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Ever Tried. Ever Failed. No Matter. Try Again. Fail Again. Fail Better.

—Samuel Beckett



Abstract

Lithium-ion batteries (LiBs) are a revolutionary technology for energy storage. They have be-

come a dominant power source for consumer electronics and are rapidly penetrating into the sectors

of electrified transportation and renewable energies, due to the high energy/power density, long cy-

cle life and low memory effect. With continuously falling prices, they will become more popular

in foreseeable future. LiBs demonstrate complex dynamic behaviors and are vulnerable to a num-

ber of operating problems including overcharging, overdischarging and thermal runaway. Hence,

battery management systems (BMSs) are needed in practice to extract full potential from them

and ensure their operational safety. Recent years have witnessed a growing amount of research on

BMSs, which usually involves topics such as dynamic modeling, parameter identification, state

estimation, cell balancing, optimal charging, thermal management, and fault detection. A common

challenge for them is computational efficiency since BMSs typically run on embedded systems

with limited computing and memory capabilities. Inspired by the challenge, this dissertation aims

to address a series of problems towards advancing BMSs with low computational complexity but

still high performance. Specifically, the efforts will focus on novel battery modeling and param-

eter identification (Chapters 2 and 3), highly efficient optimal charging control (Chapter 4) and

spatio-temporal temperature estimation of LiB packs (Chapter 5). The developed new LiB mod-

els and algorithms can hopefully find use in future LiB systems to improve their performance,

while offering insights into some key challenges in the field of BMSs. The research will also entail

the development of some fundamental technical approaches concerning parameter identification,

model predictive control and state estimation, which have a prospect of being applied to dynamic

systems in various other problem domains.
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Chapter 1

Introduction

1.1 Background

Lithium-ion batteries (LiBs) are a revolutionary technology for energy storage. They have high

energy/power density, low self discharge, low memory effect and long cycle life, notably advan-

tageous over other types of batteries (see Figure 1.1). Since first commercialized in 1991, LiBs

have been extensively used in consumer electronics, from wearables and mobile phones to laptops,

medical devices and power tools, bringing great convenience to our life.

NiCd NiMH Lead Acid Li-ion
Commercial Use 1950 1990 1970 1991
Energy Density l m l h
Battery Voltage l l m h
Self Discharge l m h h
Memory Effect l l

Cycle Life

Poor Ideal

Note: Lead Acid was first commercialized in 1886 and the above Lead Acid refers to the sealed one. 

Figure 1.1: Comparison of commonly used rechargeable batteries [7].

The adoption of LiBs is not confined to the consumer electronics, but has also penetrated into

sectors of electrified transportation such as electric vehicles (EVs). This trend is further strength-

ened with rapidly falling LiB prices. Now LiB-powered EVs have greatly narrowed the gap with

internal-combustion-engine vehicles in both price and mileage, stimulating an exponential growth

of LiB markets (see Figure 1.2) [2, 6].
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Figure 1.2: Global battery demand between 2018 and 2030 [4].

Another field that foresees a growing application of LiBs especially in the form of large battery

packs is grid-scale battery storage [4]. It can enhance grid system flexibility and reliability by peak

shaving, load leveling, primary frequency response, regulation and black start [30]. Besides, it can

facilitate growing integration of renewable energies such as solar and wind by smoothing out their

variability and intermittence [19].

To ensure the safe, reliable and durable use of LiBs in the above applications, the battery

management technology is a must, which is also the focus of this dissertation. In the remainder

of this chapter, we will first briefly overview the working principle and some common material

choices for LiBs and then give an introduction of the battery management system.

1.2 Lithium-ion Battery

Working Principle

Rechargeable LiBs are generally manufactured and available in cylindrical, prismatic and pouch

shapes. Despite the different shapes, they share a similar fundamental working principle. The main

2



components of a LiB include the cathode (positive electrode), anode (negative electrode), elec-

trolyte, separator and current collectors. Figure 1.3 shows a schematic diagram of a cylindrical

LiB cell.

1

Anode

Cathode

Separator

(a)

1

C
ur

re
nt

 c
ol

le
ct

or

C
ur

re
nt

 c
ol

le
ct

or

Anode CathodeSeparator

Electrolyte

Li+

e- on discharge

(b)

Figure 1.3: Lithium-ion battery: (a) single cell structure and (b) schematic diagram.

LiBs are intercalation-electrode batteries. During discharging, lithium ions de-intercalate from

the anode and intercalate into the cathode through oxidation and reduction, respectively [26]. The

charging process follows the reverse procedure. For further explanation, we consider lithium cobalt

oxide (LiCoO2) and graphite (C6) as the active materials for the respective cathode and anode as an

example. When the battery is under discharge, lithium atoms in the anode are oxidized and become

lithium ions as governed by [26]:

LiC6
discharge−−−−−⇀↽−−−−−
charge

C6 +Li++ e−. (1.1)

The lithium ions exit the anode and migrate through the electrolyte and separator to the cathode.

At the cathode, Co accepts an electron and is reduced from +4 to +3 state. The intercalation of a

lithium ion compensates for the loss of the positive charge and keeps the cathode neutral as shown

below [26]:

CoO2 +Li++ e−
discharge−−−−−⇀↽−−−−−
charge

LiCoO2. (1.2)
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Meanwhile, the separator, ionically conducted but electrically insulated, keeps the electrons from

passing through, so they have to make their way through the external circuit and move from the

anode to the cathode. During charging, the lithium ions and electrons move in an opposite way. The

current collectors are electrical conductors, which are attached to the surfaces of the electrodes and

collect the electrons. They are usually made of copper for the anode and aluminum for the cathode.

Electrode Materials

To facilitate the intercalation process of lithium ions, the electrode materials typically have porous

open-crystal structures. For the anode, the most common material is graphite, which is structured

in layers and provides space for the intercalation of lithium ions. Every six carbon atoms can host

up to one lithium atom, and the lithiated graphite is hence denoted as LixC6, where 0 ≤ x ≤ 1.

Other than graphite, other materials are being explored for the anode. For instance, silicon can

potentially increase the energy density as one silicon atom can bond with as many as four lithium

ions, and lithium titanate (Li4Ti5O12) offers larger specific surface area and can accommodate fast

charging more easily.

Compared with the anode, there are more materials available for the cathode. Generally they

can be categorized into three groups: layered, spinel, and olivine cathodes [156]. In 1980, John

B. Goodenough introduced the first layered cathode, LiCoO2, also known as LCO. Some of its

popular variations include lithium nickel cobalt manganese oxide (LiNiCoMnO2 or NCM) and

lithium nickel cobalt aluminum oxide (LiNiCoAlO2 or NCA). They are utilized, respectively, for

Panasonic NCR18650B and Samsung INR18650-25R batteries, which are used in this disserta-

tion’s experimental validation. Nickel is an alternative for cobalt, which can mitigate toxicity and

increase energy density and thermal stability of LCO. In 1983, a spinel cathode material, lithium

manganese oxide (LiMn2O4 or LMO), was introduced by Goodenough and Michael M. Thack-

eray. It is cheaper and safer than LCO but usually has shorter lifetime because the manganese can

dissolve into electrolyte under some conditions. In 1997, Goodenough proposed the olivine cath-

ode, made of lithium iron phosphate (LiFePO4 or LFP). It is even cheaper and less toxic, but the

4



specific energy is low due to low voltage and heavy iron atoms. Besides these active materials,

the electrodes also contain other materials that serve as binders of particles of active materials and

between particles and current collectors. They are conductive but not involved in electrochemical

reactions as in (1.1) and (1.2).

1.3 Battery Management System

Battery management systems (BMSs) are an electronic system that integrates hardware, software

and algorithms to manage the use of LiBs, ensuring them to function properly and safely. Their

importance stems from at least the following three aspects:

• Complexity: LiB charging/discharging involves many electrochemical reactions and physical

processes. They are complex, nonlinear and sometimes have elusive dynamics. Just as an

example, the voltage response of a LiB cell will depend on a large number of factors ranging

from operating conditions to state-dependent resistance and temperatures. Further, a LiB

pack that consists of multiple cells will see a much higher complexity in its dynamics.

• Vulnerability: LiBs are vulnerable to overcharge, overdischarge, excessive currents and tem-

peratures, and suffer faster aging when such events happen [5]. An example in point is the

2011 Nissan Leaf powered by air-cooled LiBs, which saw an accelerated capacity loss in the

areas of extreme heat such as Arizona [1]. In extreme conditions, the vulnerability will lead

LiBs to catch fires and explosions.

• Expenses: LiBs are still expensive. Their current price is about $150 per kWh, and a 60 kWh

EV battery pack costs about $9,000 [2]. If LiBs function poorly or even unsafely, heavy

economic losses can result from shortened life, operation failures and even replacements.

To handle the above challenges, BMSs generally provide a series of functions, including: 1)

monitoring the current, voltage and temperature, 2) detecting and responding to faults to protect a

battery, 3) estimating a battery’s operating conditions and health, 4) running real-time control of
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Figure 1.4: An overview of battery management algorithms based on keyword search via Google
Scholar. For example, “battery modeling” is based on the searching results of "lithium-ion" AND

"battery management" AND "modeling".

charging, balancing and temperature conditions, and 5) logging and communicating various types

of data and commands with higher-level systems. BMS research has attracted growing attention in

recent years due to its crucial importance for LiB systems. A central challenge in this emerging

field is development of dynamic models and model-based estimation and control algorithms toward

maximizing the functionality and performance of LiBs. Next is an overview of key BMS problems.

Battery Modeling

Battery models are the foundation for many battery management algorithms and have attracted in-

tense interest of researchers as shown in Figure 1.4. There are mainly two kinds of battery models:

electrochemical models and equivalent circuit models (ECMs) [35]. The electrochemical mod-

els describe a battery’s dynamics due to electrochemical reactions and diffusion processes during

charging/discharging, e.g., the diffusion and intercalation of lithium ions and associated effects on

ion concentrations and potentials. They can be used to predict not only battery voltage dynamics

but also unmeasurable internal states such as lithium-ion concentrations and overpotentials that are

important to battery performance, health and aging process [148]. However, they typically mani-

fest a complex structure involving partial differential equations (PDEs) and dozens of states. By

contrast, ECMs capture a battery’s dynamics using electrical circuits, which are much simpler in
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structure and usually consist of ordinary differential equations (ODEs) with a much less number

of states. In general, ECMs provide better computational efficiency and thus are more suitable for

embedded control design and applications for real-time BMSs.

State Estimation

Operation of LiBs requires a close monitoring of many important yet unknown states, including

state of charge (SoC), state of power (SoP) and state of health (SoH). SoC refers to the amount of

available capacity in a LiB, which must be determined to avoid overcharge and overdischarge. SoP

indicates the power that a LiB can supply, playing a critical role in power management and safe use

of LiB systems. SoH describes a LiB’s health condition, which provides a crucial awareness of the

aging process and remaining life of a LiB. There are various empirical methods and practices in

the industry, which, however, offer limited accuracy in general. An increasing amount of attention

in the research community has been turned to model-based state estimation. The driving notion

lies in leveraging both knowledge about a LiB’s dynamics as captured by a model and real-time

current/voltage/temperature measurements to facilitate accurate state estimation. A great number

of approaches have been developed in the past years. For instance, nonlinear state observers and

estimators, especially the well-known Kalman filter, have been applied and proven as an effective

tool for SoC and SoH estimation [154, 155, 18]. Both electrochemical models and ECMs can find

good use in LiB state estimation, as shown in the literature [154, 60]. More recently, data-driven

methods, which draw upon inspiration from machine learning, have emerged as a useful means,

in a context where many of today’s LiB systems offer increasingly abundant data [130]. However,

challenges continue to remain, because highly complicated dynamics, along with a broad range of

factors, underlie the evolution of a LiB’s states, thus calling for more research efforts [69].

Cell Balancing

A LiB pack consists of multiple cells connected in series or parallel. In real world, it inevitably

faces cell-to-cell variations in capacity and resistance due to manufacturing tolerances, different
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aging rates, and uneven work conditions. The variations will increase if left neglected and lead

some cells to become weaker in a vicious cycle, thus limiting the entire pack’s performance and

life [81, 82, 143]. Energy balancing across the cells is thus necessary to reduce the variation, which

aims to drive the cells to a common energy or SoC level. There are two main approaches in the

literature, namely, passive and active balancing [208]. The passive approaches remove the excess

charge of high-energy cells through shunt resistors. They only need simple and cheap circuits but

offer slow speed in balancing and cause an undesirable waste of energy. By contrast, active bal-

ancing seeks to transfer energy from high-energy cells to low-energy cells through some equalizer

circuits. While more complicated in circuit and algorithm design, it can enable faster balancing

with little loss of energy.

Charging Control

The charging process is crucial for the performance and longevity of LiBs. Improper charging can

cause internal stress accumulation, crystallization, and various other negative effects. The conse-

quences include fast capacity fade, shortened life, and increased risk of use. This fact highlights

the significance of health-aware charging. In the meantime, many practical applications, stretching

from consumer electronics to EVs, strongly demand fast charging. These two objectives, however,

are in conflict with each other. Hence, optimal charging control design has attracted great interest

from researchers, which usually aims to strike a balance between them. Extensive studies have

been proposed to enable health-conscious fast charging based on model-based optimal control and

constrained optimization [120, 184]. There also exist some other methods, e.g., optimized pulse

charging [56]. A main challenge for optimal charging control is the computational complexity due

to the needed online optimization, which has motivated a broad search for more efficient control

designs. This dissertation will present our recent advance about optimal charging based on explicit

model predictive control.
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Thermal Management

Thermal management is a prominent issue for LiBs. The operation of LiBs entails heat generation

and buildup, which is also accompanied by the effects of ambient temperature [63]. For LiBs, the

temperature has a strong impact on the performance and safety [211]. They should be operated

within a certain temperature range, typically from−20 to 60◦C and must avoid too low or too high

temperatures. Most types of LiBs are also vulnerable to thermal events due to the highly reactive

lithium and flammable electrolyte and may catch fire or explode in extreme cases. Effective thermal

management thus carries tremendous significance. An important aspect of this subject is to design

systems and methods to adjust the temperature of a LiB system, by cooling (by air, liquid or

phase change materials) or heating as dependent on needs [218, 215, 99]. Another important set of

efforts, particularly from the control community, aim to monitor the real-time temperature of LiBs.

A popular method is model-based estimation, which exploits a thermal model and temperature

measurements to infer the unknown temperature at some key locations, e.g., inside a cell [121,

180]. Despite increasing studies, this problem still remains open, because of the spatio-temporal

complexity of LiBs’ thermal dynamics. This dissertation will provide a study of how to reconstruct

the three-dimensional temperature field of a LiB pack at both high accuracy and efficiency.

Fault Detection

Faults can happen during the operation of a battery system like many electrical engineering sys-

tems. The faults can be generally classified as battery faults and system faults [191]. The battery

faults include overcharge, overdischarge, overmuch current and temperature, internal and external

short circuit, and thermal runaway. The system faults include current, voltage and temperature sen-

sor faults, cell connection and cooling system faults. The faults can be catastrophic to the safety

and reliability of the battery system, which necessitates the early and accurate fault detection. Re-

cent years have witnessed a growing amount of works on the battery system fault detection [191].

Roughly they can be categorized into three groups: heuristic methods, model-based methods and

data-driven methods. Heuristic methods detect faults via pre-set thresholds for temperature rise
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and voltage change [203, 207]. They are easy to implement, but the thresholds can be hard to de-

termine for different battery chemistries and applications. Model-based methods need much less

testing and calibration [12]. They detect faults by analyzing model-based residual signals that are

fault-sensitive [138, 39, 132, 49]. By contrast, data-driven methods use machine learning or various

data analysis methods to identify faults from data directly [140, 198]. Despite the advances, multi-

ple challenges remain due to the elusiveness of potential faults and BMS hardware limitations, and

more research efforts are still needed [191].

1.4 Statement of Contributions

This dissertation focuses on developing computationally efficient methods for several key BMS

tasks, with the aim of enhancing potential implementation of advanced BMS algorithms on em-

bedded computing platforms. The following summarizes our contributions.

• We proposed an ECM that is structurally simple and physically sound and accurate, which

is the first ECM that can simulate the lithium-ion diffusion in an electrode and capture the

nonlinear voltage behavior concurrently. We also developed two efficient and effective iden-

tification methods. More details are in Chapter 2.

• We performed a systematic study for one-shot parameter identification of the Thevenin

model. It encompasses parameter identifiability analysis, identification method design and

validation. More details are provided in Chapter 3.

• We developed an optimal health-aware charging method with high computational efficiency

and amenability to practical implementation. More details can be found in Chapter 4.

• We designed a distributed estimation scheme to reconstruct the three-dimensional tempera-

ture field of a LiB pack, which is computationally efficient and accurate. More details are

discussed in Chapter 5.
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Chapter 2

Development of the Nonlinear Double-Capacitor Model

This chapter1 proposes a new equivalent circuit model for batteries by modifying a double-capacitor

model proposed in [101]. It is known that the original model can address the rate capacity effect and

energy recovery effect inherent to batteries better than other models. However, it is a purely linear

model and includes no representation of a battery’s nonlinear phenomena. Hence, this work trans-

forms the original model by introducing a nonlinear-mapping-based voltage source and a serial

resistance-capacitance (RC) circuit. The modification is justified by an analogy with the single-

particle model. Two offline parameter estimation approaches, termed 1.0 and 2.0, are designed for

the new model to deal with the scenarios of constant-current and variable-current charging/dis-

charging, respectively. An extensive experimental evaluation shows that the proposed model offers

excellent accuracy and predictive capability. A comparison against the Rint and Thevenin models

further points to its superiority. With high fidelity and low mathematical complexity, this model is

beneficial for various real-time battery management applications.

2.1 Introduction

Rechargeable batteries have seen an ever-increasing use in today’s industry and society as power

sources for systems of different scales, ranging from consumer electronic devices to electric ve-

hicles and smart grid. This trend has motivated a growing body of research on advanced battery

management algorithms, which are aimed to ensure the performance, safety and life of battery sys-

tems. Such algorithms generally require mathematical models that can well characterize a battery’s

1This chapter is based on the dissertation author’s first-authored journal paper [182] c© 2020 IEEE.
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dynamics. This has stimulated significant attention in battery modeling during the past years, with

the current literature offering a plethora of results.

There are two main types of battery models: 1) electrochemical models that build on elec-

trochemical principles to describe the electrochemical reactions and physical phenomena inside

a battery during charging/discharging, and 2) equivalent circuit models (ECMs) that replicate a

battery’s current-voltage characteristics using electrical circuits made of resistors, capacitors and

voltage sources. With structural simplicity, the latter ones provide great computational efficiency,

thus more suitable for real-time battery management. However, as the other side of the coin, the

simple circuit-based structures also imply a difficulty to capture a battery’s dynamic behavior at

a high accuracy. Therefore, this work aims to develop a new ECM based on the one in [101] so

that it can offer high fidelity while retaining low mathematical complexity, through systematically

investigating the model construction, parameter identification, and experimental validation.

Literature Review

Review of Battery Modeling

As mentioned above, the electrochemical models and ECMs constitute the majority of the battery

models available today. The electrochemical modeling approach seeks to characterize the physical

and chemical mechanisms underlying the charging/discharging processes. One of the best-known

electrochemical models is the Doyle-Fuller-Newman model, which describes the concentrations

and transport of lithium ions together with the distribution of separate potential in porous electrodes

and electrolyte [51, 66, 35]. While delineating and reproducing a battery’s behavior accurately, this

model, like many others of similar kind, involves many partial differential equations and causes

high computational costs. This has driven the development of some simplified versions, e.g., the

single-particle model (SPM) [35, 77], and various model reduction methods, e.g., [142, 225, 92],

toward more efficient computation.

By contrast, the ECMs are generally considered as more competitive for real-time battery mon-

itoring and control, having found their way into various battery management systems. The first
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ECM to our knowledge is the Randles model proposed in the 1940s [161]. It reveals a lead-acid

battery’s ohmic and reactive (capacitive and inductive) resistance, demonstrated in the electro-

chemical reactions and contributing to various phenomena of voltage dynamics, e.g., voltage drop,

recovery and associated transients. This model has become a de facto standard for interpreting

battery data obtained from electrochemical impedance spectroscopy (EIS) [221]. It also provides a

basis for building diverse ECMs to grasp a battery’s voltage dynamics during charging/discharging.

Adding a voltage source representing the open-circuit voltage (OCV) to the Randles model, one

can obtain the popular Thevenin model [67, 83, 156]. The Thevenin model without the RC circuit is

called as the Rint model, which includes an ideal voltage source with a series resistor [83]. If more

than one RC circuit is added to the Thevenin model, it becomes the dual polarization (DP) model

that is capable of capturing multi-time-scale voltage transients during charging/discharging [83].

The literature has also reported a few modifications of the Thevenin model to better characterize

a battery’s dynamics. Generally, they are based on two approaches. The first one aims to describe

a battery’s voltage more accurately by incorporating certain phenomena, e.g., hysteresis, into the

voltage dynamics, or through different parameterizations of OCV with respect to the state of charge

(SoC) [199, 122, 71, 149, 60, 153, 94]. Some literature also models the resistors and capacitors

as dependent on SoC, as well as some other factors like the temperature or rate and direction

of the current loads in order to improve the accuracy of battery voltage prediction [116, 113].

The second approach sets the focus on improving the runtime prediction for batteries. In [36], a

battery’s capacity change due to cycle and temperature is considered and parameterized, and the

dependence of resistors and capacitors on SoC also characterized. A similar investigation is made

in [105] to improve the Thevenin model, which proposes to capture the nonlinear change of a

battery’s capacity with respect to the current loads.

An ECM that shows emerging importance is a double-capacitor model [101, 100]. It consists

of two capacitors configured in parallel, which correspond to an electrode’s bulk inner part and

surface region, respectively, and can describe the process of charge diffusion and storage in a

battery’s electrode [59]. Compared to the Thevenin model, this circuit structure allows the rate
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capacity effect and charge recovery effect to be captured, making the model an attractive choice

for charging control [59, 56]. However, based on a purely linear circuit, this model is unable to

grasp nonlinear phenomena innate to a battery—for instance, the nonlinear SoC-OCV relation is

beyond its descriptive capability—and thus has its applicability limited. The presented work is

motivated to remove this limitation by revamping the model’s structure. The effort will eventually

lead to a new ECM that, for the first time, can capture the charge diffusion within a battery’s

electrode and its nonlinear voltage behavior simultaneously.

Review of Battery Model Identification

A key problem associated with battery modeling is parameter identification, which pertains to ex-

tracting the unknown model parameters from the measurement data. Due to its importance, recent

years have seen a growth of research. The existing methods can be divided into two main cat-

egories, experiment-based and data-based. The first category conducts experiments of charging,

discharging or EIS and utilizes the experimental data to read a model’s parameters. It is pointed

out in [166, 10] that the transient voltage responses under constant- or pulse-current charging/dis-

charging can be leveraged to estimate the resistance, capacitance and time constant parameters

of the Thevenin model. In addition, the relation between SoC and OCV is a defining charac-

teristic of a battery’s dynamics. It can be experimentally identified by charging or discharging

a battery using a very small current [52], or alternatively, using a current of normal magnitude

but intermittently (with a sufficiently long rest period applied between two discharging opera-

tions) [85, 188]. The EIS experiments have also been widely used to identify a battery’s impedance

properties [139, 73, 28]. While involving basic data analysis, the methods of this category gener-

ally put emphasis on the design of experiments. In a departure, the second category goes deeper

into understanding the model-data relationship and pursues data-driven parameter estimation. It

can enable provably correct identification even for complex models, thus often acknowledged as

better at extracting the potential of data. It is proposed in [91] to identify the Thevenin model by

solving a set of linear and polynomial equations. Another popular means is to formulate model-
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data fitting problems and solve them using least squares or other optimization methods to estimate

the parameters [86, 210, 186, 62, 157, 172]. When considering more complicated electrochemical

models, the identification usually involves large-size nonlinear nonconvex optimization problems.

In this case, particle swarm optimization and genetic algorithms are often exploited to search for

the best parameter estimates [66, 217, 159, 213]. A recent study presents an adaptive-observer-

based parameter estimation scheme for an electrochemical model [118]. While the above works

focus on identification of physics-based models, data-driven black-box identification is also ex-

amined in [95, 117, 163], which construct linear state-space models via subspace identification or

nonparametric frequency domain analysis. A topic related with identification is experiment design,

which is to find out the best input sequences to excite a battery to maximize the parameter iden-

tifiability. In [164, 146], optimal input design is performed by maximizing the Fisher information

matrices—an identifiability metric—involved in the identification of the Thevenin model and the

SPM, respectively.

The presented work is also related with the literature on Wiener system identification, because

the model to be developed has a Wiener-type structure featuring a linear dynamic subsystem in

cascade with a static nonlinear subsystem. Wiener systems are an important subject in the field of

parameter identification, and a reader is referred to [72] for a collection of recent studies. Wiener

system identification based on maximum likelihood (ML) estimation is investigated in [80, 193],

which shows significant promises. However, the optimization procedure resulting from the ML

formulation can easily converge to local minima due to the presence of the nonlinear subsystem.

This hence yields a motivation to enhance the notion of ML-based identification in this work to

achieve more effective battery parameter estimation.

Contributions

This work presents the following contributions.

• A new ECM, named the nonlinear double-capacitor (NDC) model, is developed. By de-

sign, it transforms the linear double-capacitor model in [101] by coupling it with a nonlinear
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circuit mimicking a battery’s voltage behavior. With this pivotal change, the NDC model

introduces two advantages over existing ECMs. First, it can simulate not only the charge

diffusion characteristic of a battery’s electrochemical dynamics, but also the critical nonlin-

ear electrical phenomena. This unique feature guarantees the model’s better accuracy, which

comes at only a very slight increase in model complexity. Second, the NDC model can be

interpreted as a circuit-based approximation of the SPM. This further justifies its soundness

while inspiring a refreshed look at the connections between the SPM and ECMs.

• Parameter identification is investigated for the proposed model. This begins with a study of

the constant-current charging/discharging scenario, with an identification approach, termed

1.0, developed by fitting parameters with the measurement data. Then, shifting the focus

to the scenario of variable-current charging/discharging, the study introduces a Wiener per-

spective into the identification of the NDC model due to its Wiener-type structure. A Wiener

identification approach is proposed for the NDC model based on maximum a posteriori

(MAP) estimation, which is termed 2.0. Compared to the ML-based counterparts in the liter-

ature, this new approach incorporates into the estimation a prior distribution of the unknown

parameters, which represents additional information or prior knowledge and can help drive

the parameter search toward physically reasonable values.

• Experimental validation is performed to assess the proposed results. This involves multiple

experiments about battery discharging under different kinds of current profiles and a com-

parison of the NDC model with the Rint and Thevenin models. The validation shows the

considerable accuracy and predictive capability of the NDC model, as well as the effective-

ness of the 1.0 and 2.0 identification approaches.

Organization

The remainder of the chapter is organized as follows. Section 2.2 presents the construction of the

NDC model. Section 2.3.1 studies parameter identification for the NDC model in the constant-
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Figure 2.1: (a) The original double-capacitor model and (b) the proposed NDC model.

current charging/discharging scenario. Inspired by Wiener system identification, Section 2.3.2

proceeds to develop an MAP-based parameter estimation approach to identify the NDC model.

Section 2.4 offers the experimental validation. Finally, Section 2.5 gathers concluding remarks.

2.2 Model Development

This section develops the NDC model and presents the mathematical equations governing its dy-

namic behavior.

To begin with, let us review the original linear double-capacitor model proposed in [101]. As

shown in Figure 2.1a, this model includes two capacitors in parallel, Cb and Cs, each connected

with a serial resistor, Rb and Rs, respectively. The double-capacitor structure simulates a battery’s

electrode, providing storage for electric charge, and the parallel connection between them allows

the transport of charge within the electrode to be described. Specifically, one can consider the Rs-Cs

circuit as corresponding to the electrode surface region exposed to the electrolyte; the Rb-Cb circuit

represents an analogy of the bulk inner part of the electrode. As such, this model has the following

features:

• Cb�Cs and Rb� Rs;

• Cb is where the majority of the charge is stored, and Rb-Cb accounts for low-frequency re-

sponses during charging/discharging;
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• Cs is much smaller, and its voltage changes at much faster rates than that of Cb during charg-

ing/discharging, making Rs-Cs responsible for high-frequency responses.

In addition, R0 is included to embody the electrolyte resistance. This model was designed in [101]

for high-power lithium-ion batteries, and its application can naturally extend to double-layer ca-

pacitors that are widely used in hybrid energy storage systems, e.g., [48].

As pointed out in [59], the linear double-capacitor model can grasp the rate capacity effect, i.e.,

the total charge absorbed (or released) by a battery goes down with the increase in charging (or

discharging) current. To see this, just notice that the terminal voltage V mainly depends on Vs (the

voltage across Cs), which changes faster than Vb (the voltage across Cb). Thus, when the current I

is large, the fast rise (or decline) of Vs will make V hit the cut-off threshold earlier than when Cb

has yet to be fully charged (or discharged). Another phenomenon that can be seized is the capacity

and voltage recovery effect. That is, the usable capacity and terminal voltage would increase upon

the termination of discharging due to the migration of charge from Cb to Cs. However, this model

by nature is a linear system, unable to describe a defining characteristic of batteries—the nonlinear

dependence of OCV on the SoC. It hence is effective only when a battery is restricted to operate

conservatively within some truncated SoC range that permits a linear approximation of the SoC-

OCV curve.

To overcome the above issue, the NDC model is proposed, which is shown in Figure 2.1b. It

includes two changes. The primary one is to introduce a voltage source U , which is a nonlinear

mapping of Vs, i.e., U = h(Vs). Second, an RC circuit, R1-C1, is added in series to U . Next, let us

justify the above modifications from a perspective of the SPM, a simplified electrochemical model

that has recently attracted wide interest.

Figure 2.2 gives a schematic diagram of the SPM. The SPM represents an electrode as a single

spherical particle. It describes the mass balance and diffusion of lithium ions in a particle during

charging/discharging by Fick’s second law of diffusion in a spherical coordinate system [77]. If

subdividing a spherical particle into two finite volumes, the bulk inner domain (core) and the

near-surface domain (shell), one can simplify the diffusion of lithium ions between them as the
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Figure 2.2: The single-particle model (top), and a particle (bottom) subdivided into two volumes,
core and shell, which correspond to Rb-Cb and Rs-Cs, respectively.

charge transport between the capacitors of the double-capacitor model, as proven in [59]. For SPM,

the terminal voltage consists of three elements: the difference in the open-circuit potential of the

positive and negative electrodes, the difference in the reaction overpotential, and the voltage across

the film resistance [35]. The open-circuit potential depends on the lithium-ion concentration in the

surface region of the sphere, which is akin to the role of Vs here. Therefore, it is appropriate as well

as necessary to introduce a nonlinear function of Vs, i.e., h(Vs), as an analogy to the open-circuit

potential. With U = h(Vs), the NDC model can correctly show the influence of the charge state on

the terminal voltage, while inheriting all the capabilities of the original model.

Furthermore, the NDC model also contains an RC circuit, R1-C1, which, together with R0,

simulates the impedance-based part of the voltage dynamics. Here, R0 characterizes the linear

kinetic aspect of the impedance, which relates to the ohmic resistance and solid electrolyte interface

(SEI) resistance [137]; R1-C1 accounts for the voltage transients related with the charge transfer on

the electrode/electrolyte interface and the ion mass diffusion in the battery [14]. This work finds

that one RC circuit can offer sufficient fidelity, though it is possible to connect more RC circuits

serially with R1-C1 to gain better accuracy.
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The dynamics of the NDC model can be expressed in the state-space form as follows:




V̇b(t)

V̇s(t)

V̇1(t)

=
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0 0 −1
R1C1
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Vs(t)

V1(t)

+
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Rs
Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

−1
C1

 I(t),

V (t) = h(Vs(t))−V1(t)+R0I(t),

(2.1a)

(2.1b)

In above, I > 0 for charging, I < 0 for discharging, and V1 refers to the voltage across the R1-

C1 circuit. One can parameterize h(Vs) as a polynomial. A fifth-order polynomial is empirically

selected here:

h(Vs) = α0 +α1Vs +α2V 2
s +α3V 3

s +α4V 4
s +α5V 5

s ,

where αi for i = 0,1, . . . ,5 are coefficients. Note that h(Vs) should be lower and upper bounded,

depending on a battery’s operating voltage range. This implies that Vb and Vs must also be bounded.

For any bounds selected for them, it is always possible to find out a set of coefficients αi’s to

satisfy h(·). Hence, one can straightforwardly normalize Vb and Vs to let them lie between 0 V and

1 V, without loss of generality. In other words, Vb = Vs = 1 V at full charge (SoC = 1) and that

Vb =Vs = 0 V for full depletion (SoC = 0). Following this setting, SoC is given by

SoC =
Qa

Qt
=

CbVb +CsVs

Cb +Cs
, (2.2)

where Qt =Cb+Cs denotes the total capacity, and Qa =CbVb+CsVs the available capacity, respec-

tively. It is easy to verify that the SoC’s dynamics is governed by

˙SoC =

[
Cb

Cb+Cs

Cs
Cb+Cs

0

]
V̇b

V̇s

V̇1

=
1

Qt
I. (2.3)

Meanwhile, it is worth noting that the SoC-OCV function would share the same form with h(·).
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To see this point, recall that OCV refers to the terminal voltage when the battery is at equilibrium

without current load. For the NDC model, the equilibrium happens when Vb = Vs, V1 = 0 V and

I = 0 A, and in this case, Vs = SoC according to (2.2), and OCV= h(Vs). This suggests that OCV=

h(SoC). In addition, the internal resistance R0 is also assumed to be SoC-dependent following the

recommendation in [53], taking the form of

R0 = γ1 + γ2e−γ3SoC + γ4e−γ5(1−SoC). (2.4)

The rest of this chapter will center on developing parameter identification approaches to determine

the model parameters using measurement data and apply identified models to experimental datasets

to evaluate their predictive accuracy.

2.3 Parameter Identification

2.3.1 Approach 1.0: Constant-Current Charging/Discharging

This section studies parameter identification for the NDC model when a constant current is applied

to a battery. The discharging case is considered here without loss of generality. In a two-step proce-

dure, the h(·) function is identified first, and the impedance and capacitance parameters estimated

next.

Identification of h(·)

The SOC-OCV relation of the NDC model is given by OCV = h(SoC), as aforementioned in

Section 2.2. Hence, one can identify h(·) by fitting it with a battery’s SoC-OCV data. To obtain

the SoC-OCV curve, one can discharge a battery using a small current (e.g., 1/25 C-rate as sug-

gested in [52]) from full to empty. In this process, the terminal voltage V can be taken as OCV.

Immediately one can see that α0 =V and ∑
5
i=0 αi =V , where V and V are the minimum and max-

imum value of V in the process. Therefore, OCV = h(SoC) can be written as a function of αi for
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i = 1,2, . . . ,4 as follows:

OCV =V +
4

∑
i=1

αiSoCi +

(
V −V −

4

∑
i=1

αi

)
SoC5,

where OCV can be read directly from the terminal voltage measurements. By (2.3), SoC can be

calculated using the coulomb counting method as follows:

SoC = 1+
1

Qt
It.

From above, one can observe that αi for i = 1,2, . . . ,4 can be identified by solving a data fitting

problem, which can be addressed as a linear least squares problem. The identification results are

unique and can be easily obtained. Then with α0 =V and α5 =V −V −∑
4
i=1 αi, the function h(·)

becomes explicit and ready for use.

Identification of Impedance and Capacitance

Now consider discharging the battery by a constant current of normal magnitude to determine

the impedance and capacitance parameters. The identification can be attained by expressing the

terminal voltage in terms of the parameters and then fitting it to the measurement data.

Given a battery left idling for a long period of time and then discharged under a constant

current, the dynamics of Vs, according to (2.1a), can be derived as

Vs(t) =Vs(0)+
It

Cb +Cs
+

Cb(RbCb−RsCs)I
(Cb +Cs)2

[
1− exp

(
− Cb +Cs

CbCs(Rb +Rs)
t
)]

, (2.5)

where Vs(0) is known to us as it can be accessed from SoC(0) when the battery is initially relaxed.

However, it is impossible to identify Cb, Rb, Cs and Rs altogether. This issue can be seen from (2.5),

where Vs depends on three parameters, i.e., 1/(Cb +Cs), Cb(RbCb−RsCs)/(Cb +Cs)
2 and (Cb +

Cs)/ [CbCs(Rb +Rs)]. Even if the three parameters are known, it is still not possible to extract all the

four individual impedance and capacitance parameters from them due to the parameter redundancy.
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Therefore, one can sensibly assume Rs = 0, as recommended in [172]. This is a tenable assumption

for the NDC model since Rs� Rb as aforementioned. As a result, (2.5) reduces to

Vs(t) =Vs(0)+β1It +β2I
(

1− e−β3t
)
, (2.6)

where

β1 =
1

Cb +Cs
, β2 =

RbC2
b

(Cb +Cs)2 , β3 =
Cb +Cs

CbCsRb
.

Here, β1 is known because Qt can be calibrated by coulomb counting. When β2 and β3 are also

available, Cb, Cs and Rb can be reconstructed as follows:

Cb =
β2β3

β1(β1 +β2β3)
, Cs =

1
β1 +β2β3

, Rb =
1

β1β3CbCs
.

Further, in the above constant-current discharging scenario, the evolution of V1 follows

V1(t) = e−β5tV1(0)− Iβ4

(
1− e−β5t

)
, (2.7)

where

β4 = R1, β5 =
1

R1C1
.

Since the battery has idled for a long period prior to discharging, V1(0) relaxes at zero and can be

removed from (2.7).

Then, combining (2.1b), (2.4), (2.6) and (2.7), the terminal voltage response is given by

V (θθθ ; t) =
5

∑
i=0

αiV i
s (θθθ ; t)+ Iθ3

(
1− e−θ4t

)
+ Iθ5 + Iθ6e−θ7SoC(t)+ Iθ8e−θ9(1−SoC(t)), (2.8)

with

θθθ =

[
β2 β3 β4 β5 γ1 γ2 γ3 γ4 γ5

]>
,
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and
Vs(θθθ ; t) =Vs(0)+ It/Qt +θ1I

(
1− e−θ2t

)
,

SoC(t) = SoC(0)+ It/Qt .

In above, the terminal voltage V is expressed in terms of θθθ , allowing one to identify θθθ by minimiz-

ing the difference between the measured voltage and the voltage predicted by (2.8). Hence, a data

fitting problem can be formulated. It should be noted that the resultant optimization will be nonlin-

ear and nonconvex due to the presence of h(·). As a consequence, a numerical algorithm may get

stuck in local minima and eventually give unreasonable estimates. A promising way of mitigating

this challenge is to constrain the numerical optimization search within a parameter space that is

believably correct. Specifically, one can roughly determine the lower and upper bounds of part or

all of the parameters, set up a limited search space, and run numerical optimization within this

space. With this notion, the identification problem can be formulated as a constrained optimization

problem:

θ̂θθ =argmin
θθθ

1
2
[yyy−VVV (θθθ)]>QQQ−1 [yyy−VVV (θθθ)] ,

s.t. θθθ ≤ θθθ ≤ θθθ ,

(2.9a)

(2.9b)

where θ̂θθ is the estimate of θθθ , θθθ and θθθ are the pre-set lower and upper bounds of θθθ , respectively,

yyy the terminal voltage measurement vector, QQQ an M×M symmetric positive definite matrix rep-

resenting the covariance of the measurement noise, with M being the number of the data points.

Besides,

yyy =
[

y(t1) y(t2) · · · y(tM)

]>
,

VVV (θθθ) =

[
V (θθθ ; t1) V (θθθ ; t2) · · · V (θθθ ; tM)

]>
.

Multiple numerical algorithms are available in the literature to solve (2.9), a choice among which

is the interior-point-based trust-region method [186].
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2.3.2 Approach 2.0: Variable-Current Charging/Discharging

While it is not unusual to charge or discharge a battery at a constant current, real-world battery

systems such as those in electric vehicles generally operate at variable currents. Motivated by

practical utility, an interesting and challenging question is: Will it be possible to estimate all the

parameters of the NDC model in one shot when an almost arbitrary current profile is applied to

a battery? Having this question addressed will greatly improve the availability of the model, even

to an on-demand level, for battery management tasks. This section offers a study in this regard

from a Wiener identification perspective. It first unveils the NDC model’s inherent Wiener-type

structure and then develops an MAP-based identification approach. Here, the study assumes R0 to

be constant for convenience.

Wiener-Type Strucutre of the NDC Model

The NDC model is structurally similar to a Wiener system—the double RC circuits constitute a

linear dynamic subsystem, and cascaded with it is a nonlinear mapping. The following outlines the

discrete-time Wiener-type formulation of (2.1).

Suppose that (2.1a) is sampled with a time period ∆T and then discretized by the zero-order-

hold (ZOH) method. The discrete-time model is expressed as

x(tk+1) = Adx(tk)+BdI(tk), (2.10)

where k is the discrete-time index with tk = k∆T , and

Ad = eA∆T , Bd =

(∫
∆T

0
eAτdτ

)
B.

Let us use t instead of tk to represent the discrete time instant in sequel for notational simplicity.
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Then, (2.10) can be written as

x(t) = (qI3×3−Ad)
−1BdI(t)+(qI3×3−Ad)

−1qx(0),

where q is the forward shift operator, and I3×3 ∈ R3×3 is an identity matrix, respectively. Since

Vs(t) = [ 0 1 0 ]x(t) and V1(t) = [ 0 0 1 ]x(t), one can obtain the following after some lengthy

derivation:

Vs(t) = G1(q)I(t)+G2(q)Vs(0),

V1(t) = G3(q)I(t)+G4(q)V1(0),

(2.11)

(2.12)

where

G1(q) =
(β1 +β2)q−1− (β1β3 +β2)q−2

1− (1+β3)q−1 +β3q−2 , G2(q) =
1

1−q−1 ,

G3(q) =
β4q−1

1+β5q−1 , G4(q) =
1

1+β5q−1 ,

with

β1 =
A21B11 +A12B21

A12 +A21
∆T, β2 =

A21(B21−B11)

(A12 +A21)2 (1−β3) ,

β3 = e−(A12+A21)∆T , β4 =−(β5 +1)B31/A33, β5 =−eA33∆T .

Note that the notation β is slightly abused above without causing confusion. Assume that the

battery has been at rest for a sufficiently long time to achieve an equilibrium state before a test.

In this setting, Vs(0) = SoC(0), V1(0) = 0 V, and G4(q)V1(0) = 0. Besides, one can also see that

the same parameter redundancy issue as in Section 2.3.1 occurs again—only three parameters, β1

through β3, appear in (2.11), but four physical parameters, Cb, Cs, Rb and Rs, need to be identified.

To fix this, let Rs = 0 as was done before. Then β1 through β3 reduce to be

β1 =
∆T

Cb +Cs
, β2 =

RbC2
b (1−β3)

(Cb +Cs)2 , β3 = e−
Cb+Cs
CbCsRb

∆T
.
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Figure 2.3: The Wiener-type structure of the nonlinear double-capacitor (NDC) model.

If β1 through β5 become available, the physical parameters can be reconstructed as follows:

Cb =
∆T
β1
−Cs, Cs =

(1−β3)∆T
β1−β1β3−β2logβ3

,

Rb =−
(∆T )2

CbCsβ1logβ3
, R1 =

−β4

β5 +1
, C1 =

−∆T
log(−β5)R1

.

Finally, it is obvious that

V (t) = h [G1(q)I(t)+G2(q)Vs(0)]−G3(q)I(t)+R0I(t). (2.13)

The above equation reveals the block-oriented Wiener-type structure of the NDC model, as de-

picted in Figure 2.3, in which the linear dynamic model G1(q) and the nonlinear function h(Vs)

are interconnected sequentially. Given (2.13), the next pursuit is to estimate all of the parameters

simultaneously, which include αi for i = 1,2, . . . ,4, βi for i = 1,2, . . . ,5, and R0. Here, α0 and α5

are free of identification as they can be expressed by αi for i = 1,2, . . . ,4 (see Section 2.3.1).

27



MAP-Based Wiener Identification

Consider the following model based on (2.13) for notational convenience:

z(t) =V (θθθ ;u(t))+ v(t), (2.14)

where u is the input current I, z the measured voltage, v the measurement noise added to V and

assumed to follow a Gaussian distribution N (0,σ2), and

V (θθθ ;u(t)) = h [G1(q,θθθ)u(t)+G2(q)Vs(0),θθθ ]−G3(q,θθθ)u(t)+θ10u(t),

with

θθθ =

[
α1 α2 α3 α4 β1 β2 β3 β4 β5 R0

]>
.

The input and output datasets are denoted as

uuu =

[
u(t1) u(t2) · · · u(tN)

]>
∈ RN×1,

zzz =
[

z(t1) z(t2) · · · z(tN)

]>
∈ RN×1,

where N is the total number of data samples. A combination of them is expressed as

ZZZ =
[

uuu zzz
]
.

An ML-based approach is developed in [80] to deal with Wiener system identification. If applied

to (2.14), it leads to consideration of the following problem:

θ̂θθ = argmax
θθθ

p(ZZZ|θθθ).

Following this line, one can derive a likelihood cost function and perform minimization to find out

θ̂θθ . However, this method can be vulnerable to the risk of local minima because of the nonconvexity
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issue resulting from the static nonlinear function h(·). This can cause unphysical estimates. While

carefully selecting an initial guess is suggested to alleviate this problem [79], it is often found

inadequate for many practical systems. In particular, our study showed that it could hardly deliver

reliable parameter estimation when used to handle the NDC model identification.

MAP-based Wiener identification thus is proposed here to overcome this problem. The MAP

estimation can incorporate some prior knowledge about parameters to help drive the parameter

search toward a reasonable minimum point. Specifically, consider maximizing the a posteriori

probability distribution of θθθ conditioned on ZZZ:

θ̂θθ = argmax
θθθ

p(θθθ |ZZZ). (2.15)

By the Bayes’ theorem, it follows that

p(θθθ |ZZZ) = p(ZZZ|θθθ) · p(θθθ)
p(ZZZ)

∝ p(ZZZ|θθθ) · p(θθθ).

In above, p(θθθ) quantifies the prior information available about θθθ . A general way is to character-

ize it as a Gaussian random vector following the distribution p(θθθ) ∼ N (mmm,PPP). Based on (2.14),

p(zzz|θθθ)∼N (VVV (θθθ ;uuu),RRR), where RRR = σ2III and

VVV (θθθ ;uuu) =
[
V (θθθ ;u(t1)) · · · V (θθθ ;u(tN))

]>
.

Then,

p(ZZZ|θθθ) · p(θθθ) ∝ exp
(
− 1

2
[zzz−VVV (θθθ ;uuu)]>RRR−1 [zzz−VVV (θθθ ;uuu)]

)
· exp

(
−1

2
(θθθ −mmm)>PPP−1 (θθθ −mmm)

)
.

If using the log-likelihood, the problem in (2.15) is equivalent to

θ̂θθ = argmin
θθθ

J(θθθ), (2.16)
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where

J(θθθ) =
1
2
[zzz−VVV (θθθ ;uuu)]>RRR−1 [zzz−VVV (θθθ ;uuu)]+

1
2
(θθθ −mmm)>PPP−1 (θθθ −mmm) .

For the nonlinear optimization problem in (2.16), one can exploit the quasi-Newton method to

numerically solve it [80]. This method iteratively updates the parameter estimate through

θθθ k+1 = θθθ k +λksssk. (2.17)

Here, λk denotes the step size at iteration step k, and sssk is the gradient-based search direction given

by

sssk =−BBBkgggk, (2.18)

where BBBk ∈R10×10 is a positive definite matrix that approximates the inverse of the Hessian matrix

∇2J (θθθ k), and gggk = ∇J (θθθ k) ∈ R10×1. Based on the well-known BFGS update strategy [201], BBBk

can be updated by

BBBk =

(
III−

δδδ kγγγ>k

δδδ
>
k γγγk

)
BBBk−1

(
III− γγγkδδδ

>
k

δδδ
>
k γγγk

)
+

δδδ kδδδ
>
k

δδδ
>
k γγγk

, (2.19)

with δδδ k = θθθ k−θθθ k−1 and γγγk = gggk−gggk−1. In addition,

gggk =−
(

∂VVV (θθθ k;uuu)
∂θθθ k

)>
RRR−1 [zzz−VVV (θθθ k;uuu)]

+PPP−1 (θθθ k−mmm) , (2.20)
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where each column of ∂VVV (θθθ ;uuu)
∂θθθ

∈ RN×10 is given by

∂VVV (θθθ ;uuu)
∂θi

= xxx◦i− xxx◦5 for i = 1,2, . . . ,4,

∂VVV (θθθ ;uuu)
∂θ5

= ΣΣΣ ◦ q−1−θ7q−2

1− (1+θ7)q−1 +θ7q−2 uuu,

∂VVV (θθθ ;uuu)
∂θ6

= ΣΣΣ ◦ q−1−q−2

1− (1+θ7)q−1 +θ7q−2 uuu,

∂VVV (θθθ ;uuu)
∂θ7

= ΣΣΣ ◦ θ6q−2−2θ6q−3 +θ6q−4

(1− (1+θ7)q−1 +θ7q−2)
2 uuu,

∂VVV (θθθ ;uuu)
∂θ8

=
−q−1

1+θ9q−1 uuu,

∂VVV (θθθ ;uuu)
∂θ9

=
θ8q−2

1+2θ9q−1 +θ 2
9 q−2 uuu,

∂VVV (θθθ ;uuu)
∂θ10

= uuu,

with
xxx = G1(q,θθθ)uuu+G2(q)Vs(0)111,

ΣΣΣ =
4

∑
i=1

iθixxx◦(i−1)+5

(
V −V −

4

∑
i=1

θi

)
xxx◦4.

Here, xxx ◦ uuu denotes the Hadamard product of xxx and uuu, xxx◦2 denotes the Hadamard power with

xxx◦2 = xxx◦ xxx, and 111 ∈ RN×1 denotes a column vector with all elements equal to one.

Finally, note that λk needs to be chosen carefully to make J(θθθ) decrease monotonically. One

can use the Wolfe conditions and let λk be selected such that

J (θθθ k +λksssk)≤ J (θθθ k)+ c1λkggg>k sssk,

∇J (θθθ k +λksssk)
> sssk ≥ c2∇J (θθθ k)

> sssk,

(2.21a)

(2.21b)

with 0 < c1 < c2 < 1. For the quasi-Newton method, c1 is usually set to be quite small, e.g.,

c1 = 10−6, and c2 is typically set to be 0.9. The selection of λk can be based on trial and error

in implementation. One can start with picking a number and check the Wolfe conditions. If the

conditions are not satisfied, reduce the number and check again. An interested reader is referred
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Table 2.1: Quasi-Newton-based implementation for MAP-based Wiener identification.

Initialize θθθ 0 and set the convergence tolerance

repeat

Compute gggk via (2.20)

if k = 0 then

Initialize BBB0 = 0.001 1
‖ggg0‖

III

else

Compute BBBk via (2.19)

end if

Compute 000 sssk via (2.18)

Find λk 000 that satisfies the Wolfe conditions (2.21)

Perform the update via (2.17)

until J(θθθ k) converges

return θ̂θθ = θθθ k

to [201] for detailed discussion about the λk selection. Summarizing the above, Table 2.1 outlines

the implementation procedure for the MAP-based Wiener identification.

Remark 2.1. While the MAP estimation has enjoyed a long history of addressing a variety of esti-

mation problems, no study has been reported about its application to Wiener system identification

to our knowledge. Here, it is found to be a very useful approach for providing physically reasonable

parameter estimation for practical systems, as it takes into account some prior knowledge about

the unknown parameters. In a Gaussian setting as adopted here, the prior p(θθθ) translates into a

regularization term in J(θθθ), which prevents incorrect fitting and enhances the robustness of the

numerical optimization against nonconvexity.

Remark 2.2. The proposed 2.0 identification approach requires some prior knowledge of the pa-

rameters to be available, which can be developed in several ways in practice. First, R0 can be
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roughly estimated using the voltage drop at the beginning of the discharge, to which it is a main

contributor. Second, the polynomial coefficients of h(·) can be approximately obtained from an

experimentally calibrated SoC-OCV curve if there is any. Third, one can derive a rough range for

Cb +Cs if a battery’s capacity is approximately known. Finally, as the parameters of batteries of

the same kind and brand are usually close, one can take the parameter estimates acquired from one

battery as prior knowledge for another.

Remark 2.3. In general, a prerequisite for successful identification is that the parameters must

be identifiable in a certain sense. Following along similar lines as in [60, 192], one can rigor-

ously define the parameters’ local identifiability for the considered Wiener identification problem

and find out that a sufficient condition for it to hold is the full rankness of the sensitivity matrix

∂VVV (θθθ ;uuu)/∂θθθ , which can be used for identifiability testing. Using this idea, our simulations con-

sistently showed the full rankness of the sensitivity matrix under variable current profiles such as

those in Figure 2.8, indicating that the NDC model can be locally identifiable. Related with identi-

fication is optimal input design, which concerns designing the best current profile to maximize the

parameter identifiability [164, 146]. It will be part of our future research to explore this interesting

problem for the NDC model.

Remark 2.4. It is worth mentioning that the 2.0 identification approach can be readily extended

to identify some other ECMs that have a Wiener-like structure like the Rint and Thevenin models.

One can follow similar lines to develop the computational procedures for each, and hence the

details are skipped here.

Remark 2.5. The 1.0 and 2.0 identification approaches are designed to perform offline identifi-

cation for the NDC model, each with its own advantages. The 1.0 approach is designed for in-lab

battery modeling and analysis, using simple two-step (trickle- and constant-current discharging)

battery testing protocols. While requiring a long time for experiments, it can offer high accuracy in

parameter estimation. More sophisticated by design, the 2.0 approach can extract the parameters all

at once from data based on variable current profiles. It can be conveniently exploited to determine

the NDC model for batteries operating in real-world applications.
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Figure 2.4: PEC R© SBT4050 battery tester.

2.4 Experimental Validation

This section presents experimental validation of the proposed NDC model and parameter iden-

tification 1.0 and 2.0 approaches. All the experiments in this section were conducted on a PEC R©

SBT4050 battery tester (see Figure 2.4). The tester can support charging/discharging with arbitrary

current-, voltage- and power-based loads (up to 40 V and 50 A). A specialized server is used to

prepare and configure a test offline and collect experimental data online via the associated soft-

ware LifeTestTM. Using this facility, charging/discharging tests were performed to generate data

on a Panasonic NCR18650B lithium-ion battery cell, which was set to operate between 3.2 V (fully

discharged) and 4.2 V (fully charged).

2.4.1 Validation Based on Approach 1.0

This validation first extracts the NDC model from training dataset using the 1.0 identification

approach in Section 2.3.1 and then applies the identified model to validation datasets to assess its

predictive capability.

As a first step, the cell was fully charged and relaxed for a long time period. Then, a full

discharge test was applied to the cell using a trickle constant current of 0.1 A (about 1/30 C-rate).

With this test, the total capacity is determined to be Qt = 3.06 Ah by coulomb counting, implying
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Table 2.2: Identification 1.0: initial guess, bound limits and identification results.

Name β2 β3 β4 β5 γ1 γ2 γ3 γ4 γ5

Initial guess 0.02 0.05 0.005 1/100 0.05 0.2 8 0.07 12

θθθ 0.005 0.005 0.001 1/800 0.01 0.05 1 0.01 1

θθθ 0.2 0.2 0.03 1/10 0.09 0.35 15 0.12 15

θ̂θθ 0.0163 0.0575 0.02 1/65 0.0531 0.1077 3.807 0.0533 7.613

Note: quantities are given in SI standard units in Tables 2.2 and 2.3.
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Figure 2.5: Identification 1.0: parameter identification of h(·) that defines SoC-OCV relation.

Cb +Cs = 11,011 F. Further, from the SoC-OCV curve fitting, we obtain

OCV = 3.2+2.59 ·SoC−9.003 ·SoC2 +18.87 ·SoC3−17.82 ·SoC4 +6.325 ·SoC5,

which establishes h(·) immediately. The measured and identified SoC-OCV curves are compared

in Figure 2.5. Next, the cell was fully charged again and left idling for a long time. This was then

followed by a full discharge using a constant current of 3 A to produce data for estimation of the

impedance and capacitance parameters. The identification was achieved by solving the constrained

optimization problem in (2.9). The computation took around 1 sec, performed on a Dell Precision

Tower 3620 equipped with 3 GHz Inter Xeon CPU, 16 Gb RAM and MATLAB R2018b. Table 2.2

summarizes the initial guess, lower and upper bounds, and obtained estimates of the parameters.
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Figure 2.6: Identification 1.0: model fitting with the training data obtained under 3 A
constant-current discharging.
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Figure 2.7: Identification 1.0: predictive fitting over validation data obtained by discharging at
different constant currents.

The physical parameter estimates are extracted as: Cb = 10,037 F, Cs = 973 F, Rb = 0.019 Ω,

Rs = 0, R1 = 0.02 Ω, C1 = 3,250 F, and

R0 = 0.0531+0.1077e−3.807·SoC +0.0533e−7.613·(1−SoC).

The model is now fully available from the two steps. Figure 2.6 shows that it accurately fits with

the measurement data.

While an identified model generally can well fit a training dataset, it is more meaningful and

revealing to examine its predictive performance on some different datasets. Hence, five more tests

were conducted by discharging the cell using constant currents of 1.5 A, 2.5 A and 3.5 A and
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Figure 2.8: Identification 1.0: predictive fitting over validation dataset obtained by discharging at
varying currents (0∼3 A). (a) Current profile. (b) Voltage fitting.

two variable current profiles, respectively. Figure 2.7 shows what the identified model predicts for

discharging at constant currents. An overall high accuracy is observed, even though the prediction

is slightly less accurate when the current is 1.5 A, probably because the parameters are current-

dependent to a certain extent. The variable current profiles are portrayed in Figures 2.8a and 2.9a,

which were created by scaling the Urban Dynamometer Driving Schedule (UDDS) profile in [3]

to span the ranges of 0∼3 A and 0∼6 A, respectively. Figures 2.8b and 2.9b present the predictive

fitting results. Both of them illustrate that the model-based voltage prediction is quite close to the

actual measurements. These results demonstrate the excellent predictive capability of the NDC

model.
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Figure 2.9: Identification 1.0: predictive fitting over validation dataset obtained by discharging at
varying currents (0∼ 6 A). (a) Current profile. (b) Voltage fitting.

2.4.2 Validation Based on Approach 2.0

Let us now consider the 2.0 approach developed in Section 2.3.1, which treats the NDC model

as a Wiener-type system and performs MAP-based parameter estimation. This approach advanta-

geously allows all the parameters to be estimated in a convenient one-shot procedure.

Following the manner in Section 2.4.1, one can apply the 2.0 approach to a training dataset

to extract an NDC model and then use it to predict the responses over several other different

datasets. The validation here is also set to evaluate the NDC model against the Rint model [83] and

the Thevenin model with one serial RC circuit [83], which are commonly used in the literature.

The comparison also extends to a basic version of the NDC model (referred to as “basic NDC” in

sequel), one with a constant R0 and without R1-C1 circuit, with the purpose of examining the utility

of the NDC model when it is reduced to a simpler form. Note that, even though the NDC model is

the most sophisticated among them, all of the four models offer high computational efficiency by
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Table 2.3: Identification 2.0: initial guess, prior knowledge and identification results.

Name α1 α2 α3 α4 β̆1/10−5 β̆2/10−4 β̆3 β4/10−4 β5 R0

Initial Guess 2.59 -9.003 18.87 -17.82 9.078 8.914 0.964 -4.938 -0.9753 0.08

mmm - - - - 9.078 8.914 0.964 -4.938 -0.9753 0.08√
diag(PPP)/mi - - - - 0.001 0.15 0.15 0.15 0.15 0.15

θ̂θθ 2.32 -8.15 19.345 -20.78 9.082 9.227 0.982 -4.859 -0.8153 0.069

requiring only a small number of arithmetic operations.

These four models are all Wiener-type, so the 2.0 identification approach can be used to identify

them on the same training dataset, i.e., the one shown in Figure 2.8, thus ensuring a fair comparison.

The parameter setting for the NDC model identification and the estimation result are summarized

in Table 2.3. The computation took around 4 sec. The resultant physical parameter estimates are

given by: Cb = 10,031 F, Cs = 979 F, Rb = 0.063 Ω, Rs = 0, R1 = 0.003 Ω, C1 = 2,449 F and

R0 = 0.069 Ω. The identification results for the Rint, Thevenin model and basic NDC models are

omitted here for the sake of space.

Figure 2.10a depicts how the identified models fit with the training dataset. One can observe

that the NDC model and its basic version show excellent fitting accuracy, overall better than the

Rint and Thevenin models. A more detailed comparison is given in Figure 2.10b, which displays

the fitting error in percentage. It is seen that the Rint model shows the least accuracy, followed by

the Thevenin model. The NDC model and its basic version well outperform them, with the NDC

model performing slightly better.

Proceeding forward, let us investigate the predictive performance of the four models over sev-

eral validation datasets. First, consider the datasets obtained by constant-current discharging at 1.5

A, 2.5 A and 3.5 A, as illustrated in Figure 2.7. Figure 2.11 demonstrates that the NDC model and

its basic version can predict the voltage responses under different currents much more accurately

than the Rint and Thevenin models. Next, consider the dataset in Figure 2.9 based on variable-

current discharging. Figure 2.12 shows that the prediction accuracy of all the models is lower than
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Figure 2.10: Identification 2.0: (a) model fitting with training dataset and (b) fitting error in
percentage.

the fitting accuracy, which is understandable. However, the NDC model and its basic version are

still again the most capable of predicting, with the error mostly lying below 1%. As a contrast,

while the Thevenin model can offer a decent fit with the training dataset as shown in Figure 2.10,

its prediction accuracy over the validation dataset is not as satisfactory. This implies that it is less

predictive than the NDC model.

Another evaluation of interest is about the SoC-OCV relation. As mentioned earlier, the 2.0

approach can estimate all the parameters, including the function h(·). This allows one to write

the SoC-OCV function directly based on the identified h(·) as it also characterizes the SoC-OCV

relation. That is,

OCV = 3.2+2.32 ·SoC−8.15 ·SoC2 +19.345 ·SoC3−20.78 ·SoC4 +8.222 ·SoC5.

Identification of the other three models can also lead to estimation of this function. Figure 2.13
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Figure 2.11: Identification 2.0: predictive fitting over validation datasets obtained by discharging
at different varying currents.

compares them with the benchmark shown in Figure 2.5, which is obtained experimentally by

discharging the cell using a small current of 0.1 A. It is obvious that the SoC-OCV curves obtained

in the identification of the NDC model and its basic version are closer to the benchmark overall.

This further shows the benefit of the NDC model as well as the efficacy of the 2.0 approach.

Summing up the above validation results, one can draw the following observations:

• The NDC model is the most competent among the four considered models for grasping and

predicting a battery’s dynamic behavior, justifying its validity and soundness.

• The basic NDC model can offer fitting and prediction accuracy almost comparable to that

of the full model. It thus can be well qualified if a practitioner wants to use a simpler NDC

model yet without much loss of accuracy.

• The 2.0 identification approach is effective in estimating all the parameters of the NDC

model as well as the Rint and Thevenin models in one shot from variable-current-based

data profiles. It can not only ease the cost of identification considerably but also provide

on-demand model availability potentially in practice.
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Figure 2.12: Identification 2.0: (a) predictive fitting over validation dataset obtained by
discharging at varying currents between 0 A and 6 A and (b) predictive fitting error in percentage.

2.5 Summary

This chapter improved on the original double-capacitor model by adding a nonlinear-mapping-

based voltage source and a serial RC circuit and proposed the NDC model. This development was

justified through an analogous comparison with the SPM. Furthermore, two offline parameter es-

timation approaches, which were named 1.0 and 2.0, respectively, were designed to identify the

model from current/voltage data. The 1.0 approach considered the constant-current charging/dis-

charging scenarios, determining the SoC-OCV relationship first and then estimating the impedance

and capacitance parameters. With the observation that the NDC model has a Wiener-type structure,

the 2.0 approach was derived from the Wiener perspective. As the first of its kind, it leverages the

notion of MAP to address the issue of local minima that may reduce or damage the performance of

the nonlinear Wiener system identification. It well lends itself to the variable-current charging/dis-

charging scenarios and can desirably estimate all the parameters in one shot. The experimental
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Figure 2.13: Identification 2.0: identification of the SoC-OCV relation based on different models,
compared to the truth.

evaluation demonstrated that the NDC model outperformed the popularly used Rint and Thevenin

models in predicting a battery’s behavior, in addition to showing the effectiveness of the identifi-

cation approaches for extracting parameters.
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Chapter 3

One-Shot Parameter Identification of the Thevenin Model

This chapter1 studies one-shot identification of all parameters in the Thevenin model, including the

resistance and capacitance parameters and the parameters in the parameterized function mapping

from state of charge to open-circuit voltage. It begins with the parameter identifiability analysis,

showing that all the parameters are locally identifiable. Then, it formulates the parameter identifi-

cation problem in a prediction-error-minimization framework. As the non-convexity intrinsic to the

problem may lead to physically meaningless estimates, two methods are developed to overcome

this issue. The first one is to constrain the parameter search within a reasonable space by setting

parameter bounds, and the other adopts regularization of the cost function using prior parameter

guess. The proposed identifiability analysis and identification methods are extensively validated

through simulations and experiments.

3.1 Introduction

Rechargeable batteries have found wide use nowadays in the consumer electronics, transportation

and grid sectors by the billions. Their ever-widening use has excited an intense interest in advanced

battery management system research. The main subjects of inquiry in this area include state of

charge (SoC) and state of health (SoH) estimation, optimal charging control, cell balancing, ther-

mal management, e.g., [41, 114, 150, 197, 119, 59, 56, 149, 127, 143, 122, 183], and the references

therein. Playing a foundational role in many of the existing studies are the equivalent circuit mod-

els (ECMs), which replicate a battery’s electrical dynamics using a circuit composed of resistors,

1This chapter is based on the dissertation author’s first-authored journal paper [187].
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capacitors and voltage sources. However, the parameters of an ECM are often unknown in many

real-world circumstances or drift with cycled charging/discharging. This presents the question of

how to accurately and efficiently identify them from the current/voltage measurements made on a

battery cell.

Literature Review

The current literature on ECM identification can be roughly divided into three categories:

• Experiment-based analysis. This category develops and conducts charging/discharging ex-

periments such that a battery’s dynamics can be exposed and used to estimate parameters.

For instance, the transient voltage responses are leveraged in [52, 166] to identify the inter-

nal resistance and resistance-capacitance-based (RC-based) time constants by charging or

discharging a battery using constant or pulse currents. Another example is the experimental

determination of the relationship between SoC and open-circuit voltage (OCV). Convention-

ally, it can be accomplished by charging or discharging the battery using a very small cur-

rent [154, 199, 206], or alternatively, applying a current of normal magnitude intermittently

(a sufficiently long rest period is applied between two discharging operations) [85, 188, 151].

While easy to implement, these approaches introduce significant time costs—an SoC-OCV

calibration experiment can take more than one day [154, 52], unaffordable especially in mas-

sive battery testing. One can also find studies about the design of specialized charging/dis-

charging protocols to expedite parameter identification, e.g. [10], which, however, would

still take more than ten hours.

• Electrochemical impedance spectroscopy (EIS). EIS is an important means of observing

electrochemical processes within batteries. The EIS data reveal the impedance properties of

a battery, and the literature includes a few methods that fit an ECM to collected EIS data

to extract the resistance and RC parameters [32, 141, 73, 14]. These methods focus on

impedance identification as needed in many applications and meanwhile, leave other parts
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of a battery’s dynamics such as the SoC-OCV function beyond consideration.

• Analytical data-based parameter estimation. This category seeks to determine an ECM’s

unknown parameters using the current/voltage measurement data from a system identifica-

tion perspective. The studies in [36, 210, 20, 111, 87, 68, 219, 105] consider pulse current

charging/discharging experiments and use the data to identify an ECM’s RC parameters by

fitting the model to the pulse phase voltage [36, 210], the relaxation phase voltage [20, 111,

87, 68], or both of them [219, 105]. Some other studies perform similar data-fitting-based

RC parameter estimation using data from variable current charging/discharging tests, while

exploiting generic optimization [54], grey-box optimization [28], sequential quadratic pro-

gramming [115], or particle swarm optimization [94, 213] as the solution tools. The studies

in [75, 91, 46, 93] propose to estimate the RC parameters by converting the identification

problem into a problem of solving a set of linear and polynomial equations. In [95, 117], a

linear state-space model is formulated for batteries, and subspace identification is then per-

formed to infer the system matrices. An approach presented in [204] directly identifies the

parameters of a continuous-time ECM using sampled discrete-time measurements. Associ-

ated with parameter identification, there is a growing amount of work on combined estima-

tion of SoC and part of the model parameters [40, 172, 179, 60, 84, 158, 64, 62, 212, 214]. It

is noted that these studies usually require an accurate SoC-OCV relationship to be available

prior to identification, which requires long-time testing as aforementioned.

Despite the importance, the methods surveyed above, however, share one limitation: they are

designed to identify only a subset of an ECM’s parameters, on the premise that the other param-

eters are known. This brings about an intriguing question: Is it possible to extract the parameters

of an ECM all at once? Here, by “all”, it means the RC parameters as well as the parameters of

the nonlinear SoC-OCV function. At least two benefits can result if this can be achieved. First,

it will enhance the efficiency of battery model identification considerably by avoiding the tedious

SoC-OCV calibration. Second, it can help ensure the availability of an accurate model for battery

management during a battery’s service life. However, one-shot identification for batteries has been
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long known as a challenge, because of the increase in the number of parameters to estimate and

the serious nonlinearity and non-convexity in the identification procedure. The only studies on this

topic, to our knowledge, are given in [96, 97, 31, 136], which use the genetic algorithms to search

for the best parameter estimates for a battery model. However, their application still face some

limitations. The primary one among them is the weak parameter identifiability due to the many

parameters (more than 30) to determine, which can potentially compromise the estimation accu-

racy. In addition, the genetic algorithms generally converge slowly and impose high computational

expenses.

Contributions

This work is motivated to develop new and efficient approaches for one-shot battery parame-

ter identification. The Thevenin model, which has been a popular choice for battery manage-

ment [162, 102, 156, 168], is considered here. This model is nonlinear by nature, and consequently,

an identification effort can suffer pitfalls caused by the nonlinearity and non-convexity, which may

eventually produce inaccurate or unphysical parameter estimation. This work hence presents a

systematic study to overcome such an issue, yielding the following contributions.

• The study for the first time reveals the feasibility of the one-shot identification for the

Thevenin model through an in-depth parameter identifiability analysis. Specifically, it shows

that all the parameters are locally identifiable, indicating that they can be uniquely deter-

mined in a local domain.

• With the model’s local identifiability guaranteed, this work synthesizes novel one-shot pa-

rameter identification methods. The methods are developed to minimize the model predic-

tion error through numerical optimization. Different from the literature, we introduce two

critical mechanisms to address the non-convexity issue: 1) constrained optimization, which

constrains the search space by applying upper and lower bounds to some parameters, and 2)

generalized Tikhonov regularization, which adds a regularization term to the considered cost
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Figure 3.1: The Thevenin model.

function to drive the optimization toward a reasonable minimum point.

• The theoretical estimation accuracy of the proposed identification methods is rigorously

characterized. The approaches and the associated analysis are validated using extensive sim-

ulations and experiments.

With the above contributions, our study can enable easier availability of accurate Thevenin

models for advanced battery management ranging from charging control to SoC estimation and

aging prognostics.

Organization

The rest of the chapter is organized as follows. Section 3.2 reviews the Thevenin model and sets

up the parameter identification problem. Section 3.3 investigates the parameter identifiability and

develops the identification approaches. Section 3.4 evaluates the efficacy of the proposed results

through Monte Carlo simulations. Section 3.5 further presents validation based on experiments.

Finally, some concluding remarks are gathered in Section 3.6.

3.2 Model Description

This section first introduces the Thevenin model and then derives the voltage response under

constant-current discharging. The formulation of the parameter identification problem then fol-

lows.

A general form of the Thevenin model is shown in Figure 3.1. The first main component of the

model is a voltage source, which emulates a battery’s OCV. The OCV is SoC-dependent, and the
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SoC’s dynamics is given by

˙SoC =
1

3600Q f
I, (3.1)

where Q f is the battery’s maximum capacity in ampere-hour (Ah) and I is the current in ampere

(I < 0 for discharging and I > 0 for charging). The second component of this model, R0, represents

the battery’s internal resistance, which grasps the voltage drop in discharging and jump in charging.

As the third component, a set of serially connected RC pairs can characterize the transient behavior

in the battery’s voltage response. This work considers only one RC pair, which is often sufficient

practically and brings simplicity of analysis and computation. It is noteworthy that this will cause

no loss of generality as the ensuing results can be extended to the case of multiple RC pairs.

By the Kirchhoff’s circuit laws, the voltage dynamics based on the one-RC Thevenin model

can be expressed as V̇RC =− 1
RC

VRC−
1
C

I,

V =VOC−VRC +R0I,

(3.2a)

(3.2b)

where VRC is the voltage across the RC pair, VOC the OCV, and V the terminal voltage. As afore-

mentioned, VOC is dependent on SoC. Following [178, 199], it can be characterized as a fifth-order

polynomial with respect to SoC:

VOC(SoC) =
5

∑
i=0

αiSoCi, (3.3)

where αi for i = 0,1, . . . ,5 are coefficients, and VOC is lower and upper bounded, respectively,

by V OC = VOC(SoC = 0) and V OC = VOC(SoC = 1). In addition, the literature often suggests the

internal resistance R0 as a function of SoC, which is in general constant but increases exponentially

when SoC nears 0 [36, 134]. Hence, R0 is parameterized as

R0(SoC) = β0 +β1e−β2SoC, (3.4)
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where the coefficients βi > 0 for i = 0,1,2.

From above, the Thevenin model with one RC pair is represented by (3.1)-(3.4). Now, suppose

that the battery is fully charged, left idling for a long period and then discharged by a constant

current to cut-off voltage. Here, the focus on a constant-current discharging scenario for the sake

of formulating a mathematically tractable identification problem. As another advantage, such a

discharging protocol can be easily implemented in practice. Solving (3.2a) with VRC(t = 0) = 0,

one can obtain the evolution of VRC under constant current through time as follows:

VRC(t) =−IR
(

1− e−
t

RC

)
. (3.5)

As a result, the terminal voltage V through time is

V (t) =α0 +α1SoC(t)+α2SoC2(t)+α3SoC3(t)+α4SoC4(t)+α5SoC5(t)

+ Iβ0 + Iβ1e−β2SoC(t)+ IR
(

1− e−
t

RC

)
, (3.6)

where SoC(t) = 1+ It/(3600Q f ) as indicated by (3.1), with SoC(0) = 1.

It is worth noting that V OC and V OC can be preset and used in the discharging experiments.

It is also assumed that the total capacity Qc is known or can be experimentally determined for

given V OC and V OC. Because α0 = V OC and ∑
5
i=0 αi = V OC, only αi for i = 1,2, . . . ,4 need to

be determined. It is seen that (3.6) defines an explicit relationship between V , I and the unknown

parameters, i.e., αi for i = 1, . . . ,4, βi for i = 0,1,2, R and C. The next problem to tackle is two-

fold: 1) deciding if the parameters are identifiable, and 2) designing approaches to achieve effective

parameter identification, which will be the focus of the next section. Note that the parameters are

assumed to be constant throughout this chapter in order to consider a representative and tractable

problem.
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3.3 Parameter Identification

Based on Section 3.2, this section aims to identify the unknown model parameters. It starts with

investigating the parameter identifiability analysis, which shows that the parameters are locally

identifiable and offers a method of determining the theoretical identification accuracy. Then, it syn-

thesizes two identification methods, which are based on the notion of nonlinear least squares (NLS)

but use constrained optimization and regularization, respectively, to address the non-convexity is-

sue that arises in parameter estimation.

3.3.1 Identifiability Analysis

Consider (3.6), for which the unknown parameter vector is

θθθ =

[
α1 α2 α3 α4 β0 β1 β2 R (RC)−1

]>
.

Note that θi for i = 1,2, . . . ,9 and its corresponding parameter will be used interchangeably in se-

quel. The terminal voltage V is measured at a sequence of sampling instants {tk} for k = 1,2, . . . ,N

with t1 = 0. By (3.6), V (tk) can be compactly written as

V (tk) = φ(θθθ ; tk), (3.7)

where

φ(θθθ ; tk) =V OC +θ1SoC(tk)+θ2SoC2(tk)+θ3SoC3(tk)+θ4SoC4(tk)

+

(
V OC−V OC−

4

∑
i=1

θi

)
SoC5(tk)+θ5I +θ6Ie−θ7SoC(tk)+θ8I

(
1− e−θ9tk

)
.

Given (3.7), a fundamental question is whether θθθ can be uniquely identified from the data se-

quence {V (tk)}, which boils down to the identifiability issue. To proceed, a definition of the local

parameter identifiability is introduced for (3.7) as follows [60, 192].
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Definition 3.1. A model structure φ(θθθ ; tk) is said to be locally identifiable at some point θθθ
0 in the

parameter space for a given data sequence {V (t1),V (t2), . . . ,V (tN)}, if for any θθθ
1 and θθθ

2 within

the neighborhood of θθθ
0, φ(θθθ 1; tk) = φ(θθθ 2; tk) holds if and only if θθθ

1 = θθθ
2.

Definition 3.1 indicates that there should exist no two different parameter sets in the neighbor-

hood of a point that can produce the same data sequence if the parameters are locally identifiable.

Before moving on to discuss the identifiability testing condition, let us consider the parameter

identification problem for (3.7) in a prediction-error framework, seeking to find out the parameter

estimates to minimize the difference between the measurements and the model-based predictions.

To this end, an NLS cost function can be formulated as

J(θθθ) =
1
2
[yyy−φφφ(θθθ)]>QQQ−1 [yyy−φφφ(θθθ)] , (3.8)

where QQQ is a symmetric positive definite matrix interpretable as the covariance matrix of an additive

measurement noise, and

yyy =
[
V (t1) V (t2) · · · V (tN)

]>
,

φφφ(θθθ) =

[
φ(θθθ ; t1) φ(θθθ ; t2) · · · φ(θθθ ; tN)

]>
.

The parameter estimation then lies in finding out θ̂θθ to minimize J(θθθ), i.e.,

θ̂θθ = argmin
θθθ

J(θθθ). (3.9)

It is pointed out in [192] that evaluating the local identifiability of θθθ around θ̂θθ (see Definition 3.1)

can be achieved by testing whether the minimization problem in (3.8) has a unique solution in the

local parameter space. Further, a sufficient condition to guarantee a unique θ̂θθ (or in other words,

the local identifiability of θθθ ) is that the Hessian matrix ∂ 2J(θθθ)/∂θθθ
2 > 0 at θ̂θθ . To satisfy this

condition, ∂φφφ(θθθ)/∂θθθ at θ̂θθ must be of full rank. This is because the local first-order approximation
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of ∂ 2J(θθθ)/∂θθθ
2 is

∂ 2J(θθθ)

∂θθθ
2 ≈

(
∂φφφ(θθθ)

∂θθθ

)>
QQQ−1 ∂φφφ(θθθ)

∂θθθ
.

Here, define SSS(θθθ) = ∂φφφ(θθθ)/∂θθθ . It is referred to as the sensitivity matrix and measures how the

parameter perturbations can change the terminal voltage. The terminal voltage can be said to be

sensitive to a parameter if it sees a relatively large change when the parameter varies slightly. A

parameter with higher sensitivity generally allows for more accurate estimation. Meanwhile, SSS(θθθ)

should be of full rank as discussed above, so that when the parameters change, their effects on the

terminal voltage are differentiable. Specifically, SSS(θθθ) is given by

SSS(θθθ) =


...

...
...

...
∂φ(θθθ ; tk)

∂θ1

∂φ(θθθ ; tk)
∂θ2

· · · ∂φ(θθθ ; tk)
∂θ9

...
...

...
...


N×9

, (3.10)

where
∂φ(θθθ ; tk)

∂θi
=SoCi(tk)−SoC5(tk), for i = 1, · · · ,4,

∂φ(θθθ ; tk)
∂θ5

=I,

∂φ(θθθ ; tk)
∂θ6

=Ie−θ7SoC(tk),

∂φ(θθθ ; tk)
∂θ7

=− ISoC(tk)θ6e−θ7SoC(tk),

∂φ(θθθ ; tk)
∂θ8

=I
(

1− e−θ9tk
)
,

∂φ(θθθ ; tk)
∂θ9

=Iθ8tke−θ9tk ,

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

(3.11f)

for k = 1,2, · · · ,N. From above one can observe that the columns of SSS(θθθ) are linearly independent,

making SSS(θθθ) a full-rank matrix. This conclusion can by further verified by computationally eval-

uating SSS(θθθ) around the nominal parameters of a battery model, with further discussion offered in

Section 3.4. Hence, one can claim that the parameter vector θθθ is locally identifiable.

Further, suppose that θ̂θθ is successfully estimated and minimizes J(θθθ). The covariance of θ̂θθ in
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the Gaussian case then is given by

Cov(θ̂θθ) = E

([
∂ 2J(θθθ)

∂θθθ
2

∣∣∣∣
θθθ

]−1
)
≈
[
SSS>(θθθ)QQQ−1SSS(θθθ)

]−1
, (3.12)

from which the variance of the estimate θ̂i for i= 1,2, · · · ,9, is the i-th diagonal element of Cov(θ̂θθ),

i.e.,
[
Cov(θ̂θθ)

]
ii
. Here, it should be noted that

[
Cov(θ̂θθ)

]
ii

measures the estimation error if the

estimation is unbiased and one can use (3.12) to calculate the theoretically possible parameter

estimation accuracy.

3.3.2 Identification Methods

The foregoing discussion poses a basic parameter estimation problem as shown in (3.8)-(3.9). Al-

though the parameters are locally identifiable, solving the problem is still a challenge due to two

difficulties. The first one stems from the nonlinearity of the model, as is seen from the voltage

equation (3.6). As the second and more challenging difficulty, the minimization problem in (3.9)

is non-convex. Although a numerical optimization procedure, e.g., the Gauss-Newton method, can

be deployed to tackle the nonlinearity issue, the non-convexity may still lead the parameter search

to local minimum points that are unphysical or unreasonable. To ensure correct parameter esti-

mation, this work introduces constrained optimization and regularization to improve the problem

formulation by using prior knowledge about parameters.

Constrained Optimization

To prevent parameter search approaching physically meaningless local minima, one can constrain

the search within a parameter space believably correct. Specifically, one can roughly determine the

lower and upper bounds of some parameters, use them to set up a limited search space and run

numerical optimization within this space. In practice, it is not difficult to determine the bounds of

some parameters for the Thevenin model, because some coarse-grained knowledge of a battery,

e.g., internal impedance, can be obtained from both experience and some simple observation or
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analysis of the measurement data. A further discussion of extracting prior knowledge of parameters

is provided in Section 3.5. With this idea, the identification problem in (3.9) is modified as a

constrained optimization problem:

θ̂θθ = min
θθθ

J(θθθ),

s.t. θθθ ≤ θθθ ≤ θθθ ,

(3.13a)

(3.13b)

where θθθ and θθθ are the lower and upper bounds for θθθ , respectively. It is noted that (3.13) represents

a constrained NLS problem, which can be addressed by the trust region or line search algorithms.

Here, a trust region method is considered, and a brief overview about it is taken from [42] and

offered below for completeness.

Let us begin with the unconstrained case and consider (3.13) without the constraint (3.13b).

Suppose there is a current guess of the solution θ̂θθ k, where k is the iteration step number. For the trust

region method, it first constructs a function ψk, referred to as “model function”, to approximate the

actual objective function J around the current guess θ̂θθ k. The model function ψk is based on the

Taylor-series expansion of J around θ̂θθ k and defined as follows:

ψk(sssk) = J(θ̂θθ k)+ggg>k sssk +
1
2

sss>k BBBksssk, (3.14)

where sssk is a step to be determined, gggk = ∇J(θ̂θθ k), and BBBk = ∇2J(θ̂θθ k). Then, minimizing the objec-

tive function J reduces to finding a minimizer of the model function ψk(sssk). Since ψk(sssk) can be a

poor approximation of J when the step sssk is too large, the trust region method bounds the search

for a minimizer of ψk(sssk) within some region around θ̂θθ k. Hence, one needs to solve the following

subproblem in order to find out the best candidate step sssk:

min
sssk

ψk(sssk) s.t. ‖DDDksssk‖≤ ∆k, (3.15)

where DDDk is a scaling matrix, ‖·‖ is the Euclidean norm, and ∆k is the so-called trust region radius.

It is then interesting to see whether sssk can bring a large enough drop in J(θθθ) if added to θ̂θθ k. A
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worthy metric for this is

ρk =
J(θ̂θθ k)− J(θ̂θθ k + sssk)

ψk(0)−ψk(sssk)
, (3.16)

where J(θ̂θθ k)− J(θ̂θθ k + sssk) is the actual reduction in J(θθθ), and ψk(0)−ψk(sssk) the anticipated re-

duction. If ρk is greater than a threshold, it is safe to increase the trust-region radius by letting

θ̂θθ k+1 = θ̂θθ k + sssk and then continuing the search. Otherwise, the trust region should be reduced, and

rerun (3.15) at the same iterate point θ̂θθ k.

In the case of (3.13b) applied as a constraint, there are different ways to cope with this. An

approach offered in [42] defines a new subproblem, in which ψk(sssk) is replaced by

ψ
′
k(sssk) = J(θ̂θθ k)+ggg>k sssk +

1
2

sss>k (BBBk +CCCk)sssk,

where CCCk is a matrix that results from the constraint. Similar to (3.14), this subproblem is then

iteratively implemented to search for the optimal parameter estimates. Summarizing the above,

one can obtain the constrained NLS method for the Thevenin model identification, which is named

as C-NLS.

Regularization

Tikhonov regularization offers another way to help overcome the non-convexity issue. It involves

a pre-estimation of the parameters and uses the prior guess to regularize the original cost function.

Here, the pre-estimation is expected to be close to the truth so that its presence will then drive the

optimization to run in the vicinity of the true parameter values. The regularization-based parameter

estimation problem is expressed as follows:

min
θθθ

J̄(θθθ) = J(θθθ)+
1
2
(θθθ −θθθ 0)

>PPP−1
0 (θθθ −θθθ 0) , (3.17)

where θθθ 0 represents the prior guess of θθθ , and PPP0 is a diagonal positive matrix acting as a quantifi-

cation of the confidence in the quality of θθθ 0.
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The formulation in (3.17) can be interpreted from a Bayesian perspective [133]. Bayesian prob-

abilistic estimation is concerned with determining the a posteriori distribution of θθθ given the

measurements yyy or p(θθθ |yyy), where p(·|·) denotes conditional probability density function (pdf).

According to the Bayes’ rule, one has

p(θθθ |yyy) = p(yyy|θθθ)p(θθθ)
p(yyy)

∝ p(yyy|θθθ)p(θθθ).

Consider that the measurement yyy is corrupted by noise www, as often happens in practice. That is,

yyy = φφφ(θθθ)+www.

If www is independent of θθθ and follows a Gaussian distributionN (000,QQQ), then p(yyy|θθθ)∼N (φφφ(θθθ),QQQ).

Meanwhile, θθθ is a Gaussian random vector. Its a priori pdf before the observation of yyy is p(θθθ)∼

N (θθθ 0,PPP0). Then, it follows that

p(θθθ |yyy) ∝ exp
(
−1

2
[yyy−φφφ (θθθ)]>QQQ−1 [yyy−φφφ (θθθ)]

)
exp
(
−1

2
(θθθ −θθθ 0)

>PPP0
−1 (θθθ −θθθ 0)

)
.

From the perspective of estimation, it is desired to find out θθθ to maximize p(θθθ |yyy). This is known

as maximum a posteriori (MAP) estimation and can reduce to the problem shown in (3.17) by

considering the log likelihood. Here, the selection of θθθ 0 and PPP0 depends on some prior knowledge

of a battery under consideration, and further discussion is given in Section 3.5. To address the

problem in (3.17), one can also consider the aforementioned trust region method. Thus far the

regularization-based NLS method is obtained, which is named as R-NLS.

Comparison of C-NLS and R-NLS

Both the C-NLS and R-NLS methods are developed to accomplish the parameter estimation for the

Thevenin model. Sharing the objective of overcoming the non-convexity issue, they both require

some advance knowledge of the parameters (i.e., the parameter bounds θθθ and θθθ for C-NLS and
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prior guess θθθ 0 and PPP0 for R-NLS). Our experience suggests that the advance knowledge does not

have to be accurate—even a coarse inference can lead to satisfactory estimation accuracy. It also

turns out that one can gather it in some convenient ways, with a further discussion to be offered in

Section 3.5 along with the elaboration of experiments.

Meanwhile, there are several interesting differences between the two approaches. The first one

lies in the computational efficiency. It is noteworthy that the R-NLS is usually computationally

faster as it is based on unconstrained optimization. A second difference is concerned with the

parameter estimation accuracy. Based on [88], the theoretical estimation error for both approaches

can be quantified as tr(ΣΣΣ), where tr denotes trace and

ΣΣΣ = E
[
(θ̂θθ −θθθ)(θ̂θθ −θθθ)>

]
= Cov(θ̂θθ)+

(
E[θ̂θθ ]−θθθ

)(
E[θ̂θθ ]−θθθ

)>
. (3.18)

Here, one can approximately view [Σ ]ii as a squared error between θ̂i and θi, and the second term

of the rightmost-hand side is due to the bias of E[θ̂θθ ] from θθθ . For the C-NLS method, the bias term

in (3.18) will reduce to zero if the bounds are ideally selected. In view of (3.12), its theoretical

estimation accuracy then is given by

tr(ΣΣΣ) = tr
([

SSS>(θθθ)QQQ−1SSS(θθθ)
]−1
)
. (3.19)

By contrast, the R-NLS method produces biased estimates as it pushes the estimates toward θθθ 0. It

follows from (3.17) that

E[θ̂θθ ] = θθθ +
(

III +PPP0SSS>(θθθ)QQQ−1SSS(θθθ)
)−1

(θθθ −θθθ 0).
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This hence suggests that the theoretical estimation error of the R-NLS is

tr(ΣΣΣ) = tr
([

SSS>(θθθ)QQQ−1SSS(θθθ)+PPP−1
0

]−1
)
+(θθθ −θθθ 0)

>
(

III +PPP0SSS>(θθθ)QQQ−1SSS(θθθ)
)−>

·
(

III +PPP0SSS>(θθθ)QQQ−1SSS(θθθ)
)−1

(θθθ −θθθ 0). (3.20)

Comparing (3.19) and (3.20), it is easy to notice the theoretical estimation accuracy attained by the

two methods can be different, with the former being fixed and the latter dependent on θθθ 0 and PPP0.

With distinct choices of θθθ 0 and PPP0, the R-NLS can be either more accurate than the C-NLS (e.g.,

θθθ 0 = θθθ and PPP0 = 0 as an extreme case) or less accurate (e.g., θθθ 0 is far away from θθθ and PPP0 is close

to 000). This indicates that one can leverage (3.20) as a guidance for the selection of θθθ 0 and PPP0, and

a detailed discussion of this will be given in Section 3.4.

3.4 Numerical Simulation

This section presents Monte Carlo simulation to verify the effectiveness of the C-NLS and R-

NLS methods in extracting the Thevenin model parameters. The simulation will further compare

them in terms of estimation accuracy and computation time in accordance with the analysis in

Section 3.3.2.

3.4.1 Identification with Training Data

The training data used in the Monte Carlo simulation are generated using the Thevenin model with

the following parameters: the nominal capacity Q f = 2.17 Ah, R = 0.0313 Ω, C = 1,858 F, and

R0(SoC) = 0.0313+0.0678 · e−13.2·SoC,

VOC(SoC) = 3.3+2.61 ·SoC−9.36 ·SoC2 +19.7 ·SoC3−19.0 ·SoC4 +6.9 ·SoC5,

with V OC = 3.3 V and V OC = 4.15 V. Here, the battery parameters are drawn from the identification

results on a Samsung INR18650-25R Li-ion battery used in Section 3.5.
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Figure 3.2: A model-based computer-generated terminal voltage profile for one Monte Carlo
simulation.

Suppose the battery is discharged from full charge under a constant current I of−3 A by 2,400 s

until when the terminal voltage reaches the cut-off voltage of 3.2 V. By (3.1), the SoC will decrease

from 1 following

SoC(t) = 1− 1
2604

t. (3.21)

According to (3.6), the terminal voltage through time is given by

V (t) = 3.3+θ1 ·SoC(t)+θ2 ·SoC2(t)+θ3 ·SoC3(t)+θ4 ·SoC4(t)

+

(
4.15−3.3−

4

∑
i=1

θi

)
·SoC5(t)−θ5 ·3−θ6 ·3e−θ7·SoC(t)−θ8 ·3

(
1− e−θ9·t

)
, (3.22)

where θi for i = 1,2, . . . ,9 make up the parameter vector θθθ with

θθθ =

[
2.61 −9.36 19.7 −19.0 0.0313 0.0678 13.2 0.0313 0.0172

]>
.

Let the terminal voltage V (t) be sampled every second and corrupted by an additive white Gaus-

sian noise with variance of 2.5×10−5 (i.e., QQQ = 2.5×10−5III in (3.13) and (3.17)). Running (3.21)-

(3.22), one can obtain an I-V dataset, with an example plotted in Figure 3.2. Further, repeat the

same procedure for M = 500 times to create 500 datasets. These datasets, accounting for the ef-

fect of random noise sampling, can help develop statistically convincing conclusions about the
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Table 3.1: The simulation setting.

Par α1/1 α2/1 α3/1 α4/1 β0/Ω β1/Ω β2/1 R/Ω (RC)−1/s−1

Initial Guess 1 1 1 1 0.029 0.4 40 0.2 1/40

C-NLS θθθ - - - - 0.01 0 0 0 1/200

θθθ - - - - 0.04 0.8 80 0.4 1

R-NLS θθθ 0 1 1 1 1 0.029 0.4 40 0.2 1/40√
diag(PPP0) 50 50 50 50 0.001 0.1 10 0.06 0.005

performance of the proposed methods.

Before proceeding to parameter identification, one can first calculate the parameter sensitivity

matrix SSS(θθθ) based on the datasets to computationally verify the full rankness of SSS(θθθ). It can be

easily and consistently found out that SSS(θθθ) is of full rank, showing that θθθ is locally identifiable as

previously analyzed.

With the datasets generated and the parameters’ local identifiability verified, let us now apply

the C-NLS and R-NLS methods to each dataset for parameter estimation. Meanwhile, the original

NLS problem (3.8) is also solved to provide a benchmark for comparison. Table 3.1 summarizes

the initial guess for all the methods, θθθ and θθθ for the C-NLS, and θθθ 0 and PPP0 for the R-NLS. Note

that the setting in Table 3.1 is coarse-grained relative to the truth. Here, consider the normalized

root-mean-square error (NRMSE) to quantify the parameter estimation accuracy, which is defined

as

NRMSE(θi) =

√√√√ 1
M ∑

M
k=1
(
θ̂i[k]−θi

)2

θ 2
i

, (3.23)

for i = 1,2, . . . ,9. Recalling (3.19)-(3.20), one can notice that NRMSE(θi) is a sample-based com-

putational estimation of
√
[Σ ]ii/θ 2

i . They are expected to be close if M is large enough.
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Figure 3.3: Parameter estimation errors for (a) NLS as a benchmark, (b) C-NLS and (c) R-NLS.
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Figure 3.4: Histogram of estimates of θ6 for (a) NLS as a benchmark, (b) C-NLS and (c) R-NLS.

3.4.2 Simulation Results

Figure 3.3 shows the NRMSE obtained by solving the original NLS problem (3.8) and applying

the C-NLS and R-NLS methods, respectively. It is first seen that the NLS leads to extremely poor

estimation accuracy, due to the intrinsic non-convexity as aforementioned. By comparison, both

the C-NLS and R-NLS methods achieve substantial success, with the NRMSE lying below 10%

for every parameter. Going deeper, let us look in more detail at θ6, i.e., the resistance β1. Figure 3.4

shows the histogram of the estimates of θ6 produced by the three methods. As is seen, the NLS

estimation constantly strays far away from the truth, but the C-NLS and R-NLS give estimates near

the true value 0.0678 with considerable consistency. These observations suggest that the proposed

methods are highly competent in identifying the Thevenin model parameters, even though the prior

knowledge used is rough.
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Figure 3.5: Theoretical estimation accuracy of the R-NLS method changes with λ .

Taking a closer look at Figure 3.3, one can find out that the estimation errors calculated based

on the Monte Carlo simulation results match well with the theoretical values. This validates the

correctness of the theoretical analysis. In addition, an implication specific for the R-NLS is that

one can make use of (3.20) to select θθθ 0 and PPP0. To explore this implication, let us consider applying

{θθθ 0,λPPP0} with λ varying between 0 and 5 and {θθθ 0,PPP0} shown in Table 3.1. Figure 3.5 depicts

the theoretical accuracy of the R-NLS with respect to λ , where var and bias correspond to the two

terms in the rightmost-hand side of (3.20), respectively. Several observations can be drawn. First, λ

plays a role in the estimation performance, or in other words, the selection of θθθ 0 and PPP0 will affect

the eventual estimation accuracy. Second, the estimation accuracy will improve when λ increases

and then keep at a same level after λ becomes large enough, and the nominal bias will approach

zero. This indicates that the prior knowledge should be imposed with appropriate confidence and

that it is wise to adopted a relatively large PPP0 if the prior knowledge is not precise. Finally, based

on such a plot, a practitioner can choose θθθ 0 and PPP0 deemed as the best.

Concluding this section is a comparison of the running time. All the simulations in this section

are conducted on a Dell Precision Tower 3620 with 3 GHz Inter Xeon CPU and 16 Gb RAM run-

ning MATLAB R2018b. The computation time is averaged on the results of the 500 Monte Carlo

runs. The original NLS, C-NLS and R-NLS on average take 88 ms, 142 ms, and 84 ms, respec-

tively. From this result, one can find that both the C-NLS and R-NLS methods are computationally
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well affordable, especially given that they are designed for offline identification. Furthermore, the

R-NLS computes faster, which comes as an additional advantage, because the regularization expe-

dites the parameter search.

3.5 Experimental Validation

This section validates the C-NLS and R-NLS methods on experimental data. The experiments were

conducted using a PEC R© SBT4050 battery tester (see Figure 2.4) and a Samsung INR18650-25R

Li-ion battery. One test was conducted first to generate the training data, from which the parameters

are extracted. Then, three more experiments were performed to generate validation datasets, to

which the identified model is applied to assess its predictive performance.

3.5.1 Identification with Training Data

Considering V OC = 3.3 V and V OC = 4.15 V, the first experiment discharged the battery under

room temperature using a constant current of −3 A from full charge until the terminal voltage hit

the cut-off threshold of 3.2 V and then switched to constant-voltage discharging until the battery

was fully depleted (when the current reduced to 0.125 A). The voltage asymptotically recovered

to 3.3 V after the battery rested for a long time. Figure 3.6 shows the obtained current and volt-

age profiles. It should be noticed that a constant-voltage discharging phase was included here in

order to determine the battery’s total capacity. One can safely remove it if the capacity is known

prior. Based on Figure 3.6, the battery’s nominal capacity was calculated as Q f = 2.17 Ah using

coulomb counting [111]. Provided the I-V data in the constant-current discharging stage (encom-

passed by the black dotted-line box in Figure 3.6), the C-NLS and R-NLS methods were applied

to extract parameter estimates, using the information setting in Table 3.1. Meanwhile, the original

NLS problem (3.8) was also solved as a benchmark.

Before examining the parameter identification results, let us explain how the information in

Table 3.1 is determined through the summary below. Here, the initial guess is used to initialize the
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Figure 3.6: The voltage response of the Samsung INR18650-25R Li-ion battery in a
constant-current/constant-voltage discharging experiment.

identification run for all the methods; θθθ and θθθ are the parameter bounds for the C-NLS, and θθθ 0

and PPP0 represent the advance knowledge used by the R-NLS.

• The parameters α1 through α4 are hard to guess in advance as they have no physical meaning,

so they are simply initialized to be one. There is also no need to assign bounds for them in

the C-NLS case. In the R-NLS case, it is safe to leave θθθ 0 and PPP0 that correspond to them as

blank, but if one wants to calculate the theoretical accuracy using (3.20), it is acceptable to

set θθθ 0 without much care about accuracy and meanwhile set a large PPP0 as in Table 3.1.

• The parameter β0 is roughly equal to the immediate voltage drop upon the start of discharg-

ing divided by the applied current. From Figure 3.6, it is estimated as 0.029. Since this

guess can be close to the truth, it is reasonable to stipulate a prior 99% confidence interval

of 0.029± 0.003 for β0, where the standard deviation is 0.001, to run the R-NLS. For the

execution of the C-NLS, the bounds are loosely set as 0.01 and 0.04.

• The voltage recovery after the end of the entire discharging process is largely due to the loss

of voltage across R0(SoC = 0) = β0 +β1. Hence, β1 is upper bounded by 0.1/0.125 = 0.8

based on Figure 3.6. Its lower bound is assigned to be zero for simplicity. The average of

the bounds, 0.4, hence is chosen as the initial guess of β1, along with a standard deviation of

0.4/3.
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Table 3.2: Parameter estimates for the battery used in the experiments.

Name α1/1 α2/1 α3/1 α4/1 β0/Ω β1/Ω β2/1 R/Ω (RC)−1/s−1

θ̂θθ Benchmark 3.48 -11.3 20.5 -17.0 0.0360 0.0465 155 0.0668 0.0070

θ̂θθ C−NLS 2.61 -9.36 19.7 -19.0 0.0313 0.0678 13.2 0.0313 0.0172

θ̂θθ R−NLS 2.60 -9.34 19.7 -19.0 0.0308 0.0689 13.2 0.0313 0.0179

• The parameter β2 mostly determines the curve shape of R0(SoC). Its lower and upper bounds

are very loosely set as 0 and 80. It is hence initially guessed as 40, which is the average of

the bounds, with a standard deviation of 40/3.

• The total voltage decline, following the immediate voltage drop when the discharging starts

and lasting until when the constant-current discharging terminates, is from 4.15 V to 3.2

V. This is contributed by the combined change in the OCV and the voltage across R0 and

R. Note that the voltage across R will also approach a constant (i.e., IR) after sufficiently

long time. The information can be used to infer an upper bound for R at 0.4 and a simple

lower bound at 0. The average of the bounds, 0.2, is set as the initial guess, and the standard

deviation set as 0.2/3.

• Because RC is the time constant for the RC circuit, its value can be roughly seen from the

voltage curve during the constant-current discharging. The voltage starts to decline almost

linearly after the first 200 s, implying that RC is vaguely around 200/5 = 40. The initial

guess of (RC)−1 is thus taken to be 1/40, with a standard deviation of 0.005. Loose lower

and upper bounds are chosen, which are 1/200 and 1, respectively.

From above, one can develop some advance knowledge of the parameters through straightfor-

ward observation and analysis of the data and build an information setting as shown in Table 3.1.

This allows the proposed C-NLS and R-NLS methods to easily lend themselves to use in practice.

With the above settings and letting QQQ = 2.5×10−5III, the original NLS, C-NLS and R-NLS are

applied to estimate the parameters. The parameter estimates are summarized in Table 3.2, and the
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Figure 3.7: Comparison of measured and fitted terminal voltage for (a) NLS as a benchmark, (b)
C-NLS and (c) R-NLS.
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Figure 3.8: The voltage response of the battery in an intermittent discharging test.

voltage data fitting shown in Figure 3.7. Figure 3.7 displays that the predicted terminal voltage well

overlaps the measurements in all three cases. However, with a look at Table 3.2, it is interesting to

find out that the C-NLS and R-NLS produce very close estimation, whereas the estimates of the

original NLS are quite different. Next, validation data are utilized to further evaluate the quality of

the three identified models.

3.5.2 Validation with Validation Data

Further experiments were conducted to generate datasets used to assess the performance of the

above identified model. The first experiment, based on intermittent discharging, was designed to

validate the accuracy of the estimated SoC-OCV relationships and impedance parameters. In this

experiment, the battery was discharged by a constant current of −1 A for ten minutes and then

left at rest for two hours such that the battery voltage would recover to a steady state. Such a
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Figure 3.9: Comparison of measured and estimated SoC-OCV for (a) NLS as a benchmark, (b)
C-NLS and (c) R-NLS.
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Figure 3.10: Comparison of measured and estimated R0 +R for (a) NLS as a benchmark, (b)
C-NLS and (c) R-NLS.

procedure repeated itself until the voltage declined to the cut-off voltage of 3.2 V. The current and

voltage profiles of this experiment are shown in Figure 3.8. This dataset allowed us to perform the

following validation to verify the effectiveness of the proposed C-NLS and R-NLS methods.

• First, since the terminal voltage after a two-hour recovery can be regarded as the OCV, one

can plot the SoC-OCV and use it as the ground truth to evaluate the estimated SoC-OCV

relationship. Figure 3.9 offers such a comparison. Evidently, the SoC-OCV relationships

identified by the C-NLS and R-NLS methods match well with the measured one. Contrasting

this is a serious discrepancy in the benchmark case based on the original NLS.

• Second, the voltage recovery upon a pause of discharging can be largely attributed to the

change in the voltage across R0 and R, which is equal to I(R0 + R). Hence, R0 + R cor-
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Figure 3.11: Variable currents from normalization of the UDDS profile.
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Figure 3.12: UDDS: (a) comparison of measured and estimated voltage for the benchmark NLS,
C-NLS and R-NLS methods and (b) errors.

responding to different SoC levels can be determined and used to appraise the estimated

values, as shown in Figure 3.10. The C-NLS and R-NLS are also observed to achieve more

precise estimation than the original NLS in this case.

Another experiment applied a variable current profile to the battery, which was created based

on the Urban Dynamometer Driving Schedule (UDDS) [3]. Figure 3.11 displays the UDDS-based

current profile, which involves both charging and discharging in the run. Then, the identified mod-

els by the NLS, C-NLS and R-NLS methods are used to predict the terminal voltage under the

current profile. Figure 3.12a compares the predicted voltage against the actual measurements. An
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Figure 3.13: Variable currents from normalization of the WLTP profile.
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Figure 3.14: WLTP: (a) comparison of measured and estimated voltage for the benchmark NLS,
C-NLS and R-NLS methods and (b) errors.

overall excellent fitting accuracy can be observed for the models identified by the C-NLS and R-

NLS, whereas for the benchmark NLS the accuracy is far from satisfactory. Figure 3.12b further

plots the prediction errors, which are found to be generally less than 20 mV for the C-NLS and R-

NLS and larger by a great margin for the original NLS. This validation provides clear-cut evidence

that the identified models by the C-NLS and R-NLS are accurate, justifying the effectiveness and

competence of the two methods for parameter identification. Another experiment (see Figure 3.13)

based on the Worldwide harmonized Light-duty vehicles Test Procedure (WLTP) [8] also shows

similar results, as depicted in Figure 3.14.
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3.6 Summary

This chapter studied the open problem of one-shot parameter identification for the popular Thevenin

battery model. The objective was to build an approach capable of estimating all model parameters

offline from the current/voltage data in a single run. The study formulated the identification prob-

lem in a prediction-error-based framework and conducted the identifiability analysis, unveiling

that the parameters of the Thevenin model are locally identifiable. Given the nonlinearity of the

identification problem, numerical optimization was considered, but the non-convexity of the cost

function inflicted local minimum trouble on the optimization procedure. This work then took two

approaches to deal with this challenge, one imposing parameter bounds to constrain the search

space, and the other regularizing the cost function with prior knowledge of the parameters. The

resultant two identification methods, along with the identifiability analysis, were extensively val-

idated through simulation and experiments. The proposed methods can provide high-quality pa-

rameter estimation and are relatively easy to implement with a one-shot run, having a potential for

many battery management applications relying on accurate models, e.g., optimal charging, SoC

estimation and monitoring of aging conditions.
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Chapter 4

Real-Time Optimal Charging Design Based on Explicit Model

Predictive Control

This chapter1 presents a framework for real-time charging control based on explicit model predic-

tive control (MPC), exploiting its advantage in characterizing an explicit solution to an MPC prob-

lem to enable real-time charging control. The study begins with the formulation of MPC charging

based on the nonlinear double-capacitor model. Then, multi-segment linearization is conducted to

the original model, and applying the explicit MPC (eMPC) design to the obtained linear models

leads to a charging control algorithm. The proposed algorithm shifts the constrained optimization

offline by precomputing explicit solutions to the charging problem and expressing the charging law

as piecewise affine functions. This drastically reduces not only the online computational costs in

the control run but also the difficulty of coding. Extensive numerical simulation and experimental

results verify the effectiveness of the proposed eMPC charging control framework and algorithm.

The research results can potentially meet the needs for real-time battery management running on

embedded hardware.

4.1 Introduction

Lithium-ion batteries (LiBs) have seen ever-increasing application across various sectors, includ-

ing consumer electronics, electrified transportation and renewable energy, due to their appealing

features like high voltage, high energy and power density, no memory effect, low self-discharge

rates and long service life [197]. This trend has been driving a surge of research on advanced bat-

1This chapter is based on the dissertation author’s first-authored journal paper [185] c© 2020 IEEE.
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tery management to ensure the performance, safety and longevity of LiBs. Among the problems

of interest, a critical one is optimal charging design in pursuit of two main objectives: reducing

side reactions and effects to prolong life, and increasing the charging speed to meet efficiency

needs. This work proposes a novel optimal charging control approach based on the notion of MPC.

While accommodating the above objectives, it is particularly designed via exploiting the recent

advances of eMPC to attain real-time implementation. The proposed approach may find important

prospective use in future real-time battery management systems.

Literature Review

Finding the best ways to charge LiBs has attracted sustained attention in the past two decades.

Currently, the most popular industrial practice is the so-called constant-current/constant-voltage

(CC/CV) charging [98]. It applies a constant current to charge a LiB cell until it reaches a thresh-

old voltage and then enforces a constant voltage to charge the cell at a gradually diminishing

current. Another often endorsed practice is pulse charging that feeds energy into a battery us-

ing current pulses [43]. These methods, however, usually involve some heuristic determination

of charging parameters, giving only empirical or conservative guarantee for charging safety and

speed. This hence has motivated researchers to develop optimal charging protocols by combin-

ing physics-based LiB models and optimization to meet certain objectives concerning LiB health

and/or charging time. A study is offered in [177] to build current profiles that can maximize the

charge stored in a given time while suppressing the internal stress buildup, using a single particle

model (SPM) supplemented with an intercalation-induced stress generation model. To enhance the

conventional pulse charging, the study in [56] optimizes the magnitudes and duty cycles of current

pulses to reconcile health effects with rates of charging. The investigations in [91, 128, 149, 131]

lead to the design of health-aware, fast and thermal-safe charging protocols via multi-objective

optimization based on coupled electro-thermal-aging models.

It is known that charging protocols are first generated offline and then run online, thus sub-

jecting LiB charging to de facto open-loop control. Nonetheless, closed-loop control is arguably
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more capable of improving the charging performance, since it incorporates dynamically the feed-

back about a LiB’s present state to regulate the charging process. The past years have witnessed

a growing body of work on this subject. Linear quadratic control is leveraged in [59] to enable

health-aware LiB charging, with cost functions therein by design restricting the use of aggressive

currents. Meanwhile, MPC, a constrained optimal control strategy, holds considerable promise

here for two reasons. 1) It can handle hard state and input constraints. This gives a leverage to

guarantee satisfaction of health- or safety-related constraints necessary for LiB operation. 2) It can

optimize different kinds of objective functions to meet different charging needs or considerations.

As another benefit, its formulation well admits nonlinear systems, thus bearing applicability to

different types of nonlinear LiB models.

A lead is taken in [109] with the development of minimum-time charging control by applying

nonlinear MPC to a one-dimensional (1-D) electrochemical model of LiBs. However, a barrier in

the way of MPC-based charging is the high computational complexity that results from the nu-

merical constrained optimization procedure at the core of an MPC algorithm. This can be more

serious in the context of complex models, e.g., nonlinear electrochemical models involving vari-

ous partial differential equations. Significant research hence has been devoted to computationally

efficient MPC charging control design. The study in [126] considers nonlinear MPC for SPM and

exploits the differential flatness of Fick’s law of diffusion to reduce computational load. As an-

other important way, model reduction is often used in the literature to simplify an electrochemical

model and make it amenable for the design of efficient MPC. For example, the approach in [223]

linearizes a nonlinear electrochemical model successively along a reference SoC trajectory. Other

examples, e.g., [190], develop input-output approximations of a pseudo 2-D (P2D) model such as

step response models and autoregressive exogenous models, so that application of MPC to them

causes less computation. Particularly, the fast quadratic dynamic matrix control is used in [190] to

further improve the computational efficiency.

Equivalent circuit models (ECMs) represent another appealing choice for MPC-based charging

control due to their much less computation than electrochemical models. An early study is in [209],
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which yet adopts a genetic algorithm as the optimizer despite its costly computation. There is a

consensus today that it is still a critical need to design fast MPC for ECMs for the sake of practical

implementation. To this end, the literature derives either simpler models or computationally frugal

control frameworks. The method in [129] proposes to identify a time-series model recursively

as an input-output approximation of the Thevenin model and takes advantage of its simplicity to

achieve efficient generalized predictive control. Optimal charging based on the Thevenin model is

formulated as a standard linear MPC problem in [202] that eases computation. Similarly, a linear-

time-varying MPC method is proposed in [222]. A hierarchical MPC design in [144] features the

generation of reference current profiles at a slow time scale and the reference tracking at a faster

time scale, which lowers the cost of computation.

The above survey highlights the main advances in the development of computationally effi-

cient MPC charging control. However, the existing methods still demand a relatively large amount

of online computation, arising from the need to solve a constrained optimization problem at each

sampling time. In addition, such online optimizers require strong computing capability, which is

rarely available for the hardware on which a battery management system runs. A central chal-

lenge then lies in how to offload the primary part of the computational effort offline and run a

lean controller online. The eMPC strategy, pioneered in [23, 22], is set to address this challenge.

It pre-computes the control law offline by deriving explicit solutions to an MPC problem. The

control law is composed of piecewise affine (PWA) functions of the system’s current state, which

can be run online through only straightforward arithmetic operations. The advantages of eMPC are

remarkable. First, it can achieve MPC functionality with microsecond-millisecond online compu-

tational efficiency. Second, it is easy to code and executable on cheap embedded control hardware.

Therefore, eMPC can hopefully provide a solution to bridge the gaps in computation and execution

facing the current breed of MPC charging methods.

Contributions

The contribution of this work is threefold.
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• This work presents the first framework for eMPC-based optimal charging control. Distin-

guished from the literature, this framework exploits eMPC to considerably reduce the online

computational time and complexity of coding, paving the way for real-time execution of

charging control.

• Based on the framework, an eMPC-based charging control algorithm is developed. The study

considers the nonlinear double-capacitor (NDC) model, an ECM proposed in [181], and for-

mulates a general nonlinear MPC charging problem. To deal with the nonlinearity inherent in

the dynamics of batteries, it then simplifies the nonlinear MPC problem into a combination

of approximate linear MPC problems. On such a basis, synthesis of eMPC-based control is

performed to build an optimal charging control algorithm, which constructs on a set of PWA

functions over a parameter space.

• The proposed charging control framework and algorithm are evaluated through extensive

simulations and experiments, with their performance well validated.

Organization

The rest of the chapter is organized as follows. Section 4.2 introduces the NDC model along with

the charging-related constraints. Section 4.3 contains: 1) the statement of an MPC-based health-

aware charging control problem, 2) the piecewise linearization of the model, and 3) the formulation

of eMPC-based charging control. The proposed charging control law is evaluated by simulation in

Section 4.4 and experiments in Section 4.5. Finally, Section 4.6 gathers concluding remarks.

4.2 Model Description

Laying the groundwork for the charging control design, this section describes the NDC model (see

Figure 4.1) and its governing dynamics. Further, the constraints to be enforced during charging are

outlined.
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Figure 4.1: The nonlinear double-capacitor model.

As Section 2.2 in Chapter 2 has provided a detailed description of the NDC model, this section

only gives a brief overview of the model dynamics for completeness. For the NDC model, its

dynamics is governed by the following state-space equations:



V̇b(t)

V̇s(t)

= A

Vb(t)

Vs(t)

+BI(t),

V (t) = h(Vs(t))+R0(Vs(t))I(t),

(4.1a)

(4.1b)

where Vb is the voltage across Cb, Vs the voltage across Cs, I the applied current with I > 0 for

charging and I < 0 for discharging, and

A =

− 1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

1
Cs(Rb+Rs)

− 1
Cs(Rb+Rs)

 , B =

 Rs
Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

 .
Here, Vb and Vs are limited to a range. For both, the lower bound of the range is set to be Vs,min = 0

V, and the upper bound Vs,max = 1 V for simplicity and without loss of generality. In other words,

Vb = Vs = 0 V when the LiB is fully depleted (SoC = 0%), and Vb = Vs = 1 V when it is fully

charged (SoC = 100%). Furthermore, the following shows the relation between SoC and Vb and

Vs:

SoC =
CbVb +CsVs

(Cb +Cs)Vs,max
×100%,

where (Cb +Cs)Vs,max is a battery’s total capacity, and (CbVb +CsVs) the available capacity. Note
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that the function h(·) also characterizes the SoC-OCV relationship, because Vb = Vs = SoC when

the battery is at equilibrium.

In (4.1b), h(Vs) is parameterized as a polynomial:

h(Vs) =
5

∑
i=0

αiV i
s ,

where αi for i = 0,1, . . . ,5 are coefficients. Besides, R0 is considered to monotonically increase

with Vs. Such a dependence is described as

R0(Vs) = β1 +β2e−β3(1−Vs),

where βi > 0 for i = 1,2,3.

To ensure health-conscious and safe charging, some constraints must be imposed during a

charging process, a summary of which is as below. To begin with, the SoC must be constrained to

avoid overcharging. That is,

SoCmin ≤ SoC≤ SoCmax. (4.2)

The charging current and terminal voltage must also be subject to limitations to circumvent safety

issues, implying

Imin ≤ I ≤ Imax,

Vmin ≤V ≤Vmax.

(4.3)

(4.4)

In addition, Vb and Vs should be kept within the pre-set range. Given the dynamics shown in (4.1a),

Vs ≥ Vb always holds during charging if the LiB is at equilibrium initially. One hence only needs

to limit Vs by

Vs,min ≤Vs ≤Vs,max. (4.5)

As explained in Section 2.2, Vs strikes an analogy to the Li-ion concentration at the surface region

of an electrode, which needs to be constrained as suggested in some studies about MPC charging
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based on electrochemical models, e.g., [223]. This makes (4.5) correspond to those constraints

though it is an ECM considered here.

The final constraint to add concerns Vs−Vb. It is seen that Vs−Vb drives the migration of charge

from Cs to Cb during charging. The study in [181] points out that this variable is comparable to

the Li-ion concentration gradients within an electrode when proving the approximate equivalence

between the NDC model and the SPM. The Li-ion concentration gradients are a cause for in-

ternal stress buildup, and it can also lead to heating and formation of solid electrolyte interphase

(SEI) film indirectly. These phenomena eventually will degrade the capacity, cycle life and thermal

stability of LiBs [200, 17, 152]. As such, too steep gradients should be circumvented during charg-

ing. This implies a necessity for restricting Vs−Vb. Besides, the restriction should be increasingly

stricter as SoC grows, because a LiB becomes more vulnerable to a large Li-ion concentration

gradient. The constraint about Vs−Vb is then designed as an affine decreasing function of SoC:

Vs−Vb ≤ γ1SoC+ γ2, (4.6)

where γ1 ≤ 0 and γ2 ≥ 0 are two coefficients. It can be rewritten as

η ≤ γ2, (4.7)

where

η =−Cb + γ1Cb +Cs

Cb +Cs
Vb +

Cb +Cs− γ1Cs

Cb +Cs
Vs.

Remark 4.1. The constraints in (4.2)-(4.5) are either standard or can find equivalents in the lit-

erature. But (4.6) or (4.7) is unique as no similar ones have been considered in previous studies

about MPC charging, despite their implications for enhancing the health consciousness in charg-

ing. Here, it is the NDC model that allows such a constraint to be applied. Furthermore, this model,

as shown in [181, 182], offers higher predictive accuracy than other popular ECMs, e.g., the Rint

and Thevenin models, thus in a better position to ensure accurate charging control. These factors
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point to the advantage and appeal of using the NDC model to perform charging control design.

4.3 Optimal Charging Design

This section states an MPC-based charging control problem and then develops an eMPC-based

charging control law. The latter effort will involve model linearization and computation of explicit

solutions to the stated MPC problem.

4.3.1 Charging Problem Formulation

To begin with, let us convert the original state-space model (4.1) into a form that admits standard

MPC formulation, which includes no direct input-output feedthrough in the measurement equation.

To this end, define

x =
[
Vb Vs I

]>
,

y =
[

SoC Vs I V η

]>
,

where x is the state vector, and y the output vector. Then, one can transform (4.1) by some manip-

ulation and discretization into the following form:

xk+1 =Axk +Buk,

yk = g(xk),

(4.8a)

(4.8b)

where uk = Ik+1− Ik,

A=

Ã B̃

0 1

 , B =

0

1

 ,
and g(·) represents the nonlinear mapping from x to y. In above, Ã and B̃ are the discretization-

based counterparts of A and B under sampling interval ∆ t. Furthermore, the constraints in (4.2)-
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(4.7) can be put together in a compact form:

ymin ≤ y≤ ymax.

In this setting, the health-aware charging control problem can be achieved by solving the following

nonlinear MPC (NMPC) problem at time step k:

min
z

N−1

∑
k=0

1
2
(SoCk− r̆)>Q(SoCk− r̆)+

1
2

∆u>k R∆uk,

s.t. (4.8), x0 = x̆, u−1 = ŭ,

uk = uk−1 +∆uk,k = 0, . . . ,N−1,

∆uk = 0,k = Nu, . . . ,N−1,

ymin ≤ yk ≤ ymax,k = 0, . . . ,Nc−1,

(4.9)

where z =
[

∆u0 . . . ∆uNu−1

]>
∈ RNu is the future input sequence to be optimized, r̆ the target

SoC, x̆ the model state at current time instant, and ŭ the control input applied in the previous

sampling interval, respectively. Besides, N represents the prediction horizon, Nu the input horizon,

Nc the constraint horizon, Q = Q> � 0 and R = R> � 0. The problem (4.9) can be solved using

nonlinear programming at each time instant. When the optimal solution z∗ is found, i.e.,

z∗ =
[

∆u∗0 . . . ∆u∗Nu−1

]>
, (4.10)

its first element ∆u∗0 is used to compute

u0 = ŭ+∆u∗0.
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The current to be applied for charging then is given by

I1 = u0 + I0 = ŭ+∆u∗0 +
[

0 0 1

]
x̆. (4.11)

After this, the entire optimization problem is resolved at the next time instant with a new starting

point.

The problem in (4.9) gives a complete description of MPC-based charging control based on

the NDC model. However, the online computation for the nonlinear programming is relatively

formidable, which limits its applicability to embedded charging control. Hence, it is our aim to

address (4.9) via eMPC for easy online computation. As eMPC is designed for linear systems,

one must first linearize (4.8), and the linearization is concerned with h(Vs) and R0(Vs). Note that

a single linear function is not accurate enough to approximate it as Vs changes in charging. This

motivates us to adopt multi-segment linear approximation to enhance the approximation accuracy.

Proceeding to show this idea, consider linearizing h(Vs) and R0(Vs) around a general fixed

operating point, V op
s , as a first step. For h(Vs), a linear approximation is considered, i.e.,

h(Vs)≈ λ1Vs +λ2, (4.12)

where

λ1 =
∂h(Vs)

∂Vs

∣∣∣∣
Vs=V op

s

, λ2 = h(V op
s )−λ1V op

s .

For R0(Vs), it is approximated as a constant, i.e.,

R0(Vs)≈ R0(V op
s ). (4.13)

By (4.12)-(4.13), one can modify (4.8b) into a linear form as:

yk = Cxk +D, (4.14)

82



where

C =



Cb
Cb+Cs

Cs
Cb+Cs

0

0 1 0

0 0 1

0 λ1 R0(V
op
s )

−Cb+γ1Cb+Cs
Cb+Cs

Cb+Cs−γ1Cs
Cb+Cs

0


, D =



0

0

0

λ2

0


.

Accordingly, the original nonlinear MPC problem (4.9) would reduce to a linear one, which can

be expressed as

min
z

N−1

∑
k=0

1
2
(SoCk− r̆)>Q(SoCk− r̆)+

1
2

∆u>k R∆uk,

s.t. (4.8a), (4.14), x0 = x̆, u−1 = ŭ,

uk = uk−1 +∆uk,k = 0, . . . ,N−1,

∆uk = 0,k = Nu, . . . ,N−1,

ymin ≤ yk ≤ ymax,k = 0, . . . ,Nc−1.

(4.15)

Next is to extend this procedure to multi-segment approximation. Specifically, one can select mul-

tiple linearization points, denoting them as V op
s,i for i = 1,2, · · · ,Nop. The range of Vs then is sub-

divided into Nop partitions. The same procedure as in (4.12)-(4.14) can be repeated for each V op
s,i .

Finally, a set of linear MPC subproblems akin to (4.15) will be obtained.

Remark 4.2. The above procedure decomposes the original nonlinear MPC problem into a set

of linear MPC problems with each based on a locally linearized model. In general, constraint

violation may happen upon model switching during the execution of multiple linear MPCs. But

this issue does not cause much concern here. First, the linearization can be very precise. For LiB

cells, the function h(·), which characterizes the SOC-OCV curve, is roughly composed of several

almost flat regions, thus well lending itself to multi-segment linearization. The accuracy can be

also easily improved further by using more operating points. Second, one can use the upper end of

the segment as V op
s to evaluate and approximate R0(Vs). Then R0(Vs) is replaced by a number larger

than it should be. Such a conservatism will effectively reduce the chance of constraint violation.
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4.3.2 Charging Design Based on eMPC

Consider the linear MPC charging control problem (4.15). Based on (4.8a) and (4.14), one can

obtain

yk = CAkx̆+
k−1

∑
j=0
CA jBuk−1− j +D,

uk = ŭ+
k−1

∑
j=0

∆u j.

Further, define the following vector of parameters:

θ =

[
x̆> r̆> ŭ>

]>
∈ Rm.

The optimization problem (4.15) then can be recast as a convex quadratic program (QP) taking a

standard form [22]:

min
z

1
2

z>Σz+(Fθ)> z,

s.t. Gz≤ Sθ +W,

(4.16a)

(4.16b)

where z ∈ RNu , Σ � 0 ∈ RNu×Nu and F ∈ RNu×m.

The QP problem (4.16) is also a multiparametric QP (mpQP) problem, as the characterization

of its solution fundamentally involves the parameter vector θ . The solution can be described as a

set-valued function Z∗(θ) : Θ → 2R
n
, where Z∗(θ) is a set of optimizer functions z∗(θ), Θ the set

of feasible parameters (parameters that allow a non-empty set of z to satisfy (4.16b)), and 2R
n

the

set of subsets of Rn. It has been proven in [23] that, Θ , which is provably a polyhedral set, can be

partitioned into convex polyhedral regions, also referred to as critical regions and denoted as CRi

for i = 1,2, · · · ,NCR. For each critical region,

z∗(θ) = Kiθ +gi, ∀θ ∈CRi.

In other words, Z∗(θ) is PWA and continuous over Θ . An immediate implication is that, given the

formulated problem, the charging control law will be PWA functions of the present charging state,
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the target SoC and the input in last time instant.

A few mpQP algorithms have been developed in the literature. Such an algorithm usually has

a two-fold functionality: determining the partition of Θ into critical regions CRi, and finding out

the control law z∗(θ) associated with each CRi. To design them, an important approach is the so-

called geometric approach [29]. It 1) decides a critical region around a specified parameter by using

the sufficient and necessary conditions for optimality, 2) solves the mpQP for this region, and 3)

partitions the rest of the feasible parameter space and continues the optimization until the space

is fully explored. The literature also contains some other approaches, and an interested reader is

referred to [29] for a review.

Putting together the above developments, the eMPC-based charging control algorithm is sum-

marized as follows:

• Offline mpQP computation

– Consider the first linear model

∗ Select a parameter θ0

∗ Determine the critical region in the neighborhood of θ0, and denote it as CR0

∗ Solve the mpQP problem (4.16) to obtain z∗(θ) = K0θ +g0 for θ ∈CR0

∗ Partition the parameter space outside CR0, and determine z∗(θ) for new critical

regions

∗ Repeat the procedure until when the entire parameter space has been explored

∗ Store in a table all (Ki,gi) for i = 1,2, · · · ,NCR

– Repeat the procedure for all the other linear models

• Online eMPC-controlled charging

– Determine the governing linear model at every time step k

– Given θk, search the stored (K,g) table to find CR j such that θk ∈CR j
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– Determine z∗(θ) = K jθk +g j as well as the charging current Ik+1 as in (4.11)

– Repeat the charging control procedure until the condition for charging completion is

satisfied

The following remarks summarize further discussion of the above eMPC-based charging con-

trol algorithm.

Remark 4.3. The eMPC-based charging control algorithm moves the constrained optimization,

which is computationally expensive, from online to offline by deriving explicit solutions to the

considered optimization problem. The online control run at every time step involves only search-

ing through a look-up table comprising critical regions to find out the correct PWA function and

then evaluating it. Our analysis, together with instructions in [24], shows that the computational

and storage costs in the control run are generally affordable for embedded systems. Further, the

literature also contains studies about efficient eMPC implementation by minimizing the time to

evaluate the PWA functions and reducing the memory needed to store numbers, e.g., [189, 70].

They can be integrated with our work to enable highly efficient charging in practice. Therefore,

the eMPC-based charging control algorithm would yield substantial online computational econ-

omy and implementability on relatively low-end computing hardware, filling a gap that exists in

previous research on MPC-based charging.

Remark 4.4. The above design assumes state-feedback design for convenience of discussion. It

can be easily extended to output-feedback control, which is necessary in practice as the internal

states of the NDC model, Vb and Vs, cannot be measured. To attain this end, one can just use a

nonlinear state observer to perform real-time state estimation. Then, the charging control setup is

a closed loop between the LiB, observer and eMPC controller, which is outlined in Figure 4.2.

To further illustrate this, Section 4.4.2 offers a case study that uses the extended Kalman filter

(EKF) for state estimation and combines it with the proposed eMPC control law to perform output-

feedback charging control.
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Figure 4.2: Development of the eMPC-based charging control algorithm.

Remark 4.5. The proposed design allows for extension to a more sophisticated model. For ex-

ample, if a thermal model is coupled with the NDC model, one can follow the design approach

to do linearization and then conduct eMPC design to enable temperature-conscious charging con-

trol. Such a treatment can also be modified to deal with the case when the model parameters are

temperature-dependent. It is also noteworthy that the above can be applied to other ECMs, such as

the Thevenin model, with custom-built eMPC charging control algorithms.

4.4 Numerical Simulation

This section presents simulation results to validate the proposed eMPC-based charging control al-

gorithm. It offers an overview of the algorithm first through a basic case study and then investigates

its performance in different settings.
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Table 4.1: Battery model parameters.

Name Cb/F Cs/F Rb/Ω Rs/Ω α0 α1 α2 α3 α4 α5 β1 β2 β3

Value 9,913 887 0.025 0 3.2 3.041 -11.475 24.457 -23.536 8.513 0.09 0.35 10

Table 4.2: Linearization setting.

No. Vs V op
s λ1 λ2 R0 NCR

I [0.20,0.50] 0.39 0.6505 3.3701 0.091 15

II [0.50,0.60] 0.60 0.8659 3.2685 0.096 14

III [0.60,0.70] 0.70 0.8562 3.2752 0.107 14

IV [0.70,0.74] 0.74 0.8503 3.2794 0.116 14

V [0.74,0.78] 0.78 0.8581 3.2734 0.129 14

VI [0.78,0.81] 0.81 0.8810 3.2551 0.142 15

VII [0.81,0.84] 0.84 0.9259 3.2181 0.161 15

VIII [0.84,0.87] 0.87 1.0002 3.1544 0.185 15

IX [0.87,0.90] 0.90 1.1123 3.0551 0.219 15

4.4.1 Basic Case Study

Given a 3 Ah LiB cell governed by the NDC model with the parameters shown in Table 4.1, con-

sider the optimal charging problem based on the formulation in (4.9). Here, the charging objective

is to raise the SoC from 20% to 90% under the following constraints:

Vs ≤ 0.95 V, 0 A≤ I ≤ 3 A, V ≤ 4.2 V,

Vs−Vb ≤−0.04 ·SoC+0.08.

The sampling interval ∆ t for model discretization is 1 min. For the eMPC run, Q = 1, R = 0.1, the

prediction horizon N = 10, the control horizon Nu = 2, and the contraint horizon Nc = 2 for (4.6)

and Nc = 1 for the other constraints.

Next, the nonlinear MPC problem (4.9) is broken down into nine linear MPC problems through

88



0.
2

0.
5

0.
6

0.
7
0.

74
0.

78
0.

81
0.

84
0.

870.
9

3.6

3.7

3.8

3.9

4
Original

Approximate

(a) Piecewise linearization of h(Vs)

0.
2

0.
5

0.
6

0.
7
0.

74
0.

78
0.

81
0.

84
0.

870.
9

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 Original

Approximate

(b) Constant-wise approximation of R0(Vs)

Figure 4.3: Multi-segment approximation of h(Vs) and R0(Vs).

Figure 4.4: Critical region partitioning on the Vb-Vs plane when I = 2 A, r̆ = 0.9, and ŭ = 0 A.

multi-segment approximation. Table 4.2 summarizes the linearization setting, which includes the

range of Vs for each segment, the linearization point of Vs, and the obtained linearization results for

h(Vs) and R0(Vs). The approximation of h(Vs) and R0(Vs) is depicted in Figure 4.3. Thanks to the

linearization, each linear MPC problem can be characterized in the form of (4.15). One can then

compute the explicit solution to every problem by conveniently resorting to the MATLAB R© MPC

Toolbox [24], which leads to nine eMPCs that combine to make up the charging control algorithm.

Note that the eMPCs have different numbers of critical region partitions, as they are based on

different models and operating ranges. For each eMPC, the NCR is shown in Table 4.2. To give the
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reader a flavor of the control law, let us look at the second eMPC. For this one, the five-dimensional

parameter space Θ is divided into 14 convex polyhedral critical regions, with each one associated

with a PWA function of θ . For example, the tenth region is given by



0.25 −0.90 −0.35 0 0

0.40 0.42 0.02 −0.81 −0.06

0.89 0.44 0.15 0 0

−0.69 0.67 0.28 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 −1 0 0 0

0 0 0 −1 0

0 0 0 0 −1





Vb,k

Vs,k

Ik

r̆

uk−1


≤



−1.29

0

1.37

0.89

2

2

10

1

0

10



,

and the corresponding charging control law is

Ik+1 =

[
−2.263 2.263 0.938 0 0

]


Vb,k

Vs,k

Ik

r̆

uk−1


,

which is affine and easy to code and compute. While it is impossible to visualize the critical region

partitioning in the five-dimensional space, one can make a cross-sectional view by fixing part of

the parameters. With this idea, Figure 4.4 displays the partitioning of the critical regions on the

two-dimensional Vb-Vs plane when I = 2 A, r̆ = 0.9, and ŭ = 0 A. It is seen that there are ten

critical regions from this point of observation, with each one being a convex polygon.

Running the simulation, the eMPC charging control algorithm yields an optimal current profile

as shown in Figure 4.5a, which distinguishes itself significantly from existing results. It is observed
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Figure 4.5: A basic case study of the eMPC-based charging control (black dashed lines denote
constraints).

that this profile roughly includes three stages. Stage 1 features constant-current charging, which

lasts for a relatively short period. Following it, Stage 2 sees the current decreasing at an approxi-

mately linear rate. The SoC increases fast during the two stages, and so does the terminal voltage

V , as shown in Figures 4.5b-4.5c, respectively. When the charging continues in Stage 3, the mag-

nitude of the current decreases at a faster rate overall, and the increase of SoC becomes slower.

Meanwhile, it is seen that rate of decrease is not uniform and alternates between fast and slow

rythms. This is because the control law is seeking to achieve charging efficiency and constraint

satisfaction simultaneously. If compared with the CC/CV charging, the optimal charging profile

demonstrates more active regulation of the charging process, which believably can mitigate the

effects of charging on the LiB cell’s health more. Figure 4.5c illustrates the actual terminal voltage

based on the original nonlinear model and the one predicted by the linear models. One can observe

a discrepancy between them, which results from the model approximation. However, the actual

voltage always lies below the pre-set upper limit due to the reasons elaborated in Remark 4.2. Fig-
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Figure 4.6: Comparison between eMPC and NMPC for charging control.

ures 4.5d and 4.5e show Vs−Vb and the profiles of Vb and Vs, respectively. From all the figures, it

is seen that every constraint is well satisfied throughout the charging process. These results indi-

cate the efficacy of the proposed eMPC charging control algorithm to practical execution and its

promise for health-aware charging.

It is understood that the eMPC algorithm approximates an NMPC formulated in (4.9), which

involves no linearization and conducts online optimization. Figure 4.6 compares the profiles of the

charging current, SoC and terminal voltage generated by the two methods. It is seen that both lead

to very close results. This indicates that the eMPC can almost reproduce the NMPC while offering

much higher computational efficiency.

Recalling Remark 4.3, the online implementation of an eMPC mainly concerns search and

evaluation of the PWA functions in the look-up table. One can use the sequential search method to

retrieve the correct PWA function from the look-up table [189]. For the above simulation, if consid-

ering that the search at every time step checks all critical regions in the worst case, the computation

would involve around 840 multiply-accumulate operations in total. Section 4.4.4 discusses further

about the running time. As for memory cost, the nine eMPCs here require a storage space for

roughly 9,756 real numbers that encode all PWA functions and critical regions in the worst case.

Our extensive simulations also illustrate an arithmetic precision of three digits after the decimal

point can assure sufficient control accuracy and performance.
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Figure 4.7: Output-feedback charging control based on eMPC and EKF.

4.4.2 EKF-Based Output-Feedback Charging Control

This works focuses on the eMPC charging control design on the state-feedback assumption. The

result can be easily modified to enable the more practical output-feedback charging control by

adding an observer to carry out state estimation (see Figure 4.2 and Remark 4.5). Here, let us

investigate this extension by choosing the well-known EKF [58] as the observer and feeding the

estimated states to the eMPC charging control algorithm. For the application of EKF, the model

in (4.8) is considered and expanded to include process and measurement noises, which are both

zero-mean white Gaussian and have covariances of 10−6I and 9× 10−6, respectively. The other

setting for simulation is the same as in Section 4.4.1. Figures 4.7a-4.7c show the resultant profiles

of the charging current, SoC and terminal voltage. Comparing them one-on-one with Figures 4.5a-

4.5c, one can find out some difference between them due to the noises and state estimation errors,

which nonetheless is very small. Figure 4.7d displays Vs−Vb slightly fluctuating around the pre-set

constraint, still because of the estimation errors. While the constraint is not fully satisfied here, the

violation is at a quite minor level without making a concern. Figure 4.7e depicts the profiles of
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Figure 4.8: Charging control under different constraints on Vs−Vb.

-0.08 -0.06 -0.04 -0.02 0

1

60

70

80

90

100

110

120

C
h

ar
g

in
g

 t
im

e 
(m

in
)

Figure 4.9: Charging time versus γ1 under γ2 = 0.08.

the actual Vb and Vs, which are only marginally different from their counterparts in Figure 4.5e.

The results highlight that the proposed eMPC charging control algorithm can be implemented

efficiently and effectively in the output-feedback manner in practice.

4.4.3 Effects of Changing Constraints and Horizon Parameters

Constraints and horizon parameters play a vital role in MPC-based optimal charging design. This

section examines how the constraint (4.6) and the prediction, control and constraint horizons affect

the proposed algorithm.

Recall that the constraint (4.6) is determined by γ1 and γ2. Different choices of them will lead to

different levels of health consciousness. Here, fix γ2 at 0.08. Then let γ1 take 0, −0.04 and −0.08,

respectively, yielding increasingly stricter restrictions on Vs−Vb. The other parameters follow the

94



0 50 100 150

Time (min)

0

1

2

3

 I
 (

A
)

(a) Charging current profile

0 50 100 150

Time (min)

0.2

0.4

0.6

0.8

S
o
C

(b) SoC profile

0 50 100 150

Time (min)

3.6

3.8

4

4.2

 V
 (

V
)

(c) Voltage profile

Figure 4.10: Charging control when the prediction horizon N = 10,50,90.

ones in Section 4.4.1. Figure 4.8 summarizes the simulation results in this setting. Figure 4.8a

illustrates that, when γ1 decreases, the “head” of the charging current profile lowers, and the “tail”

raises and lengthens, leading to a longer charging time. This results from the constraint Vs−Vb

becoming more restrictive to enforce stronger health protection in charging. The corresponding

SoC and terminal voltage profiles are plotted in Figures 4.8b and 4.8c. Both of them rise more

slowly when γ1 switches from 0 to −0.04 and then −0.08. From these plots, one can observe

that the stronger health protection in charging can be compromised by the longer charging time.

This is verified by Figure 4.9, which gives an illustration of the charging time versus γ1 when γ2

is fixed at 0.08. A major implication is that a practitioner will need to select γ1 and γ2 to strike

a balance between charging time and battery health, depending on the considered application. A

simulation-based trial-and-error procedure can be used for the search.

Now, let us vary the horizon parameters and assess their influence on the charging results. To

this end, it is beneficial to focus on only one horizon parameter at one time and have all other

parameters remain the same as in Section 4.4.1. First, consider the prediction horizon N, and let it

be 10, 50 and 90, respectively. Figure 4.10 depicts the charging current, SoC and terminal voltage

profiles with different choices of N. Here, it is seen that an increasing N would make the charging

process smoother and slower. This is because the optimization now is about a cost function defined

and evaluated over a longer-term future, the solution of which will hence lead to less aggressive

short-term control. It is also noteworthy that the charging current profiles differ only moderately

95



0 50 100 150

Time (min)

0

1

2

3

 I
 (

A
)

(a) Charging current profile

0 50 100 150

Time (min)

0.2

0.4

0.6

0.8

S
o
C

(b) SoC profile

0 50 100 150

Time (min)

3.6

3.8

4

4.2

 V
 (

V
)

(c) Voltage profile

Figure 4.11: Charging control when the control horizon Nu = 2,5,9.
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Figure 4.12: Charging control when the constraint horizon Nc = 2,5,9 for the constraint on
Vs−Vb.

despite different N. The reason lies in the slow dynamics of LiBs, which traces its origin to the fact

that the two eigenvalues of A are either at or close to the origin. Because of this, if comparing the

eMPC with the original NMPC running with a very large prediction horizon, one can also find out

that they lead to close performance. This implies that a relatively small N can be a safe choice.

Next, look at the control horizon Nu, which represents the number of charging moves to be

optimized. Usually, Nu� N, and here, use Nu = 2, 5 and 9, respectively. Figure 4.11 shows that

almost the same results are acquired for different choices of Nu, even though the charging becomes

a little faster when Nu increases. This is also largely due to the slow dynamics of LiBs. As a result,

changing Nu by a scale of several minutes will produce little change to ∆uk. An additional reason is

that the enforced constraints further suppress the variation of ∆uk. This observation suggests that a

small Nu would be sufficient in practice, which will also reduce the computation advantageously as

it leads to fewer critical regions. As an extra benefit, a smaller Nu implies fewer control variables
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in the mpQP computation and brings a parameter space divided by fewer critical regions, thus

yielding greater computational efficiency for both offline and online computation. Finally, let the

constraint horizon Nc for the constraint in (4.6) vary among 2, 5 and 9, respectively. Figure 4.12

shows almost identical results for the different choices of Nc. To see why, one can examine the

dynamics of Vs−Vb, which, by (4.1), is given by

V̇s−V̇b =−
Cb +Cs

CbCs(Rb +Rs)
(Vs−Vb)+

RbCb−RsCs

CbCs(Rb +Rs)
I.

Since the first term of the right-hand side is larger than the second one by at least two orders of

magnitude, the current I has only marginal influence on the dynamics of Vs−Vb. The current profile

hence will not change much even if Nc changes. As is with the case for Nu, this phenomenon allows

us to use a small Nc for the constraint on Vs−Vb, which can assure control performance while

promoting faster computation.

Although the horizon parameter selection for the proposed eMPC charging control algorithm

would require some empirical optimization in practice, the following suggestions are offered sum-

marizing the above:

1. One can select an N such that the prediction horizon is about ten minutes.

2. It is advisable to let Nu,Nc � N. Small Nu and Nc will lead to charging current profiles

similar to those resulting from large Nu and Nc but can reduce online computational costs.

The above results show that it is sufficient to set Nu,Nc = 2 if N = 10.

3. Trial-and-error tuning based on simulations can help a practitioner determine the best hori-

zon parameters for specific applications.

4.4.4 Evaluation of Computational Efficiency

Finally, let us conclude the simulation by comparing the running time of the proposed eMPC and

the NMPC charging algorithms based on (4.9). To this end, a series of simulations were run on a
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Table 4.3: Comparison of computational time.

Method (N,Nu,Nc) Time (s) Case

eMPC (10,2,2) 0.42 Figures 4.5-4.6, 4.10-4.12

(50,2,2) 0.42 Figure 4.10

(90,2,2) 0.43 Figure 4.10

(10,5,2) 0.42 Figure 4.11

(10,9,2) 0.42 Figure 4.11

(10,2,5) 0.42 Figure 4.12

(10,2,9) 0.42 Figure 4.12

NMPC (10,2,2) 6.45 Figure 4.6

Macbook Pro equipped with a 2.3 GHz Inter Core i5, 8 Gb RAM and MATLAB R2018b. Here, the

evaluation of eMPC used different horizon parameter settings as considered in Section 4.4.3. For

each simulation, the entire control run comprised 150 time steps representing a charging session

of 2.5 hours. To make a fair assessment, 20 simulation runs were conducted in each case, and the

average running time was calculated. Table 4.3 summarizes the computational time for all cases.

It shows that eMPC on average takes no more than 1
15 time of NMPC and its computation for

each time step is only about 3 milliseconds. The results highlight the computational superiority of

eMPC over NMPC and show its promise for real-time charging management.

4.5 Experimental Validation

The experimental validation was conducted using a PEC R© SBT4050 battery tester (see Figure 2.4)

and a Panasonic NCR18650B LiB cell with a rated capacity of 3 Ah.

The objective and setting of the experiment follow those for the simulation in Section 4.4.1.

The cell’s parameters are also the ones used in the simulation and given in Table 4.1. Hence, the

experiment directly used the charging current profiles plotted in Figure 4.8a to charge the cell,
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Figure 4.13: Experimental results based on the proposed charging strategies under different
Vs−Vb constraints.

which represent optimal health-conscious charging designs when the constraint (4.6) takes dif-

ferent parameters. Figure 4.13 illustrates the measured terminal voltage for each charging current

profile and makes a comparison with the model-based prediction, where a close match between

them is observed. The experiment verifies that the proposed algorithm can be well used for practi-

cal charging control. It is noted that battery life cycle testing is desired to further evaluate its role

in mitigating health degradation, which will be part of our future work.

Here, due to the limitation of the tester, a charging profile was computed offline and then was

uploaded to the tester to charge the cell in an open-loop control manner. Even though this would

lead to certain performance loss, the results shown above still illustrate the effectiveness of the

charging control. It is believed that better control performance will be achieved if applying the

algorithm to closed-loop control, which will be pursued in our future work.

4.6 Summary

This chapter proposed to exploit eMPC to enhance LiB charging control. It inherits all the merits

of MPC but enables highly efficient computation. Our design started with formulating an MPC

charging control problem based on the NDC model. As the model is nonlinear, multi-segment lin-

earization was developed to approximate the original MPC problem by a combination of multiple

linear MPC problems. The solutions to the linear MPCs were computed offline and explicitly ex-
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pressed as PWA functions, which made up an eMPC charging control algorithm. Contrasting the

previous counterparts, this new algorithm is tremendously easy to code and fast to run online, po-

tentially applicable to embedded computing hardware. The effectiveness of the proposed design

was verified through extensive simulation and experiments.
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Chapter 5

Real-Time Pack Spatial Thermal Field Estimation via

Distributed Kalman Filter

This chapter1 studies real-time reconstruction of the three-dimensional temperature field of a

lithium-ion battery (LiB) pack in charging or discharging. The major challenge lies in how to

acquire a high-fidelity reconstruction with constrained computation time. In this study, a three-

dimensional thermal model is established first for a LiB pack configured in series. Although spa-

tially resolved, this model captures spatial thermal behavior with a combination of high integrity

and low complexity. Given the model, the standard Kalman filter is then distributed to attain tem-

perature field estimation at substantially reduced computational complexity. The arithmetic opera-

tion analysis and numerical simulation illustrate that the proposed distributed estimation achieves

a comparable accuracy as the centralized approach but with much less computation. This work

can potentially contribute to the safer operation of the LiB packs in various systems dependent on

LiB-based energy storage, potentially widening the access of this technology to a broader range of

engineering areas.

5.1 Introduction

It is known that LiB packs are prone to heat buildup in operation, which can cause many side

reactions, degrade the powering performance and accelerate aging. Due to the heat transfer mech-

anisms, the heat accumulation can spread from one cell to another. Fires and explosions may occur

then and devastate the entire pack in a few seconds, as evidenced by a few incidents raising public

1This chapter is based on the dissertation author’s first-authored journal paper [183] c© 2019 IEEE.
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worry. This requires an effective monitoring of the thermal status, which, however, is a need unmet

by the present literature. Connecting spatially resolved thermal modeling with estimation based on

the Kalman filtering (KF), this work derives computationally efficient algorithms to reconstruct a

LiB pack’s three-dimensional temperature field, which opens up a new opportunity for LiB pack

thermal management. The results, offering a promising means of reducing thermal risks facing

LiB packs, can potentially find significant use in a broad range of LiB-based systems in electrified

transportation, renewable energy farms and grid energy storage.

Literature Review

Since the commercialization in the early 1990s, LiBs have gained widespread use in various ap-

plications due to their high energy/power density, long cycle life and low self-discharge rate. They

have established a dominant role in the consumer electronics sector and, owing to a continually

declining manufacturing cost, are rapidly penetrating into the emerging sectors of electric vehicles

and smart grid, where high-energy high-capacity energy storage is needed [17]. This trend has

stimulated an intense interest in the research of high-performing battery management algorithms,

with most of the existing works on state of charge (SoC) estimation to infer the amount of energy

available in LiBs [50, 60, 196, 61, 160, 174, 21, 47], state of health (SoH) estimation to track the

aging status [226, 167, 55, 106, 224], and optimal charging protocol design to optimally charge

LiBs [109, 177, 209, 147, 59]. These efforts have provided strong support for the advancement of

LiB systems.

Though widely considered as a promising technology, LiBs are susceptible to the thermal ef-

fects. Heat generation in LiBs during charging and discharging is always associated with irre-

versible overpotential heating, reversible entropic heating from electrochemical reactions, mixing

heating and phase change heating, etc. [27]. The heating process can be intensified by high charg-

ing/discharging currents. The heat, without timely removal, will gradually build up, leading to

many parasitic and side reactions involving by a complex mix of multiple physical and electro-

chemical process. Performance degradation and aging acceleration will result consequently [17].
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Due to the high reactivity of the lithium metal and flammability of the electrolyte, overheating of

LiBs may cause fires and explosions in extreme cases. This is known as the thermal runaway, in

which heat generation occurs at a much faster rate than dissipation and eventually ignites the LiBs.

Testaments to this catastrophic threat are given by a few well-publicized LiB fire incidents that

happened to Tesla Model S, Toyota Prius, Boeing 787 Dreamliner, NASA’s Mars Surveyor and

a navy’s submarine (for an overview, see, e.g., [9] and the references therein), which have raised

serious concerns over the safe use of LiBs. This situation thus has motivated a growing interest

in real-time temperature monitoring, which represents a crucial way toward taming the thermal

threats.

Currently, a significant amount of work has been devoted to temperature estimation using a

thermal model and the surface temperature measurements [65, 124, 122]. These studies consider

lumped thermal models that concentrate the spatial dimensions into singular points and thus re-

duces thermal partial differential equations (PDEs) into very low-order ordinary differential equa-

tions (ODEs). Though advantageous for computation, this introduces a significant simplification

because the temperature distribution is nonuniform spatially within a cell. For improvement, some

recent works [176, 45, 205] study the temperature estimation with some awareness of the spatial

nonuniformity, which uses thermal models accounting for the LiB cell’s spatial dimensions to a

certain extent. Yet the models are still simplified at the sacrifice of their physical fidelity. It is

noteworthy that the foregoing studies are focused on thermal management for a single LiB cell.

The issue can become much more challenging when LiB packs are considered. With tens of cells

stacked in a compact space, a LiB pack has larger dimensions and significantly complicated ther-

mal behavior that will render the cell-level approaches unproductive. Meanwhile, LiB packs are

more susceptible to heating issues—a “hot spot” can quickly spread from one cell to the others

in a domino effect—and thus have a stronger need for thermal monitoring. The challenge can be-

come more daunting as large-format high-capacity LiB cells are preferred increasingly for forming

packs, since heat will be generated in larger amounts and more complex manners when the cell in-

creases in size. In [145, 135, 123, 125, 170], the idea of lumped models is extended to characterize
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the thermal dynamics of LiB packs composed of small cylindrical cells. However, studies of the

spatial thermal behavior, which are crucial for effective thermal management for battery packs, are

scant due to the research and development difficulty. The status quo, hence, is not even close to

eliminating thermal threats that stand in the way of wider and safer LiB use.

Research Overview

Among the first of its kind, this work proposes approaches to reconstruct the three-dimensional

temperature field of a LiB pack in real time. The fundamental notion is to acquire a spatially re-

solved thermal model for a LiB pack and then apply the KF technique to estimate the spatially

distributed temperature. However, the task is nontrivial given the complexity of a LiB pack’s ther-

mal behavior. To fulfill the goal, a twofold effort is made, which lies in modeling and KF-based

estimation.

Thermal modeling for LiBs has attracted a wealth of research, with the existing methodologies

falling in three categories: 1) thermal models, which are concerned only with the heat phenomena

and based on the thermal energy conservation principle, often given in the form of PDEs in three-

dimensional space [37, 38, 76], 2) coupled thermal-electrochemical models, which associate the

equations for thermal behavior with those for electrochemical reactions [74, 195, 175, 173, 103],

and 3) lumped parameter models, which reduce the spatially distributed heat transfer into a heat

flow passing through several discrete points (e.g., two points representing the cell’s core and sur-

face and connected by a thermal resistance) [65, 124, 122, 176, 45, 205, 170]. Among them, cou-

pled thermal-electrochemical models can offer a sophisticated view of the LiB behavior with elec-

trochemical reactions characterized at multiple scales. This, however, comes at the expense of

computing burden formidable enough to defy any real-time estimation. For lumped models, the

simplicity is conducive to estimation design for thermal management, but the spatial information

loss weakens their capability for more effective spatial temperature monitoring. While the two

types of models represent two extremes in terms of model fidelity or computational efficiency, the

thermal models strike a valuable balance, thereby offering great promises for thermal management
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with spatial awareness. Currently, despite prolific results on cell-level thermal modeling, the search

for pack-level model is still at an early stage. This work, hence, will present the development of a

three-dimensional LiB pack thermal model.

When the thermal model is available, the temperature field reconstruction will depend on the

estimation technique, which is meant to estimate the temperature at any spatial point using the

model and the temperature measurement data. Here, the KF, which is arguably the most celebrated

estimation method, is one of the most promising candidate tools due to its ability to deal with

the stochastic dynamic systems affected by noise—the thermal dynamics of a LiB pack can be

subjected to the process noise in its evolution and the measurement noise when the temperature is

measured by sensors. A direct application of the standard centralized KF (CKF) here is possible but

will cause hefty computational costs that will not allow for an execution on real-time computing

platforms. This is because of the KF’s computational complexity being cubic with the size of the

state space [90], and a spatially resolved LiB pack model will have a substantial number of states,

especially when the pack comprises many cells. To address this problem, a distributed KF (DKF)

approach will be undertaken to achieve computational efficiency, which reduces a global KF into

multiple local KFs running in parallel but with information exchange. The overall computational

complexity of this approach will only increase linearly with the number of LiB cells in the pack,

in contrast with the cubic increase for the CKF. This improvement thus places the proposed work

in a more advantageous position for practical application.

Contributions

The primary contribution of this work lies in the three-dimensional temperature field reconstruc-

tion to enable accurate and computationally efficient LiB thermal monitoring, which is the first

study that we are aware of in this direction. LiB packs are prone to heat buildup, and monitoring

the spatially distributed temperature field over time will be valuable for ensuring the thermal safety.

To this end, spatially resolved thermal modeling for LiB packs is developed in this work, which

characterizes the dynamic thermal behavior with high integrity but still manageable computation
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time. Based on the model, a DKF approach is then leveraged to reconstruct the temperature field,

which features notably lower computational complexity than the centralized estimation. These ef-

forts thus can guarantee reconstruction at both high accuracy and affordable computational costs,

which is verified through extensive simulations. Providing a useful way for tracking the tempera-

ture in and on the surface of a LiB pack, this work can generate potential benefits for safety-critical

application of LiBs in many engineering systems.

Organization

The rest of the chapter is organized as follows. Section 5.2 introduces a three-dimensional ther-

mal model for a LiB pack, which is built on the principles of heat transfer and energy balance.

In Section 5.3, the PDE-based model obtained in Section 5.2 is reduced to an ODE-based state-

space system through discretization over time and space for convenience of estimation. Section 5.4

investigates the design of the estimation approaches based on the KF. Beginning with an introduc-

tion of the standard KF, the study will then focus on the distributed versions in order to cut down

the computation, which is accompanied by a detailed analysis of the reduction in computational

complexity. The simulation is offered in Section 5.5 to demonstrate the efficacy of the proposed

approaches. Finally, some concluding remarks are gathered in Section 5.6.

5.2 Battery Pack Thermal Model

This section is devoted to spatially resolved modeling for a LiB pack with cells in serial configu-

ration in order to characterize its spatial thermal behavior. This effort is based on the fundamental

principles of heat transfer and energy balance and extends the cell-level modeling in [37] to a pack.

Consider the LiB pack shown in Figure 5.1. This pack consists of multiple identical prismatic

cells configured in series (the cell is the same as in [37]). Each cell can be divided into two areas:

the core region and the cell case that seals the core region inside. The core region is the main

body of a prismatic cell. It consists of many smaller cell units connected in parallel to provide
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Figure 5.1: Schematic diagram of a LiB pack.

high capacity, with each unit composed of electrodes, separators and current collectors. While this

makes the prismatic cell similar to a module, we still refer it as a cell as it is the basic building

block of a battery pack. The cell case is a metal container and also includes a contact layer filled

with liquid electrolyte and in touch with the core region. No heat is produced within the case. In

this setting, modeling will be performed next for the thermal dynamics in the core region and the

case and on the boundaries, e.g., the core-case interface boundary, cell-cell interface boundary and

cell-air interface boundary.

To proceed further, a brief review of the heat transfer mechanisms is offered. It is known that

there are three ways for heat transfer from one place to another: conduction, convection and radi-

ation. Conduction happens with in a substance or between substances in direct contact, caused by

collision between atoms. Convection generally refers to the heat transfer with a fluid that moves

between areas with temperature difference. Radiation is the energy emission by objects at nonzero

temperature in the form of electromagnetic waves. An interested reader is referred to [25] for more

details.

Consider the thermal dynamics in the core region first. Here, convection and radiation can be

ignored since electromagnetic waves can hardly transmit through the cell and the liquid electrolyte

is of limited mobility. Consequently, heat transfer within the core region is dominated by conduc-
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tion, which can be expressed by the three-dimensional heat diffusion equation

ρcocco
∂T
∂ t

= λco∇
2T +q, (5.1)

where ρco, cco and λco are the mass density, specific heat and thermal conductivity of the core

region, respectively. In addition, T and q, respectively, denote the core region’s temperature in

kelvins and heat generation density. A general characterization of q, as discussed in [11, 38, 17],

is offered by

q =
I

Vco

[
(Uocv−Ut)−T

dUocv

dT

]
, (5.2)

where Vco, I, Uocv, Ut and dUocv/dT denote the total volume of the core region, the current through

pack (I > 0 for discharge and I < 0 for charge), the open-circuit voltage, the terminal voltage and

the entropic heat coefficient, respectively. Here, the heat is assumed to be generated uniformly

across the core region. The first term on the right-hand side of (5.2) is the irreversible heating and

the second term is the reversible entropic heating from electrochemical reactions.

Similarly, conduction makes up the dominant part of the heat transfer in the case region, that

is,

ρcacca
∂T
∂ t

= λca∇
2T, (5.3)

where ρca, cca and λca are the mass density, specific heat and thermal conductivity of the case,

respectively.

Next, consider the boundaries. To begin with, heat transfer on the core-case interface is mainly

due to conduction. Assuming that core region and cell case are in perfect contact, the temperature

and heat flux can be considered continuous on the interface [171]. Here, the boundary conditions

on the core-case interface are given by

T |core = T |case, λco
∂T
∂n

∣∣∣∣
core

= λca
∂T
∂n

∣∣∣∣
case

, (5.4)
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where n is the normal direction of the core-case interface. The continuity of temperature and heat

flux at a boundary also holds for the cell-cell interface with assumption that LiB cells are in close

contact. Take cells 1 and 2 in Figure 5.1 as an example. On their cell-cell interface,

T |cell1 = T |cell2, λca
∂T
∂n

∣∣∣∣
cell1

= λca
∂T
∂n

∣∣∣∣
cell2

, (5.5)

where n is the normal direction of the interface of cells 1 and 2. Different from the regions and

interfaces above, the cell-air interface will see heat transfer due to all of conduction, convection

and radiation. Therefore, the energy balance on this boundary is

λca
∂T
∂n

∣∣∣∣
cell

= qconv +qr, (5.6)

where qconv and qr represent the convective heat flux and the radiative heat flux on the cell-air

interface, respectively. Here, qconv and qr are given by

qconv = hconv (T −Tair) ,

qr = εσ(T 4−T 4
air),

(5.7)

(5.8)

where n, hconv, ε , σ and Tair are the normal direction of the cell-air interface, the convective heat

transfer coefficient, the emissivity, the Stefan-Boltzmann constant and the ambient air temperature,

respectively. Note that if |T −Tair|/Tair� 1 as is often the case of LiB operation (both T and Tair

in kelvins), (5.8) can be linearized around Tair as

qr = 4εσT 3
air(T −Tair) = hr(T −Tair), (5.9)

where hr is the radiative heat transfer coefficient. Combining (5.7) and (5.9), the energy balance

(5.6) can be rewritten as

λca
∂T
∂n

∣∣∣∣
cell

= h(T −Tair), (5.10)
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where h is the combined convective-radiative heat transfer coefficient.

Summarizing (5.1) through (5.10), one will obtain a complete thermal model for the considered

LiB pack. This model builds on an awareness of the spatial temperature distribution. According

to (5.1) and (5.2), heat will be produced within the core region when a current flows through the

pack and transferred across the region by conduction. Conduction will also enable the propagation

of heat within the case region, which is shown in (5.3). The boundary conditions at the core-case

and cell-cell interfaces can be determined as in (5.4) and (5.5) on the reasonable assumption of

continuous temperature and heat flux. Meanwhile, heat will travel from the cell surface to the air

driven by a mix of conduction, convection and radiation, as shown in (5.6). The radiation effect at

the cell-air interface is further linearized to simplify the model, as allowed by some mild conditions

that can be easily met in a LiB pack’s operation. This would lead to (5.10). Finally, the initial

condition is also specified. In spite of the PDE-based representation, the obtained model still has

constrained overall complexity advantageous for computation. In the next section, it will be further

converted to ODE-based state-space form for the purpose of estimation design.

Remark 5.1. (Extensions of the thermal model). The thermal model above is developed in a ba-

sic battery pack setting and able to capture the most critical heat transfer phenomena underlying

a pack’s thermal behavior. Meanwhile, it can be readily extended to deal with more sophisticated

settings. 1) Extension to a battery pack with a cooling system. The cooling effects can be accounted

for in two ways. First, as suggested in [108], one can regard the cooling system as the boundaries

of the battery pack’s thermal model and thus modify the boundary conditions accordingly. Second,

one can develop a separate heat transfer model for the cooling system and determine its interac-

tion with the pack’s model. The two models can be combined to offer a complete description of

the battery pack under cooling conditions. This idea is exploited in [135, 123, 125]. 2) Extension

to non-uniform heat generation. As is shown in (5.2), the heat generation is assumed to be even

across a cell. The model built on this assumption can be modified to cope with spatially nonuniform

heating if the gradient distribution of the potential and current density is captured. The literature

includes some studies in this regard, see [17] and the references therein. In addition, the heat pro-
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duced by electrical connections can also be included into the thermal model, which supposedly

results from the passage of an electrical current through a resistance [107]. 3) Extension to het-

erogeneous cells. While the above considers identical cells, cells of the same type but of different

state or aging level can be dealt with by changing the model parameters. Further, if cells of differ-

ent electrochemistries are used in an extreme case, one can first build separate models for each cell

type and then couple them using the same heat transfer principles to obtain a pack-level model. It

is noteworthy that, though based on the basic model, the methodology to be proposed next is still

applicable to these extended models for thermal field reconstruction.

5.3 Model Discretization

In this section, the PDE-based model in Section 5.2 is discretized in space and time to derive the

state-space model using the finite difference formulation based on energy balance.

5.3.1 Discretization

The finite difference formulation is applied to fulfill the discretization. Consider the LiB pack

comprising Nc cells shown in Figure 5.1. It can be subdivided into a large number of volume

elements, giving rise to a three-dimensional grid with many nodes, see Figure 5.2. Specifically, a

LiB cell, with dimensions of Lx×Ly×Lz, is subdivided by a grid with (m× n× p) nodes. Here,

two adjacent cells share the mp nodes on the contact interface between them. Then, each node can

be labeled by its xyz-coordinates, i.e., (i, j,k), which ranges from (1,1,1) to (m,nNc−Nc +1, p).

A node is linked with a control volume. Within this volume, the temperature is considered uniform

and assigned as the temperature of the node. The control volume of a node in the core region

is uniform with a size of (a× b× c), where a, b and c are the volume’s edge length in x, y and

z directions, respectively; yet the control volume of a node in the case region varies subject to

its specific location. Since the case thickness is quite slim relative to the cell’s dimensions, the

temperature change in the thickness direction then will be minor. Thus for the node in the case, we
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Figure 5.2: Schematic diagram of the nodes in a LiB pack comprising three cells, namely, Nc = 3.
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Figure 5.3: The y-z cross-section of the control volume of a node on the cell-cell interface.

let its edge parallel to the case’s thickness direction be larger than the case’s thickness length d,

e.g., the control volume of (2,1,2) has a size of (a× (b/2+d)× c). As such, Lx = (m−1)a+2d,

Ly = (n−1)b+2d, and Lz = (p−1)c+2d.

In this work, the finite-difference equation at each node is developed by the energy balance

approach [25]. That is, the energy conservation law is applied to each volume. Here the direction

of heat transfer on each volume’s surfaces is assumed to be toward the node, see Figure 5.3. For a

node in the core region, e.g., (2,2,2) of the grid in Figure 5.2, it receives the conductive heat flow
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from its surrounding six nodes. The finite-difference equation can then be expressed as

ρcpabc
T t+∆ t

i, j,k −T t
i, j,k

∆ t
= λco,x

T t
i+1, j,k−T t

i, j,k

a
bc+λco,x

T t
i−1, j,k−T t

i, j,k

a
bc

+λco,y
T t

i, j+1,k−T t
i, j,k

b
ac+λco,y

T t
i, j−1,k−T t

i, j,k

b
ac+λco,z

T t
i, j,k+1−T t

i, j,k

c
ab

+λco,z
T t

i, j,k−1−T t
i, j,k

c
ab+

abc(Uocv−Ut− dUocv
dT T t

i, j,k)

Vco
I, (5.11)

where ρ , cp and ∆ t are the mass density, specific heat capacity of the cell and time step, respec-

tively. Here, the thermophysical parameters, (e.g., ρ , cp and λco), are time invariant, and dUocv/dT

is also assumed to be independent of time within the operating range of the LiB pack [37]. There-

fore, (5.11) can be regarded as a linear equation. The product of ρ and cp is averaged based on the

volume of the core region Vco and the case Vca for simplification, namely,

ρcp =
ρcoccoVco +ρcaccaVca

Vco +Vca
. (5.12)

The strategy in the calculation of ρcocco, ρcacca and the three-dimensional thermal conductivity λco

is the same with that used in [37] and thus omitted here.

Next, consider a node on the cell-cell boundary interface as shown in Figure 5.3. Its control

volume in the y direction is 2d + b. With properly selected edge length in x and z directions, the

control volume of this node can be regarded as isothermal. Since the core region and the case

region are made up of different materials, the thermal conduction length between the node and its

adjacent node in the y direction is b instead of b+ d. The finite-difference equation [34] for this
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boundary is thus given by

ρcpac(b+2d)
T t+∆ t
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c
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i, j,k)

Vco
I. (5.13)

Then, consider a node on the cell-air boundary interface of the pack. Take the node (2,1,2) in

Figure 5.2 as an example. It receives both conductive heat transfer from its surrounding nodes and

combined convective-radiative heat transfer from the ambient air. Similar to the nodes on the cell-

cell interface, the edge length of the control volume of node (2,1,2) should be larger than d in the

y direction, and the effective thermal conduction length between the node and its adjacent node in

the y direction would also be equal to b. Hence, the finite-difference equation will be

ρcpac
(

b
2
+d
) T t+∆ t

i, j,k −T t
i, j,k

∆ t
= λco,x

T t
i+1, j,k−T t

i, j,k

a
b
2
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T t
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cd
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T t
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i, j,k

b
ac
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T t
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i, j,k

c
a

b
2
+λca,z

T t
i, j,k+1−T t

i, j,k

c
ad +λco,z

T t
i, j,k−1−T t

i, j,k

c
a

b
2

+λca,z
T t

i, j,k−1−T t
i, j,k

c
ad +ach(Tair−T t

i, j,k)+
abc(Uocv−Ut− dUocv

dT T k
i, j,k)

2Vco
I. (5.14)

Thus far, the PDE-based thermal model has been systematically discretized in space and time. The

obtained equations present a linear ODE system that is high-dimensional but more amenable to

estimation design and implementation.
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5.3.2 Discrete-Time State-Space Model

Reorganizing the ODEs (5.11) through (5.14), one can derive a high-dimensional state-space rep-

resentation of the following general form:

xxxk+1 = FFFkxxxk +GGGkuuuk, (5.15)

where xxx is the state vector summarizing the temperature at all the nodes, uuu the input vector based

on the ambient temperature Tair and I the current. Specifically,

xxx =


xxx(1)

...

xxx(Nc)

 ∈ RN×1,

where

xxx(l) =
[

T (l)
1,1,1 · · · T (l)

m,n,p

]>
∈ RNl×1,

Here, for ease of the decomposition strategy design toward distributed estimation, the global state

vector xxx is established as an aggregation of local state vector xxx(l) of each cell. To accommodate this

representation, the pack-based numbering method introduced in Section 5.3.1 is modified accord-

ingly to be cell-based—for each cell, the nodes are numbered from (1,1,1) to (m,n, p). Although

the length of the vector xxx is increased from N−mp(Nc− 1) to N as a result of the nodes in the

cell-cell interface accounted for separately, this will allow each cell to be treated as a subsystem

and pave the way for distributed estimation algorithm design, as will be shown later. Besides, for

notational convenience, the discrete time index will be denoted by k in the remainder of the chapter

in replacement of t. The input uuu is given by

uuu =

[
Tair I

]>
∈ R2×1,
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which sums up the ambient temperature and current in the role of driving the system. Furthermore,

the matrices FFF and GGG can be expressed in the block form:

FFF =



FFF11 FFF12 0

FFF21 FFF22
. . .

. . . . . . . . .

0 . . . FFFNc,Nc


∈ RN×N , GGG =


GGG1

...

GGGNc

 ∈ RN×2,

where the block entries can be readily determined from (5.11)-(5.14). It is interesting to note that

the matrix FFF is not only tridiagonal but also diagonally dominant and sparse. This is mainly because

each cell will only exchange heat with its adjacent cells and adjacent cells only share a limited

number of nodes.

Let cell l in the pack be equipped with Ml thermocouples to measure the temperature. The

measurement equation can then be expressed as

yyy(l)k = HHH lxxx
(l)
k , (5.16)

where yyy(l) ∈ RMl and HHH l ∈ RMl×Nl are the temperature measurement and measurement matrix,

respectively. For HHH, the entries corresponding to the nodes directly measured will be set equal

to 1, and all the other entries zero. Aggregating all the measurements together, the measurement

equation for the entire pack is then given by

yyyk = HHHxxxk, (5.17)

where

yyy =


yyy(1)

...

yyy(Nc)

 ∈ RM×1, HHH =


HHH1

. . .

HHHNc

 ∈ RM×N ,
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where M = NcMl .

From above, (5.15) and (5.17) form the state-space model, which characterizes the propagation

and measurement of a LiB pack’s thermal dynamics based on a group of ODEs. With this model,

one will be in a good position to conduct state estimation toward reconstructing the temperature

field.

5.4 Kalman Filter Estimation

The state-space thermal model developed in Section 5.3 describes the dynamic thermal behavior

of a LiB pack in charging/discharging. With this model, optimal estimation can be employed to

enable reconstruction of the temperature field from the temperature measurement data. In this

work, the KF will be exploited as the solution tool, which has achieved proven success in a wide

range of engineering fields. However, the standard centralized KF will not fit with this application,

because of a fine characterization of the LiB pack’s thermal dynamics will imply a large size of the

state space and cause heavy computation. This thus motivates the use of a distributed approach to

build computational efficiency. In the following, the centralized KF will be introduced first, and a

distributed version presented and analyzed in detail.

5.4.1 Centralized Kalman Filtering

Consider the state-space equations (5.15) and (5.17) and for convenience, replicate them with noise

terms added as follows: 
xxxk+1 = FFFkxxxk +GGGkuuuk +wwwk,

yyyk = HHHxxxk + vvvk.

(5.18)

Here, the vectors with compatible dimensions, wwwk and vvvk, are are added to account for the process

noise and measurement noise that exist in the thermal dynamic processes of a LiB pack. They are

assumed to be zero-mean Gaussian white noises with covariances of QQQ ≥ 0 and RRR > 0, respec-

tively. Suppose the initial state xxx0 is a Gaussian random vector with mean x̂xx0|0 and covariance PPP0|0.
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Note that x̂xx0|0 indeed makes up the initial guess of xxx0, and that PPP0|0 represents the estimation error

covariance. Then application of the standard CKF to (5.18) can be performed at each future time

instant. This procedure consists of two steps, prediction and update. The one-step-forward predic-

tion yields the estimate of xxxk, denoted as x̂xxk|k−1, using the measurements collected up to time k−1.

Then upon the arrival of yyyk, x̂xxk|k−1 will be updated to x̂xxk|k leveraging the information conveyed by

yyyk about xxxk. In the meantime, the estimation error covariances associated with both estimates are

computed accordingly to quantify the uncertainties of the obtained estimates.

When the state estimate x̂xxk−1|k−1 is generated, the one-step-forward prediction can be made

through

x̂xxk|k−1 = FFFk−1x̂xxk−1|k−1 +GGGk−1uuuk−1,

PPPk|k−1 = FFFk−1PPPk−1|k−1FFF>k−1 +QQQ.

(5.19)

(5.20)

After x̂k|k−1 is produced, it will be of next interest to investigate the updated state estimate. When

the new measurement yyyk becomes available, the update step can be performed as follows to correct

the prediction:

x̂xxk|k = x̂xxk|k−1 +KKKk(yyyk−HHHx̂xxk|k−1),

KKKk = PPPk|k−1HHH>(HHHPPPk|k−1HHH>+RRR)−1,

PPPk|k = PPPk|k−1−KKKkHHHPPPk|k−1.

(5.21)

(5.22)

(5.23)

The CKF will execute the above steps recursively over time to generate the state estimate at each

time instant. The CKF is the optimal among all filters if the aforementioned Gaussian assumptions

are satisfied and optimal among all linear filters in the non-Gaussian case. Such an optimality

establishes the foundation for the practical utility of the CKF approach. The CKF, however, is

not well suited to estimate the temperature for a LiB pack, because the high-dimensional thermal

model of the LiB pack will imply considerable computation (detailed computational complexity

analysis will be given in Section 5.4.4). Hence, the CKF will be distributed next to bring down the

computational cost.
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cell 1 cell 2 cell 3

Prediction

Update

Figure 5.4: A schematic of the DKF for a three-cell pack.

5.4.2 Distributed Kalman Filtering

Rather than estimate the global state in a centralized manner, the DKF will consider the pack sys-

tem as a combination of multiple cell-based subsystems and run a series of local KFs in parallel,

each one corresponding to a cell. Because of the mutual influence between the cells and their ther-

mal behavior, the local KFs will exchange information according to the existing communication

topology to accomplish the estimation. The local estimates, when collected and put together, will

comprise a complete picture of the entire pack’s temperature field.

Consider a LiB pack composed of Nc cells wired in series, which are numbered in order from

1 to Nc. A three-cell pack is shown in Figure 5.4 as an example. For cell l and i, they are said to be

neighbors if they are adjacent. The neighborhood of l,Nl , is defined as the set of its neighbor cells,

and in this setting,Nl = {l−1, l+1}. Here, it is assumed that cell l stores the structural information

of its neighbors, specifically, FFF li for i ∈ Nl . To minimize the communication cost, information

exchange protocol is only enforced between neighbors. That is, cell l only communicates withNl .

As such, the state-space equation for subsystem Sl can be written as


xxx(l)k+1 = FFF ll,kxxx(l)k + ∑

i∈Nl

FFF li,kxxx(i)k +GGGl,kuuuk +www(l)
k ,

yyy(l)k = HHH lxxx
(l)
k + vvv(l)k ,

(5.24)

where cell-wise decomposition is also applied to wwwk and vvvk. It is noted that the evolution of cell l’s

state is not only self-driven but also affected by the neighboring cells, as a result of the cell-to-cell
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coupling of the thermal dynamics. All cells yet share the same uuuk because the serial connection

implies the same charging/discharging current across the circuit. In addition, each cell is only aware

of its own temperature measurements.

For the above cell l-based subsystem, the KF approach can be adjusted for local state estima-

tion. This can be attained by applying the prediction-update procedure in analogy to (5.19)-(5.23).

Specifically, the prediction can be given by

x̂xx(l)k|k−1 = FFF ll,k−1x̂xx(l)k−1|k−1 + ∑
i∈Nl

FFF li,k−1x̂xx(i)k−1|k−1 +GGGl,k−1uuuk−1,

PPP(l)
k|k−1 = FFF ll,k−1PPP(l)

k−1|k−1FFF>ll,k−1 +QQQl.

(5.25)

(5.26)

Here, cell l’s state prediction, x̂xx(l)k|k−1, depends on not only its own but also its neighbors’ state

estimates from the previous time instant. All cells are still driven by the same input uuuk because

cells in serial connection are subjected to the same current. On its arrival, yyy(l)k can be used to

update x̂xx(l)k|k−1 as follows:

x̂xx(l)k|k = x̂xx(l)k|k−1 +KKK(l)
k (yyy(l)k −HHH l x̂xx

(l)
k|k−1),

KKK(l)
k = PPP(l)

k|k−1HHH>l (HHH lPPP
(l)
k|k−1HHH>l +RRRl)

−1,

PPP(l)
k|k = PPP(l)

k|k−1−KKK(l)
k HHH lPPP

(l)
k|k−1.

(5.27)

(5.28)

(5.29)

Note that no information exchange with neighbors is required in the update step. The two steps

shown in (5.25) through (5.29) then constitute the DKF algorithm. Running the DKF in parallel

for each cell, the local temperature field will be estimated through time, and all the local estimation

results when combined will provide the full view of the pack’s temperature field.

It is noteworthy that the above DKF algorithm, compared with the CKF, involves approxima-

tion for two reasons. First, each cell only has a local rather than global knowledge of the system’s

dynamic behavior, making certain information loss inherent in each local DKF. To see this, the

nominal prediction error covariance PPP(l)
k|k−1, differing from the CKF, evolves only from its prede-
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cessor without fusion of the counterparts of the other cells, as shown in (5.26). This shows PPP(l)
k|k−1

is only approximate to the true prediction error covariance. Second, part of the approximation is

made to reduce the communication and computation costs. Looking at (5.26) again, one can see

that a local cell does not consider its neighbors in its forward propagation of its prediction error

covariance. This will obviate the need for the exchange of the estimation error covariance between

neighboring cells and further, the local computational effort. However, such an approximation will

not seriously compromise the estimation accuracy. Since FFF is diagonally dominant and HHH block-

diagonal due to the pack’s serial connection architecture, PPP will also be diagonally dominant. The

self-propagation of the local estimation error covariance, as a result, will not bring much loss of

estimation accuracy. The above DKF algorithm, to our knowledge, is the most computationally

fast among its kind and highly suitable for the considered LiB pack thermal monitoring problem.

5.4.3 Steady-State Distributed Kalman Filtering

An opportunity can be identified that, if some mild reduction is introduced for the considered

thermal model, we can obtain another DKF approach with much higher computational efficiency.

To be specific, consider the heat generation equation (5.2). Many studies in the literature suggest

that its second term often has a negligible magnitude in comparison with the first term and thus

can be ignored [122, 108]. With this simplification, (5.2) can be reduced as q = I (Uocv−Ut)/Vco.

It is then found that FFF becomes time-invariant in this case, which will allow us to develop a more

computationally efficient DKF for temperature field reconstruction. The development is as follows.

Before proceeding further, we make an assumption at first.

Assumption 5.1. The pair (FFF ll,HHH l) is detectable and the pair
(

FFF ll,QQQ
1
2
l

)
stabilizable for l ∈

{1, · · · ,Nc}.

If Assumption 5.1 holds, the DKF algorithm in (5.25) through (5.29) will achieve steady state.

Specifically, PPP(l)
k|k−1 will converge to a unique stabilizing solution, P̄PP(l), of the discrete algebraic
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Riccati equation

XXX =FFF llXXXFFF>ll −FFF llXXXHHH>l
(

HHH lXXXHHH>l +RRRl

)−1
HHH lXXXFFF>ll +QQQl,

where XXX is an unknown symmetric positive-definite matrix with compatible dimensions. The gain

matrix KKK(l)
k in (5.28) will consequently reach a fixed point

K̄KK(l)
= P̄PP(l)HHH>l

(
HHH lP̄PP

(l)HHH>l +RRRl

)−1
, (5.30)

which can ensure FFF ll(IIIl− K̄KK(l)HHH l) to be stable [13]. With fixed P̄PP(l) and K̄KK(l), the state prediction

and update can be accomplished more efficiently:

x̂xx(l)k|k−1 = FFF ll x̂xx
(l)
k−1|k−1 + ∑

i∈Nl

FFF lix̂xx
(i)
k−1|k−1 +GGGluuuk−1,

x̂xx(l)k|k = x̂xx(l)k|k−1 + K̄KK(l)
(

yyy(l)k −HHH l x̂xx
(l)
k|k−1

)
,

(5.31)

(5.32)

which together form the SS-DKF algorithm. It is seen that the SS-DKF does not maintain the

estimation error covariance and that its gain matrix can be computed offline prior to the estimation

run. Although this comes at certain sacrifice of estimation accuracy, it still maintains stability under

some assumptions and presents much appeal from a computational perspective. Before moving on

to the computational complexity analysis in Section 5.4.4, the stability of the SS-DKF algorithm

is examined in the remainder of this section.

We define the real state error eeek = x̂xxk|k−xxxk. For the real state error eee(l)k at subsystem l, combin-

ing (5.31) and (5.32), we have

eee(l)k =(III− K̄KK(l)HHH l)FFF lleee
(l)
k−1 + ∑

i∈Nl

(III− K̄KK(l)HHH l)FFF lieee
(i)
k−1

− (III− K̄KK(l)HHH l)www
(l)
k−1 + K̄KK(l)vvv(l)k ,

(5.33)

(5.34)
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where III ∈ RNl×Nl . Aggregating eee(l)k for l ∈ {1, · · · ,Nc} together yields

eeek = (III− K̄KKHHH)FFFeeek−1− (III− K̄KKHHH)wwwk−1 + K̄KKvvvk, (5.35)

where K̄KK = blkdiag
{

K̄KK(1)
, · · · , K̄KK(Nc)

}
and identity matrix III ∈ RN×N .

The stability of the SS-DKF algorithm is summarized as follows.

Theorem 5.1. Let AAA= (III− K̄KKHHH)FFF and BBB= (III− K̄KKHHH)QQQ(III− K̄KKHHH)>+ K̄KKRRRK̄KK>. If AAA is stable, the true

error covariance ΣΣΣ k = E
[
eeekeee>k

]
will converge to the unique solution of the discrete-time Lyapunov

equation

ΣΣΣ = AAAΣΣΣAAA>+BBB. (5.36)

Proof. It is seen that the propagation of ΣΣΣ k is governed by

ΣΣΣ k = AAAΣΣΣ k−1AAA>+BBB. (5.37)

Since AAA is stable, limk→∞ ΣΣΣ k = ΣΣΣ (see Chapter 3.3 in [194]).

From above, Assumption 5.1 lays the foundation for the derivation of the SS-DKF, and The-

orem 5.1 indicates that a stable (III− K̄KKHHH)FFF can guarantee the stability of the SS-DKF algorithm.

However, a question then arises: will Assumption 5.1 and the stability of (III− K̄KKHHH)FFF hold for the

LiB pack model in (5.18)?

An examination is given as follows. First, consider Assumption 5.1. Note that the thermal

physics imply that the model established in Section 5.2 is stable if the LiB pack operates normally

and the numerical stability criteria is satisfied in discretization. Hence, the model matrix FFF will be

stable. Next, we partition the model matrix FFF into the following form

FFF = FFFd +FFFod, (5.38)

where the subscripts d and od, respectively, denote diagonal blocks and off-diagonal blocks and
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FFFd = blkdiag{FFF11, · · · ,FFFNc,Nc}. According to Corollary 5.6.14 in [89], one will have

ρ(FFFod) = limk→∞‖FFFk
od‖1/k. (5.39)

It is interesting to note that FFF2
od = 0 in this application due to the serial structure of the LiB pack,

which will be further shown in Section 5.5 . Therefore, ρ(FFFod) = 0 in this case. Invoking Lemma

5.6.10 in [89], there exists a matrix norm ‖·‖∗ for any given ε > 0 such that

ρ(FFFd)≤ ‖FFFd‖∗ ≤ ρ(FFFd)+ ε. (5.40)

Since it satisfies the triangle inequality, then

‖FFFd‖∗ ≤ ‖FFF‖∗+‖FFFod‖∗

≤ (ρ(FFF)+ ε1)+(ρ(FFFod)+ ε2), (5.41)

where ε1 > 0 and ε2 > 0. Since ρ(FFFod) = 0, (5.41) can be rewritten as

‖FFFd‖∗ ≤ ρ(FFF)+ ε1 + ε2. (5.42)

Thus, one can always find ε1 and ε2 to prove that FFFd is stable, thus validating Assumption 5.1.

Now, consider the stability of (III− K̄KKHHH)FFF . For notational simplicity, we denote III− K̄KKHHH with ĨII.

Then the objective is to show that ĨIIFFF is stable. Recalling the matrix norm ‖·‖∗ in (5.40), it is also

submultiplicative and implies

‖ĨIIFFF‖∗ ≤ ‖ĨIIFFFd‖∗+‖ĨIIFFFod‖∗ ≤ ‖ĨIIFFFd‖∗+‖ĨII‖∗‖FFFod‖∗

≤ (ρ(ĨIIFFFd)+ ε3)+(ρ(ĨII)+ ε4)(ρ(FFFod)+ ε5)

≤ ρ(ĨIIFFFd)+ ε3 +ρ(ĨII)ε5 + ε4ε5, (5.43)

124



where ε3 > 0, ε4 > 0, and ε5 > 0. Then, because FFF ll(IIIl − K̄KK(l)HHH l) is stable, the matrix FFFd ĨII is

stable. Following that limk→∞(FFFdĨII)k = 0, (ĨIIFFFd)
k can be constructed as ĨII(FFFdĨII)k−1FFFd, such that

limi→∞(ĨIIFFFd)
k = 0. Therefore, it is always possible to find ε3, ε4 and ε5 to make the right-hand side

of (5.43) smaller than 1. Subsequently, ρ(ĨIIFFF)< 1 and (III− K̄KKHHH)FFF is stable.

Remark 5.2. (Extension to thermal runaway detection). In above, the DKF and SS-DKF are de-

veloped to reconstruct the temperature field of a battery pack. They can be used as a tool to monitor

the spatially distributed thermal behavior critical for a battery pack’s safety. An extension of them

to detect thermal runaway can be hopefully made. An idea is to consider the thermal runaway

as an unknown disturbance that abruptly appears and applies to the model in (5.18). Then, the

thermal runaway detection can be formulated as the problem of disturbance detection. KF-based

approaches have been studied extensively for disturbance detection in the literature, e.g., [78],

and can be potentially exploited here. Combining this idea and the design in this work, we can

promisingly build distributed KF-based approaches for thermal runaway detection. This will be an

important part of our future work.

5.4.4 Computational Complexity Analysis

As aforementioned, the objective of distributing the CKF across the cells is to improve the compu-

tational efficiency toward enabling real-time reconstruction of a LiB pack’s temperature field. In

this subsection, the CKF, DKF and SS-DKF algorithms are analyzed and compared in terms of the

computational complexity. The analysis is based on the number of arithmetic operations needed

by each algorithm. Before proceeding further, let us consider the basic matrix operations. For two

n× n matrices, their addition involves n2 elementary additions, and their multiplication involves

n3 elementary multiplications and (n−1)n2 elementary additions. The inverse of an n×n matrix

requires n3 elementary multiplications and n3 elementary additions. These are the basic algebraic

arithmetics involved in the considered algorithms. The complexity of each algorithm can be as-

sessed by summing up all the arithmetic operations required at each time instant, with the results

shown in Table 5.1.
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Table 5.1: Arithmetic operation requirements of the CKF, DKF and SS-DKF algorithms.

Algorithm Number of multiplications Number of additions Complexity

CKF 3N3 +2N2M+2NM2 +M3 +N2 +2NM+2N 3N3 +2N2M+2NM2 +M3−N2 +N O(N3)

DKF Nc
(
3N3

l +2N2
l Ml +2NlM2

l +M3
l +3N2

l +2NlMl +2Nl
)

Nc
(
3N3

l +2N2
l Ml +2NlM2

l +M3
l +N2

l +Nl
)

O(NcN3
l )

SS-DKF Nc
(
2N2

l +2NlMl +2Nl
)

Nc
(
3N2

l +2NlMl +Nl
)

O(NcN2
l )

It is demonstrated in Table 5.1 that the CKF has the heaviest computation at O
(
N3), which

increases cubically with the size of the state space of the entire pack. This also implies that, when a

pack has more cells, the computation would rise cubically with the cell number. The computational

complexity at such a level can be unaffordable by a real-world onboard computing platforms. By

comparison, the DKF is much more efficient than the CKF. Given that N = NcNl with Nc � Nl ,

the DKF’s arithmetic operations at O(NcN3
l ) are only about one N2

c -th of the CKF’s. In addition,

with the computation increasing only linearly with the cell number, the DKF well lends itself to

parallel processing, where the estimation for each cell is performed on a separate micro-processor

at a complexity O(N3
l ). In this scenario, an increase in the cell number will not add cost to the

existing micro-processors. The SS-DKF unsurprisingly is the most computationally competitive.

Its complexity at O
(
NcN2

l

)
is even one order less than that of the DKF. Just like the DKF, it is also

well suited for execution based on parallel processing.

5.5 Numerical Simulation

To reconstruct a LiB pack’s temperature field, the previous sections presented a spatially resolved

thermal model and distributed the KF for computationally fast estimation. In this section, numerical

simulation with a practical LiB pack is offered to illustrate the effectiveness of the proposed work.

The simulation is performed using MATLAB R2016a.
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Table 5.2: LiB cell parameters used in the simulation [37].

Layer/ Thickness Density Heat capacity Conductivity

Material [cm] [kg/m3] [J/(kg·K)] [W/(m·K)]

Anode? 0.0116 1347.33 1437.4 1.04

Cathode? 0.014 2328.5 1269.21 1.58

Separator? 0.0035 1008.98 1978.16 0.3344

Cu foil? 0.0014 8933 385 398

Al foil? 0.002 2702 903 238

Metal case∗ 0.07 2770 875 170

Contact layer∗ 0.05 1129.95 2055.1 0.60

Note: ? denotes a component of cell unit and ∗ a component of cell case.

5.5.1 Simulation Setting

Consider a LiB pack that consists of three large-format high-capacity prismatic LiB cells con-

nected and stacked in series. Here, the cells are the same ones as in [37]. Each cell has a capacity

of 185.3 Ah and is 19.32 cm long, 10.24 cm wide, and 10.24 cm high. As mentioned in Section 5.2,

the cell has two portions: the core region and the metallic case. The core region is 19.08 cm long,

10 cm wide, and 10 cm high, housing three hundred smaller cell units connected in parallel. The

structure of a cell unit is schematically shown in Figure 5.5. The key parameters of the LiB cell are

summarized in Table 5.2. In the simulation, it is assumed that the LiB pack operates in an environ-

ment with temperature maintained at 300 K. The convective heat transfer coefficient, emissivity

on pack surface, and entropic heat transfer coefficient dUocv/dT are set to be 30 W/(m2·K), 0.25,

and 0.00022 VK−1 [37], respectively. The battery pack is discharged using a time-varying current

profile, which is shown in Figure 5.6 and derived from the Urban Dynamometer Driving Schedule

(UDDS) [3]. Sensors are mounted on the battery pack as shown in Figure 5.2. That is, five sen-

sors are placed on each cell-air interface of a cell. Such a placement is straightforward and easy

to implement. Associated with this, an intriguing question is how to optimally deploy the sensors
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Figure 5.5: Schematic diagram of a basic unit in a LiB cell.
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Figure 5.6: Discharging current profile based on UDDS.

toward achieving satisfactory estimation performance with a minimum number of sensors. While

some results are reported in the literature, e.g., [125, 57, 216], further research is still required to

fully address this question.

The thermal dynamics of the considered pack can be characterized by the PDE-based model in

Section 5.2. Each cell is gridded in space with m = 9, n = 5 and p = 5 and in time with ∆ t = 1 s.

In general, one can increase m, n and p and reduce ∆ t to increase the accuracy of simulation. This,

however, will come at the sacrifice of computational efficiency. Another risk lies in numerical

instability, which can be caused if the selected m, n, p and ∆ t fail to satisfy certain conditions [25].

To find a satisfactory set, one can consider a few candidates. S/he can first check the numerical

stability for each set using the conditions in [25]. Then, run the simulation for the sets that pass

the check, and choose the set that leads to acceptable accuracy with minimum computational cost.

This process understandably may require repeated trial effort.

By discretization, the PDEs are converted to a state-space model as shown in Section 5.3. On

each cell-air interface of the cell, five sensors are deployed as shown in Figure 5.2. It follows that
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the model matrices FFF and HHH for this pack take the following form:

FFF =


FFF11 FFF12

FFF21 FFF22 FFF23

FFF32 FFF33

 ∈ R675×675, HHH =


HHH1

HHH2

HHH3

 ∈ R70×675.

In the simulation, the pack’s initial temperature is 300 K, the same with the ambient temperature.

Yet, for the purpose of illustrating the estimation, the initial guess is 295 K in the simulation. The

noise covariance matrices QQQ and RRR are chosen as

QQQ = 0.052 · III675×675, RRR = 0.32 · III70×70,

where III is the identity matrix.

5.5.2 Simulation Results

Consider the stochastic discrete-time state-space model (5.18). The real temperature field is ob-

tained by running the state equation of (5.18) using MATLAB R2016a with the effects of process

noise included. Sensor-based measurements are obtained according to the measurement equation

of (5.18), which are subjected to sensor noise. Using the measurements and based onthe model,

the CKF and DKF are applied to reconstruct the temperature field. The simulation results are

summarized in Figure 5.7. The first row shows the true temperature field that evolves over time.

Here, trilinear spatial interpolation is used to generate spatially continuous temperature fields. As

is shown, the pack sees an obvious temperature rise, despite the convection cooling and only three

cells. In addition, it can be easily found that the temperature differs spatially across the pack, with

a high gradient buildup at the end of the simulation. The second row shows the reconstructed tem-

perature fields using the CKF, and the third row shows the ones based on the DKF. It is seen that,

although the initial guess differs from the truth, both the CKF and DKF can generate temperature

field estimation that gradually catches up with the truth. For both, satisfactory reconstruction starts
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(a) t = 0 s (b) t = 240 s (c) t = 1200 s

Figure 5.7: First row: real temperature fields through time for the LiB pack discharged at
UDDS-based current loads. Second row: CKF-based reconstruction. Third row: DKF-based

reconstruction.

from around 240 s and is maintained afterwards. Improved estimation accuracy can be expected if

the initial temperature guess is made closer to the truth, which is not difficult on many practical

occasions, since a LiB pack at rest for a long period will have almost the same temperature with

the ambient environment.

In Figure 5.7, the CKF and DKF present approximately the same estimation results. To further

evaluate their accuracy, we consider the following metric:

1
N

trace
(

E
[
(x̂xxk|k− xxxk)(x̂xxk|k− xxxk)

>
])

,

which is the trace of the estimation error covariance averaged over the state space and represents

a statistical quantification of the state estimation error. Evaluation of the two algorithms based on

this metric is illustrated in Figure 5.8. One can see that they both exhibit a decreasing trend over
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Figure 5.8: Evaluation of the estimation error over time.
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time and remain quite close to each other. This implies that the DKF is quite comparable to the

CKF in estimation performance. In addition, as analyzed in Section 5.4.4, the DKF considerably

outperforms the CKF in terms of computational complexity, which thus makes it a more desirable

solution for the considered problem of temperature field reconstruction.

Next, let us further examine the application of the SS-DKF approach proposed in Section 5.4.3.

In this case, the heat generation model (5.2) is simplified by removing the negligible reversible

entropic heating, and consequently, FFF is time-invariant. Figure 5.9 offers a visual black-white

display of FFF , which shows non-zero elements in black and zero elements in white. Figure 5.9

shows that FFF is diagonally dominant, fundamentally ascribed to the pack’s serial architecture. It is
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model is used.

also found that FFF2
od equals 0, where

FFFod =


FFF12

FFF21 FFF23

FFF32

 ∈ R675×675.

Specifically, it is verifiable that each row vector of FFFod multiplied by any column vector ∈ R675×1

in FFFod gives rise to zero. It can be further verified that this finding is applicable to any LiB pack with

the considered configuration. Having established the stability of FFF and zero spectral radius of FFFod,

the SS-DKF algorithm will be asymptotically stable, as discussed in Section 5.4.3. Now running

the CKF, DKF and SS-DKF, one can reconstruct the temperature field. The visual demonstration

of the temperature field estimation is omitted to save space. However, a comparison of accuracy

is provided in Figure 5.10. It is observed that the SS-DKF is less accurate in the initial stage.

However, it can achieve approximately the same accuracy after about 400 s. Given this result and

its superior computational efficiency, the SS-DKF can be a worthy tool in practice.

5.6 Summary

This chapter studied the real-time reconstruction of the three-dimensional temperature field across

a LiB pack and addressed this challenge through model-based temperature estimation. A ther-
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mal model was presented first to capture the thermal dynamic process of a LiB pack, which is

based on heat transfer and energy balance analysis. Compared to the lumped models and thermo-

electrochemical models, such a model achieves a balance between computational efficiency and

physical integrity. Based on the model, the well-known KF approach was then distributed to

achieve global temperature field reconstruction through localized estimation, reducing the com-

putational complexity remarkably. A DKF algorithm, which is straightforward but well fits with

the considered problem, was offered, and its steady-state version, SS-DKF, would require even less

computation time. A detailed computational complexity analysis highlighted the advantages of the

distributed estimation approaches. Simulation with a LiB pack based on genuine cells demon-

strated the effectiveness of the DKF and SS-DKF algorithms. The results point to the promises

of the proposed methodology for creating more informative thermal monitoring toward improving

thermal safety of LiB packs.
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Chapter 6

Conclusions

Lithium-ion batteries (LiBs) are an enabling energy storage technology for numerous applica-

tions for today’s and future world. They have not only achieved dominance in the consumer elec-

tronics sector, but also are rapidly penetrating into the transportation, grid, building, and aerospace/s-

pace/marine sectors where large-scale energy storage is needed. Looking into the upcoming decades,

they represent an important part of the promise for a clean energy era for the human society. Bat-

tery management systems (BMSs) are crucial in making LiBs live up to their potential and ensuring

safety and reliability in operation, and the research on advanced BMS algorithms has hence gained

significant momentum in the past years. As the overarching motivation and focus, our study aims to

develop LiB models and management algorithms that can provide both high accuracy and compu-

tational efficiency to facilitate the potential use of BMS methods in practical systems. Specifically,

this dissertation contributes to the study of four major problems:

• LiB modeling: We proposed the nonlinear double-capacitor (NDC) model in search of a more

accurate equivalent circuit model. This new model, for the first time, can simultaneously cap-

ture the lithium-ion diffusion in electrodes and nonlinear voltage dynamics, while retaining

a simple structure.

• Parameter identification: We developed identification methods for our proposed NDC model

and the popular Thevenin model. For the NDC model, our methods can extract parameters

using current/voltage data efficiently. For the Thevenin model, our methods can identify all

model parameters in one shot.

• Optimal charging: Based on the proposed NDC model, we proposed a computationally effi-
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cient health-aware charging strategy based on model predictive control. Our method moves

online optimization as needed by traditional methods offline and thus eventually allows fast

implementation by table lookup and search, which makes it promising for embedded-system-

based charging control.

• Thermal monitoring: We, for the first time, proposed an efficient estimation method for real-

time monitoring of a pack’s three-dimensional temperature field.

This dissertation advances the state-of-the-art of BMS modeling and algorithms toward both

high accuracy and computational efficiency. Meanwhile, there exist a few opportunities to further

improve the works in this dissertation.

1) LiB modeling: The NDC model in its current form can emulate lithium-ion diffusion in the

battery electrode. It is appealing to further enhance this model by accounting for other elec-

trochemical processes or physical phenomena such as lithium-ion diffusion in the electrolyte,

effects of temperature, aging and voltage hysteresis. The improvements can be achieved in

different ways, by including additional electrical components, or introducing data-driven

modules, or coupling with other types of models. They will allow the NDC model to provide

higher accuracy and fidelity for LiBs operating in different conditions.

2) Parameter identification: The proposed identification approach 2.0 for the NDC model in

Chapter 2 is based on an assumption that the training data are sampled periodically with

constant time intervals. Non-uniform sampling, however, may occur in practice, making it

interesting to extend the approach to this case. A potential solution is to investigate and per-

form continuous-time system identification for the NDC model. The lifting technique may

offer another promising way to enable the use of non-uniformly sampled data for parameter

estimation here.

3) Optimal charging: The experimental validation of the proposed charging control algorithms

in Chapter 4 was carried out in an open-loop manner, due to the test facility’s limitation. A
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closed-loop experimental validation will be more desirable. Besides, the use of the constraint

on Vs−Vb is intended to mitigate lithium-ion concentration gradient growth during charg-

ing and alleviate a LiB’s aging process. It will be useful to conduct further experimental

validation to verify its effectiveness.

4) Thermal monitoring: The battery pack thermal model in Chapter 5 is developed in a basic

setting. It would be of great interest to extend it to more complex cases such as packs with

heterogeneous cells, non-uniform heat generation and active cooling systems. Prospective

research in this direction will likely involve an integration of heat transfer modeling, finite-

element analysis, data-driven learning, and experimental validation.

Besides the above extensions, more explorations can be made along the overarching line of

research in this dissertation—advanced battery management with both high computational effi-

ciency and accuracy—in the future. Two important example problems among them are outlined as

follows.

First, pack-level BMS algorithms will be worthy of more research, which would particularly

demand computationally efficient designs due to the more complex and higher-dimensional dy-

namics [33, 44, 112, 183, 220]. It will be interesting to investigate fast and accurate pack estimation

and control by expanding the research in this dissertation. Associated with this, pack-level BMS

algorithms amenable to frugal sensing and tolerant to sensor biases or failures will be useful from

a practical perspective [110, 165].

Second, as future LiB systems may generate abundant data throughout the operation, an im-

portant subject is to develop new BMS methods based upon machine learning [15, 140, 169] and

cloud computing [16, 104]. The computational efficiency, however, will still remain a pressing

need. The notions provided in this dissertation, including parsimonious modeling and distributed

computation, may offer inspirations for future pursuits in this regard.
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