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Abstract

Proper synchronization between a transmitter and receiver, in terms of carrier phase and symbol

timing, is critical for reliable communication. Carrier phase synchronization is related to the fre-

quency translation hardware, where perfect synchronization means that the local oscillators of the

transmitter’s upconverter and receiver’s downconverter are aligned in phase and frequency. Timing

synchronization is related to the analog-to-digital converter in the receiver, where perfect synchro-

nization means that samples of the received signal are taken at transmitted symbol times. Perfect

synchronization is unlikely in practical systems for a number of reasons, including hardware limi-

tations and the independence of the transmitter and receiver. This thesis explores an FPGA imple-

mentation of a PLL-based carrier phase and symbol timing synchronization subsystem as part of a

16-APSK aeronautical telemetry receiver. The theory behind this subsystem is presented, and the

hardware implementation of each component is described. Results demonstrate successful demod-

ulation of a test signal, and system performance is shown to be comparable to double-precision

floating point simulations in terms of error vector magnitude, synchronization lock time, and BER.
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Chapter 1

Background and Introduction

1.1 Context of This Work

The work in this thesis is part of a project investigating the advantage of amplitude and phase shift

keying (APSK) over shaped-offset quadrature phase-shift keying (SOQPSK-TG) for aeronautical

telemetry in terms of increased spectral efficiency. SOQPSK-TG, a modulation scheme tradition-

ally used in telemetry, suffers a poor spectral efficiency due to its low number of bits per symbol.

This has prompted the exploration of APSK to increase efficiency by encoding information in

both the magnitude and phase of the transmitted signal. A main goal of the project is to show

that the telemetry standard for minimum adjacent channel spacing can be reduced due to both the

inherently smaller bandwidth of an APSK signal and an increased resistance to adjacent channel

interference.

However, a significant tradeoff between a continuous phase modulation (CPM) scheme, like SO-

QPSK, and APSK is APSK’s increased sensitivity to nonlinearities of a transmitter’s RF power

amplifier (PA). Unlike CPM systems, in which the PA can be driven into full saturation without

regard to gain distortion, a system with a varying envelope like APSK could experience bit errors

due to the PA’s nonlinear behavior as it saturates. This requires the PA to be operated in its linear

gain region, which decreases the PA’s power efficiency in addition to reducing the system’s signal-

to-noise ratio (SNR). Some of the SNR lost by backing off the PA power level can be recovered

by introducing forward error correction (FEC) coding. With FEC coding gain, a signal with a
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lower SNR can exhibit the same bit error rate (BER) performance as a signal with a higher SNR.

This project employs low density parity check (LDPC) FEC codes to achieve this performance

boost. LDPC codes approach channel capacity, and their decoding algorithm can be efficiently

implemented with parallel processing.

As part of this project, this thesis focuses on the digital signal processing at the receiver. Specif-

ically, this thesis describes an FPGA implementation of the receiver’s carrier phase and symbol

timing synchronization system. The next section provides a brief overview of why this system is

necessary for successful demodulation.

1.2 Introduction to Synchronization

The job of the receiver in a digital communication system is to extract the original information

signal from the modulated (i.e. upsampled and filtered) signal. Most discussions of demodula-

tion techniques assume perfect synchronization in timing and phase between the transmitter and

receiver. Under this assumption, the received signal can be demodulated by simply filtering and

downsampling, and any errors would be due to the channel. However, practical synchronization

issues arise when independent transmitter and receiver hardware is used for communication. In

general, there are two offsets between the transmitter and receiver that affect synchronization: A

phase offset and a timing offset.

The demodulated baseband signal will exhibit a phase offset if the oscillator used for downcon-

version at the receiver is not aligned in phase and frequency with the transmitter’s upconversion

oscillator. As a result of this phase offset, the receiver’s samples will fall in between constellation

points rather than lining up properly. If the phase offset is large enough to move the samples to a

different decision region of the constellation, then decision errors will occur even in the absence

of noise. This issue is discussed in further detail in Section 3.1.

A timing offset also produces errors even if no noise is present. A symbol timing offset implies
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that the analog-to-digital converter (ADC) is not sampling the received analog signal at the ideal

sampling times. For a signal that has been upsampled at rate N, every Nth sample would ideally

map directly to a constellation point. However, if sampling is not initiated at the exact starting

time of the signal, then every Nth sample will instead fall between the desired values, potentially

resulting in decision errors. This issue can also be represented through a signal’s eye diagram,

where decisions are made at times before or after the eye diagram’s maximum opening. This

concept is discussed in further detail in Section 3.2.

Because of these timing and phase errors, a synchronization system that will recover the original

timing and phase information is needed at the receiver. The work described in this thesis tracks

these offsets and processes the received samples accordingly to allow for successful demodulation.

1.3 Organization of This Thesis

The receiver components around the synchronization system are introduced first, including the fre-

quency translation blocks, the pulse shape, and the LDPC decoder. Next, a theoretical description

of the synchronization system is given. Then, the hardware implementation of each synchroniza-

tion block is described. Finally, results of the FPGA implementation are compared with simula-

tions to confirm successful demodulation of a 16-APSK signal.

1.4 Notation

The notation throughout this thesis refers to signals within the synchronization system. The re-

ceived signal is generally denoted r, with I and Q components x and y at complex baseband. The

indexing of r changes as the signal moves through the receiver. The sample time is T , and the

symbol time is Ts. Samples are indexed with n, and symbols are indexed with k. The I and Q com-

ponents of the kth decision are denoted âI(k) and âQ(k). The upsampling factor of the transmitted

data is N.

3



Chapter 2

Receiver System Description

The synchronization subsystem of a digital communications receiver is the focus of this work. This

chapter provides a high-level description of the other important components of the receiver.

2.1 From RF to Complex Baseband

The first task in almost any communications system is to step the antenna’s received RF signal

down to the system’s intermediate frequency (IF). There are several reasons for downconversion to

IF: First, hardware that performs well at lower frequencies is more practical than hardware for high

frequencies. Furthermore, converting to IF allows systems to be designed for a common frequency

so that signals at different carrier frequencies can be processed by the same system. In this project,

the C-band RF signal is downconverted to a commonly used IF of 70 MHz.

For digital communications, most processing, including synchronization, is performed at complex

baseband. After being sampled by an analog-to-digital converter (ADC), the IF signal is downcon-

verted to complex baseband using two mixers with a π/2 phase difference. Low-pass filters then

remove high frequency components from the mixer output, resulting in the I and Q components of

the signal. The RF to baseband translation is shown in Figure 2.1. The quadrature mixers are repre-

sented in Figure 2.1 by a single multiplication with the complex exponential. The downconversion

from RF to IF is treated as a black box for the work in this thesis.

As detailed in [1], downconversion from IF to baseband can be achieved without arithmetic by
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Figure 2.1: RF to Complex Baseband Downconversion

sampling the IF signal such that the sampled spectrum is centered at Ω0 = π/2. In general, digital

frequency is defined as Ω0 = 2π f0/ fs radians per second, where fs is the ADC sampling rate of

the continuous-time signal centered at frequency f0. Therefore, any sampling rate satisfying (2.1)

can be chosen for the ADC, where k is an integer that comes from the periodicity of Ω0.

k fs±
1
4

fs = f0 (2.1)

The sampling rate of the analog-to-digital converter (ADC) in this system was set to a commonly

used frequency fs = 931
3 MHz. As previously stated, this sampling rate eliminates the need for

the complex multiplications at the mixer shown in Figure 2.1. Because Ω0 = π/2, the complex

exponential e jΩ0n will be a repetition of the sequence [1, j,−1,− j]. Consequently, only a pattern

of holds and sign reversals is required for mixing.

2.2 Pulse Shape

Many references will be made to the receiver’s "matched filter" throughout this thesis. This filter

is applied to the baseband signal before the signal is processed by the synchronization system. It

is called a matched filter because the same pulse is used by the transmitter to filter the baseband

signal before upconversion to RF. In general, for a receiver, matching the transmit pulse (with a

time reversal) is the optimum pulse shape in terms of maximizing SNR, i.e. prx,opt = ptx(−t).

Pulse shaping is used in communications systems to limit the bandwidth and intersymbol interfer-
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ence (ISI) of a signal. An ideal pulse shape is finite in the frequency domain (and therefore infinite

in the time domain), and it satisfies the Nyquist no-ISI criterion [2]. A common pulse shape that

meets these requirements is the square-root raised-cosine (SRRC) pulse. The discrete-time version

of the SRRC pulse is given in (2.2), where −∞ < n < ∞ is an integer, 1/T is the sample rate, and

0≤ α ≤ 1 is a design parameter called the SRRC rolloff factor.

p(nT ) =
1√
N

sin
(

π
(
1−α

) n
N

)
+

4αn
N

cos
(

π
(
1+α

) n
N

)
πn
N

[
1−
(

4αn
N

)2
] (2.2)

Although the SRRC pulse eliminates ISI, it is not practical because of its infinite time duration.

For implementation, the pulse must be truncated to a finite length such that it spans L symbols.

The truncated pulse is no longer infinite in time, which means it is infinite in frequency and ex-

hibits frequency side lobes. Additionally, the truncated pulse no longer satisfies the Nyquist no-ISI

criterion.

Several parameters for SRRC pulse design can be seen in the discussion above: The rolloff factor

α , the filter span L symbols, and a windowing function to attempt to minimize the frequency side

lobes. The pulse used in this work was studied in [3] and is summarized in Table 2.1. The pulse is

shown in the time domain in Figure 2.2 and in the frequency domain in Figure 2.3.

Table 2.1: SRRC Pulse Parameters

rolloff 0.4051
span 16 symbols

window Kaiser
window shape factor 2.8299
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Figure 2.2: Windowed SRRC Pulse

Figure 2.3: Windowed SRRC Pulse Power Spectrum
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2.3 LDPC Decoder

The LDPC decoder input is significant for this work because the output of the FPGA is sent directly

to the decoder, so it must be formatted correctly. The LDPC decoding algorithm is discussed briefly

for completeness; however, it was treated as a black box for the work in this thesis.

2.3.1 Decoder Input

The LDPC decoding algorithm works on soft decisions. This means that the input to the decoder is

the probability of each bit in a symbol given the demodulated vector. The basis behind this is that

if, for example, the first bit of all of the decision regions around a vector is a 1, then there is a strong

probability that the first bit of the symbol is a 1 even if the noise variance is high. However, if the

vector falls near the boundary of two decision regions with different first bits, then the confidence

in the first bit being a 1 or 0 is lower. After taking the log of this probability, it is known as a

log-likelihood ratio (LLR). The LLR λi is shown in (2.3) for the ith bit bi given the demodulated

vector r.

λi = ln
(

P(bi = 0|r)
P(bi = 1|r)

)
(2.3)

Assuming the a priori probability of receiving a 1 is equal to the a priori probability of receiving

a 0, (2.3) can be rewritten using Bayes’ rule as shown in (2.4).

λi = ln
(

P(r|bi = 0)
P(r|bi = 1)

)
(2.4)

The work in [4] finds (2.4) as (2.5), where a is a constellation point and σ2 is the noise variance of

the received signal assuming an AWGN channel.

λi = ln

[
∑a:bi=0 exp( 〈r,a〉2σ2 )

∑a:bi=1 exp( 〈r,a〉2σ2 )

]
(2.5)
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Each sum in (2.5) can be approximated by its largest term [4]. The largest term in the numerator

is the nearest constellation point to r that has a 0 in bit position i, and the largest term in the

denominator is the nearest constellation point that has a 1 in bit position i. This approximation is

expressed in (2.6), where au
min = a(argmina:bi=u{||r−a||2}).

λi ≈
1

2σ2 (2Re[〈r,a0
min−a1

min〉]+ ||a0
min||

2−||a1
min||2) (2.6)

It can be seen in (2.6) that the confidence of a particular bit decision increases as the distance

between the nearest 0 and nearest 1 grows.

2.3.2 Decoding Algorithm

LDPC codes employ a sparse N ×M parity check matrix H. The optimal decoding algorithm,

described in [5], iteratively updates the nodes of the Tanner graph representing H. The algorithm’s

main source of complexity is the check node update shown in (2.7), where Nm,n denotes the bits

from the mth check, excluding bit n.

η
[l]
m,n =−2tanh−1

(
∏

i∈Nm,n

tanh

(
−

λ
[l−1]
i −η

[l−1]
m,i

2

))
(2.7)

In order to reduce the algorithm’s complexity, the scaled-min algorithm can be used. This approach

replaces (2.7) with the check node update shown in (2.8), where β is a constant.

η
[l]
m,n =−β

(
∏

i∈Nm,n

sign(−λ
[l−1]
i +η

[l−1]
m,i )× min

i∈Nm,n
{|−λ

[l−1]
i +η

[l−1]
m,i |}

)
(2.8)

The scaled-min algorithm was used for this system. The coding gain loss for the scaled-min algo-

rithm in this case is 0.1 dB [6].
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2.4 Constellation

Bits were mapped to 16-APSK symbols according to the specifications in [7]. The constellation

consists of two concentric circles with 12 equally spaced points on the outer ring and 4 equally

spaced points on the inner ring. The ratio of the outer radius to the inner radius is denoted γ and is

determined in [7] by the LDPC code rate. For this system, in which the LDPC code rate was 4/5,

γ = 2.75. Reasons for choosing this particular LDPC code rate will be discussed later.

The 16-APSK constellation is shown in Figure 2.4. The leftmost bit is considered the most signif-

icant bit.

Figure 2.4: 16-APSK Constellation
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Chapter 3

Theory of Operation

This chapter explains the theory of operation of the phase-locked loop (PLL)-based synchroniza-

tion system as presented in [2]. The discussion begins after the output of the receiver’s matched

filter has been downsampled; these downsampled matched filter outputs are the inputs to the syn-

chronization system. The systems are first presented independently of each other, i.e. perfect

timing synchronization is assumed during the phase synchronization system discussion and vice

versa. Under this assumption, it is valid to use the symbol time index Ts for samples in the phase

synchronization system.

3.1 Carrier Phase Synchronization

3.1.1 Presentation of Problem

A carrier phase offset means that the oscillator at the receiver is not aligned in phase and/or fre-

quency with the oscillator at the transmitter. This results in the matched filter output being out

of phase with its nearest constellation point (i.e. the decision) as shown in Figure 3.1, even in a

noiseless environment. Figure 3.2 shows simulation results for a noiseless 16-APSK system where

an offset in phase and frequency was introduced between the transmit and receive oscillators. The

black X’s mark the 16-APSK constellation points. The effect of the frequency offset can be seen

in that the matched filter outputs appear to be spinning rather than forming a constellation.
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Figure 3.1: Graphical Interpretation of Phase Error

Figure 3.2: Demodulation with Phase and Frequency Offset, No Synchronization System
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This spinning effect can be explained mathematically from the complex multiplication that takes

place at the transmit and receive mixers. The oscillator at the transmitter’s mixer is defined as

e− jΩtxn. If the receiver mixer’s oscillator is e− j(Ωrxn+φ), where Ωtx 6= Ωrx and φ 6= 0, then the

received signal is being rotated at a different rate (and with a different starting point) than the

transmitted signal was. The job of the phase synchronization system is to track and compensate

for this offset.

Therefore, the phase synchronization system can be seen as a rotation of matched filter outputs

in order to properly align them into a constellation. This rotation is achieved using the counter-

clockwise rotation matrix shown in (3.1), where θ̂ is the estimated carrier phase offset.

x′(kTs)

y′(kTs)

=

cos(θ̂(k)) −sin(θ̂(k))

sin(θ̂(k)) cos(θ̂(k))


x(kTs)

y(kTs)

 (3.1)

3.1.2 PLL

In order to estimate the carrier phase offset, the phase synchronization system used in this work

employs the phase-locked loop (PLL). In general, a PLL attempts to drive the phase difference

between its input and reference signal to 0. The fundamental continuous-time PLL achieves this

with a phase detector, loop filter, and voltage controlled oscillator (VCO). The phase detector

output is a function of the phase difference between the input and reference. The phase detector

output is filtered by the loop filter, which is designed to have a nonzero gain for a constant phase

offset and an infinite DC gain for a constant frequency offset. The VCO outputs a signal whose

frequency is controlled by the filter output. The VCO output is the input to the phase detector,

completing the loop. The discrete-time PLL used in this work is based on the continuous-time

PLL and consists of three components: a phase error detector (PED), a loop filter, and a direct

digital synthesizer (DDS).

The inputs to the PED are the rotated matched filter output r′(kTs) = x′(kTs)+ jy′(kTs) (which has
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been rotated by the previous PLL phase estimate) and the decision â(k) made on r′(kTs). If θ ′(k) is

the phase of r′(kTs), then a simple PED could be formulated as shown in (3.2) using the depiction

of phase error in Figure 3.1. Here, the point a(k) in Figure 3.1 was taken as the decision â(k).

e(k) = θ
′(k)−θâ(k)

= tan−1
(

y′(kTs)

x′(kTs)

)
− tan−1

(
âQ(k)
âI(k)

) (3.2)

The PED in (3.2) requires two divisions and two inverse tangent operations. A more sophisticated

PED which eliminates these expensive computations, the maximum-likelihood (ML) PED, is de-

rived in [2] and used in this work. The ML PED minimizes the value of e(k) with respect to the

conditional probability of the received vector given its phase. The ML PED is shown in (3.3) and

Figure 3.3.

e(k) = y′(kTs)âI(k)− x′(kTs)âQ(k) (3.3)

The PED output is fed to the loop filter. In order to achieve the loop filter performance specified

earlier, i.e. nonzero gain for a constant phase offset and infinite DC gain for a constant frequency

offset, the proportional-plus-integrator (PPI) filter is used in this work. The PPI filter has the

transfer function H(s) = k1 +
k2
s , or H(z) = K1 +K2

1
1−z−1 , where K1 and K2 are gain constants to

be discussed later. Using the PPI filter results in a second-order PLL. A block diagram of this filter

can be seen in Figure 3.3.

The loop filter output is the input to the DDS. The phase of the DDS output is the scaled accumu-

lation of the loop filter outputs v(k), i.e. θ̂(k+1) = K0 ∑v(k), where K0 is a gain constant which

determines the sensitivity of the DDS. The value θ̂(k+1) is the phase correction estimate for the

next matched filter output.
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Figure 3.3: Second-Order PLL with PPI Filter for Carrier Phase Synchronization

The gain constants Kp, K0, K1, and K2 are derived from the PLL loop transfer function and de-

termine the performance of the PLL. Kp is the slope of the PED S-curve at θe = 0 (S-curves will

be discussed in Section 3.1.4). K0 determines the DDS sensitivity as previously mentioned. The

values of K1 and K2 can be well approximated by (3.4) and (3.5), where ζ is the loop damping

factor and BnT is the loop bandwidth [2].

KpK0K1 ≈
4ζ

ζ + 1
4ζ

BnT (3.4)

KpK0K2 ≈
4

(ζ + 1
4ζ
)2
(BnT )2 (3.5)

3.1.3 Phase Synchronization System

Figure 3.4 shows a block diagram of the phase synchronization system as a whole. The rotation

block carries out (3.1), and the PLL block is the block diagram of Figure 3.3.
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Figure 3.4: Phase Synchronization System

3.1.4 Phase Ambiguity Resolution

It is inherently possible for the PLL to lock onto a rotated version of the constellation as it is

acquiring the phase of the received signal. If the initial phase offset at the receiver is great enough

to move a sample into a different decision region, then the PLL will compensate with respect to the

decision rather than the true transmitted symbol. This will result in a set of decisions that matches

the shape of the desired constellation, but each symbol will in fact include a constant phase offset

despite the PED output approaching zero. This property is known as the PLL’s phase ambiguity.

The set of possible phase ambiguities depends on the modulation scheme. Potential phase ambi-

guities can be predicted by observing a constellation’s symmetry; however, a more mathematical

approach is to generate an S-curve for a given system. An S-curve, denoted g(θe), plots the PED

output e(k) versus the phase error θe.

To obtain g(θe), the expression for e(k) shown in (3.3) is rewritten in terms of θe by substituting

x′(kTs) and y′(kTs) from (3.1). The resulting equation is shown in (3.6) for a given decision.

g(θe) = (x(kTs)sin(θe)+ y(kTs)cos(θe))âI(k)− (x(kTs)cos(θe)− y(kTs)sin(θe))âQ(kTs) (3.6)

The average S-curve taken over all possible symbols is denoted g(θe). As stated in [2], the lock

points of a PLL occur at the points where g(θe) crosses the x-axis with a positive slope. In general,
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Figure 3.5: Average S-Curve for 16-APSK

if g(θe) has L positive zero crossings, then the PLL is said to have a 2π/L phase ambiguity. For

example, in a QPSK system, the average S-curve has positive zero crossings at {−π/2,0,π/2,π},

resulting in a π/2 phase ambiguity. This is expected because the QPSK constellation has π/2

rotational symmetry.

The average S-curve for this work’s 16-APSK constellation is shown in Figure 3.5. The 12 positive

zero crossings indicate a π/6 phase ambiguity for the system. Although the 16-APSK constellation

has true π/2 rotational symmetry, the π/6 phase ambiguity is due to the symmetry of the outer

ring of the constellation. Because a majority of the symbols fall on the outer ring, and because

these points are much larger in magnitude than the inner points, g(θe) for the inner ring symbols

has a relatively small effect on g(θe).

In order to allow proper decoding, the phase ambiguity must be resolved. For this work, phase

ambiguity resolution was achieved by adding an attached synchronization marker (ASM) to the
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beginning of each transmitted LDPC frame as specified in [8]. Details of the ASM will be dis-

cussed later. For phase ambiguity resolution, the ASM is used to provide a known phase reference

for the demodulated data. The ASM is known at the receiver; therefore, if a rotated version of

the ASM is detected, then an additional correction can be added to the PLL to compensate for the

incorrect phase lock.

The ASM is optimally detected using a correlation detector [9]. The correlation detector marks the

location of the ASM when the correlation between the ASM and the demodulated symbols exceeds

a given threshold. However, to avoid the computationally expensive correlation calculation, an al-

ternative approach is to consider bit sequences rather than data vectors. Using the phase ambiguity

found from the average S-curve, rotated versions of the ASM can be computed for each possible

PLL lock point. Then, these symbols are run through a decision block to find the bit sequence for

each version of the ASM. Denote the length of the ASM as NASM bits; as bit decisions are made at

the receiver, the most recent NASM bits are compared to each length-NASM ASM bit sequence. If the

number of differences is less than a given threshold (analogous to the threshold of the correlation

detector) for any rotated ASM, then the phase offset of that ASM is considered the positive zero

crossing from g(θe) at which the PLL locked. This phase offset can then be corrected in the next

iteration of the PLL.

3.2 Symbol Timing Synchronization

3.2.1 Presentation of Problem

A symbol timing error is introduced when the received signal is sampled by the ADC in between

ideal sampling instants. For a discrete-time signal upsampled by N, every Nth point corresponds

to a data symbol. After this signal is converted to the continuous-time domain for transmission, the

received analog signal then needs to be sampled at the correct instant in time in order to perfectly

recover the transmitted data symbol. This ideal time instant for the kth symbol will be denoted

kT0. At time kT0, the signal has maximum amplitude, and consequently the highest average SNR,
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Figure 3.6: Graphical Representation of Timing Error

for that symbol time. However, even in the absence of noise, sampling the received signal at the

correct times is critical because the sample may otherwise lie in the incorrect decision region,

resulting in communication errors. This concept is best depicted by a signal’s eye diagram as in

Figure 3.6. The ideal sampling time is at the eye diagram’s maximum opening. A symbol timing

error occurs when the signal is sampled before of after the maximum eye diagram opening.

Sampling at exactly time kT0 for every symbol is not practical in real systems. An ADC clock is

not a perfect timing source, so there is inevitably a small timing error in the sampling rate of the

ADC. The main reason for imperfect symbol timing is that the receiver ADC most likely did not

start sampling at time 0 of the received signal, so even if the sample rate was exactly 1/T0, the

samples would not be at ideal sampling times.

Figure 3.7 shows simulation results for a noiseless 16-APSK system where a symbol timing offset

was introduced at the receiver. The timing offset was simulated by sampling the received signal

at the perfect rate 1/T0, but at time (k− 1
16)T0. Even without added noise, the demodulated signal

does not form a constellation because the samples do not correspond to 16-APSK symbols.

The goal of a symbol timing synchronization system is to ensure that during each symbol time,

there is a sample aligned with the eye diagram’s maximum opening. However, the system does

not achieve synchronization by physically changing the sampling times of the ADC. In general,

the ADC sampling rate is fixed, and the timing synchronization system does not control the ADC.
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Figure 3.7: Demodulation with Symbol Timing Offset, No Synchronization System

Therefore, the synchronization system is tasked with extracting the original timing information

from the ADC output.

3.2.2 Interpolator

One approach to correcting a symbol timing offset is to sample the received signal at a rate higher

than the symbol rate and interpolate the samples. This estimates what the value of a sample would

have been if it were taken at the ideal sampling instant. This can again be seen graphically with

an eye diagram as in Figure 3.6: If multiple samples are taken on both sides of the maximum eye

opening in the same symbol time, then the samples can be interpolated to find the value at the

maximum eye opening.

Several important variables will be introduced to allow explanation of the interpolation process.

If kT0 is the ideal sampling instant for the kth symbol, then the time t(k) is the time at which the

sample r(t(k)) for the kth symbol was taken. The time instant t(k) is different than kT0 by a fraction
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of a symbol time denoted µ(k). Therefore, the estimation of µ(k) is the main task of the timing

synchronization system. This will be discussed in Section 3.2.3.

Numerous interpolation methods exist. The piecewise quadratic interpolator was used in this work

due to its relatively low computational complexity. The piecewise quadratic interpolator using four

points for interpolation can be described as a filter as shown in (3.7) with filter coefficients h given

in (3.8). Although a quadratic interpolator only requires three points, an even number of points is

needed for the filter to be symmetric about µ(k) = 1/2 and have linear phase.

r((t(k)+µ(k))T ) =
1

∑
i=−2

h(i)r(t(k− i)T ) (3.7)

h(−2) = αµ(k)2−αµ(k)

h(−1) =−αµ(k)2 +(1+α)µ(k)

h(0) =−αµ(k)2− (1−α)µ(k)+1

h(1) = αµ(k)2−αµ(k)

(3.8)

The constant α in (3.8) is a free parameter resulting from extending the interpolator input to four

points. Using α = 1/2 offers near-optimal performance and simple implementation [10]. Still,

the expense of (3.7) can be further reduced by rewriting (3.7) as a Farrow-structured filter [11].

The coefficients in (3.8) can be written in terms of µ(k), resulting in the interpolator in (3.9) with

constant coefficients b given in Table 3.1.

r((t(k)+µ(k))T ) =
2

∑
p=0

µ(k)p
1

∑
i=−2

bp(i)r(t(k− i)T ) (3.9)

A block diagram of the Farrow piecewise quadratic interpolator is shown in Figure 3.8.
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Table 3.1: Constant Filter Coefficients for Farrow Piecewise Quadratic Interpolator

i b2(i) b1(i) b0(i)

−2 α −α 0

−1 −α α +1 0

0 −α α−1 1

1 α −α 0

Figure 3.8: Farrow Piecewise Quadratic Interpolator
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3.2.3 Interpolation Control

The interpolator is controlled by the fractional interval µ(k). As described earlier, µ(k) estimates

the fraction of a symbol time between the sampled time instant t(k) and the ideal sampling time

instant kT0. The method used in this work for estimating µ(k) is based on the PLL and is similar to

the estimation of θ̂ in the phase synchronization system. There are two main differences between

the symbol timing PLL and carrier phase PLL: The timing error detector (TED) in place of the PED

and the modulo-1 decrementing counter in place of the DDS. Because the interpolator operates at

a rate faster than the symbol rate, the rate of the timing PLL must also be faster than the symbol

rate.

There are a number of TEDs described in [2]. The zero-crossing timing error detector (ZCTED)

was used in this work. The ZCTED operates at 2 samples per symbol and outputs a timing error

estimate once per symbol. It is based on the idea that a sample r(t(k)) was sampled at the eye

diagram’s maximum eye opening if the previous and next sample, i.e. r(t(k− 1/2)) and r(t(k+

1/2)), are both 0. The ZCTED error signal is shown in (3.10) in terms of the rotated matched filter

output x′(kTs)+ jy′(kTs). The timing in (3.10) is expressed in terms of the symbol index k and

the symbol time Ts for timing offset τ to emphasize the 2 samples per symbol operating rate. The

TED output approaches 0 as the sample at time (k−1/2)Ts, i.e. the sample between symbol times,

approaches 0. The difference â(k−1)− â(k) stems from an approximation of the derivative of the

eye diagram used in the ML TED.

e(k) = x((k−1/2)Ts + τ)[âI(k−1)− âI(k)]+ y((k−1/2)Ts + τ)[âQ(k−1)− âQ(k)] (3.10)

The same PPI loop filter can be used in the symbol timing PLL as was described for the carrier

phase PLL. The only modifications are the gain constants K0, which must be negative due to the

decrementing counter, and Kp. In the case of the TED, the value of Kp is a function of both the

signal energy and the pulse shape. A plot of Kp as a function of the root rasied cosine pulse’s

excess bandwidth is given in [2].
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The loop filter output is fed to the modulo-1 decrementing counter, which is analogous to the

modulo-2π DDS in the phase recovery PLL. The modulo-1 decrementing counter is a significant

component of the entire synchronization system because it is raises a flag ("strobe") at the symbol

rate to clock the system outputs. In other words, this strobe marks each estimated ideal sampling

time. The strobe goes high whenever the counter underflows. Therefore, the counter is designed

to underflow every D samples, where D is the rate of the synchronization system in samples per

symbol (e.g. D = 2 if the ZCTED is used). The counter decrements by an average of 1/D each

iteration. The amount by which it decrements is controlled by the loop filter output. The counter

operation is shown in (3.11), where η(k+1) is the counter output and v(k) is the filter output.

η(k+1) =
(

η(k)−
(

v(k)+
1
D

))
mod 1 (3.11)

When the counter underflows, the value of µ is updated as shown in (3.12).

µ(k+1) =
η(k)

v(k)+ 1
D

(3.12)

A block diagram of the timing synchronization system PLL is shown in Figure 3.9. The stars

indicate the blocks which are enabled by the counter’s strobe signal. The TED output is 0 when

the strobe is low. The value of µ is only updated when the strobe is high; when the strobe is low,

µ(k+1) = µ(k).

3.2.4 Timing Synchronization System

Figure 3.10 shows a block diagram of the timing synchronization system as a whole. The decision

block needs the strobe so that decisions are only made on incoming samples that correspond to

valid symbols. Downsampling by N/2 results in D= 2 samples per symbol, the rate of the ZCTED.
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Figure 3.9: Second-Order PLL with PPI Filter for Timing Synchronization

Figure 3.10: Timing Synchronization System

25



3.3 Combined Carrier Phase and Symbol Timing Synchronization

The complete synchronization system combines the carrier phase recovery system of Figure 3.4

and the symbol timing synchronization system of Figure 3.10. The phase recovery system was

previously discussed in terms of a system with perfect symbol timing operating at 1 sample per

symbol. However, when combined with the timing synchronization system, the components of

the phase recovery system must now operate at a higher sample rate. Consequently, the strobe

signal discussed for the timing synchronization system is now also applied to the components of

the phase synchronization system.

The combined carrier phase and symbol timing synchronization system is shown in Figure 3.11.

Figure 3.11: Carrier Phase and Symbol Timing Synchronization System

26



Chapter 4

Hardware Implementation

This chapter details how each block of the receiver was implemented on the FPGA. The first

section refers to the synchronization system of Figure 3.11. The second section discusses the

implementation of other necessary components of the receiver. Finally, the FPGA clock and reset

signals are discussed. Unless otherwise noted, calculations were performed using 16-bit fixed point

numbers.

4.1 Synchronization System Implementation

4.1.1 Counterclockwise Rotation with CORDIC

The rotation of the filter outputs by the estimated phase offset was performed using the coordinate

rotational digital computer (CORDIC) algorithm. As described in [12], the CORDIC algorithm

for vector rotation performs an iterative approximation of the rotation matrix in (3.1). Using the

trigonometric identities cos(θ) = 1√
1+tan2(θ)

and sin(θ) = tan(θ)√
1+tan2(θ)

, the rotation expressed in

(3.1) can be rewritten as shown in (4.1) for the ith CORDIC iteration.

x′i(kTs)

y′i(kTs)

=
1√

1+ tan2(θi)

 1 − tan(θi)

tan(θi) 1


xi−1(kTs)

yi−1(kTs)

 (4.1)

By constraining θi such that tan(θi) =±2−i, (4.1) can be rewritten as shown in (4.2), where αi =
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±1.

x′i(kTs)

y′i(kTs)

=
1√

1+2−2i

 1 −αi2−i

αi2−i 1


xi−1(kTs)

yi−1(kTs)

 (4.2)

This constraint on θi results in the relationship shown in (4.3).

θi+1 = θi +αi arctan(2−i) (4.3)

The only variable in (4.3) is the sign of αi. This is determined by the error θ̃ between the desired

rotation angle (θ̂ in this case) and the accumulation of the previous rotation angles as shown in

(4.4). The goal of the algorithm is to force θ̃ to converge to 0. Therefore, if θi > 0, then αi+1 is set

to −1, and vice versa.

θ̃i = θ̂ −θi (4.4)

The advantage of this algorithm can be seen in the reduced computational complexity between

(3.1) and (4.2): While (3.1) requires four multiplications and two additions, (4.2) replaces the

multiplications with divisions by powers of two, which can be easily implemented with bit-shifts.

Furthermore, a smaller lookup table is required for the CORDIC algorithm because for n iterations,

only n angle values need to be stored instead of a complete sine lookup table.

The accuracy of the CORDIC algorithm depends on n. An example of the tradeoff between accu-

racy and latency is quantified in Figure 4.1 for a rotation of the real-valued vector 1+ 0 j by π/2

radians. This convergence rate was consistent for several test rotations. Based on this performance

and the maximum allowable latency of the CORDIC block, the number of iterations used on the

FPGA was chosen as n = 11.
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Figure 4.1: CORDIC Rotation Angle Error Convergence

The CORDIC scale factor Z mentioned in Section 4.2.2 is intended to compensate for the 1√
1+2−2i

term in (4.2). As previously stated, latency and resources can be reduced by ignoring this term in

the algorithm to eliminate a multiplication. Ignoring this term means that the CORDIC output will

be scaled by the value Z, which is a function of n as shown in (4.5). After choosing n, the value

of the inverse of Z can be computed for scaling of the CORDIC inputs to obtain rotated vectors of

the expected average amplitude.

Z =
n

∏
i=1

√
1+2−2i (4.5)

4.1.2 Farrow Piecewise Quadratic Interpolator

The interpolator shown in Figure 3.8 introduces the largest latency of any of the timing synchro-

nization subsystems due to the large number of multiplications. Therefore, minimizing latency
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was the main focus of the interpolator implementation. This was achieved by performing any

calculations in advance that only depended on past inputs before the next loop began.

4.1.3 Decisions

The interpolated outputs are used to make bit decisions. The maximum-likelihood decision is

made by finding the constellation point with the minimum squared Euclidean distance from the

received symbol on the complex plane. This is shown in (4.6), where â is the decision, A is the set

of complex constellation points, and r is the complex interpolator output.

â = argmin
a∈A

{‖r−a‖2} (4.6)

The computation in (4.6) can be simplified to remove complex multiplications by expanding the

squared Euclidean distance term to ‖r−a‖2 = ‖r‖2−2〈r,a〉+‖a‖2. The ‖r‖2 term can be ignored

in the argmin argument since it is a constant. Therefore, (4.6) can be rewritten as (4.7).

â = argmax
a∈A

{〈r,a〉− 1
2
‖a‖2} (4.7)

The 1
2‖a‖

2 terms can be stored as constants for each constellation point, so the squared Euclidean

distance computation now only requires two multiplications and two additions for each constella-

tion point.

In this case, FPGA resource utilization can be further reduced due to the bit mapping of the con-

stellation from Figure 2.4. In the symmetrical 16-APSK constellation, the mapping of the two most

significant bits is the same for points in different quadrants with equivalent I and Q magnitudes.

Furthermore, the two least significant bits of each quadrant can be represented by the sign bits of

the I and Q interpolator outputs. Consequently, for FPGA implementation, the absolute value of
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the interpolator output is used as x in (4.7), and the set A can be restricted to the constellation

points in the first quadrant. This decreases the number of multipliers and adders required, and it

reduces latency by only finding the argmax of four values instead of 16.

4.1.4 Timing Error Detector

The ZCTED error signal in (3.10) was implemented on the FPGA with the main goal being low

latency. By recognizing that the error signal depends only on the interpolator output from the

previous run and the current decision, a length-16 lookup table of all possible error signals for the

next iteration given the current interpolator output can be created. After a decision is made, the

corresponding error signal for that decision is selected from the lookup table.

4.1.5 Phase Error Detector

The PED error signal from (3.3) was directly implemented on the FPGA. Latency was not a con-

cern here because of the timing of the system as a whole: After the interpolator and decision

blocks, there is a limited number of clock cycles until the next CCW rotation output is available

for processing. The PLL requires a considerable number of clock cycles, and there would not be

enough time for the PLL to output the phase correction estimate before the next sample was ready

to receive the phase correction.

Therefore, a 1
2 symbol time delay was built into the phase synchronization system here. After the

PED computes the phase error, the PLL does not begin processing it until the next synchronization

loop begins. This lag in phase correction was not found to impact system performance. This

resulted in ample time for the PED to compute the phase error, so FPGA resources and performance

were emphasized rather than minimizing latency.
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4.1.6 PPI Filter

The second-order PPI filter seen in Figure 3.3 was implemented using 32-bit fixed point numbers

for the loop gain constants. The extra precision was required here due to the small magnitude of

the PLL gain constants. This came at the cost of additional DSP slices because the bit growth

from the multiplication exceeded the size limit of a single slice. The parameters for both PLLs,

calculated from (3.4) and (3.5), are shown in Table 4.1 and Table 4.2. The small loop bandwidth

was selected for improved performance at lower SNR.

Table 4.1: Parameters for Phase Synchronization PLL

ζ 0.7071
BnT 1E−3
K0 1
Kp 1
K1 2.667E−3
K2 3.556E−6

Table 4.2: Parameters for Timing Synchronization PLL

ζ 0.7071
BnT 1E−3
K0 −1
Kp 2.68
K1 −9.950E−4
K2 −1.327E−6

The number of computations required for the filter of Figure 3.3 was reduced by recognizing that

the output sum K1e(k)+K2e(k)+∑
k−1
i=0 K2e(i) can be rewritten as (K1+K2)e(k)+∑

k−1
i=0 K2e(i). In

addition to reducing the number of required calculations, this also eliminated the need to store the

value of K1. Only the values of K2 and (K1 +K2) are needed.

4.1.7 DDS

Extra steps were required to make the DDS output shown in Figure 3.3 compatible with the CCW

rotation block. The DDS output is the phase correction θ̂ for the CORDIC rotation algorithm;
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however, the CORDIC algorithm was implemented to expect a value of θ̂ in the range −π to π .

The DDS output as shown in Figure 3.3 will continue to grow infinitely as its value accumulates

with each iteration. To bound the value of θ̂ , a block for wrapping the DDS output to [−π,π] was

added to the DDS.

Additionally, the DDS is where the phase ambiguity resolution is added to θ̂ . When the ASM is

detected, the corresponding phase correction is added to θ̂(k− 1) so the next θ̂ will include the

adjustment.

4.1.8 Interpolator Update and Strobe

The latency of (3.11) was reduced by pre-computing (η(k)− 1
2 ) before v(k) was available. Before

being wrapped by the modulo-1 operation, the sign bit from the decrementing counter of (3.11) sets

the strobe high or low. The modulo-1 operation was implemented in hardware by simply setting

the sign bit and integer bit of the decrementing counter low and keeping the fractional bits.

The sign bit of the decrementing counter also determined if the value of µ was updated. The

µ update shown in (3.12) requires a division by (v(k)+ 1
2). However, in general, v(k) is much

smaller than 1
2 . Therefore, (3.12) can be well approximated by (4.8). This replaces the division

with a bit-shift.

µ(k)≈ 2η(k) (4.8)

4.2 Other Modules

4.2.1 IF to Baseband

As the FPGA received the IF samples from the ADC, the downconversion to complex baseband

was achieved using the sign reversal pattern discussed in Section 2.1. The pattern, [1, j,−1,− j],

was implemented with a counter that counted from 0 to 3. When the count was 0, the ADC sample

was output over the I channel; when the count was 1, the ADC sample was output over the Q
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channel, and so forth.

4.2.2 Matched Filter

The filter used on the transmit side was the 513-coefficient SRRC pulse described previously.

However, in order to conserve FPGA resources, the receiver pulse was truncated to 257 coefficients

by removing the first and last 128 coefficients. Because the outer coefficients’ amplitudes were

much smaller than the center coefficients, the effect of this pulse truncation on system performance

was minimal (although future work may reveal that this extra windowing needs to be removed due

to frequency side lobes). The remaining coefficients were scaled by the inverse of the CORDIC

scale factor Z described in section 4.1.1. Embedding this scale factor in the filter coefficients

eliminated the need for the CORDIC algorithm to remove the scaling, which reduced latency and

resource utilization.

4.2.3 ASM Detector

The bit sequence ASM detector discussed in Section 3.1.4 was employed in this system. Using

the lock points from Figure 3.5, rotations of 30 degree intervals were applied to the ASM. This

resulted in 12 256-bit sequences which were stored as constants on the FPGA. Because the length

of the ASM was 256 bits, a register of the 64 most recent decisions was kept for the ASM detector.

The comparisons of the decision register and the 12 possible versions of the ASM were performed

using a bitwise XOR operation. The XOR output is high at each bit where the two inputs do not

match. Therefore, the next step was to count the number of 1’s in each bitwise XOR output to find

if the detection threshold was met for any ASM rotation.

The counting of 1’s in each 256-bit XOR output was broken down into 8 (i.e. log2(256)) accu-

mulation stages. After the number of differences between the decision register and each ASM

rotation was counted, the minimum number of differences was found. If this minimum was less

than the detection threshold (which was set as 64), then the detection was considered positive, and
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the offset of the corresponding ASM rotation was corrected in the PLL. Otherwise, the detection

was considered negative.

In addition to phase ambiguity resolution, the ASM detector is used to mark the beginning of a new

frame since each frame begins with the ASM. This is used by the output control module (Section

4.2.5) to keep the ASM symbols from being fed to the LDPC decoder.

4.2.4 LLR Calculation

The LLR approximation shown in (2.6) was modified for FPGA implementation. The goal was

reduced latency; this was one of the final modules implemented, and a report of FPGA utilization

up to this point revealed that there was a large enough number of DSP slices remaining to prioritize

a smaller output delay. This reduced the amount of bookkeeping required for the output control

module.

The implemented LLR calculation is shown in (4.9), where a1 and a0 are the sets of 16-APSK

symbols having a 1 and 0 in the ith bit position respectively.

λi = max
{

2Re[〈r,a1〉]−||a1||2
}
−max

{
2Re[〈r,a0〉]−||a0||2

}
(4.9)

One clear difference between (2.6) and (4.9) is that (4.9) does not require knowledge of the noise.

Ignoring the σ2 term in (2.6) is permissible because the scaled-min algorithm of the LDPC decoder

is insensitive to a scaling of the input LLRs. However, the main difference between (2.6) and (4.9)

is that (2.6) requires finding a1
min and a0

min, i.e. the nearest constellation points with a 1 and 0

in each bit position, before carrying out the LLR calculation. Instead, (4.9) computes the 1 and

0 components of the LLR for each set of symbols a1 and a0 and selects the maximum 1 and 0

terms for LLR calculation. The computational cost of (4.9) was reduced by storing a1 and a0 as

constants.
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4.2.5 Output Control

The goal of the synchronization system is to send the LDPC decoder LLRs from the received LDPC

packets. The LLR calculation module is triggered with every new decision and has no knowledge

of a successful ASM detection. This means that LLRs for the ASM symbols are computed. The

LDPC decoder does not need to decode the ASM because it does not contain any information;

in fact, the ASM must not be included in the decoder input due to the expected block length.

Therefore, a buffer is needed between the LLR calculations and the LDPC decoder input to ensure

that only the LDPC codewords are fed into the decoder.

This buffer was achieved by writing every new LLR to a block of memory and counting each time

a new LLR arrived. The values were stored until the ASM detector went high. When the ASM

detector went high, the saved LLR values were read out excluding the most recent 256 LLRs. This

is because if the ASM detector goes high, then the previous 64 decisions (i.e. 256 LLRs) were all

ASM symbols.

4.3 Clock and Reset

In a synchronous HDL design, each component is triggered at a regular rate by the edge of a clock

signal. Therefore, the rate of the clock is an extremely significant design parameter. System timing

requirements and hardware capabilities are the main factors that determine the clock rate.

The buffers of the black box PCIe interface of this system are clocked at 125 MHz. Given the sys-

tem downsampling factor N/2 = 16 and the constraint that the interpolator update µ(k+1) must

be computed before the next interpolation, the maximum time for the interpolator update computa-

tion is 16 samples/125 Msamples/sec = 128 ns. If a common 125 MHz clock were used between

the PCIe buffers and the synchronization system, the 16 clock cycles would not be enough for the

synchronization system to complete its loop in time. Therefore, this system was implemented as

a multirate design with a higher clock frequency for some components. Specifically, the modules

36



of the symbol timing synchronization system, including the interpolator, the decision block, and

the timing PLL, were clocked at 400 MHz. This clock rate was found to meet performance timing

requirements while also satisfying the FPGA hardware timing constraints. The phase recovery

system’s PLL required more clock cycles than the timing recovery PLL due to the modulo-2π op-

eration and the addition of the ASM. These additional operations were enough to make the phase

synchronization system unable to complete a loop in 128 ns. Consequently, the carrier phase

synchronization system was pipelined across symbol times as previously mentioned because it

tolerated a delay in phase error estimation without a noticable impact on performance.

Operating at the slower clock rate simplifies implementation because a slower clock rate eases

the hardware timing constraints. Therefore, modules without strict system timing requirements,

i.e. the ASM detector and LLR computation block, were clocked at the slower clock rate. The

CORDIC rotation block was also clocked at the slower clock rate because the CORDIC hardware

was limited to a frequency less than 400 MHz.

Figure 4.3 shows the connections between each module. The main purpose of Figure 4.3 is to

depict the clock domains of the design. A multirate design must handle signals crossing between

clock domains. Signals crossing from the slower clock domain to the faster clock domain present

different issues than signals crossing from the faster to slower clock domain.

For a signal crossing from the slower to faster domain, the concern is that the signal could still be

in a transient state at the faster clock’s edge. This could result in a metastable state at the faster

domain’s register. Slower-to-faster crossings are handled in this design with the double flip-flop

technique shown in Figure 4.2. If the first flip-flop in the faster clock domain is metastable, the

second flip-flop ensures the signal is stabilized before being fanned out to the rest of the design.

For a signal crossing from the faster to the slower clock domain, the concern is that signal tran-

sitions in between slower clock edges would not be seen in the slower clock domain. This is

addressed by passing the faster domain signal through enough faster clocked flip-flops so that each
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Figure 4.2: Double Flip-Flop for Crossing from Slower to Faster Clock Domain

faster domain transition is held through a slower clock edge. The number of required registers is

determined by the relationship between the two clocks. In this design, because the faster clock is

3.2 times faster than the slower clock, at least 4 registers are required to cross from the faster clock

domain to the slower clock domain.

Although not shown in Figure 4.3 to reduce the number of wires, a global reset signal is used for

every module in the design. The reset signal clears all registers when a transmission ends, as well

as initializing registers at power-up. The global reset is set within the black box PCIe interface.
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Figure 4.3: FPGA Implementation Block Diagram
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4.4 FPGA Resource Utilization

FPGA performance can be limited by the design if the utilization of certain resources approaches

100%. If the design becomes too congested, the synthesis tool will be unable to route signals in a

way that meets timing constraints. FPGA resource utilization has been considered and mentioned

throughout this chapter; Table 4.3 summarizes the utilization of this design in terms of look-up

tables (LUT), flip-flops (FF), block memory (BRAM), and DSP slices as reported by the imple-

mentation tool.

Table 4.3: FPGA Resource Utilization

Resource Utilization (%)
LUT 9.50
FF 6.42

BRAM 5.34
DSP Slice 37.57
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Chapter 5

Test Setup

This chapter describes the testing environment for the synchronization system.

5.1 Test Data

5.1.1 LDPC Parameters

Two considerations for an LDPC system are the code rate and the block length. The code rate

is the ratio of information bits to total (i.e. information plus parity) bits per block. The block

length is the length of each LDPC codeword. A larger block size results in better performance at

the expense of increased decoding complexity. The LDPC system, defined in [13], uses a block

length of 4096 information bits and a code rate of 4/5. These parameters were chosen based on the

balance between a high code rate and the power backoff capabilities shown in [6].

5.1.2 Payload

The system’s LDPC block length is 4096 information bits. Therefore, an appropriate method for

random bit generation is a 9-bit pseudo-random (PN9) sequence which results in 29− 1 = 511

unique 8-bit words. Repeating one of these words results in 512 8-bit words, or 1024 16-APSK

symbols. A PN9 sequence is described by the polynomial x9 + x5 +1. With a code rate of 4/5, the

resulting frame length is 4096/(4/5) = 5120 bits after LDPC encoding.
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5.1.3 Attached Synchronization Marker

To mark the beginning of a new LDPC frame and assist in phase ambiguity resolution, an attached

synchronization marker (ASM) is added to the beginning of each frame. The ASM is 256 bits

long, and it is specified in [8]. The purpose of the ASM is purely functional: It serves as a flag for

a new frame in the receiver, and it is a known reference for phase ambiguity resolution, but it does

not contain any information and therefore is not LDPC encoded or decoded.

With the addition of the ASM, the final ratio of information bits to total bits is Rb = 4096/(5120+

256) = 16/21.

5.1.4 Data Rate

The minimum data rate was given as 5 megabits per second (Mbps). To simplify system design,

the implemented data rate was based on an integer upsampling factor of 32 samples per symbol.

Using the previously derived sampling rate of 93.333 MHz, the resulting data rate was 8.888 Mbps,

as shown below:

Fs = 93.333 MHz

N = 32 samples/symbol

Fs/N = 2.917 Msymb/sec

4Fs/N = 11.666 Mbps (total)

Rb(11.666 Mbps) = 8.888 Mbps (information)

5.2 Equipment Setup

In order to isolate the receiver, a signal generator was used to output the test signal at IF into the

ADC. The signal generator was set to an output power level of -20 dBm. Gaussian noise with a

given variance could be added at the signal generator for BER performance tests. The ADC output
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Figure 5.1: Test Equipment Setup

was transferred to a host PC, where the digitized data was normalized to unit energy.

After the ADC, the data in the receiver passes through three main blocks: a host PC, the FPGA,

and a graphics processing unit (GPU). The host serves as a mediator between the other system

blocks, and data is passed between blocks via peripheral component interconnect express (PCIe)

bus. The host collects the samples from the ADC and sends them to the FPGA for processing.

After demodulation, the FPGA sends its computed LLRs to the host, and the host sends them

to the GPU. The GPU is where the LDPC decoding is performed. The GPU sends the decoded

decisions to the host for analysis, i.e. BER measurement.

A block diagram of the test setup is shown in Figure 5.1, where block arrows represent PCIe bus

communication.

5.3 Simulation Description

Floating point simulation was used as a benchmark for FPGA synchronization performance. In

order to directly compare the simulation and FPGA implementation while isolating the synchro-

nization system, the FPGA downsampled matched filter outputs were captured and input to the

simulated synchronization system. As opposed to beginning the simulation with the entire set of

samples acquired by the ADC, this approach ensured that only synchronization system perfor-

mance was observed without additional quantization noise from the matched filter.
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Chapter 6

Results and Analysis

This chapter presents and discusses the results of the FPGA implementation of the synchronization

system. Synchronization system performance is observed here relative to simulation in terms of the

demodulated signal’s BER, error vector magnitude (EVM), and the settling time and steady-state

values of the interpolation fractional interval µ(k) and the phase correction estimate θ̂(k). EVM is

a measure of the average distance from a demodulated vector to its nearest constellation point for

all received symbols. EVM is 0 if the received point corresponds perfectly to a constellation point.

The EVM is normalized by the maximum constellation amplitude and expressed as a percentage

as shown in (6.1), where K is the number of symbols in the received signal.

EVM =

(
1
K

K−1

∑
k=0

√
|r(kTs)− â(k)|2
maxa∈A |a|

)
∗100% (6.1)

Figure 6.1 and Figure 6.2 show the simulated and FPGA implemented demodulated constellations

respectively. These constellations show the data before and after the synchronization system locks,

where the locking point was based on the settling time of θ̂(k) and µ(k). Figure 6.3 shows the

phase correction estimate θ̂(k) from simulation and implementation. Only the acquisition stage

is shown. Similarly, Figure 6.4 shows the acquisition of the interpolator fractional interval µ(k).

Figure 6.5 shows the BER performance of the implementation compared to simulations from [6].
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Figure 6.1: Demodulated Vectors, Acquiring (top) and Locked (bottom), Simulation
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Figure 6.2: Demodulated Vectors, Acquiring (top) and Locked (bottom), Implementation
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Figure 6.3: Phase Correction Estimate, Simulation (top) and FPGA Implementation (bottom)
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Figure 6.4: Interpolator Fractional Interval, Simulation (top) and FPGA Implementation (bottom)
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Figure 6.5: BER Performance

The constellations of Figures 6.1 and 6.2 show that the EVM was significantly reduced after the

synchronization system locked. During acquisition, points can be seen close to decision region

boundaries. This indicates potential errors, especially in a noisy system. More important in terms

of bit error performance is the large change in the phase correction estimate shown in Figure

6.3. This indicates the point where the ASM was detected and the corresponding ASM phase

adjustment was applied. The figure shows an ASM phase adjustment of π/2 radians. This means

that every point before the ASM detection was offset from its transmitted constellation point by

π/2, resulting in a symbol error rate of 100%. This emphasizes the discussion of phase ambiguity

from Section 3.1.4: Although the demodulated vectors form a constellation that appears to indicate

correct demodulation, there is in reality a constant offset at every point.

The results show that the FPGA implementation performed nearly identically to the simulation.

The FPGA-implemented timing and carrier phase PLLs exhibited the same acquisition time (both
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within one LDPC frame time) and steady-state values as the simulation, and the EVM is within

0.002% after lock. The larger difference in EVM during acquisition is most likely from quantiza-

tion within the PLLs. In early runs, the PLL accumulators still have small enough magnitude to

cause a discrepancy between floating point and 16-bit fixed point numbers. The FPGA BER curve

is approximately 0.2 dB worse than the simulated curve. This is most likely because the work in

[6] (from which the simulated curve was obtained) was performed with end-to-end floating point

numbers and perfect synchronization. The implemented BER curve is subject to quantization from

the ADC, FPGA, and GPU.
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Chapter 7

Conclusion and Future Work

This thesis has covered the FPGA implementation of a carrier phase and symbol timing synchro-

nization subsystem in a 16-APSK communications receiver. The work was part of an investigation

of the benefits of LDPC coded APSK in terms of spectral efficiency for a C-band aeronautical

telemetry system. The motivation for a synchronization system was presented, its theory of oper-

ation was discussed, and the FPGA implementation of each synchronization block was explained.

Finally, the FPGA implementation was shown to successfully demodulate a test signal acquired

from an ADC. Performance was shown to be nearly identical to floating point simulation.

Future work will seek to increase the maximum correctable frequency offset of the synchronization

system presented in this thesis. The PLL-based method of this work has been shown to correct a

frequency offset of up to 30 kHz [14]. A practical system could experience a Doppler shift larger

than 30 kHz. The work in [15] employs an FFT-based approach to provide an initial frequency

offset correction. Simulations have shown that when this is combined with the PLL-based method

of this thesis, the system can account for a larger frequency offset. The FPGA resource utilization

report of Table 4.3 indicates that the FPGA could easily accommodate additional modules on top

of the design presented in this thesis.
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