a neuron. It is clear, then, that a

synaptic weight farther from 0 means that the synapse has a greater strength within the network

GENERAL PURPOSE GPUs AND DEEP LEARNING

19

(Lu et al., 2018). Synaptic weights are often randomized before learning rather than being hard-

coded (Lopez-Bernal et al., 2021). Random starting weights keep a neural network from having a

symmetrical pattern where every single neuron gets the same exact input weight, and it also

keeps every neuron from getting an empty signal like they would if the weights were initialized

as zero (Chanda et al., 2021). However, after the neural network has been exposed to significant

amounts of data, most of the synapses are adjusted to heavy weights or weights close to zero;

what makes a weight heavy varies between activation functions, but generally heavy weights are

those that are farther from 0, thus creating a greater impact on the signal moving to the next

neuron. The learning process is seen in the continual adjustment of synaptic weights.

 Inputs and outputs, no matter what the structural basis is for the neural network, define

the beginning and end points of the network. The number of input neurons of a neural network is

equal to the number of features of interest in data, while the number of output neurons is equal to

the number of results, or classes in classification, that can be produced by the network (Ghiasi-

Shirazi, 2018). The foundation of many data processing neural networks is a neuron which is

used to activate and produce a signal or output, called a perceptron (Bi & Zhou, 2019). For any

explanation or discussion of neural network structure or function, assume a perceptron-based

architecture where each neuron either activates or stays off.

Neural Network Function

 Neural networks are created in such a way that, by continually being exposed to data and

compared to expected outputs, they will eventually adjust themselves enough to provide a

solution to a problem. In taking a set of inputs, connecting them with various neurons of

activation functions, and then feeding those to an output, a composite of functions is mapped and

GENERAL PURPOSE GPUs AND DEEP LEARNING

20

approximated between inputs and outputs by neural networks (Amerineni, 2020). The functions

represented by deep neural networks are often Borel-measurable, meaning that they are

continuous for all real numbers within set bounds (Teng & Todo, 2019). By continually adjusting

over a cost function, which is based on the error of the network, a neural network gets closer and

closer to perfectly predicting outputs (Rice et al., 2020). Regarding the perceptron building

blocks of a neural network, a neuron’s evaluation of the data passing through its preceding

synaptic paths and neurons will determine whether or not it fires, or continues to push an impulse

through the network, mimicking the activity of neurons in human brains (Asghar et al., 2021). A

good representation of this impulse is turning a wire or bit to the on state in a circuit, except

depending on the evaluation of values, the state can be represented by values other than 1.

Matrix multiplication is the base calculation of effective neural networks that handle

large amounts of data, and also the largest driver behind the utility of GPGPUs in processing

neural networks. In using this calculation style, multiple inputs for neurons can be run against

multiple synaptic weights all at once, progressing through a feedforward neural network with a

polynomial complexity, which is a function of the number of neurons multiplied by the sample

inputs provided (Nguyen et al., 2021). GPGPUs can use each block of threads to run the same

type of calculation for multiple pieces of data all at once, with each thread handling an individual

calculation. This method of parallelizing matrix multiplication makes the GPGPU much stronger

than the CPU even when the CPU is leveraging vector registers; the GPGPU’s advantage is

strengthened further when using tensor cores to handle matrix multiplication (Zachariadis et al.,

2020). By leveraging matrix multiplication, neural networks are able to analyze and predict data

GENERAL PURPOSE GPUs AND DEEP LEARNING

21

better and quicker than humans or other machine learning strategies, as they recognize patterns

and relationships that cannot be simply observed or deduced by hand (Xu et al., 2020).

Handling Synaptic Weights

Synaptic weight adjustment is the heart of deep learning; while neurons help to recreate

the structure of the human brain, synapses attempt to duplicate its function. It is important to note

that some weights are also accompanied by biases, which are typically implemented by giving a

previous neuron passing data to the current neuron a hard value to affect the sum that it gathers

from other inputs. Adding neurons with bias gives a neuron one more value to help it find when

to correctly activate, and they can also help the neuron by forcing an activation to happen more

or less often (Ozen & Orailoglu, 2019). Neurons with a bias sometimes pass data to following

neurons through a synapse of a constant weight so that the value of the bias is not lost or

problematically changed by the synapse, but biases are still changed in learning.

 Implementing synaptic weights is not an overly difficult task in theory – a designer for

the neural network just needs to initialize the values of the weights and determine an algorithm

for their correction. Weights for each group of synapses between layers can be stored in arrays;

grouping together these weights makes it easy to include them all at once in complex

calculations and to see how they affect the neurons into which they feed. The weights, then, are

randomized and stored in a matrix which will be edited later to fix the synapses (Lopez-Bernal et

al., 2021).

 To better understand how synaptic weights are updated for learning following their

random initialization, it needs to be seen how they affect the output of individual perceptrons.

The summation to determine whether or not the neuron fires is a function of its inputs and input

GENERAL PURPOSE GPUs AND DEEP LEARNING

22

synaptic weights, as shown by Equation 1, where N is the number of input nodes, n is the value

coming from an input node or previous perceptron, w is the weight of the synapse paired with its

respective node, and b is any biases added by additional neurons (Schmidhuber, 2015). If the

resulting value meets or exceeds a predetermined threshold, then the neuron fires and sends a

value down the synapse(s) leaving itself (Parisi et al., 2022). Matrix multiplication is leveraged

to multiply all neuron inputs and weights in a single calculation type, minimizing the number of

cores needed to evaluate data and optimizing the potential size of a neural network. This

minimization is a result of a GPGPU’s ability to run this single calculation type on a block of

threads handling multiple neurons, making it a very effective hardware component for

supporting a high degree of parallelism (Harakannanavar et al., 2021).

neuroncurrent = (∑𝑛𝑖𝑤𝑖

𝑁

𝑖=1

) + 𝑏

(1)

 The summation itself provides a value that is checked against an activation function, the

most popular of which is the Rectified Linear Unit, or ReLU (Parisi et al., 2022). The ReLU

function is relatively easy to understand and implement, as it simply compares the output with 0

and, if the value is greater, it outputs the value as it is. Minimization of error is simple with

ReLU as the function’s derivative is either 1 or 0, with an undefined derivative when the input is

0 that is usually just hardcoded to be either 1 or 0 – this also provides itself as a solution to

vanishing gradient when backpropagation reaches earlier layers (You et al., 2020).

Given the desired complexity of the system or the training approach, a function is chosen

to determine how significant the error between actual and expected output is for neurons; these

functions are called loss functions when looking at individual neurons and synapses and

otherwise called cost functions when looking at the network as a whole. The choosing of a loss

GENERAL PURPOSE GPUs AND DEEP LEARNING

23

function is based on what kind of purpose the neural network is serving, as a regression problem

might use one such as the mean squared error loss function, while a classification is better suited

with cross entropy (Ozyildirim & Kiran, 2021). While cost/loss functions may vary, they are the

most important part of backpropagation – the process in which the neural network looks at its

outputs and moves opposite the direction of the feedforward process to correct synaptic weights

(Pratama & Kang, 2020).

An easy cost function to visualize is a simple quadratic function of weight, where the

absolute minimum is where loss, or output error, is at a minimum. Every time the error is

checked, the loss function is run to find where on the curve the loss for a given weight is, and

backpropagation takes place using the process of gradient descent (Ozyildirim & Kiran, 2021).

Gradient descent is defined by determining the positivity of the tangent line to a point on the loss

curve, and then making stepwise progression by changing the weight towards the absolute

minimum where the tangent line is zero. The backpropagation starts by adjusting the weights at

the back or later layers of the network, and it works its way to the front using gradient descent to

make adjustments. This tactic can cause issues though, as a function with multiple minima and

plateauing cost values can cause the network to train to a fake value of lowest error, as the

gradient is still extremely close to zero at these points (Wilson et al., 2017). The step size is

identified as a learning rate, and it is iterated until the weight produces a value with minimum

loss, or where the error in output is practically none. Determining step size is crucial, as too large

of a learning rate will cause the adjustments to likely overlook the absolute minimum and train

the network inaccurately, while too small of a learning rate can cause overfitting or the settling

of gradient descent into a local minimum (Ozyildirim & Kiran, 2021). This concept is why deep

GENERAL PURPOSE GPUs AND DEEP LEARNING

24

learning is crucial to understanding topics that were previously too complex or convoluted to

understand – one can look at an input or set of inputs and see what ultimately results, but the

recognition of patterns that link the two might be too much of a precise task for a human to

undertake.

Exploration of AI Implementation

 GPGPUs hosting neural networks for deep learning are now evidently one of the

strongest achievable forms of machine learning, but there are other machine learning

implementations that, while perhaps inferior, provide effective and powerful solutions to modern

problems (Georgis et al., 2016). Outside of quantum computing, though, it is difficult to find a

more powerful architecture-to-computing pair that will be possible with any sort of

improvements to modern hardware alone (Chen, 2020). Leveraging currently available resources

such as GPU hardware, then, is the next step in advanced computing.

Common Implementation Methods

 In terms of neural networks, implementation can be done with virtually any Turing-

complete programming language, or one that can make conditional decisions, do mathematic

data manipulations, and manipulate memory, since it is ultimately a composite of mathematic

functions (Michaelson, 2020). Implementations using these languages that do not make use of a

GPGPU’s architecture are hardly fit for the processing of big data, especially should it be used in

a field such as business analytics where data is consistently changing, as the GPGPU’s capability

for multithreading is unmatched among processors (Harakannanavar et al., 2021). Nevertheless,

calculations such as matrix multiplication and derivations of critical functions are possible using

solely the CPU; they simply lack speed and efficiency when compared to other machine learning

GENERAL PURPOSE GPUs AND DEEP LEARNING

25

strategies and neural networks with a GPGPU implementation, as they cannot compete with its

parallelization capabilities in training a neural network (Chaves et al., 2019).

 Image classification is one function of deep neural networks that has alternative current

implementations (Abd Elaziz et al., 2021). An immediately apparent fact of the shallow current

machine learning methods is that as an algorithm is written for learning, the features of interest

in classifying the images must be identified by the designer, whereas in deep learning the

propagation across multiple layers can teach the network which features are significant to

classification; current shallow machine learning methods are slightly more human dependent

when getting started, although they do not need as much training data as a deep neural network.

Shallow machine learning refers to algorithms or structures that require relatively small amounts

of manipulations made between data input and output as compared to those that deep learning

structures are capable of (Z. Wang et al., 2020).

P. Wang et al. (2021) performed a comparative study of the support vector machine

learning algorithm (SVM) and convolutional neural networks (CNNs), which are neural

networks with a structure and function ideal for the analysis of image features. SVM handles

classification by drawing a vector between different classifications – inputs that are analyzed and

produce output on one side of the vector get identified as one classification, and outputs on the

other side of that barrier are identified as the other classification. Sometimes that vector is linear,

and its function is easily distinguished, but, in other cases, it is not linear, and more dimensions

must be added to the space in which the vector is drawn so that there can be a linear separation of

data. Finding and representing functions for a solution space of higher dimensionalities, though,

becomes increasingly complex and inefficient; this weakness is referred to as the Curse of

GENERAL PURPOSE GPUs AND DEEP LEARNING

26

Dimensionality (Alaka & Kasamani, 2021). A commonly approached solution is the kernel trick,

which uses vector multiplication of data in the original dimensional space to simulate the

creation of added dimensions without the need for finding and implementing a function for that

space (Kozak, 2019). Nonlinear functions can still be defined in the algorithm but consume more

power and time scaling with their complexity. With small data sets, SVM outperforms CNNs in

terms of speed, 1.02 minutes to 2.01 minutes, and is slightly more accurate, 86% to 83%, while

with large data sets, CNNs greatly outperform SVM, in both a speed of 23.2 minutes to SVM’s

27.6 minutes, and in accuracy, beating out SVM 98% to 88% (P. Wang et al., 2021).

GPGPU Implementation and CUDA

 Neural network implementation is a resource-heavy and data-heavy practice, but, given

the advantageous hardware for multithreading of a strong GPU, tensor cores for efficient matrix

multiplication, and the potential for a core-distributed neuron design, it is well applied to

complex problems that other machine learning algorithms might struggle with. For instance,

classification, which is evaluated by correctness of the network’s predictions given input

features, is extremely strong when implemented in a neural network (Krizhevsky et al., 2012).

Considering current hardware and the limitations to CPU processors and transistors being

reached, the parallelism achieved by a GPGPU is really the only plausible way to handle these

computations. Moore’s Law states that the growth and improvement of transistors placed on

chips is slowing due to power drain, size, and heat, meaning that the amount of data and

operations that a CPU can hold at once is also slowing in growth (Ajayan et al., 2021).

Nvidia Corporation has developed and released Compute Unified Device Architecture

(CUDA), which is a framework allowing for the coding against an API and libraries that let the

GENERAL PURPOSE GPUs AND DEEP LEARNING

27

GPU’s hardware be used for purposes outside of intensive graphics processing (Park et al.,

2012). Coding with CUDA represents the C++ coding structure, and its function calls are similar

to those made in the C language; while this means that with the proper installations that CUDA

code can be written in any C++ IDE, there are also platforms such as TensorFlow and PyTorch

that can be used to leverage CUDA coding conventions (Nvidia Corporation, 2022). This

software level manipulation is what makes the GPU a GPGPU (Kenyon et al., 2019).

The structure and function of deep neural networks are optimized when paired with the

capabilities offered by CUDA. Matrices are still set for inputs and synaptic weights, and

algorithms such as the loss function are implemented in a mathematically identical way.

Backpropagation and the feedforward of data are executed as expected for each perceptron in the

neural network, but calculations are done on a massively parallel scale. By using the CPU as a

driver of sort for processes, CUDA uses a processing hierarchy to maximize parallelism of tasks

(Nvidia Corporation, 2022). This varies from normal GPU function in the fact that CUDA is

used to repurpose the hardware for calculations and processes outside of rendering images.

GPGPU cores are set up in blocks where all of the threads on those blocks are running the same

kernel instruction or calculation type in parallel. So, CUDA is used to allocate memory for input

data, then to copy data from the CPU into that memory. Computations are done in parallel as

described by the neural networks structure and activation/loss functions, and then the results of

each block are brought back together and copied back to the CPU for output (Noruzi et al.,

2019). CUDA is the foundation for coding that allows a GPU to be transformed into a GPGPU

for uniquely optimized processing of deep learning tasks.

Convolutional Neural Network Acceleration

GENERAL PURPOSE GPUs AND DEEP LEARNING

28

 In a software implementation of a convolutional neural network, which has its structure

shown in Figure 1, financial time series data was analyzed for real estate pricing using wavelet

transforms; wavelets are particularly useful for recognizing patterns and signal analysis

(Moumene & Ouelaa, 2022). The data used consists of real estate sale prices from 2001 to 2019

in the state of Connecticut that exceed $2000 (data.ct.gov, 2021). Both the code and the data are

available at https://github.com/cshelmick/real-estate-volatility-CNN. The purpose of the analysis

was to create images that could be run through a convolutional neural network as input images to

train and test the CNN and determine moments of market volatility. Volatility in this regard is

synonymous to standard deviation, as it measures the statistical difference between an actual

value and what it normally is expected to be, so an average of the absolute values of standard

deviations for random time series was compared to a bound of 0.3 to classify whether the

housing market was relatively volatile during a given period (X. Hu, 2019).

Figure 1

CNN Model

GENERAL PURPOSE GPUs AND DEEP LEARNING

29

 Wavelet transforms are ideal transforms for evaluating data without evident repeating

patterns of amplitude and frequency, making it superior to a transform such as the Fourier

transform, which is better suited for data of repeated and easily predictable amplitude and

frequency (Moumene & Ouelaa, 2022). The wavelet transform accomplishes this analysis by

taking a mother wavelet that suits the shape of the data well and adjusting its size, or scale, to

compare itself to different pieces of data in time within a data set. The mother wavelet chosen for

this financial analysis was the Morlet wavelet, as it is consistently one of the most effective

mother wavelets in analyses of financial data (Martínez & Cervantes, 2021). The continuous

wavelet transform (CWT) used for this particular analysis is one that performs analysis at as

many possible scales and locations as it can, as opposed to the discrete wavelet transform

(DWT), which has predetermined limitations for those values (Silik et al., 2021).

 First, the data, in csv format, was processed by the KNIME application to convert the

necessary data into a format that could be used with Python, which was then passed to the

application using genfromtext(). Then, using the test_train_split() function, the data was

split into training and testing sets for the CNN with respect to both independent and dependent

variable arrays of a time index and standard deviation of sales price, respectively. Afterwards,

the keras library was used to construct and train the neural network. Lastly, with the CNN

constructed, the testing sets were used to evaluate the model.

 The data structures and algorithms used for handling input data and construction of the

CNN were greatly influenced by the code shared by Sebastian Feike in his 2020 article Multiple

Time Series Classification by Using Continuous Wavelet Transformation. Feike created a

demonstration that analyzed the Human Activity Recognition (HAR) dataset, which consists of

GENERAL PURPOSE GPUs AND DEEP LEARNING

30

smartphone-collected input signals based on human movement and six output activities to

identify based on that movement.

 The CNN was run using both a CPU, the Intel Core i7-8750H, and a GPGPU, the Nvidia

Tesla V100 PCIe 32 GB. Figure 2 displays the running time of the training and evaluation

process as 14.2 seconds for the CNN run on the CPU. On the other hand, as shown by Figures 3

and 4, the GPU implementation takes full advantage of the GPU’s memory resources, and

moments later its processing power, in order to build, train, and evaluate the CNN within 6.0

seconds. There is a clear improvement in the usage of the GPU implementation; despite a

relatively small input data set, it is more than twice as fast as the CPU implementation. Just as

the accuracy of the neural network would increase as the size of the data set grew, so would the

processing efficiency advantage provided by the GPU implementation.

Figure 2

Running Time Following CNN Training and Evaluation on CPU

GENERAL PURPOSE GPUs AND DEEP LEARNING

31

Figure 3

Full Memory Usage of GPU During CNN Runtime

Figure 4

Running Time Following CNN Training and Evaluation on GPU

GENERAL PURPOSE GPUs AND DEEP LEARNING

32

Conclusion

Deep learning implemented through deep neural networks is the next large step for

computing to take towards significant improvements in analyzing and classifying big data. As it

is still relatively young and has room for growth, deep learning will become stronger as more

effective activation functions, loss/cost functions, and general backpropagation methods are

theorized, researched, and developed. Even in its current state, deep learning proves to be far

superior in complex analysis of real-world data sets, such as mapping functions between inputs

and outputs to find trends for big data samples and classification of otherwise difficult to

interpret inputs (Rajawat & Jain, 2020).

 The numerous layers of depth in these neural networks demand immense resources in

terms of time, space, and energy to function effectively – resources that are not efficiently

available in modern CPU processing. While complexity of running data through a neural

network is polynomial, adding layers for depth requires large amounts of neurons and synapses

to be making calculations in parallel so that processing is efficient and so that output is not

outdated by the time the neural network is able to produce it; a CPU implementation of a neural

network attempting to handle big data can take days to process data that needs to be processed in

much less time to have any sort of significance (Nguyen, 2021). The use of a general-purpose

GPU is the key to achieving this processing power, as the hardware designed for intense graphics

processing possesses potentially thousands of processing cores and tensor cores that can be

repurposed for the components of a neural network. GPGPU implementation of these neural

networks is already being experimented with and implemented across multiple professional

GENERAL PURPOSE GPUs AND DEEP LEARNING

33

fields. Deep learning modeled in GPGPUs displays advances in computing efficiency that can no

longer be brought about by improving the hardware design of processing cores.

GENERAL PURPOSE GPUs AND DEEP LEARNING

34

References

Abd Elaziz, M., Dahou, A., Abualigah, L., Yu, L., Alshinwan, M., Khasawneh, A. M., & Lu, S.

(2021). Advanced metaheuristic optimization techniques in applications of deep neural

networks: A review. Neural Computing and Applications, 33(21), 14079–14099.

https://doi.org/10.1007/s00521-021-05960-5

Ajayan, J., Nirmal, D., Tayal, S., Bhattacharya, S., Arivazhagan, L., Fletcher, A. S. A.,

Murugapandiyan, P., & Ajitha, D. (2021). Nanosheet field effect transistors-A next

generation device to keep Moore's law alive: An intensive study. Microelectronics Journal,

114, 105141. https://doi.org/10.1016/j.mejo.2021.105141

Alaka, B., & Kasamani, B. S. (2021). Redefining data dimensionality through dynamic linkages

in data-space continuum. Advances in Intelligent Systems and Computing, 427–436.

https://doi.org/10.1007/978-981-33-4299-6_35

Alman, J., & Williams, V. V. (2021). A refined laser method and faster matrix multiplication.

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, 522–539.

https://doi.org/10.1137/1.9781611976465.32

Ambaka, P. (2021, August 10). Best CPU for GTX 1080. Computer Station Nation.

https://computerstationnation.com/best-cpu-for-gtx-1080/

Amerineni, R. (2020). Brain-inspired machine learning classification models (dissertation).

Amiri, H., & Shahbahrami, A. (2020). SIMD programming using Intel vector extensions.

Journal of Parallel and Distributed Computing, 135, 83–100.

https://doi.org/10.1016/j.jpdc.2019.09.012

GENERAL PURPOSE GPUs AND DEEP LEARNING

35

Asghar, M. S., Arslan, S., & Kim, H. (2021). A low-power spiking neural network chip based on

a compact LIF neuron and binary exponential charge injector synapse circuits. Sensors,

21(13), 4462. https://doi.org/10.3390/s21134462

Basha, S. H. S., Dubey, S. R., Pulabaigari, V., & Mukherjee, S. (2020). Impact of fully

connected layers on performance of convolutional neural networks for image classification.

Neurocomputing, 378, 112–119. https://doi.org/10.1016/j.neucom.2019.10.008

Bi, Z., & Zhou, C. (2019). Understanding the computational difficulty of a binary-weight

perceptron and the advantage of input sparseness. Journal of Physics A: Mathematical and

Theoretical, 53(3). https://doi.org/10.1088/1751-8121/ab2682

Breß, S., Funke, H., Zeuch, S., Rabl, T., & Markl, V. (2019). An overview of hawk: A hardware-

tailored code generator for the heterogeneous many core age. Gesellschaft Für Informatik,

87–90. https://doi.org/10.18420/btw2019-ws-07

Calore, E., Gabbana, A., Schifano, S. F., & Tripiccione, R. (2020). ThunderX2 performance and

energy-efficiency for HPC workloads. Computation, 8(1), 20.

https://doi.org/10.3390/computation8010020

Chanda, D., Al-Badi, A.-E.-, & Islam, A. K. M. N. (2021). Performance analysis of initialization

algorithms of deep neural network based coordinated beamforming system for mmwave.

2021 5th International Conference on Electrical Engineering and Information &

Communication Technology. https://doi.org/10.1109/iceeict53905.2021.9667939

Chaves, D., Fidalgo, E., Alegre, E., Janez-Martino, F., & Velasco-Mata, J. (2019). CPU vs GPU

performance of deep learning based face detectors using resized images in forensic

GENERAL PURPOSE GPUs AND DEEP LEARNING

36

applications. 9th International Conference on Imaging for Crime Detection and

Prevention. https://doi.org/10.1049/cp.2019.1174

Chen, Y. (2020). 2020: Looking forward to the next decade [from the editor]. IEEE Circuits and

Systems Magazine, 20(1), 3. https://doi.org/10.1109/mcas.2019.2962260

data.ct.gov. (2021, November 29). Real estate sales 2001-2019 GL. Real Estate Sales 2001-2019

GL - CKAN. https://catalog.data.gov/dataset/real-estate-sales-2001-2018

Dong, J., Zheng, D., Yang, L. F., & Karypis, G. (2021). Global neighbor sampling for mixed

CPU-GPU training on giant graphs. Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining. https://doi.org/10.1145/3447548.3467437

Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., & Dongarra, J. (2012). From CUDA to

OpenCL: towards a performance-portable solution for multi-platform GPU programming.

Parallel Computing, 38(8), 391–407. https://doi.org/10.1016/j.parco.2011.10.002

Erickson, B. (2021). Basic artificial intelligence techniques. Radiologic Clinics of North

America, 59(6), 933–940. https://doi.org/10.1016/j.rcl.2021.06.004

Feike, S. (2020, February 10). Multiple time series classification by using continuous wavelet

transformation. https://towardsdatascience.com/multiple-time-series-classification-by-

using-continuous-wavelet-transformation-d29df97c0442

Fonseca, A., & Cabral, B. (2017). Prototyping a GPGPU neural network for deep-learning big

data analysis. Big Data Research, 8, 50–56. https://doi.org/10.1016/j.bdr.2017.01.005

Gao, L., Xu, Y., Wang, R., Luan, Z., Yu, Z., & Qian, D. (2020). Thread-level locking for SIMT

architectures. IEEE Transactions on Parallel and Distributed Systems, 31(5), 1121–1136.

https://doi.org/10.1109/tpds.2019.2955705

GENERAL PURPOSE GPUs AND DEEP LEARNING

37

Geer, D. (2005). Chip makers turn to multicore processors. Computer, 38(5), 11–13.

https://doi.org/10.1109/mc.2005.160

Gelado, I., & Garland, M. (2019). Throughput-oriented GPU memory allocation. Proceedings of

the 24th Symposium on Principles and Practice of Parallel Programming.

https://doi.org/10.1145/3293883.3295727

Georgis, G., Lentaris, G., & Reisis, D. (2016). Acceleration techniques and evaluation on multi-

core CPU, GPU and FPGA for image processing and super-resolution. Journal of Real-

Time Image Processing, 16(4), 1207–1234. https://doi.org/10.1007/s11554-016-0619-6

Ghiasi-Shirazi, K. (2018). Competitive cross-entropy loss: A study on training single-layer

neural networks for solving nonlinearly separable classification problems. Neural

Processing Letters, 50(2), 1115–1122. https://doi.org/10.1007/s11063-018-9906-5

Harakannanavar, S. S., S, G. K., Ramachandran, S., S, T. G., & C, R. A. (2021). Performance

analysis of CPU & GPU for real time image/video. 2021 International Conference on

Recent Trends on Electronics, Information, Communication & Technology.

https://doi.org/10.1109/rteict52294.2021.9573554

Hu, B., & Rossbach, C. J. (2020). Altis: modernizing GPGPU benchmarks. 2020 IEEE

International Symposium on Performance Analysis of Systems and Software.

https://doi.org/10.1109/ispass48437.2020.00011

Hu, X. (2019). Volatility targeting strategy in S&P500. Proceedings of the 10th International

Conference on E-Education, E-Business, E-Management and E-Learning - IC4E '19, 393–

396. https://doi.org/10.1145/3306500.3306578

GENERAL PURPOSE GPUs AND DEEP LEARNING

38

Ibrahim, M. A., Kayiran, O., Eckert, Y., Loh, G. H., & Jog, A. (2020). Analyzing and leveraging

shared L1 caches in GPUs. Proceedings of the ACM International Conference on Parallel

Architectures and Compilation Techniques, 161–173.

https://doi.org/10.1145/3410463.3414623

Intel Corporation. (2019, April 2). Intel® Xeon® Platinum 8280 processor (38.5m Cache, 2.70

GHz). Intel. https://www.intel.com/content/www/us/en/products/sku/192478/intel-xeon-

platinum-8280-processor-38-5m-cache-2-70-

ghz/specifications.html?wapkw=xeon+platinum+8280

Jakhar, D., & Kaur, I. (2020). Artificial intelligence, machine learning and deep learning:

definitions and differences. Clinical and Experimental Dermatology, 45(1), 131–132.

https://doi.org/10.1111/ced.14029

Kale, V., Lu, W., Curtis, A., Malik, A. M., Chapman, B., & Hernandez, O. (2020). Toward

supporting multi-gpu targets via Taskloop and user-defined schedules. OpenMP: Portable

Multi-Level Parallelism on Modern Systems, 295–309. https://doi.org/10.1007/978-3-030-

58144-2_19

Kenyon, C., Volkema, G., & Khanna, G. (2019). Overcoming limitations of GPGPU-computing

in scientific applications. 2019 IEEE High Performance Extreme Computing Conference.

https://doi.org/10.1109/hpec.2019.8916330

Kozak, S. (2019). Kernel trick for the cross section. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3307895

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep

convolutional neural networks. Proceedings of the 25th International Conference on

GENERAL PURPOSE GPUs AND DEEP LEARNING

39

Neural Information Processing Systems, 1, 1097–1105.

https://doi.org/10.5555/2999134.2999257

Kulkarni, S. R., Parsa, M., Mitchell, J. P., & Schuman, C. D. (2021). Benchmarking the

performance of neuromorphic and spiking neural network simulators. Neurocomputing,

447, 145–160. https://doi.org/10.1016/j.neucom.2021.03.028

Li, B., & Zhuang, X. (2020). Multiscale computation on feedforward neural network and

recurrent neural network. Frontiers of Structural and Civil Engineering, 14(6), 1285–1298.

https://doi.org/10.1007/s11709-020-0691-7

Lopez-Bernal, D., Balderas, D., Ponce, P., & Molina, A. (2021). Education 4.0: teaching the

basics of KNN, LDA and simple perceptron algorithms for binary classification problems.

Future Internet, 13(8), 193. https://doi.org/10.3390/fi13080193

Lu, L., Jia, Y., Kirunda, J. B., Xu, Y., Ge, M., Pei, Q., & Yang, L. (2018). Effects of noise and

synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a

feed-forward neural network. Nonlinear Dynamics, 95(2), 1673–1686.

https://doi.org/10.1007/s11071-018-4652-9

Martínez, M., & Cervantes, P. (2021). Testing the resilience of CSR stocks during the COVID-

19 crisis: A transcontinental analysis. Mathematics, 9(5), 514.

https://doi.org/10.3390/math9050514

Michaelson, G. (2020). Programming paradigms, Turing completeness and computational

thinking. The Art, Science, and Engineering of Programming, 4(3).

https://doi.org/10.22152/programming-journal.org/2020/4/4

GENERAL PURPOSE GPUs AND DEEP LEARNING

40

Moumene, I., & Ouelaa, N. (2022). Gears and bearings combined faults detection using

optimized wavelet packet transform and pattern recognition neural networks. The

International Journal of Advanced Manufacturing Technology.

https://doi.org/10.1007/s00170-022-08792-2

Nguyen, T. G., Phan, T. V., Hoang, D. T., Nguyen, T. N., & So-In, C. (2021). Federated deep

reinforcement learning for traffic monitoring in SDN-based IOT Networks. IEEE

Transactions on Cognitive Communications and Networking, 7(4), 1048–1065.

https://doi.org/10.1109/tccn.2021.3102971

Noruzi, A., Mahlouji, M., & Shahidinejad, A. (2019). Iris recognition in unconstrained

environment on graphic processing units with CUDA. Artificial Intelligence Review, 53(5),

3705–3729. https://doi.org/10.1007/s10462-019-09776-7

Nvidia Corporation. (2021). GeForce GTX Titan Z graphics card. Nvidia.

https://www.nvidia.com/en-us/geforce/graphics-cards/gtx-titan-z/specifications/

Nvidia Corporation. (2022, January 12). CUDA toolkit documentation. Nvidia Documentation

Center. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

Ozen, E., & Orailoglu, A. (2019). Sanity-check: Boosting the reliability of safety-critical deep

neural network applications. 2019 IEEE 28th Asian Test Symposium.

https://doi.org/10.1109/ats47505.2019.000-8

Ozyildirim, B. M., & Kiran, M. (2021). Levenberg–Marquardt multi-classification using hinge

loss function. Neural Networks, 143, 564–571.

https://doi.org/10.1016/j.neunet.2021.07.010

GENERAL PURPOSE GPUs AND DEEP LEARNING

41

Pandey, R., & Badal, N. (2019). Understanding the role of parallel programming in multi-core

processor based systems. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3350311

Parisi, L., Neagu, D., Ma, R., & Campean, F. (2022). Quantum ReLU activation for

convolutional neural networks to improve diagnosis of Parkinson’s disease and COVID-

19. Expert Systems with Applications, 187, 115892.

https://doi.org/10.1016/j.eswa.2021.115892

Park, S. I., Cao, Y., Watson, L. T., & Quek, F. (2012). Performance analysis of a novel GPU

computation-to-core mapping scheme for robust facet image modeling. Journal of Real-

Time Image Processing, 10(3), 485–500. https://doi.org/10.1007/s11554-012-0272-7

Peddie, J., & Dow, R. (2021, August 26). Q2 GPU shipments soar year-to-year. Jon Peddie

Research. https://www.jonpeddie.com/press-releases/gpu-shipments-soar-in-q2-year-over-

year

Pratama, K., & Kang, D.-K. (2020). Trainable activation function with differentiable negative

side and adaptable rectified point. Applied Intelligence, 51(3), 1784–1801.

https://doi.org/10.1007/s10489-020-01885-z

Rajawat, A. S., & Jain, S. (2020). Fusion deep learning based on back propagation neural

network for Personalization. 2nd International Conference on Data, Engineering and

Applications. https://doi.org/10.1109/idea49133.2020.9170693

Rice, L., Wong, E., & Kolter, Z. (2020). Overfitting in adversarially robust deep learning.

Proceedings of the 37th International Conference on Machine Learning, 119, 8093–8104.

GENERAL PURPOSE GPUs AND DEEP LEARNING

42

Rivera-Alvarado, E., & Torres-Rojas, F. J. (2020). APU performance evaluation for accelerating

computationally expensive workloads. Electronic Notes in Theoretical Computer Science,

349, 103–118. https://doi.org/10.1016/j.entcs.2020.02.015

Sahlani, H., Hourali, M., & Minaei-Bidgoli, B. (2020). Coreference resolution using semantic

features and fully connected neural network in the Persian language. International Journal

of Computational Intelligence Systems, 13(1), 1002.

https://doi.org/10.2991/ijcis.d.200706.002

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Networks, 61,

85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Silik, A., Noori, M., Altabey, W. A., Ghiasi, R., & Wu, Z. (2021). Comparative analysis of

wavelet transform for time-frequency analysis and transient localization in structural health

monitoring. Structural Durability & Health Monitoring, 15(1), 1–22.

https://doi.org/10.32604/sdhm.2021.012751

Sioutas, S., Stuijk, S., Basten, T., Somers, L., & Corporaal, H. (2020). Programming tensor cores

from an image processing DSL. Proceedings of the 23th International Workshop on

Software and Compilers for Embedded Systems, 36–41.

https://doi.org/10.1145/3378678.3391880

Srikar, M. S., Kumar, H. R., Kumar, S. A., Veena, N., Vasanthe, Rana, S. S., Chippalkatti, V.,

Niranjan, R. K., & Sarada, N. (2020). Challenges in design of very high-speed data

acquisition system for high-altitude application. Lecture Notes in Mechanical Engineering,

451–460. https://doi.org/10.1007/978-981-15-1724-2_43

GENERAL PURPOSE GPUs AND DEEP LEARNING

43

Syberfeldt, A., & Ekblom, T. (2017). A comparative evaluation of the GPU vs the CPU for

parallelization of evolutionary algorithms through multiple independent runs. International

Journal of Computer Science and Information Technology, 9(3), 1–14.

https://doi.org/10.5121/ijcsit.2017.9301

Taştan, İ., Karaca, M., & Yurdakul, A. (2020). Approximate CPU design for IOT end-devices

with learning capabilities. Electronics, 9(1), 125.

https://doi.org/10.3390/electronics9010125

Teng, F., & Todo, Y. (2019). Dendritic neuron model and its capability of approximation. 2019

6th International Conference on Systems and Informatics (ICSAI).

https://doi.org/10.1109/icsai48974.2019.9010147

Tian, J., Rivera, C., Di, S., Chen, J., Liang, X., Tao, D., & Cappello, F. (2021). Revisiting

Huffman coding: toward extreme performance on modern GPU architectures. 2021 IEEE

International Parallel and Distributed Processing Symposium.

https://doi.org/10.1109/ipdps49936.2021.00097

Tino, A., Collange, C., & Seznec, A. (2020). SIMT-X: extending single-instruction multi-

threading to out-of-order cores. ACM Transactions on Architecture and Code

Optimization, 17(2), 1–23. https://doi.org/10.1145/3392032

Vaid, S., Kalantar, R., & Bhandari, M. (2020). Deep learning COVID-19 detection bias:

Accuracy through artificial intelligence. International Orthopaedics, 44(8), 1539–1542.

https://doi.org/10.1007/s00264-020-04609-7

GENERAL PURPOSE GPUs AND DEEP LEARNING

44

Vieira, J., Roma, N., Falcao, G., & Tomás, P. (2021). A compute cache system for signal

processing applications. Journal of Signal Processing Systems, 93(10), 1173–1186.

https://doi.org/10.1007/s11265-020-01626-y

Villegas, A., Navarro, A., Asenjo, R., & Plata, O. (2019). Toward a software transactional

memory for heterogeneous CPU–GPU processors. The Journal of Supercomputing, 75(8),

4177–4192. https://doi.org/10.1007/s11227-018-2347-0

Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms

based on traditional machine learning and deep learning. Pattern Recognition Letters, 141,

61–67. https://doi.org/10.1016/j.patrec.2020.07.042

Wang, T., Xie, Z., & Gao, B. (2019). Design of distributed heterogeneous general signal

processing platform architecture. 2019 IEEE International Conference on Signal,

Information and Data Processing (ICSIDP).

https://doi.org/10.1109/icsidp47821.2019.9173426

Wang, Z., Hong, T., & Piette, M. A. (2020). Building thermal load prediction through shallow

machine learning and Deep Learning. Applied Energy, 263, 114683.

https://doi.org/10.1016/j.apenergy.2020.114683

Wilson, A. C., Roclofs, R., Stern, M., Srebro N., Recht, B. (2017). The marginal value of

adaptive gradient methods in machine learning [Paper]. 31st Conference on Neural

Information Processing Systems, Long Beach, CA, USA.

https://arxiv.org/abs/1705.08292v2

GENERAL PURPOSE GPUs AND DEEP LEARNING

45

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A comprehensive survey on

graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,

32(1), 4–24. https://doi.org/10.1109/tnnls.2020.2978386

Xu, X., Tan, M., Corcoran, B., Wu, J., Nguyen, T. G., Boes, A., Chu, S. T., Little, B. E.,

Morandotti, R., Mitchell, A., Hicks, D. G., & Moss, D. J. (2020). Photonic perceptron

based on a Kerr microcomb for high‐speed, scalable, optical neural networks. Laser &

Photonics Reviews, 14(10), 2000070. https://doi.org/10.1002/lpor.202000070

Yan, D., Wang, W., & Chu, X. (2020). Demystifying tensor cores to optimize half-precision

matrix multiply. 2020 IEEE International Parallel and Distributed Processing Symposium.

https://doi.org/10.1109/ipdps47924.2020.00071

You, W., Shen, C., Wang, D., Chen, L., Jiang, X., & Zhu, Z. (2020). An intelligent deep feature

learning method with improved activation functions for machine fault diagnosis. IEEE

Access, 8, 1975–1985. https://doi.org/10.1109/access.2019.2962734

Zachariadis, O., Satpute, N., Gómez-Luna, J., & Olivares, J. (2020). Accelerating sparse matrix–

matrix multiplication with GPU tensor cores. Computers & Electrical Engineering, 88,

106848. https://doi.org/10.1016/j.compeleceng.2020.106848

