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Abstract

Evolution by natural selection occurs when the frequencies of genetic variants change

because individuals differ in Darwinian fitness components such as survival or reproductive

success. Differential fitness has been demonstrated in field studies of many organisms, but

it remains unclear how well we can quantitatively predict allele frequency changes from fit-

ness measurements. Here, we characterize natural selection on millions of Single Nucleo-

tide Polymorphisms (SNPs) across the genome of the annual plant Mimulus guttatus. We

use fitness estimates to calibrate population genetic models that effectively predict allele fre-

quency changes into the next generation. Hundreds of SNPs experienced “male selection”

in 2013 with one allele at each SNP elevated in frequency among successful male gametes

relative to the entire population of adults. In the following generation, allele frequencies at

these SNPs consistently shifted in the predicted direction. A second year of study revealed

that SNPs had effects on both viability and reproductive success with pervasive trade-offs

between fitness components. SNPs favored by male selection were, on average, detrimen-

tal to survival. These trade-offs (antagonistic pleiotropy and temporal fluctuations in fitness)

may be essential to the long-term maintenance of alleles. Despite the challenges of measur-

ing selection in the wild, the strong correlation between predicted and observed allele fre-

quency changes suggests that population genetic models have a much greater role to play

in forward-time prediction of evolutionary change.

Author summary

For the last 100 years, population geneticists have been deriving equations for Δp, the

change in allele frequency caused by mutation, selection, migration, and genetic drift.

These equations are seldom used directly, to match a prediction for Δp to an observation
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of Δp. Here, we apply genomic sequencing technologies to samples from natural popula-

tions, obtaining millions of observations of Δp. We estimate natural selection on SNPs in

a natural population of yellow monkeyflowers and find extensive evidence for selection

through differential male success. We use SNP-specific fitness estimates to calibrate a pop-

ulation genetic model that predicts observed Δp into the next generation, and find that

when male selection favored one nucleotide, that nucleotide increased in frequency in the

next generation. Since neither observed nor predicted Δp are generally large in magni-

tude, we developed a method called “haplotype matching” to improve prediction accu-

racy. The method leverages intensive whole genome sequencing of a reference panel (187

individuals) to infer selection in thousands of field individuals sequenced at much lower

coverage. This method proved essential to accurately predicting Δp in this experiment

and further development may facilitate population genetic prediction in the future.

Introduction

Natural selection is routinely strong enough to measure within wild populations. Classic

experiments on conspicuous polymorphisms were the first to establish fitness differences

among genotypes [1,2]. Field experiments later demonstrated selection on allozymes [3] and

structural variants such as inversions [4–6], but the set of loci amenable to direct study has

greatly expanded with quantitative trait locus (QTL) mapping [7]. QTLs link genotype to phe-

notype in way that can provide a “mechanistic” understanding of selection in terms of the pro-

cesses that maintain polymorphism (e.g. antagonistic pleiotropy [4,8], frequency dependent

selection [9] or gametic/zygotic fitness trade-offs [10]) and the environmental drivers of selec-

tion (e.g. differential predation [11]). In aggregate, single-locus and QTL studies have provided

great insight on the contribution of major loci to the standing variance in fitness within natural

populations.

Genome-wide surveys of natural populations deliver a comprehensive view of selection. An

important question is how many loci across the genome experience selection in a typical gen-

eration. Sequencing of natural populations sampled through time suggests that the strong

selection documented in single locus studies can occur at hundreds of polymorphisms simulta-

neously [12,13]. In Drosophila melanogaster, large amplitude fluctuations in allele frequency

occur seasonally and can be directly related to weather conditions [14]. The magnitude and

consistency of changes, as well as the environmental correlation, clearly imply that selection

(and not genetic drift) is causal. The temporal sampling method employed for D. melanogaster
should be applied to other systems [15], but some questions require individual-level data. For

instance, are fitness differences caused mainly by differences in viability or fertility or mating

success? Experiments predicting individual fitness from individual genomes have been con-

ducted in a variety of organisms using both “common gardens,” where sequenced individuals

are transplanted into natural settings [16–19], as well as by monitoring of native individuals in
situ [20–22]. These studies yield varying results on the importance of different selection com-

ponents, but in aggregate, suggest that selection is a pervasive force on ecological time scales.

Here, we measure genome-wide selection and allele frequency change in a field study of

Mimulus guttatus; a plant in which all of the different methods described above have been

applied to a single natural population in central Oregon, USA (Iron Mountain, hereafter IM).

We have demonstrated strong fitness effects of segregating inversions by genotyping IM plants

that were also scored for fecundity [23,24]. Transplant experiments using plants that differ

only at QTL for ecologically important traits have confirmed that conflicting selection
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pressures are key to the maintenance of variation [25,26]. QTL alleles that increase plant size at

reproduction tend to delay flowering, which generates antagonistic pleiotropy between sur-

vival and fecundity. These single-locus experiments (QTLs and inversions) have been corrobo-

rated by Genome Wide Association (GWA) of traits and fitness components in IM [18]. ‘Big/

slow’ alleles that delay progression to flowering, but increase flower size, segregate at many loci

across the genome. They tend to be less frequent than their ‘small/fast’ alternatives within IM

[18,27], which is consistent with many years of field monitoring indicating that viability selec-

tion generally favors small/fast alleles [25,26,28]. However, the GWA also demonstrated tem-

poral fluctuation in the net balance of fitness components [18] suggesting that year-to-year

changes in water availability are key to the maintenance of variation.

The focus of this paper is prediction: Can we characterize selection at the SNP level accu-

rately enough to predict allele frequency change into the next generation? Prospective (for-

ward-time) prediction of evolutionary change from measurements of selection is a primary

goal of quantitative genetics [29–33], but has long been considered beyond the scope of popu-

lation genetics [34]. In quantitative genetics, estimates of phenotypic selection (differentials or

gradients) can be combined with estimates of inheritance (heritability or genetic (co)variance)

to predict D�z , the change in mean phenotype [35,36]. Prediction accuracy can be improved by

directly relating the loci affecting a trait to fitness, using either the secondary theorem of selec-

tion [37,38] or via genomic selection methods [39]. The scope of quantitative genetics is broad,

but its enduring relevance to both agriculture [40,41] and evolutionary biology [30] rests

largely on its capacity for prospective prediction. It is an open question whether selection on

SNPs strong enough to predict Δp, the change in allele frequency, in a manner analogous to

D�z .

To estimate selection on SNPs, we sequenced reduced representation [42] DNA libraries

from 1936 experimental plants (field individuals and progeny). We called variants within

reads and aligned them to 187 full genome sequences previously obtained from the IM popula-

tion [18]. This alignment is the basis for the “haplotype matching” technique of genotype infer-

ence. We then apply haplotype matching to derive genotype probabilities for SNPs within

15,360 genic regions of experimental plants. These likelihoods are inputs to the selection com-

ponent models that predict allele frequency change [20,43]. We estimate male selection by syn-

thesizing maternal and progeny data to infer the (unseen) male siring fitness component. We

show that male selection in 2013 predicts observed changes in allele frequency into the next

generation; the latter estimated from a distinct sampling of plants in 2014. We then describe

haplotype matching in detail and provide a proof-of-concept application to data from the Dro-
sophila Synthetic Population Resource (DSPR) [44], where haplotype inheritance is known.

Finally, we consider the genomic scale of natural selection by integrating field estimates from

2014 with those obtained from the previous generation.

Results and discussion

Mimulus guttatus (syn. Erythranthe guttata) is a hermaphroditic species that can experience

selection prior to flowering, via differential viability, and subsequent to flowering through

both male and female function. In the first year of our study (Fig 1A: 2013), we sampled plants

that successfully flowered (adults) and genotyped them using MSG-RADseq [42] reduced

representation sequencing. We also grew and genotyped a random collection of progeny from

each adult. Given the maternal genotype, we can statistically identify her allelic contribution to

offspring and distinguish allele frequency among all adults (pA) from that in the population of

successful male gametes (pM). The pA/pM test evaluates whether these frequencies are different

and thus identifies selection through differential male success. “Male selection” integrates a
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number of distinct selective mechanisms [20] including simple differences in fecundity (which

may be equivalent between male and female function), sexual selection through differential sir-

ing [45] and pollen competition [46].

To test the predicted changes caused by male selection in 2013, we sampled plants from the

next generation (Fig 1B: 2014). In 2014, we genotyped three distinct cohorts: individuals that

germinated but failed to reproduce (allele frequency pL), individuals that successfully flowered

and produced fruit (allele frequency pA), and a random sample of progeny from reproductive

individuals (used to estimate pM). We estimated allele frequencies using a two-stage genotyp-

ing strategy (haplotype matching) described and tested in the next section (Fig 1C). We then

performed statistical contrasts between cohorts, asking whether allele frequency differs using

Fig 1. The parameters of alternative selection models are depicted for the (A) 2013 and (B) 2014 data. Hypothesis tests are expressed in terms of parameter

constraints where p indicates reference base frequency: pA for reproductive adults, pM for successful male gametes, and pL plants for plants that fail to reproduce. H0

is the full neutral model. Male selection is tested by contrast of H1 to H0 in 2013 and H3 to H1 in 2014. Viability selection is tested by contrast of H3 to H2. (C) After

DNA sequencing, read-pairs are mapped to the M. guttatus reference genome. The haplotype matching method (read-pairs to genic-haplotypes) is illustrated for a

simple case with read-pairs mapping to single location. Read-pairs impose a probabilistic ‘process of elimination’ on reference line sequences as putative ancestors:
p

indicates consistency and “X” inconsistency.

https://doi.org/10.1371/journal.pgen.1008945.g001
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likelihood-based selection component models [43,47–49] generalized to accommodate uncer-

tain genotype calls [20]. Selection is indicated when a model that allows allele frequencies to

differ between cohorts, e.g. pA6¼pM, has a much higher likelihood than a constrained model,

e.g. pA = pM (see Materials and methods section D).

Male selection in 2013 predicts evolution into 2014

We evaluated prediction accuracy by ascertaining SNPs in two ways, first those with the stron-

gest evidence for selection and then those with the strongest evidence for change. We tested

1,523,410 SNPs within genic regions (filters described in Materials and methods section B).

For male selection in 2013, 1337 SNPs were genomewide significant with pA/pM test p-values

less than the Bonferroni threshold (α = 0.05/1523410), although many of these SNPs are in

very strong linkage disequilibria (within the same gene). After thinning to the single most sig-

nificant test per gene, 112 remained. Given that Bonferroni is excessively conservative, we con-

ducted subsequent analyses accepting SNPs (at most one per gene set) with p< 10−5 (587

SNPs in Fig 2A). For pA/pM in 2013, the 10−5 cut-off corresponds to a false discovery rate

of 0.002 using the Benjamini-Hochberg method [50]. Fig 2A contrasts the predicted change,

Δp = (pM−pA)/2, to the apparent Δp from 2013 adults to 2014 zygotes. To identify the SNP

with the greatest evidence for change, we consider the data from both years simultaneously in

the Allele Frequency Change Test of Fig 2C. We first fit a model where pA in 2013 is con-

strained to equal pZ, the allele frequency in zygotes of 2014 (null hypothesis). We contrast that

likelihood to a more general model where pZ of 2014 is allowed to differ from pA in 2013, its

value determined entirely by data from 2014. Rejecting pA13 = pZ14 indicates allele frequency

change into the next generation. Applying this test, we find that 274 gene sets have at least one

SNP with p< 10−5 (Fig 2C).

We obtain strongly positive relationships between predicted and observed allele frequency

change from both male selection and allele frequency change tests (Fig 2A: r = 0.79; Fig 2C:

r = 0.76; p<0.0001 for both). Each relationship deviates from 1:1 (the naïve expectation with

unbiased prediction) with the slope for male selection SNPs less than 1 (A: 0.40) and the slope

for allele frequency change SNPs greater than 1 (C: 1.57). The evident positive associations

between observed and predicted Δp are very encouraging, but these relationships require care-

ful statistical scrutiny. The data (and thus estimates) from 2013 and 2014 are statistically inde-

pendent, but the x- and y-axis Δp values in Fig 2A and 2C share a parameter (pA in 2013) that

contributes negatively to the values on each axis. As a consequence, estimation error in pA will

generate a positive covariance between observed and predicted apart from that generated by
correct prediction. Ascertainment is second factor. Choosing the most significant SNP for male

selection in 2013 will select for those with exaggerated estimates of (pM−pA). When male selec-

tion favors the reference base, the most significant tests will have positive estimation error

added to the true positive value of (pM−pA), and the opposite is true for SNPs where the alter-

native base is favored [51]. The so called “winner’s curse” [52,53] will thus reduce the regres-

sion slope relative to 1 in Fig 2A because the allele frequency in 2014 zygotes is unaffected by

estimation error in the previous generation. Ascertainment tends to exaggerate the y-axis vari-

able for the allele frequency change test, inflating the slope relative to one. The regression

slopes in Fig 2A and 2C (observed onto predicted) deviate from 1:1 as predicted by this ascer-

tainment effect.

We conducted two analyses that establish genuine prediction of Δp in the face of these

errors and biases. First, we used ‘cross-validation’ by splitting the 2013 experiment into odd

numbered and even numbered families, respectively. We then performed model fits on each

half separately, generating two distinct pairs of observed and predicted Δp for each SNP. We
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then matched the “odd” predicted Δp to the “even” observed Δp, and vice versa (two distinct

contrasts for each SNP). The contrasts are not equivalent because the test ascertained as signifi-

cant will reside (usually) in only one data half. We denote the “Ascertained contrast” as the

one with the significant test Δp (say Odd) matched to the observed Δp from the other data half

(even). The remaining data from this SNP (predicted from even, observed from odd in this

example) is the “Paired contrast.” With cross validation, there is no correlation in the absence

of prediction (confirmed by simulation in S1D Appendix).

The split data produce strong positive relationships between observed and predicted Δp for

both Ascertained and Paired contrasts (Fig 2B and 2D) despite the reduction in power caused

Fig 2. The observed allele frequency change (2013 adults to 2014 zygotes) is compared to predicted with SNPs chosen based on (A)

significance for male selection in 2013 (n = 587) or (C) significance for the Change in Allele Frequency test (n = 274). Results are

reported for all gene sets with a SNP with p< 10−5. Contours indicate the density of points in panels A,C. For cross-validation (B, D), we split

the data into two halves and performed model fits on each half. We chose an equivalent number of SNPs to the corresponding un-partitioned

analyses with n = 587 in (B) to match (A) and n = 274 in (D) to match (C). For SNPs selected based on male selection (B), the “Ascertained”

contrast is based on the predicted Δp from the significant test (orange points) while the “Paired” contrast is based on the predicted Δp from

the other half of the data (blue points). (D) In the cross-validation for allele frequency change significant tests, the ascertained (orange) is the

observed Δp from the significant test and predicted Δp from the other data half. Assignment is reversed because the allele frequency change

test is based on the observed Δp.

https://doi.org/10.1371/journal.pgen.1008945.g002
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by halving the data. For male selection (Fig 2B), correlations between predicted and observed

would be zero for both Paired and Ascertained if SNPs were neutral (or prediction unrelated

to response at non-neutral SNPs). In fact, both correlations are highly significant (p< 0.00001

for each in Fig 2B). Importantly, the regression slope is greater for the Paired contrasts (0.62)

than the Ascertained contrasts (0.16). This is expected because the magnitude of predicted Δp
values is substantially greater in Ascertained relative to Paired contrasts. The exaggeration of

predicted Δp inherent to the former group (winner’s curse) reduces the slope. Finally, we note

that the predicted Δp is strongly correlated between data halves (r = 0.86, n = 587,

p< 0.00001). No correlation is expected under neutrality.

Cross-validation for the Allele Frequency Change test required subdivision of data from

both years. We split the 2014 data into even and odd families and (arbitrarily) combined

2013-odd with 2014-odd. Then, as previously, we fit models (here the Allele Frequency Change

test) to each data half for each SNP and identified the most significant test per gene. As previ-

ously, both Ascertained and Paired contrast sets produce strongly positive correlations

between observed and predicted Δp values (p< 0.00001 for each in Fig 2D). Here, the regres-

sion slope is lower with Paired (0.61) than Ascertained SNPs (1.29). This change in pattern

regarding the slopes between in Fig 2B and 2D is predicted given the nature of ascertainment

for the allele frequency change test. Here, the observed Δp will be inflated relative to the truth

for Ascertained but not for Paired contrasts.

As a complement to cross-validation, we developed a full genome simulation program to

generate data under the condition that prediction is ineffective (no true relationship between

observed and expected). This simulator (S1D Appendix) produces read-pair data equivalent in

structure and amount to the real data. To this output, we can apply the full bioinformatic pipe-

line applied to the actual data. The simulated data reiterates estimation error and is subject to

the same ascertainment biases as the actual data, but without allele frequency change. The lat-

ter is assured because we sample genotypes randomly (fitness is equal for all genotypes).

We first applied the selection component models to simulation outputs to confirm our

methodology for calling test p-values. When there is no selection, we find that the sampling

distribution of Likelihood Ratio Test statistic follows the chi-square density, consistent with

the asymptotic normal theory for likelihood testing (S1D Appendix). This is how we calculated

p-values on tests with the actual data. Second, we confirmed that the cross-validation method

eliminates the spurious association between predicted and observed Δp (null hypothesis for

Fig 2B and 2D). Finally, the simulations confirm that a positive association between observed

and predicted change is generated by estimation error in the un-partitioned data (Fig 2A and

2C). However, the covariance between observed and predicted is much greater for the real

data than for the simulated data (0.020 vs 0.012 for male selection, 0.033 vs 0.012 for the Allele

Frequency Change test). Thus, the magnitude (if not simply the direction) of the covariance in

Fig 2A and 2C is indicative of effective prediction. In summary, the simulation and cross-vali-

dation procedures provide strong support that prediction is genuine.

The haplotype matching method

We derived SNP allele frequency estimates in two stages (Fig 1C). In the first, we map read-

pairs to the set of ‘genic haplotypes’ present in IM. Sequence variation is very high in M. gutta-
tus [54] and it is difficult to effectively call variants outside genic regions. We thus established

“gene sets” as loci. A set is either a single gene or a collection of closely linked (within 100bp)

and/or overlapping genes (S1 Table). The genic haplotypes are the sequences for this locus

among the reference panel genomes (detailed procedures in S1B Appendix). With 187 distinct

haplotypes, there are 17,578 distinct genic-genotypes. However, most gene sets have fewer
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than 187 because some IM lines are identical within a gene set (the median number of distinct

haplotypes is 100 per gene, S1 Table).

We treat the genic haplotypes as the sequences present in the natural population (Fig 1C).

Let U[plantID],i,j denote the likelihood for the full collection of read-pairs from a plant given that

its diploid genic-genotype is [i,j], where i and j index genic haplotypes. For an outbred plant,

U½plantID�;i;j ¼
QRP

r¼1

�hr;i

2
þ
�hr;j

2

� �

ð1Þ

where RP is the number of read-pairs mapped in this gene set, hr,i is the number of sequence

mismatches between read-pair r and genic haplotype i, and � is the mismatch probability. �

aggregates the various events (sequencing error, alignment error, etc) that could create an

apparent sequence difference even if the read-pair and haplotype are the same. U relates the

RADseq data collected from field plants to the tests for selection.

A potential difficulty with haplotype matching is that the sequence of a field plant may not

match any of our genic haplotypes owing to recombination. This will reduce our power to

detect selection, potentially generating false negatives but not false positives [51]. It is straight-

forward to test whether individual read-pairs are consistent with the genic haplotypes. Across

the 99 million read-pairs in the final RADseq dataset (both years), the median number of

SNPs per read-pair is 6. About 20% of read-pairs overlap 10 or more SNPs (S2 Table, S1 Fig).

Across all read-pairs, less than 0.2% failed to perfectly match at least one genic haplotype. Of

course, the full collection of read-pairs from a plant can still be inconsistent with any pair of

genic haplotypes (even if all individual read-pairs map perfectly). This occurs, but very infre-

quently, and in these cases, the genotype is treated as unknown.

Given consistency, the question becomes how precisely low-level sequencing can identify

the genotype of field plants. As expected, the number of possible genic genotypes for a plant

declines as the number of read-pairs mapped to a gene set increases (Fig 3A). With low but

reasonable coverage (10–20 read-pairs over an entire gene), the collection of compatible genic-

genotypes is greatly reduced (on average to�5% of the total). Oftentimes, we identify one

parental genic-haplotype definitively, but the other is consistent with multiple sequences from

the reference set (illustrated by Fig 1C). The aggregation of evidence across numerous read-

pair loci (mapping to different parts of gene) is usually needed to identify specific genic-haplo-

types. While zeroing in on 5% of diploid genic-genotypes is still hundreds of possibilities, these

possibilities often strongly “agree” about the genotype at particular SNPs when nearly all

genic-genotypes have the same bases at that SNP. SNP specific inference can be quite strong

even with moderate coverage. Plants with low sequencing coverage often have few or no read-

pairs, particularly in smaller gene sets. In isolation, inference for such plants would be weak.

Here, inference can become much stronger with information from relatives (the maternal

plant, siblings, or offspring). Importantly, we never truncate probabilities to produce “hard

calls” for SNPs. Uncertainty is propagated through the entire analysis and thus properly inte-

grated in testing. The selection analyses cycle through all SNPs within a gene set, considering

each as a potential effector of fitness.

A test of haplotype matching with data from Drosophila melanogaster
We used haplotype matching to estimate allele frequencies for the tests in Fig 2. With the

Mimulus data, we do not know the true genic-genotype of field plants and thus cannot com-

pare inferred to known. For this reason, we applied our pipeline to a Drosophila melanogaster
population where genic-genotypes are known with high confidence. The Drosophila Synthetic

Population Resource (DSPR) consists of two multiparental, advanced generation intercross
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Recombinant Inbred Line (RIL) populations, each initiated from eight inbred founder strains

[44,55]. The fully sequenced founder strains represent the reference panel in the current con-

text. The RILs (comparable to Mimulus field plants) were genotyped and we know the founder

strain that contributed the allele at each gene of each RIL. Some regions in some RILs are not

genotyped with certainty, but we exclude these from our analyses.

Fig 3. Testing haplotype matching: (A) In Mimulus, the precision of estimation is depicted as a function of the amount of data per plant. Compatible means

that the likelihood for a genic-genotype is within 50% of the most likely genotype. (B) In Drosophila, the number of ancestors (indicated by contours and color)

matching the genotype of a particular RIL is depicted as a function of amount of data (reads) and the number of SNPs in the gene set.

https://doi.org/10.1371/journal.pgen.1008945.g003
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We collected MSG-RADseq data on 60 of the RILs from DSPR using the same methods as

for Mimulus, except that the Drosophila sequences are 94bp single end reads instead of the

PE100. We processed the D. melanogaster reference genome into ‘gene sets’ and then imple-

mented the same Mimulus pipeline for read mapping, SNP calling and haplotype matching.

The great majority of D. melanogaster reads overlap 3 or fewer SNPs and are thus less informa-

tive than the Mimulus read-pairs (S1 Fig). Finally, we compared the inferred genotype to the

“known” ancestry of each RIL as a test of the method.

This exercise confirms the validity of the haplotype matching, but also its limitations. The

ancestral line (or lines) deemed most likely by haplotype matching includes the “correct” line

�99.5% of the time. We assigned the ancestral genotype as “known” if the posterior probability

was greater than 0.99 [44,55] and thus a small rate of mismatch (less than 1%) is expected even

if haplotype matching is perfect. The 99.5% obtained by haplotype matching of MSG data is

thus actually close to the theoretical upper limit for accuracy. However, while haplotype match-

ing is accurate, it is not always precise. Oftentimes, the method predicts that numerous genic-

genotypes are equally likely. Inference to the specific correct ancestor increases in a predictable

fashion with the number of SNPs per gene set and number of reads scored for that line (Fig 3B).

The scale of genome-wide selection

A principal motivation for genomic Selection Component Analyses is to determine how much

selection is occurring across the genome in a typical generation. We found abundant evidence

for selection in 2013 (Fig 2), and also when estimating selection components from the plants

in 2014 (Figs 4 and 5). For Fig 2, we used the 2014 data simply to estimate the observed Δp
from 2013–2014, but the experimental design allows a more detailed dissection of fitness varia-

tion within 2014 (Fig 1B). Viability selection estimated from the difference between pA and pL
was abundant in 2014 with 226 genes having at least one SNP tests with p< 10−5 (Fig 4D).

Genes were significantly more likely to exhibit viability selection in 2014 if under male selec-

tion in 2013 (X2
½1�

= 21.8, p<10−5). Male selection was considerably weaker in 2014 than 2013

with only 59 genes having a SNP with p< 10−5 for the pA/pM test (Fig 4C). As with viability

selection, there was a strong tendency for genes significant in 2013 to also be significant for

male selection in 2014 (X2
½1�

= 53.4, p<10−5). The genomic locations of the ‘best-per-gene’

results for all four tests (2013 and 2014) are depicted in Fig 4 and S5 Table. The broad distribu-

tion of significant tests across chromosomes suggests extensive selection in IM (Fig 4).

The genomic extent of selection is a fundamental question in evolutionary biology. The

concern that selection acting simultaneously at many loci generates excessive genetic load, i.e.

the cost of selection [56,57], was a major impetus for the development of the neutral theory of

molecular evolution [34,58]. In this context, the sheer number of significant tests in Fig 4

seems surprising. Considering the estimated Δp across a full generation (adults of 2013 to

adults of 2014) at the 587 SNPs that were significant male selection in 2013, the median

increase of the favored allele was 0.045. This estimate is inflated by ascertainment, but still use-

ful to consider given that a selection coefficient of at least 0.16 is required to generate

Δp = 0.045. If loci combine multiplicatively, selection at many loci imposes an enormous vari-

ance in fitness on the population (S1G Appendix). The total variance in fitness of a real popu-

lation is limited by reproductive constraints [34] and the genetic component of that variance

will be only part of the total. The cost of selection is alleviated if fitness effects do not combine

multiplicatively across loci (as assumed in S1G Appendix and also in much of population

genetic theory, e.g. [59]). If selection acts by truncation or by other mappings from genotype

to fitness, a great deal more allele frequency change can occur given the total variance in fitness

[60–62].
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An alternative way to alleviate the cost of selection is via linkage disequilibria (LD). There

would be no difficulty with change at many loci if all positively selected alleles were in LD.

Then, a single ‘selective event’ simultaneously changes allele frequency at many correlated

SNPs, as occurs routinely with inversion polymorphisms. LD estimated from our reference

sequences provide no support for this explanation. Pairwise LD among the 587 male selection

SNPs (Figs 2A and 4A) are generally very low (S8 Table). However, our reference line genomes

are 6–12 generations of self-fertilization removed from the outbred field plants that are

experiencing selection [18]. Recombination in the first few generations of line formation

would not have reduced LD on small genomic scales (at least not much), but it could have

erased more diffuse LD among less closely linked loci. This is relevant as strong directional

selection on a quantitative trait can generate diffuse LD even among unlinked loci, a phenome-

non known as the ‘Bulmer effect’ [63]. In this context, the quantitative trait is lifetime repro-

ductive success, and the way that loci combine to determine its value remains an outstanding

question in evolutionary biology.

The maintenance of polymorphism

Given many loci under selection, the question becomes how both alleles can persist. The con-

trast of results from 2013 and 2014 immediately suggests antagonistic pleiotropy and temporal

fluctuations in fitness as potential mechanisms. Across SNPs, we see relative consistency in

Fig 4. Manhattan plots, with a single test reported per gene, for (a) Male selection 2013, (b) Allele frequency change 2013–2014, (c) Male selection 2014, and (d)

Viability selection 2014. The orange line is the Bonferroni threshold, purple is p = 10−5.

https://doi.org/10.1371/journal.pgen.1008945.g004
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male selection across years, but a clear trade-off between male selection in 2013 and viability in

2014 (Fig 5A). To compare different components of selection, we selected the SNP within each

gene set with the highest aggregate evidence for selection using Fisher’s combined probability

statistic ([64], S1E Appendix). Alleles favored by male selection in 2013 were also favored by

male selection in 2014 (r = 0.57 between the predicted Δp values from each component (Fig

5A), n = 555, p<10−48). Male selection favored the same allele in both years in 82% of 555

genes having a SNP with a combined p-value < 10−5 (S9A Table). In contrast, alleles favored

by male selection in 2013 were usually disfavored by viability selection in 2014 (n = 725, r =

-0.34, p<10−20), with 70% of SNPs exhibiting conflicting directions of selection (S9B Table).

As expected from these results, there is also a negative correlation between male selection and

viability within 2014 (r = -0.83; S9C Table), but testing is complicated for this contrast because

the two tests share a common parameter and is thus subject to biases discussed previously.

Year-to-year changes in the pattern of selection, demonstrated in many previous experi-

ments on IM [18,23–26,28], are also evident in this study. For example, male selection was

much stronger in 2013 than 2014 (Fig 4). Temporally fluctuating fitness is often disregarded as

a mechanism of balancing selection because simple models suggest protected polymorphism is

unlikely [65,66]. However, subsequent theoretical studies (e.g. [60,67,68]) have shown that

fluctuating selection can greatly elevate the genetic variance owing to factors like an autocorre-

lation of conditions between generations and/or the occasionally input of novel mutations. In

the IM population of M. guttatus, two potential balancing mechanisms (temporal variation

and antagonistic pleiotropy between survival and fecundity) act simultaneously on the same

polymorphisms.

Balancing selection at a locus can leave an imprint in local patterns of sequence variation. If

selection preserves alternative alleles for long periods, these alleles will accumulate mutations

at closely linked sites elevating variation. Here, we tested this prediction by calculating molecu-

lar summary statistics within 200bp windows around the 587 SNPs identified for male selec-

tion in 2013 (Figs 2A and 4A) using our reference genomes as a population sample of

sequences (S1F Appendix provides a full description of these calculations). We contrast the

selected-SNP windows to a “control set” of windows around SNPs with non-significant tests.

Fig 5B illustrates that the selected-SNP windows are significantly elevated relative to controls

in terms of amount of nucleotide variation (S and Pi), the intermediacy of allele frequencies

(Tajima’s D [69]), and strength of association between alleles (Zns [70]). The differences in

means are highly significant (F> 35, p< 0.0001 for each statistic) and in the direction pre-

dicted by balancing selection on the selected-SNPs. These same tendencies obtain when con-

sidering windows around the selected SNPs from 2014 (S1F Appendix).

The elevated sequence variation around selected-SNPs (Fig 5B) is intriguing but prelimi-

nary. There may be an ascertainment bias if it is simply easier to detect selection at loci with

more intermediate allele frequencies and strong haplotype structure (elevated Tajima’s D and

Zns). Trans-species polymorphism provides a more direct demonstration of long-term balanc-

ing selection. For example, many of the seasonally-fluctuating SNPs in Drosophila melanoga-
ster are also polymorphic in the closely related species, D. simulans, suggesting that balancing

selection has been acting since the common ancestor of this species [12]. We cannot evaluate

this prediction here because we do not have polymorphism data for a closely related species

that does not inter-breed with M. guttatus. However, the fact that divergent lineages within

the M. guttatus species complex (e.g. M. nasutus, M. decorus, and perennial populations of

M. guttatus) contribute alleles to the IM population [54,71] may provide a source of selectively

relevant variation. Future studies should examine whether SNPs under selection within IM

also exhibit adaptive differentiation among populations or lineages within the species

complex.
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Fig 5. (A) Pairwise contrasts between predicted changes owing to male selection in 2013, viability selection in 2014, and male selection in 2014. A single

SNP per gene is reported (the most significant) if p< 10−5. The SNPs ascertained for contrasts are distinct from those for tests in isolation (Fig 4), although

these SNP sets are overlapping (see S5 and S9 Tables). (B) Density plots for molecular test statistics are depicted for 587 selected-SNP windows and 2751

control windows. Vertical lines are means. The number of polymorphisms (S), nucleotide diversity (pi), and Tajima’s D are based on the flanking DNA (100

bp on each side, but not including the focal SNP). Z focal is Zns calculated by contrasting the focal SNP to all flanking SNPs.

https://doi.org/10.1371/journal.pgen.1008945.g005
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Conclusions

Regarding the genomic scale of selection, recent studies in fully pedigreed populations of birds

and mammals have clearly shown substantial allele frequency change through time [22,72,73].

The challenge has been to attribute changes to natural selection as opposed to genetic drift

[22,72]. In the present study, the sampled population (n) is about 1000 individuals from each

year, which is orders of magnitude smaller than the number of reproductive individuals within

the population (N) each generation [54]. The null hypothesis in our tests for selection is

“experiment-level” drift (differences in allele frequency between cohorts is caused by the finite

numbers of parents and offspring). Population drift is necessarily much weaker than experi-

ment-level drift because n << N. Significant tests thus clearly indicate selection, albeit with

the caution that negative results (non-significant tests) do not imply that SNPs are evolving

neutrally. Perhaps the simplest confirmation of natural selection as the principle driver of Δp is

the contrast between years (Fig 5A). If apparent changes were caused by sampling and/or esti-

mation error, the direction of change would not be correlated between the independent data-

sets of 2013 and 2014 plants.

Figs 4 and 5 indicate strong, but often antagonistic, selection on hundreds of genes. The

apparent trade-off between fitness components, as well as the correlations between allele fre-

quency and direction of Δp, extend and corroborate previous experiments on this population.

Fig 5A provides further evidence that montane, annual populations of M. guttatus exhibit a

life-history trade-off between development rate and reproductive capacity. In most years

(although not 2013 of this experiment), nearly all plants die owing to drought at approximately

the same time, but survival to flowering differs greatly owing to varying rates of maturation

[28,74]. The current study shows clear evidence of a viability trade-off with male reproductive

success, with male selection for minor alleles in 2013 likely mediated through positive effects

on flower size in this year of favorable growth conditions. Furthermore, consistency between

2013 and 2014 in the direction of allelic effects on male fitness suggests that such tradeoffs are

intrinsic and contribute to the maintenance of big/slow alleles at minor frequencies within IM

[18,27]. This is yet another of a growing body of examples relating antagonistic pleiotropy to

polymorphism across diverse systems, e.g. [75].

Regarding prediction, selection on both quantitative traits and specific genetic loci with

major effects can be quite strong [1,2,76]. However, both conceptual and logistical difficulties

have separated phenotype-level and locus-specific approaches, limiting inference about the

extent, nature, and magnitude of selection on genetic variants across the genome. Our results

suggest that genotypic fitness is broadly estimable, and that these estimates can predict allele

frequency change across generations (Fig 2). Unfortunately, it is much more difficult to deter-

mine the extent that apparent deviations between observed and predicted are due to sampling

error as opposed to model error. The regressions of observed onto predicted Δp for Paired

contrasts (Fig 2B and 2D) are the simplest parametric relationships to interpret. The slopes for

these, 0.61 and 0.62, suggest that response is less than predicted, but this conclusion is very ten-

tative. Simple estimation error in the predictor of a linear regression causes a downward bias

in the slope (here relative to one), even when there is no ascertainment bias [77]. This is non-

trivial given that our SNP-specific predictions (and observations) of allele frequency change

are encumbered with substantial estimation error [51].

Several biological factors may have reduced model accuracy. For example, we assumed that

(a) there was no differential germination in the greenhouse (affected by genotype) when we

grew progeny from maternal plants of 2013, (b) no seed bank contributed to the 2014 genera-

tion, and (c) no immigrant pollen or seed contributed to the 2014 population. Germination

rates routinely differ between plant genotypes in an environment-dependent fashion, e.g.
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[78,79]. The field environment of 2014 (where plants germinated to produce our observed Δp)

is certainly different from the greenhouse (the offspring genotypes used to estimate pM in

2013). This could cause substantial deviations between observed and predicted Δp, although

they would be limited to genomic regions containing “germination genes.” In contrast, many

loci would be affected by violations of the assumptions regarding the seed bank and gene flow.

If selection varies substantially among years, and all evidence indicates that IM experiences

strong fluctuations [18, 23–26,28], a seed bank can moderate temporal changes in allele fre-

quency [80]. M. guttatus does not have seed dormancy [81], and at present, we have no evi-

dence that a seed bank exists for IM. If it does however, recruitment from the seed bank would

probably act to reduce the magnitude of observed Δp relative to predicted Δp. Finally, there

certainly is some level of gene flow into IM from other populations [54]. However, the fact that

IM is a very large population [54], coupled with the observation of substantial allele frequency

divergence from neighboring population [82], suggest that the rate of immigration is quite low

(<< 1%). This level of gene flow might fundamentally alter long-term evolutionary dynamics

(e.g. by introducing novel alleles), but should not have a dramatic effect on single-generation

Δp values.

A shortcoming of the Selection Component Analyses is that they do not provide an ecologi-

cal explanation for the observed selection on SNPs. As in quantitative genetics, we can obtain

such an understanding by replicating the measurement of selection across different popula-

tions (or the same population through time) and then correlating selection estimates with

environmental or ecological variables. Mechanistic insights may also come from combining

phenotypic measurements with genotyping and fitness assays, linking GWA with selection

component analyses. In summary, a broader application of genomic selection component

methods, coupled with environmental/phenotypic data and population monitoring through

time, should help to resolve the limits of population genetic prediction.

Materials and methods

A. Field sampling and progeny testing

Mimulus guttatus (syn Erythranthe guttata) is a wild flower species (Family: Phrymaceae)

abundant throughout western North America [83]. The IM population, located in the central

Oregon cascades (44.402217 N, -122.153317 W, Elevation ~1400 meters), is described in detail

elsewhere [23,25,28]. In 2013, whole plants distributed in a grid across the IM population were

collected (at senescence) into coin envelopes. In 2014, we established three primary transects

(each ~10m) horizontally across the face of the slope, with approximately equal vertical spacing

between transects. The transects were further subdivided into perpendicular sub-transects

which extended 0.3m on either side of the primary transect and were evenly spaced in 0.3m

increments along the primary transect. We sampled five plants along each sub-transect by

selecting the most proximal individual to a points placed at 10cm intervals. On July 15, 2014,

we surveyed each transect and identified plants that would not progress to flower based on

state of development relative to others in population. Assuming these plants would not have

sufficient time to flower and set seed prior to season ending drought, this cohort (L) estimates

pL in Fig 1. To ensure sufficient DNA from L plants, we transplanted these individuals into

moistened peat pots filled with potting soil and reared them to sufficient size for DNA extrac-

tion. We first sampled plants for the adult cohort of 2014 (pA in Fig 1) on July 21, 2014. We

only sampled adults once all plants within their sub-transect fully dried down. We collected

whole plants, after confirming they had begun setting seed, into envelopes, so that both seed

and maternal tissue could be separated for planting and DNA extraction, respectively. The

remaining adults were harvested on July 27. Given seed collections from both years, we
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germinated and grew 2–4 progeny from each field plant in the University of Kansas green-

house. We harvested dried leaf and calyx tissue from field collected parental plants and young

leaves from greenhouse germinated progeny for subsequent DNA extraction [84]. To deter-

mine the overall proportion of the population that survived to flower in 2014, we surveyed a

random set of 1000 seedlings marked early in the season at the nearby BR location [82]. Seven

hundred of these plants eventually flowered.

B. Library preparation, sequencing, SNP calling, and scoring read pairs

We collected paired-end sequence reads from 1936 experimental plants (2013: 207 field plants

and 685 progeny; 2014: 383 field plants and 661 progeny) using Illumina technology. For field

plants and their progeny, we generated genomic libraries using Multiplexed-Shotgun-Geno-

typing (MSG)[42], a form of RADseq [85] that uses a restriction enzyme to reduce genomic

representation to homologous loci that are flanked by restriction cut sites. We digested geno-

mic DNA from each plant using the frequent-cutting restriction enzyme MseI (NEB Biolabs).

Each DNA sample was ligated to one of 96 distinct barcoded adaptors, each containing a

unique 6 bp barcode. Each set of these barcoded samples is then pooled independently to cre-

ate a sub-library. After PCR, we size-selected our library for 250-300bp fragments using a Pip-

pin Prep (http://www.sagescience.com/products/pippin-prep/). We then performed PCR

reactions at 12 cycles using Phusion High-Fidelity PCR Master Mix (NEB Biolabs) and primers

that bind to common regions in the adaptors. In the PCR step, each sub-library was combined

with one of 24 distinct Illumina indices allowing multi-plexing of the sub-libraries. To remove

primer dimers, we did two rounds of AMPure XP bead cleanup (Beckman Coulter, Inc) using

a 0.8 bead volume to sample ratio. Samples from different cohorts within each year (e.g. adults

versus plants that failed to flower in 2014) were interspersed in library construction. However,

the 2013 and 2014 plants were contained in different libraries and sequenced separately. Multi-

ple sequencing runs were performed on the libraries from each year. Libraries were sequenced

with 100-bp paired-end reads on the Illumina HiSeq 2500 with a 10% phiX spike-in. The pro-

gram commands used to call SNPs in the MSG data are described in S1A Appendix. We sup-

pressed Indels and all SNPs with more than two nucleotides segregating.

Sequencing and variant calling on the 187 reference panel genomes from IM was described

previously [18]. We first imputed the few missing calls in these genomes and then extracted

the sequence for each reference genome within each gene set (detailed procedures in S1B

Appendix). We established gene sets as units for analysis. A set is either a single gene or a col-

lection of closely linked (within 100bp) and/or overlapping genes. After suppressing genes

prone to paralogous or otherwise spurious read mapping, 15,360 gene sets were retained for

subsequent analysis (S1 Table). Finally, we noted that some SNPs were completely redundant–

owing to perfect association in the reference panel, they always produced the same genotype

likelihoods in field plants. We thinned sets of fully redundant SNPs to a single representative

SNP leaving 1,523,410 SNPs for selection estimation.

The data units for likelihood calculations (Eq 1) are read-pairs scored for each polymorphic

SNP that they overlap within a gene set. We aligned the read-pairs from each plant to the

whole genome sequences, and within each gene set, and calculated U[plantID],i,j for each possible

genic-genotype [i,j]. U[plantID],i,j is the likelihood for the full collection of read-pairs from a

plant given that its diploid genic-genotype is [i,j], where i and j index genic haplotypes. Based

on the low mismatch rate to genic haplotypes (as a whole), we set � = 0.005 for calculation of

Eq (1) described below. We calculated U[plantID],i,j for each combination of gene set, plant, and

genic-genotype using python scripts p1.py, p2.py, p3.py, p.Uij.2013.py and p.Uij.2014.py (S1

File).
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C. Drosophila melanogaster analysis

The Drosophila Synthetic Population Resource (DSPR) consists of two multi-parental,

advanced generation intercross mapping populations [44,55]. Each population (A and B) was

initiated with eight inbred founder strains, with one strain common to both populations (i.e.,

15 founders in total). Following 50 generations of free recombination, a series of Recombinant

Inbred Lines (RILs) were initiated by 25 generations of sibling mating. The founder genomes

were sequenced to 50X coverage and the RILs subjected to RAD-seq using SgrAI, an 8-cutter,

as the restriction enzyme [44,86]. Given these data, we are able to infer the mosaic founder

haplotype structure of each RIL at>10,000 positions covering the genome.

We collected MSG RADseq data using the same protocol as described above for the Mimu-

lus experiment, except that these data are 94bp single end sequences instead of the PE100

sequencing for Mimulus. We chose 60 of the RILs for the present study equally split between

set A and set B of the DSPR. For each collection, there are only 8 possible ancestral genomes,

but we ran the analysis blind to this information (thus inference among 15 possible ancestral

alleles was required). The reads were processed with fastp (https://github.com/OpenGene/

fastp) and then we mapped to the FlyBase r5.56 genome build (https://flybase.org/) and called

SNPs following the procedures used for Mimulus (S1A Appendix). We used the annotation

(dmel-all-r5.56.gff) to establish a list of 13,384 gene sets applying the same rules as for Mimulus

(S3 Table). Next, we determined the intersection between SNPs within the ancestral genomes

(final_snptable_foundersonly.txt downloaded from http://wfitch.bio.uci.edu/~dspr/) and

those called in the MSG RIL data, a total of 107,878 bi-allelic SNPs (S4 Table). We found that

8900 of these 13,384 gene sets had at least one SNP scored in MSG data and could thus be used

for downstream analysis. After eliminating uninformative reads, a total of 15,488,651

remained across the 60 RILs. We next adapted the Mimulus programs (python scripts p1.py,

p2.py and p3.py in S1 File) to determine predicted ancestry based of the DSPR RILs and

matched the inferred ancestry to the “known” ancestry of each RIL. The latter was established

previously: We downloaded files HMMregA_R2.txt and HMMregB_R2.txt from http://wfitch.

bio.uci.edu/~dspr/ (also available at https://datadryad.org/stash/dataset/doi:10.5061/dryad.

r5v40). We processed the D. melanogaster reference into ‘gene units’ by the same method

applied to the Mimulus genome. Read mapping and SNP calling were executed using the same

techniques. The great majority of D. melanogaster reads overlap 3 or fewer SNPs and are thus

less informative than the Mimulus read-pairs (S1 Fig). We then applied the inference pro-

grams using the 15 ancestral sequences of the DSPR as genic haplotypes.

D. Likelihood of the field data with and without selection

Selection component analyses (SCA [43,47]) are based on population genetic models that pre-

dict allele frequency change from observations of viability, fecundity, and mating success [48].

SCA estimate selection from differences in allele frequency between distinct “cohorts” within a

population, e.g. individuals that survive to reproduce and those that do not (viability selection)

or those that acquire mates and those that do not (sexual selection) [49]. Given random sam-

pling of individuals, the likelihood of the entire dataset (L) is a product across families:

L ¼
QF

y¼1
Ly ð2Þ

where F is the number of families and Ly is the likelihood for family y. Families consist of a sin-

gle individual if that plant failed to survive to reproduce. For survivors, the family is the field

plant and a sample of their progeny. The log-transformed likelihood:

Ln L ¼
PF

y¼1
Lnf
PK

i;j�iP½My ¼ i; j�P½DatayjMy ¼ i; j�g ð3Þ
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where P[My = i,j] is the (prior) probability that the maternal genic-genotype has genic-haplo-

types i and j. K is the number of distinct sequences for this gene set. P[Datay|My = i,j] is the

probability of all data from family y (genetic and fitness measurements) given maternal geno-

type [i,j]. The family likelihood is:

P½DatayjMy ¼ i; j� ¼ Uy;i;j

QOy
z Vyz;i;j ð4Þ

Uy,i,j is the probability maternal plant y produced the observed read-pairs given genic-geno-

type [i,j], Vyz,i,j is the probability of the observed read-pairs for offspring z of maternal plant y
with genic-genotype [i,j], and Oy is number of genotyped offspring of maternal plant y. For

individuals that fail to reproduce, [Datay|My = i,j] = Uy,i,j. The likelihood for each offspring,

Vyz,i,j in Eq 4, depends on whether that offspring is outcrossed or selfed (see Materials and

methods section E). If offspring yz is selfed:

Vyz;i;j ¼
1

4
Uyz;i;i þ

1

2
Uyz;i;j þ

1

4
Uyz;j;j ð5Þ

We assume that each outcrossed progeny is sired independently and that

Vyz;i;j ¼
PK

k¼1
P½Dyz ¼ k�

1

2
ðUyz;i;k þ Uyz;j;kÞ ð6Þ

Uyz,v,w is the probability of the observed read-pairs from offspring yz given that it has genic-

genotype [v,w]. P[Dyz = k] is the probability that the sire of offspring yz transmitted genic-hap-

lotype k to this offspring. The (1/2) reflects the equal probability of transmission for either

maternal allele (i or j) to the offspring. Through all these calculations, we assume that recombi-

nation within gene sets has a negligible effect on the probabilities.

The various models of selection (Fig 1) are specified by different constraints on the geno-

type probabilities. Given the large number of genic-genotypes, the potential parameter space is

very large. Here, we simplify by classifying all genic-haplotypes into two groups based on their

allele at a particular SNP. We assume the sequences in a group are equivalent in terms of fit-

ness effects. This reduces all genic-haplotypes at a gene set into two “alleles” for selection tests.

This classification naturally changes with SNP chosen and thus we apply the procedure to each

SNP in sequence. This simplification is a sensible first step, but we acknowledge that it may fail

to capture the genotype-to-fitness mapping for many genes. In some cases, alternative alleles

may be defined by numerous SNPs or indels within a gene [87,88] and fitness effects would be

more naturally described with an allelic series. Our ‘binning’ of functionally distinct alleles

could elevate the Type I error rate (we fail to see selection when it is occurring).

Let SR represent the set of genic haplotypes that have the reference base at the focal SNP

and SA is the set with the alternative base. Then Eq (6) can be written:

Vyz;i;j ¼
P

v2SR
P½Dyz ¼ v�

1

2
ðUyz;i;v þ Uyz;j;vÞ þ

P
w2SA

P½Dyz ¼ w�
1

2
ðUyz;i;w þ Uyz;j;wÞ ð7Þ

The frequency of the reference base (for the focal SNP) within the population of genic-hap-

lotypes, p, is just
PK

k¼1
dkQk, where Qk is the frequency of haplotype k among the lines and δk is

an indicator variable (1 if haplotype k carries the reference base and 0 otherwise). Of course,

the frequency of the reference base can differ between the sequence line set and the natural

population, and also between subsets of the natural population (e.g. alive versus dead). Let p�

denote the frequency of the reference base in a specific field cohort, say adults in 2013 or
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zygotes in 2014. We adjust genic-haplotypes proportionally as a function of p�:

Q�k ¼ Qk
p�

p
if k 2 SR;Q

�

k ¼ Qk
ð1 � p�Þ
ð1 � pÞ

if k 2 SA ð8Þ

This is essentially a uniform inflation or deflation of haplotype frequencies based on the

focal SNP. It allows us to write the likelihood equations explicitly in terms of allele frequencies

at one SNP (e.g. pL, pA, and pM in Fig 1) while retaining the full information from gene sets.

For example, P[My = i,j], in Eq (3) becomes 2Q�i Q
�
j if i6¼j or Q�i 2 if i = j. This is a function of

known fixed values (p, Qi, Qj) and the parameter to be estimated (e.g. pA if the maternal plant

survived, pL if not). Eq (7) becomes:

Vyz;i;j ¼
X

v2SR

Qv
pM
p

1

2
ðUyz;i;v þ Uyz;j;vÞ þ

X

w2SA

Qw
1 � pM
1 � p

1

2
ðUyz;i;w þ Uyz;j;wÞ

¼ pMT1 þ ð1 � pMÞT2 ð9Þ

T1 and T2 distill all quantities in Eq (9) that are coefficients for pM and (1−pM). The fact

that these coefficients are determined entirely by the read-pairs from field plants and the set

of genic-haplotypes means that they do not change with pM. Thus, the numerically intensive

sum of Eq (6) need only be calculated once at the onset of a maximum likelihood search.

We use Powell’s algorithm [89] to maximize likelihoods. At each SNP, we fit a series of

models of increasing complexity (Fig 1). Likelihood ratio tests are used to evaluate whether

more general models are superior to simpler models. The code to perform these tests was

written in the C programming language, is described in S1C Appendix, and is included in

S1 File.

E. Mating system estimation

The MSG data (without the reference sequences) was used to determine individual offspring

as outcrossed or selfed using BORICE [90]. The most informative SNPs for mating system

estimation exhibit high coverage across samples and intermediate allele frequency. From the

full set of MSG samples called simultaneously, we chose one SNP per gene with the highest

count for (heterozygotes+the less frequent homozygote) using python program p4.py (S1

File). We then extracted genotype likelihoods for these SNPs directly from the vcf file and

organized the samples into families (maternal plants with offspring) to produce a BORICE-for-

mat input file using python program p5.py (S1 File). We next thinned the dataset to SNPs with

at least 800 called plants (across both years) producing the input file used for estimation of

mating system (S6 Table) consisting of 2773 SNPs, each in a distinct gene and well distributed

across all 14 chromosomes. We conducted preliminary MCMC runs to determine parameter

step sizes, burn-in duration, and chain length. After setting these (Control file and the specific

BORICE code are in S1 File), we estimated posterior probabilities for each offspring as out-

crossed/selfed and the inbreeding level of maternal plants by combining four independent

chains.

Considering offspring with at least one read at 100 or more SNPs, 10.1% were determined

to be selfed in 2013 (54 of 537) versus 9.4% in 2014 (48 of 508). The remaining offspring,

where there was insufficient data for estimation, were set as outcrossed for the subsequent

selection analyses. While this classification may be incorrect for a few individuals, error has a

minimal effect on parameter estimates given the absence of genotypic data for these offspring.

The observed rate of selfing (ca. 10%) matches results from prior mating system studies of the

IM population [91]. The detailed results are reported in S7 Table.
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F. Predicted and observed allele frequency change

We contrast different selection estimates in the common currency of predicted allele fre-

quency change, Δp. Considering the change from adults to zygotes of the next generation, the

predicted change due to male selection is Δp = (pM−pA)/2. This equation assumes no differen-

tial female fecundity (associated with the SNP) and that all progeny are produced by outcross-

ing (diploid loci are half male and half female). In fact, we found that ca. 10% of our offspring

were derived from selfing (see section E). This could (slightly) inflate predicted change rela-

tive to observed change (Fig 2). However, given that the inflation is uniform, it does not affect

arguments about significance, allele frequency, or trade-offs. The predicted change owing to

viability selection in 2014 is calculated from model H3 (Fig 1) estimates, pA and pL. The rele-

vant relationship is pZ = α pA+(1−α) pL, where pZ is allele frequency in zygotes (before selec-

tion) and α is the fraction of individuals that survive to reproduce. For our experiment, we

estimate α = 0.7 (see above in section A). Rearranging the equation, the predicted change

owing to viability selection is Δp = 0.3(pA−pL). The observed Δp estimates (Fig 2) require an

estimate of allele frequency in zygotes (pZ) from 2014. This can be estimated in several ways

given the four models applied to the 2014 data (H0-H3 in Fig 1), but p from H0 is a robust

choice. This value is always intermediate to parameter estimates from models that are more

elaborate.

Supporting information

S1 Table. The gene sets are located to the genome sequence and the number distinct genic-

haplotypes per gene set is reported.
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S2 Table. The number of SNPs covered per read-pair in the Mimulus field plants. After dis-

carding read-pairs that overlap no SNPs, slightly more than 99 million remained.

(XLSX)

S3 Table. The collection of genes and gene sets for the Drosophila application: "Gene.coor-

dinates.txt".

(TXT)

S4 Table. Variants used in Drosophila application: “SNPs.in.both.txt”.

(TXT)

S5 Table. The most significant SNP per gene is reported for pA/pM in 2013, pA/pM in 2014,

viability selection in 2014, and the change test (2013 adults to 2014 zygotes). The chosen

for each test are reported on a separate sheet. Statistics from all model fits are reported for each

SNP.

(XLSX)

S6 Table. The BORICE formatted input file for mating system estimation.

(GZ)

S7 Table. The estimated posterior probabilities that each offspring is outcrossed and for

the Inbreeding History (IH) level of maternal plant is reported.

(XLSX)

S8 Table. The estimated linkage disequilibrium is reported for all pairwise contrasts of the

587 male selection SNPs from 2013.

(GZ)
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S9 Table. The best SNPs per gene evaluated by strength of evidence from two tests for selec-

tion: (A) male selection (pA/pM) in 2013 versus male selection in 2014, (B) male selection in

2013 versus viability selection in 2014, and (C) male selection in 2014 versus viability in 2014.

(XLSX)

S1 Fig. The number of SNPs per read (Blue = Drosophila) or read-pair

(Orange = Mimulus) is reported as a histogram.

(JPG)
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S1 Appendix. The detailed methods are described for processing of MSG data, delineating

gene sets and SNPs, selection component models, whole-genome data simulation, con-
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