
 

Development of Fuzzy Hybrid Approaches to Project Delivery 

Method Selection in Highway Construction  

 
By 

© 2020   
Phuong H.D. Nguyen 

M.S., California State University, East Bay, 2016 
B.S., Vietnam National University, HCM University of Technology, 2014 

 
Submitted to the graduate degree program in the Department of Civil, Environmental, and 

Architectural Engineering and the Graduate Faculty of the University of Kansas in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 

 
 

Co-Chair: Dr. Dan Tran 
 
 
 

Co-Chair: Dr. Brian Lines 
 
 
 

Dr. Joshua Roundy 
 
 
 

Dr. Elaina Sutley 
 
 
 

Dr. Guanghui (Richard) Wang 
 
 
 

Dr. Long D. Nguyen 
 

Date Defended: July 2nd, 2020 



ii 

The dissertation committee for Phuong Nguyen certifies that this is the approved version of the 

following dissertation: 

 

Development of Fuzzy Hybrid Approaches to Project Delivery 

Method Selection in Highway Construction 

 

 
 

 

Co-Chair: Dr. Dan Tran 

 

 

Co-Chair: Dr. Brian Lines 

 

 

 

 

 

 

 

Date Approved: July 14th, 2020 



iii 

ABSTRACT 

Selection of project delivery methods is a success factor in delivering highway construction 

projects because it has a substantial impact on the project performance, such as cost, time, and 

quality. Project delivery decision-making processes have been heavily relied on experts’ 

opinions and subjective judgements of professionals to evaluate quantitative and qualitative 

decision variables. Although current quantitative and probabilistic methods provide a robust 

means to analyze quantitative variables, they are not ideally suited for treating uncertainties 

encountered in qualitative variables. Fuzzy set theory is a mathematical approach that can 

accommodate a combination of quantitative and qualitative variables. This dissertation aimed at 

investigating the applications of fuzzy set theory and fuzzy logic to support decision-making 

processes in project delivery method selections. Using an empirical dataset of 254 completed 

highway construction projects, three fuzzy-based applications, including fuzzy cluster analysis, 

fuzzy pattern recognition, and fuzzy Bayesian inference system were developed, trained, and 

tested. As a result, fuzzy cluster analysis was used to establish seven common project clusters 

that share high similarities in project characteristics, project complexity, delivery risks, cost 

growth, and project delivery methods. Fuzzy pattern recognition was used to develop a fuzzy 

rule-based inference system based on the seven identified project clusters to help recognize an 

appropriate project delivery method associated with potential cost growth for new highway 

projects. Fuzzy Bayesian networks were used to develop the theoretical framework of fuzzy 

Bayesian inference system which is able to depict the causal relationships between project 

characteristics, project complexity, delivery risks, and project delivery methods. The flexibility 

of fuzzy membership functions in the developed applications helps leverage the evaluation of a 

combination of quantitative and qualitative variables in highway project delivery method 
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selection. In addition, these data-driven fuzzy applications also allow for multiple decision 

scenarios based on the decision maker’s judgements of delivery risks and project complexity. 

This dissertation contributes to the body of knowledge by demonstrating quantitative approaches 

derived from fuzzy set theory and fuzzy logic to support the selection of project delivery 

methods in highway construction. Additionally, the results from the developed fuzzy-based 

applications also provide insights regarding cost performance comparisons between project 

delivery methods. This study may assist highway agencies in making project delivery decisions 

based on project attributes, historical data and their relevant experience.   
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Dissertation Format  

This dissertation follows the three-journal-paper format. First, Chapter 1 includes the research 

problems and objectives shown in the Introduction section followed by Research Methodology 

with details regarding each research phase. Second, Chapters 2, 3, and 4 are formed in terms of 

three journal papers. Specifically, Chapter 2 demonstrates the establishment of seven empirical 

clusters of highway projects that share commonalities in project attributes, such as facility type, 

project type, project complexity, delivery risks, cost performance, and delivery methods used, 

based on fuzzy cluster analysis; this chapter provided the first peer-reviewed journal article, 

published in the American Society of Civil Engineers (ASCE) Journal of Construction 

Engineering and Management (JCEM). Chapter 3 presents an empirical rule-based inference 

system based on fuzzy pattern recognition to identify project delivery methods for new highway 

projects; this chapter produced the second journal article, which has been submitted and under 

review with ASCE JCEM. Chapter 4 illustrates the development of a theoretical framework of 

fuzzy Bayesian rule-based inference system, which is expected to leverage the established fuzzy 

inference system to be a decision-aid tool for highway agencies to selecting appropriate delivery 

methods; this chapter will produce the third journal paper which will be submitted to ASCE 

JCEM. Finally, the Conclusion section summarizes the entire dissertation and restates the 

contributions to the body of knowledge. Appendices, where all related tables, figures, graphs, 

algorithms, and pseudo R programming codes used in this dissertation are also combined at the 

end. Specifically, Appendix A includes the exploratory factor analysis of 31 delivery risks, 

determination of project clusters, fuzzy C-means cluster analysis algorithm, and other 

information of fuzzy cluster analysis. Appendix B includes fuzzy membership functions 

(Gaussian type), rule-based inference formulation, and programming graphical user interface.  
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Background 

A project delivery method is a framework that affirms contractual relationships between project 

stakeholders and determines how the project will be executed. Selection of project delivery 

methods is a success factor of highway projects because it has substantial impacts on project 

performance, such as cost, time, and quality (Allen 2001). The rise of alternative project delivery 

methods (APDMs) or alternative contracting methods (ACMs) contributes to optimization of 

project performance, especially in highway projects, where large amounts of budgets are spent 

and require strict guarantees (El Asmar et al. 2013; Ghavamifar 2009). On the demand of 

enhancing productivity of infrastructure construction, such as highways, bridges, roads, and 

other horizontal projects, many changes and adoptions have been recognized in the project 

administration and management with project delivery methods (Alleman et al. 2016; Shrestha et 

al. 2012). 

Selecting a project delivery method, one of the critical success factors, directly affects 

project performance and any other subsequent decisions throughout the project lifecycle. 

Implementation of different project delivery methods lead to different scenarios of project 

performance and effectiveness related to project characteristics, identified risks, and expected 

project accomplishment. Accordingly, there is no “one size fits all” approach to selecting a 

project delivery method. Rather, each project may have an appropriate delivery method 

depending on its characteristics and specifications. Suitability of typical project delivery methods 

in a highway project is exclusively determined based on its unique project characteristics and 

related subjective ratings of delivery risks.  
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The current construction literature has recognized that selection of appropriate project 

delivery methods is essentially based upon experts’ experience-based judgements and inspired 

the use of quantitative approaches to establish project-delivery-selection supportive frameworks 

and models. Because of uniqueness of construction projects, where each project has its own 

characteristics, level of project complexity, and associated delivery risks, quantifying project 

inputs is challenging and requires more empirically-grounded scientific approaches. Although 

many studies have offered a process and guidance to select the most suitable delivery method, 

there is a lack of understanding how to rigorously address qualitative criteria. The main gap is 

that project-delivery-selection research is lacking in identifying a method to provide typical 

patterns in terms of delivery methods and project performance. Another research gap consists of 

constraints of qualitative inputs because of subjective judgements. For example, it is difficult to 

incorporate the qualitative risk inputs and other quantitative variables of project attributes, such 

as facility types, project types, and complexity, in construction (Creedy 2006; Creedy et al. 

2010). The last research gap is the limitation of applications of fuzzy set theory in selection of 

project delivery methods in terms of assessing project performance, including cost, schedule, and 

quality, based on typical project characteristics and risk profiles. 

 

Research Problem 

Making decisions in the highway sector is a challenging task because of many factors involved. 

Those factors are represented in terms of different combinations of quantitative and qualitative 

criteria in construction decision-making processes (Gransberg and Shane 2010; Touran et al. 

2011). A range of decisions in the construction industry commonly rely upon qualitative inputs 
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(Lam et al. 2001); for example, selecting a project delivery method often considers project 

characteristics, such as risk level, project type, combination of scope categories, level of 

complexity, and more (Khanzadi et al. 2016). Traditional probabilistic approaches find 

difficulties in investigating the qualitative criteria (Al Nahyan et al. 2018). Those approaches are 

unable to either model linguistic expressions or evaluate imprecise concepts and vagueness in 

input data of decision-making processes (Elbarkouky et al. 2016). In addition to proposing 

statistical probabilistic models to quantify different sets of decision criteria (Tran and Molenaar 

2015), decision-making processes also require systematic approaches to provide empirical 

comparisons between decision alternatives. The construction industry involves a large number of 

historical data that contributes necessary evidences to different decision-making scenarios. 

Historical data, which includes a combination of quantitative and qualitative information, can be 

used to determine common groups (i.e., clusters) of construction projects based on relevant 

attributes. Fuzzy set theory is a great means to investigate and model qualitative data using 

membership functions (Elwood 2014). Other fuzzy hybrid approaches can utilize the clustering 

results from historic data to aid the selection project delivery methods. 
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Research Objectives 

To address the underlying gaps in the construction literature, this dissertation aims to: 

(1) Identify the common groups of highway projects that exhibit high similarities in project 

characteristics, project complexity, delivery risks, project delivery methods, and cost 

growth. 

(2) Recognize typical patterns of project delivery methods associated with cost growth for 

new highway projects based on a combination of quantitative and qualitative variables 

and develop a programming-based graphical user interface to support pattern recognitions 

in practice. 

(3) Investigate the causal relationships between facility type, project type, project size and 

duration, project complexity, delivery risks, and cost growth in project delivery method 

selections. 

 

Research Methodology 

This dissertation utilized a research framework from the Stanford Center for Integrated Facility 

Engineering (CIFE). This framework provides scientific researchers a comprehensive technical 

procedure where conceptual milestones are generated in each step (Lampe 2015). Figure 1 shows 

a nine-step research framework, including observed problems, intuitions, theoretical points of 

departure, research methods, research questions, research tasks, validation results, claimed 

contributions, and predicted impacts. 
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Figure 1. Research Methodology Based on Stanford’s CIFE Horseshoe Framework 
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Research Questions  

Research Question 1: Fuzzy Cluster Analysis  

What are the underlying clusters of highway projects that share identical project characteristics, 

cost performance, and the use of the two common project delivery methods (D-B-B and D-B)? 

To address the first research question, the point of departure is to implement fuzzy cluster 

analysis (also known as soft cluster analysis), which is a typical method of grouping highway 

construction projects in an unsupervised machine learning environment. The performance of all 

clustering algorithms is dependent on the accurate estimate of the cluster number, which is pre-

specified by the analyst. The objective of this technique is to partition a set of n highway projects 

into C clusters such that projects within cluster should have similar attributes (i.e., facility types, 

project types, project complexity, delivery risks, cost growth, and project delivery methods) to 

each other and vice versa. The results of this question are presented in Chapter 2. 

Research Question 2: Fuzzy Pattern Recognition  

How do the underlying clusters recognize cost performance’s patterns based on inherent project 

characteristics and delivery methods? 

To address the second research question, the point of departure is to implement fuzzy 

pattern recognition technique, which is a method used to recognize typical cost performance 

patterns for future projects in a supervised learning environment based on their characteristics 

and risk profiles. The objective of this technique is to predict cost performance patterns and 

develop a graphical user interface for the inputs of project characteristics and risk profiles to 

support decision-making in selecting project delivery methods. The results of this question are 

presented in Chapter 3. 
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Research Question 3: Fuzzy Bayesian Inference System  

How to develop a Fuzzy Bayesian Inference System based on empirical clusters of highway 

projects to support selection of project delivery methods? 

 To address the third research question, a step-by-step fuzzy Bayesian rule-based 

inference system is developed based on the fuzzy inference system in research question 2. The 

objective is to demonstrate causality between input variables (i.e., facility type, project type, 

project complexity, delivery risks) and output variables (project delivery methods associated 

with cost growth). The results of this question are presented in Chapter 4. 
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INTRODUCTION  

Selection of the most appropriate delivery method is a key success factor for managing highway 

construction projects because it can have substantial impacts on project performance, such as 

cost, time, and quality (U.S. DOT 2006; WSDOT 2016). Comparisons between traditional 

design-bid-build (D-B-B) and alternative delivery methods, such as design-build (D-B) and 

construction manager/general contractor (CM/GC), have been investigated for decades. The 

literature shows there is no single delivery method that is best suited for every construction 

project; rather, the suitability is practically determined on a project-by-project basis based on 

unique project characteristics and performance metrics (Minchin et al. 2013; Konchar and 

Sanvido 1998; Shrestha 2007; Sullivan et al. 2017). Those project attributes are referred to as 

selection criteria in project delivery decision-making (Touran et al. 2009a).  

A typical decision in selecting project delivery methods usually comes from the result of 

evaluating multiple selection criteria that can be generally split into two main categories: 

quantitative and qualitative (Gransberg and Shane 2010). Common quantitative selection criteria 

include project type, size, price, budget, unit cost, cost growth, schedule growth, delivery speed, 

and construction speed. Common qualitative selection criteria include project complexity, risks, 

quality, constructability, experience, and innovation. Plenty of statistical and probabilistic 

approaches have been proposed to quantify project delivery selection criteria and support 

decision makers (Molenaar and Songer 1998; Tran and Molenaar 2015). Although those 

quantitative methods perform well in measuring quantitative selection criteria, they are 

insufficient in measuring qualitative selection criteria. This issue leads to a substantial challenge 

in project delivery selection because the delivery decision process typically involves a 
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combination of quantitative (e.g., project cost or schedule) and qualitative variables (e.g., project 

complexity or delivery risk) (Touran et al. 2011).  

Current practices of delivery selection in highway construction commonly rely upon 

experts’ experience and guidelines from construction professional organizations (Douglas et al. 

2016). These approaches aid project delivery decision-making in the way of studying similar 

projects and evaluating the most appropriate delivery method in terms of project performance. 

Identifying commonalities between highway projects in using delivery methods and their 

performance provides valuable insights and lessons learned for new projects that share similar 

characteristics. Fuzzy cluster analysis, a data mining technique derived from fuzzy set theory, is 

capable to explore a set of data and group them based on degree of similarities (Pal and Bezdek 

1995). In addition, this approach utilizes fuzzy sets, defined as logical sets whose elements have 

degrees of membership, to investigate both quantitative and qualitative selection criteria (Ammar 

et al. 2013). 

Motivated by the lack of applications specifically designed to accommodate a 

combination of quantitative and qualitative variables, which are both critical in selection of 

project delivery method, the research objectives of this study were to: 

• Investigate the latent commonality between highway projects based on project 

characteristics, cost performance, and project delivery methods used (e.g., D-B-B and D-

B);   

• Establish clusters of identical highway projects based on the degree of similarity in 

facility type, project type, project complexity, delivery risks, and cost growth with the 

labels of D-B-B and D-B; and 
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• Discuss the appropriate use of D-B-B and D-B for highway projects based on labelled 

clusters and provide awareness in using historical project data to aid selection of delivery 

methods. 

 

The rest of this paper is structured as follows. The next section discusses the literature 

review of the project delivery selection process and applications of fuzzy set theory in 

construction that derive the research question and the research methodology. These are followed 

by an illustrative example and discussion. Conclusions are drawn and provided in the final 

section.     

 

LITERATURE REVIEW 

This section discusses the two main areas related to this research: (1) decision-making in project 

delivery method selection and (2) fuzzy set theory and fuzzy cluster analysis. 

 

Decision-Making in Project Delivery Method Selection  

Selection of appropriate delivery methods has been used to improve project performance, 

including lower cost growth, shorter schedule durations, higher quality, and better safety (Al 

Khalil 2002; Col Debella and Ries 2006; Ibbs et al. 2003). The traditional D-B-B delivery 

method is considered to foster adversarial relationships among project participants which often 

can result in negative performance outcomes (Park and Kwak 2017). On the other hand, 

alternative contracting methods, including D-B and CM/GC, aim to shorten the project schedule, 

optimize total cost, and achieve a satisfactory level of project quality (FHWA 2018). Under some 

particular circumstances, such as projects with a high level of uncertainty or complexity, D-B has 
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been found to provide better project performance than D-B-B (Nikou Goftar et al. 2014; Rojas 

and Kell 2008). In the U.S., state departments of transportation (DOTs) have increasingly used 

alternative delivery methods, which inspires the assessment of whether highway projects have 

achieved better project performance and the identification of common performance patterns to 

support delivery selection (Touran et al. 2009b). 

The majority of current highway project delivery selection approaches are based upon 

subjective judgements of experts and guidelines from professional organizations in terms of 

performance of historical project data possessed by the agencies (Bakht and El-Diraby 2015; 

Mahdi and Alreshaid 2005; WSDOT 2016). Many mathematical and probabilistic decision-

making frameworks and models, classified into two main categories: qualitative and quantitative, 

have been proposed to support project owners in selecting the most suitable delivery method for 

their project (Al Khalil 2002; Bypaneni 2017; Mostafavi and Karamouz 2010; Tran and 

Molenaar 2015). There are different types of input variables to project delivery decision-making 

models, such as project characteristics, project cost and schedule information, project 

complexity, and delivery risks. As an example of qualitative variables, delivery risks are 

considered as one of the most difficult inputs to quantify due to the qualitative unit of 

measurement (Diab et al. 2012). Although delivery risks can be modeled using simulations and 

probabilistic approaches (Tran et al. 2016), it still preserves a certain level of uncertainty in the 

model outcomes. It is challenging for statistical and probabilistic models to properly quantify a 

combination of quantitative and qualitative variables (Al Nahyan et al. 2018).  
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Fuzzy Set Theory and Fuzzy Cluster Analysis  

Fuzzy set theory, a mathematical approach developed by Zadeh (1965) to convert linguistic 

statements (i.e., qualitative data) to be quantifiable by a computer, have been used to 

accommodate different combinations of quantitative and qualitative variables (Ammar et al. 

2013; Li et al. 2006). The fuzzy set theory has been used in a wide range of domains to evaluate 

incomplete, imprecise, or qualitative inputs (Chan et al. 2009). In the field of engineering, fuzzy 

set theory has been used to capture qualitative domain professional judgements to generate 

theoretical decision-making models and widely applied to many areas, such as computer science, 

mechanical engineering, aerospace engineering, chemical engineering, and structural engineering 

(Elwood 2014; D’Urso 2007; Ross 2010; Seo et al. 2004). Within the construction industry, 

fuzzy set theory has been used in risk-based management (Elbarkouky et al. 2016; Lam et al. 

2001; Pawan and Lorterapong 2016).  

Derived from fuzzy set theory, fuzzy cluster analysis is used to classify data based on 

similarities in attributes, features, and other characteristics (Anderberg 2014). This unsupervised 

learning technique concentrates on grouping data to study underlying data structures and identify 

the most representative cluster prototypes (Hoppner et al. 1999). There are two common types of 

cluster analysis: (1) hard cluster analysis, which is developed based on crisp sets, and (2) soft 

cluster analysis, which is formulated based on fuzzy set theory. Because the scope of this study is 

to enhance fuzzy set theory to deal with qualitative input data, a soft cluster analysis or fuzzy 

cluster analysis is conducted. Fuzzy cluster analysis identifies the structure of data and supports 

establishment of groups of data based on distance with maximum homogeneity (or similarity) 

within the groups while also having maximum heterogeneity between the groups (Kruse et al. 

2007). Fuzzy cluster analysis is different from the crisp cluster analysis in terms of assigning 
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membership values to the clustered data points instead of limiting a single data point to belong to 

only one cluster (Elwood and Corotis 2015).  

In the current literature of project delivery selection, limited research has attempted to 

provide rigorously means to accommodate a combination of quantitative and qualitative 

variables and identify groups of projects that share similarities in performance and delivery 

methods (e.g., D-B-B and D-B) used. To bridge this gap, this study attempted to use fuzzy 

cluster analysis to group similar highway projects that share high commonalities in project 

characteristics, project complexity, delivery risks, and cost performance associated with D-B-B 

and D-B. The clustered groups of similar projects provide insights into recognizing differences in 

cost performance between D-B-B and D-B highway projects. 

 

RESEARCH QUESTIONS 

The main objective of this study was to determine the underlying clusters of highway 

construction projects based on project characteristics, cost performance, project complexity and 

risks associated with different delivery methods. To achieve this research objective, this study 

aimed at addressing the following research questions:    

1. What are the latent groupings of cost performance based on delivery methods and 

degrees of similarity in project characteristics, project complexity, and delivery risks? 

2. How do the classified latent groupings differentiate the cost performance of highway 

projects delivered by D-B-B and D-B? 

3. What new information would be gained by using a project delivery-based cost 

performance cluster analysis? 
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RESEARCH METHODOLOGY 

To address three aforementioned research questions, the research methodology of this study 

included four steps: (1) literature review; (2) theoretical approach; (3) application; and (4) 

discussion and conclusion. Figure 1 graphically shows these four steps. First, a comprehensive 

literature review consisting of two main areas, selection of project delivery methods and the use 

of fuzzy set theory in construction, was conducted to determine the research gaps. Second, a 

theoretical approach of how to apply fuzzy cluster analysis to address the identified research 

gaps was proposed. Third, an illustrative example was presented to discuss the application of the 

proposed approach. Finally, pairwise comparisons between D-B-B and D-B were discussed. 

Research contributions, limitations, and future work were summarized in the conclusion section. 

The following sections briefly discuss the theoretical framework and validation of fuzzy cluster 

analysis. 

 

Step 2
Assessment of Data Clustering 

Tendency 

Step 1
Data Sampling and 

Standardization

Step 3 
Determination of the Number of 

Clusters

LITERATURE REVIEW
Delivery Selection 
Fuzzy Set Theory

Input

Output

THEORETICAL APPROACH
Fuzzy Cluster Analysis & Validity

APPLICATION
Federal Highway Administration 

Dataset

DISCUSSION AND 
CONCLUSION 

Step 4
Cluster Validity

Validation

 

 

Figure 1. Research methodology 
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Proposed Approach of Fuzzy Cluster Analysis 

Partitioning construction projects into common groups is a complex task that depends on project 

characteristics, performance, and available data. While fuzzy cluster analysis is commonly used 

in many research fields, it is relatively new to construction project delivery selection. Building 

upon from the relevant literature (Elwood and Corotis 2015; Ross 2010; Wu et al. 2010), this 

study utilized a three-step approach to classifying project characteristics, cost performance, and 

project complexity and risks associated with D-B-B and D-B delivery methods. These steps are 

(1) assessment of data clustering tendency, (2) determination of the number of clusters, and (3) 

validation of the clustering result.  

It is noted that the procedure of fuzzy cluster analysis proposed in this study can be 

implemented in any given set P consisting of n construction projects, { }1 2 3, , ,..., nP P P P P= . Each 

project Pi has m attributes (e.g., project characteristics and project performance)

{ }1 2 3 4, , , ,...,i i i i i imP P P P P P= . A step-by-step process of this analysis is demonstrated as follow. 

 

Step 1 – Assessment of Data Clustering Tendency 

This step is a prerequisite in any clustering processes. There were two methods for assessing the 

clustering tendency used in this study: (1) a statistical method (Hopkins statistics) and (2) a 

visual assessment of cluster tendency (VAT) algorithm. The Hopkins statistic method measures 

the probability with which the dataset P is established by a uniform data distribution to examine 

the spatial randomness of the dataset. This method first iteratively calculates the distance 

between a project Pn and its nearest neighbor Pn+1, denoted as Xi. Then, it generates a simulated 

dataset S drawn from the given dataset P and iteratively computes the distance between a 



18 

simulated project Sn and its nearest neighbor Sn+1, denoted as Yi. The Hopkins statistic (H value) 

is then the ratio of the average nearest neighbor distance in the simulated dataset S to the sum of 

the average nearest neighbor distances in both datasets P and S as shown in Eq. (1) (Kassambara 

2017). If the H value is equal or greater than 0.5, collected projects in the construction dataset P 

are uniformly distributed, which does not give any underlying groups.  

                                              1

1 1

n

i
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n n

i i
i i
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=
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                                                          (1) 

 

The second method of assessment, VAT algorithm, provides a graphical determination 

for the clustering tendency by first calculating the dissimilarity matrix between projects in the 

dataset P and then reordering the calculated matrix to make sure that similar projects are close to 

one another. The ordered matrix is visualized in images as outputs of the VAT method to 

confirm whether there is a clustering structure in the dataset P.  

 

Step 2 – Determination of the Number of Clusters 

If the construction dataset P is eligible to utilize fuzzy cluster analysis, the next task is to 

determine an appropriate clustering algorithm to optimize the goodness of the final clustering 

groups that logically represent the latent structures of clustering data. Fuzzy C-means algorithm 

(FCM), the most common soft clustering method in the domain of unsupervised machine 

learning techniques (Elwood and Corotis 2015), was used in this study. This algorithm takes into 

account any combinations of both quantitative and qualitative variables. The FCM assigns the 

projects into clusters based on the degree of fuzzy membership [ ]( ) ( ) 0,1ij C ix Pµ µ= ∈ , where ijµ
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is the value that describes the degree of membership of project Pi in the jth fuzzy cluster 

{ }1,2,3,...,jC k=  with k is the number of clusters. Using this algorithm provides two main 

outcomes: a membership matrix U and a vector of cluster centers vij. The membership matrix 

describes the degree of membership of each project within the identified cluster while the vector 

of cluster centers represents the features of the identified clusters as calculated by Eq. (2). These 

two outcomes help determine an appropriate number of clusters in the dataset P by grouping 

projects Pi having similar attributes and membership values.  
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∑
                                                            (2) 

 The number of underlying clusters within the construction dataset P is determined by 

using the optimization function Jm, which attempts to simultaneously minimize the distance 

between projects within a cluster and maximize the distance between clusters as shown in Eq. 

(3). U is the membership matrix; v is the vector of cluster centers; and ikd  is the distance between 

the cluster center vi and its assigned projects Pi as shown in Eq. (4). When the assignment of 

projects to particular clusters reaches to the minimum of Jm, the final number of underlying 

clusters within the dataset P is recognized.  
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Step 3 – Validation of the Clustering Result  

To validate the goodness of the clustering result for the given dataset P, this study proposed four 

typical clustering validity indices: partition entropy, partition coefficient, the Dunn index, and 

the silhouette width. Each index evaluates the degree of decency between each project in the 

dataset P and the identified clusters in terms of within- and between-cluster agreements. These 

indices examine if the classified projects are in a proper cluster. Using cluster validity helps 

avoid randomness in identifying clusters to provide better recognition of underlying structures 

within the dataset. Since fuzzy cluster analysis is one of unsupervised learning techniques, which 

concentrates more on exploration of data structures, it does not require any comprehensive 

validation processes (Ross 2010). The determination of the optimal number of clusters, thus, 

often depends on subjective judgements of the analyst (Elwood 2014). The following section 

exemplifies the proposed approach in detail though discussing an illustrative example of 

selecting delivery methods in highway construction projects.   

 

APPLICATION 

This section provides an illustrative example of applying fuzzy cluster analysis to determine the 

underlying clusters of highway construction projects based on project characteristics, cost 

performance, and project complexity and risks associated with D-B-B and D-B delivery 

methods. All analyses were conducted using an R programming environment with multiple 

relevant clustering packages. As shown in Figure 1, data preparation via sampling and 

standardizing processes was presented first before illustrating the three-step procedure of fuzzy 

cluster analysis.  

 

Data Sampling  
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This study utilized an empirical construction dataset of 254 highway projects collected from 28 

state DOTs. More information of the data collection process and analysis results can be found 

from FHWA (2018). Collected projects consisted of various characteristics, including facility 

type, project type, complexity rating, cost performance, project delivery methods, and risk rating. 

Initially, the collected dataset had 291 projects, but 37 projects were eliminated due to missing 

data and extreme outliers. Fuzzy cluster analysis is critically influenced by outliers (Kruse et al. 

2007). Thus, identified outliers from the dataset were removed. Prior to conducting cluster 

analysis, selection of major input variables was required. Five main project characteristics, 

including facility type, project type, complexity, risk profiles, and delivery types, and project 

cost performance were selected from the survey instruments. Each project characteristic has a 

particular number of sub-categories as shown in Table 1. Accordingly, 17 variables were used as 

the features of the subsequent clustering process, consisting of 16 sub-categories from the five 

selected project characteristics and the project cost growth. In addition, project delivery (D-B-B 

and D-B) was used as a control variable in this analysis.  

 

Table 1. Selected features of the fuzzy clustering process (m = 17) 

Facility 
Type  

(m1 = 5) 

Project Type  
(m2 = 3) 

Project 
Complexity  

(m3 = 1) 

Risk  
(m4 = 7) 

Cost 
Performance  

(m5 = 1) 

Road New 
construction Complexity Complexity Risks Cost growth 

Bridge Reconstruction  Quality Risks  
Drainage Other  Constructability Risks  

ITS*   Construction Risks  

Other   Utility and right-of-way 
Risks  

   Management Risks  
   Environmental Risks  

Note. *ITS: intelligent transportation system 
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Facility Type 

This variable consists of five sub-facility types: road, bridge, drainage, and intelligent 

transportation system (ITS) based on approximate percentages of the total project cost. The range 

of each type is from 0 to 100%. For example, a highway project might consist of a scope that is 

80% road, 10% bridge, and 10% ITS; the total should be always 100%. Facility type contains 

continuous data and provides five input variables. 

 

Project Type 

This variable includes three sub-project types: new construction, and reconstruction based on 

approximate percentages of the total project cost. Similar to facility type, the range of each type 

is from 0 to 100%, and it follows the continuous data type. For instance, a highway project might 

have two-thirds of new construction and one-third of resurfacing. Project type provides three 

input variables. 

 

Project Complexity 

This variable is rated based on a 3-point ordinal scale. First, the “most complex” projects include 

those that are new highways and major relocations, new interchanges, capacity adding and major 

widening, major reconstruction, require congestion management studies, and have complex 

environmental assessment or environmental impact statements. Second, the “moderately 

complex” projects include those that are minor roadway relocations, non-complex bridge 

replacements with minor roadway approach work, and non-complex environmental assessment 

required. Third, the “non-complex” projects include those that are maintenance betterment 
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projects, overlay projects with simple widening, little or no utility coordination, non-complex 

enhancement projects without new bridges, and categorical exclusion. 

 

Project Risk 

This variable consists of thirty-one project risks rated with a 5-point ordinal scale as shown in 

Figure 2, which represents five potential degrees of risk impacts (very low, low, moderate, high, 

and very high) on cost performance as known by the project team before the beginning of the 

project to denote the project’s level of riskiness. Because of a large number of project risks, it is 

not sufficient to use them all for cluster analysis. Therefore, this study observed seven risk 

factors as the final result of using exploratory factor analysis (EFA). Since the discussion of the 

EFA process is beyond the scope of this study, details can be found in Bypaneni (2017). The 

resulting seven risk factors from EFA were: 

• Risk factor 1, “complexity risk”, consists of five risks: project complexity, uncertainty in 

geotechnical investigation, legal challenges, and changes in law, intergovernmental 

agreements and jurisdiction, and difficulty in obtaining other agencies.  

• Risk factor 2, “quality risk”, consists of two risks: construction quality control and 

quality assessment process and design quality assurance.  

• Risk factor 3, “constructability risk”, consists of two risks: delays in procuring critical 

materials, labor, and specialized equipment and significant increase in material, labor and 

equipment cost.  

• Risk factor 4, “construction risk”, consists of two risks: work zone traffic control and 

construction sequencing, staging, and phasing.  

• Risk factor 5, “utility and right-of-way (ROW) risk”, consists of three risks: unexpected 

utility encounter, delays in completing utility agreements, and delays in ROW process.  

• Risk factor 6, “management risk”, consists of three risks: staff experience and 

availability, project and program management issues, and conformance with regulations, 

guidelines, and design criteria.  
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• Risk factor 7, “environmental risk”, consists of two risks: challenges to obtain 

appropriate environmental documentation and environmental impacts. There are seven 

input variables from risk factors. 

 

 

Figure 2. Example of data collection form 

 

Cost Performance 

Cost performance consists of various construction cost data, such as engineer’s estimate, contract 

award, and final cost. The final cost is equal to the contract award plus costs of all change orders. 

To represent the cost performance variable, this study used cost growth, which is the overall 

performance at project completion, calculated from the project cost data using Eq. (5). 

 

 Cost Growth (%) = (Final Cost – Contract Award)(100%)/(Contract Award)     (5) 
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Table 2 provides descriptive statistics of the cost growth variable. Cost growth values 

were divided into five separate qualitative groups of “saving”, “none”, “low”, “medium”, and 

“high.”  These five groups are supported by cost-performance studies in the construction 

literature (Chen et al. 2016; Love et al. 2013; Sullivan et al. 2017). The majority of the cost 

growth values fall within the range from -1% to 5%.  

 

Table 2. Descriptive statistics of cost performance (n = 254) 

Cost Growth 
Group 

Size (n) Range 
(%) 

Mean 
(%) 

Standard 
Deviation 

Saving 48 -10 to -1 -4.43 0.029 
None 60 -1 to 1 0.11 0.004 
Low 70 1 to 5 2.98 0.012 

Medium 36 5 to 10 7.02 0.011 
High 40 10 to 20 15.12 0.038 

 

Data Standardization 

The collected FHWA data with 17 selected variables were standardized prior to conducting 

fuzzy cluster analysis because the selected variables had different types of measuring unit. To 

assess the similarity of two projects, fuzzy cluster analysis calculates the Euclidean distance 

between them, which is a geometric measure of closeness between data points (Kassambara 

2017). The value of this distance is closely related to the measuring scale of selected variables 

and influences the shape of the clusters. Thus, there should be a unified scale within the dataset 

to avoid impacts of dissimilar measures; for instance, there is no valid comparison between 

variables “project type” and “risk rating”. Within the domain of fuzzy cluster analysis, ranging is 

one of the recommended methods to standardize data based on the max and min values of the 

input variables (Elwood 2014; Kassambara 2017; Kruse 2007). The ranging method was 

conducted separately for each variable. In other words, the data standardization of “facility type” 
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did not affect the standardization of “project type”, “complexity”, or “risk factor”. Each variable 

was treated specifically based on its attribute sample and own range to preserve the relationships 

among data points, according to previous studies (Elwood and Corotis 2015). This process 

ensures that the numerical and categorical variables were properly standardized to use for fuzzy 

cluster analysis. The standardization process resulted in 17 standardized variables with the same 

scale from 0 to 1.  

 

Assessment of Data Clustering Tendency 

Investigation of clustering tendency assessment of the FHWA dataset, with two methods: 

Hopkins statistic and VAT, confirmed that this highway dataset contained several latent groups 

in terms of cost growth. The Hopkins method used in this study examined two hypotheses:  

• Null hypothesis: the FHWA dataset is uniformly distributed which indicates that no 

distinct grouping of cost performance exists in this dataset. 

• Alternative hypothesis: the FHWA dataset is not uniformly distributed which indicates 

that potentially distinct groupings of cost performance exist in this dataset. 

Using Eq. (1) with R functions provided a Hopkins statistic value of 0.274 that was far 

below the threshold of 0.5; as a result, the FHWA dataset was clusterable (Kassambara 2017). 

Based on the VAT method, the clustering tendency was visually assessed by graphically 

counting the amount of dark squares along the diagonal of a dissimilarity matrix in the VAT 

image (Figure 3). It is noted that the red squares in Figure 3 illustrate data with high similarity 

(values close to 0). The purple squares illustrate data with low similarity (values away from 0). 

The dissimilarity matrix image in this figure clearly shows the different areas of similar and 

dissimilar projects indicating that the data can be clustered. Accordingly, the VAT method was 
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also in line with the Hopkins method to confirm that there was a substantial clustering structure 

in the FHWA dataset. This implies that there is a variation in terms of cost performance between 

the use of D-B-B and D-B in highway construction projects. 
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Figure 3. Visual assessment of cluster tendency (VAT) algorithm 

 

Determination of Number of Clusters 

When using FCM, an individual project is assigned a degree of membership in each cluster based 

on the similarity of cost performance. Accordingly, a project can belong to multiple clusters, 

which shows the overlapping characteristic of fuzzy clustering groups. The determination of the 

optimal number of clusters, thus, turns into a complicated procedure. If the number of clusters is 
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too small, the distance between clusters becomes wider (i.e., the variation between clusters is 

high); on the other hand, if this number is too large, the distance between projects becomes 

smaller (i.e., the clustering result is less informative).  

To identify an appropriate number of common groups of cost growth within the FHWA 

dataset, this study used four methods, including visualization-based (Elbow and Silhouette 

methods) and statistics-based (gap statistics and NbClust methods). All four methods utilized the 

FCM algorithm to compute and compare possible alternatives of the optimal number of clusters 

that could be extracted from the FHWA dataset, ranging from two to fourteen clusters. Each 

alternative contains a membership matrix U and a vector of cluster centers vij of 254 highway 

projects calculated based on Eq. (2). To compare the alternatives, the four methods iteratively 

computed and minimized the optimization function Jm of each alternative based on Eq. (3). The 

computing process in this study was handled by R functions defined for fuzzy cluster analysis.  

Based on visualization, the Elbow method selects a number of clusters from which 

adding another cluster does not increase the total within sum of squares (WSS), measured by the 

total distances between assigned projects. The Silhouette method evaluates how well each 

project lies within the associated cluster. The optimal number of clusters is the one that achieves 

the highest value of the average silhouette. Based on statistics, the gap statistics method produces 

the optimal number of clusters by comparisons of the total within intra-cluster variation for 

different numbers of clusters with statistically anticipated values. The maximum gap statistic 

value provides the optimal number of clusters. The NbClust method examines more than thirty 

clustering indices to select the optimal number of clusters based upon the majority rule. Table 3 

summaries detailed information and selection criteria of the four methods to identify the most 

optimal number of clusters. The results from the four methods indicated that the range of the 
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potential numbers of clusters was from two to fourteen clusters. Among the recommended 

numbers, the option of seven clusters produced the lowest WSS (248.48) in the Elbow method, 

the highest average silhouette value of 0.25, the highest gap statistic value of 0.59, and the 

majority of clustering indices (n=8). Thus, the number of seven clusters was determined as the 

most optimal number of clusters that could be extracted from the given dataset. Accordingly, 

seven clusters were defined as the input for the number of cluster centers to the FCM algorithm. 

 

Table 3. Determination of the optimal number of clusters for cost performance 

Method Elbow Silhouette Gap Statistics NbClust 
Mechanism Determines the 

total within sum 
of square (WSS) 
which measures 
the clustering 
compactness 

Examines how 
well data points 

are clustered 

Compares WSS 
to assess if 

clustering results 
are far away 

from the uniform 
distribution   

A pre-defined 
function in R 
programming 

which provides 
30 indices for 
identifying the 

optimal number 
of clusters 

Advantage Easy to use Can be used for 
any clustering 

technique 

Can be used for 
any clustering 

technique 

Highly reliable 

Disadvantage Only for c-
means clustering 

technique 

Only for global 
clustering 
attributes 

Complex 
algorithm 

Only used with 
R packages 

Selection 
Criteria 

Minimum value 
of WSS 

High average 
silhouette value 

Maximum value 
of the gap 
statistics 

Majority rule for 
30 clustering 

indices 
 

It is noted that the FCM algorithm first identified seven cluster centers, and then assigned 

data points to the appropriate clusters based on the closeness of the data points to the cluster 

centers by calculating the distances between them. Essentially, this algorithm concurrently 

minimized the distance between assigned projects within a cluster and maximized the distance 

between seven clusters based on similarity and dissimilarity in five selected features: facility 
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type, project type, project complexity, project risk, and cost growth. As a result of using FCM, 

seven clusters experienced overlapping based on degrees of memberships of each project to 

specific clusters (Figure 4). It is important to note that Figure 4 shows the separation of the seven 

clusters grouped from 254 highway projects associated with a 2-D illustration of a 17-D space. A 

detailed process of using FCM to minimize the within-cluster distances and maximize the 

between-cluster distances is provided in Ross (2010). After clustering, the partitioned projects 

were hardened into crisp clustering groups for subsequent humanistic judgements. This process 

is called defuzzification, where projects obtained the maximum membership value within a 

cluster would be assigned to that cluster. This helps reduce fuzzy information and enhance the 

degree of interpretation of fuzzy-based results. 
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Figure 4. Graphical demonstration of seven clusters  

Table 4 summarizes the classified seven clusters associated with dominant features. 

According to fuzzy set theory, the selected features were assigned to each cluster based on their 

memberships within clusters (Wu et al. 2010). The cut-off point of 20% was used to determine 

representatives of each cluster. Cluster 1 represents saving-low cost growth, moderately 

complex, reconstruction road projects with very low to low risk impacts. Cluster 2 represents low 

cost growth, moderately complex, new construction bridge projects with very low to low risk 

impacts. Cluster 3 represents medium-high cost growth, the most complex, new construction, 
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road projects with very low to low risk impacts. Cluster 4 represents saving-low cost growth, the 

most complex, new construction road projects with low risk impacts. Cluster 5 represents low 

cost growth, moderately complex, road projects with other project type and very low risk 

impacts. Cluster 6 represents none cost growth, moderately complex, reconstruction-bridge 

projects with very low risk impacts. Cluster 7 represents none to low cost growth, the most 

complex, new construction road or bridge projects with low to medium risk impacts.  

 

Table 4. Characteristics of seven classified clusters of cost performance (n=254) 

Characteristics Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 
Size (n) 52 34 39 34 23 39 33 
Delivery 
Method D-B-B D-B D-B-B D-B D-B D-B-B or 

D-B D-B 

Cost Growth Saving-
Low Low Medium-

High 
Saving-

Low Low None None-
Low 

Dominant 
Facility Type Road Bridge Road Road Road Bridge Road or 

Bridge 
Dominant 

Project Type* Recon New New New Other Recon New 

Complexity Moderate Moderate Most Most Moderate Moderate Most 
RF 1** – 

Complexity 
Risks 

VL*** VL L L VL VL L 

RF 2 – Quality 
Risks VL VL VL L VL VL L 

RF 3 – 
Constructability 

Risks 
VL VL VL VL VL VL L 

RF 4 – 
Construction 

Risks 
L L L L L VL M 

RF 5 – Utility 
and ROW Risks VL VL L L VL VL L 

RF 6 – 
Management 

Risks 
VL VL VL VL VL VL L 

RF7 – 
Environmental 

Risks 
L L L L VL VL M 

Note. *Reconstruction and new construction; **RF: Risk Factor; *** VL – very low; L – Low; M – medium; H 
– high; VH – very high 
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Cluster Validity 

Cluster validation refers to assessing of the goodness of clustering results. Specifically, the 

decency of determination of the optimal number of clusters is important to ensure the reliability 

of clustered results (Elwood 2014). This study employed four common cluster validity indices in 

the domain of fuzzy cluster analysis as shown in Table 5. The partition entropy index should be 

minimized while the remaining indices (partition coefficient, silhouette width, and Dunn index) 

should be maximized to have more accurate clustering results (Říhová and Makhalova 2017). 

The results range from “fair” to “good”, which satisfies the validation of cluster analysis 

(Kassambara 2017; Pal and Bezdek 1995; Wu and Yang 2005). The cluster validity indices are 

used to avoid finding clusters in noise, select an appropriate clustering algorithm, and compare 

the identified clusters. This study employed the four cluster validity indices to check if the 

projects in the same cluster were similar as much as possible and the projects in different clusters 

were highly distinct. In addition, the clusters generated in this study reasonably match with labels 

of delivery methods (D-B-B and D-B) and cost growth. Therefore, the “fair” and “good” results 

indicate that the seven identified clusters truly satisfy the requirement of cluster validity. It is 

more important that the result of seven clusters can be meaningfully labeled in terms of project 

delivery methods (i.e., D-B-B and D-B) to produce subsequent comparisons. This yields that 

fuzzy cluster analysis can be used to classify different groups of cost performance of highway 

projects delivered by D-B-B and D-B.   
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Table 5. Cluster validity indices 

Index Partition 
Entropy 

Partition 
Coefficient 

Silhouette 
coefficient 

Dunn Index 

Definition 
Represents the 

fuzziness in 
clusters  

Measures 
overlaps among 

clusters 

Estimates the 
average distance 
between clusters 
and data points 
within a cluster 

Measures 
compactness of 

clusters and 
distance between 

clusters 

Advantage Easy to use Highly reliable  Easy to use 
Can be used for 
any clustering 

algorithm 

Disadvantage Sensitive to 
outliers 

Complex 
algorithm 

Sometime 
ambiguous 

Computational 
effort 

Decision 
Criteria 

(from 0 to 1) 

0 – Excellent 
0 to 0.5 – Good  
0.5 to 1 – Fair  

1 – Bad  

0 – Bad 
0 to 0.5 – Fair  

0.5 to 1 – Good  
1 – Excellent 

0 – Bad 
0 to 0.5 – Fair  

0.5 to 1 – Good  
1 – Excellent 

0 – Bad 
0 to 0.5 – Fair  

0.5 to 1 – Good  
1 – Excellent 

Validity 
Result 0.46 0.11 0.58 0.11 

 

DISCUSSION 

Using fuzzy cluster analysis, this study addressed the research question 1 by identifying seven 

groupings of cost performance based on the degree of similarity in project characteristics, project 

complexity, project risks, and the use of different delivery methods as summarized in Table 4. 

With different selected project characteristics, the majority of the common groups of cost growth 

in the collected highway projects scattered to “none” and “low” while one group represented the 

“medium to high” cost growth. Based on these identified common groupings, this study 

concentrated on discussion of differences between D-B-B and D-B highway projects.  

Discussion of pairwise comparisons of cost performance in D-B-B and D-B highway 

projects helps address research questions 2 and 3. The results of this study imply that D-B 

generally outperformed D-B-B in terms of cost performance, which is consistent with previous 

studies (CII 2018; Goodrum et al. 2011; Hale et al. 2009; Shrestha 2007). For instance, Shrestha 
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et al. (2007) investigated empirical transportation data from Texas DOT to conclude that D-B 

projects achieved superior cost performance than D-B-B projects. However, results of the present 

study are not in line with Minchin et al. (2013), which compared sixty highway and bridge 

projects from Florida DOT and stated that using D-B-B resulted in better cost performance than 

using D-B. A possible reason is that this study takes into account uncertainty impacts of project 

complexity and risks while Minchin et al. (2013) did not include these inherent factors. 

According to Table 4, in the same level of project complexity, D-B bridge projects showed less 

cost growth and lower risk impacts on cost performance than D-B road projects. On the other 

hand, with the use of D-B-B, road-typed projects, which suffered higher cost impacts of seven 

risk factors, had higher cost growth than bridge-typed projects. The following sections 

demonstrate detailed comparisons of D-B-B and D-B in road, bridge, new construction, and 

reconstruction projects based upon the results of fuzzy cluster analysis. 

 

Road Projects 

Table 4 shows that road projects delivered by D-B performed better than D-B-B in terms of cost 

growth. This result is in line with Shrestha et al. (2012) and Tran et al. (2018). According to 

cluster 1, D-B-B showed a low cost growth (mean = 5%) in reconstruction road projects with 

low complexity and very low risk impacts. On the other hand, D-B in cluster 4 showed a low 

cost growth (mean = 2%) in new construction road projects with high complexity and risk 

impacts. In new construction roads (clusters 3, 4, and 7), projects procured by D-B showed a 

lower cost growth than projects delivered by D-B-B even though D-B projects had higher 

complexity and risk impacts. For instance, in cluster 7, D-B showed virtually no cost growth 

(mean = 0%) in new construction road projects despite having a higher level of risk impacts on 
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cost performance compared to cluster 3 where D-B-B showed a high cost growth (mean = 15%) 

in the same project type. 

 

Bridge Projects 

D-B-B reconstruction bridge projects achieved a lower cost growth than D-B delivered new 

construction bridge projects according to clusters 2, 6, and 7 (Table 4). This is not in line with 

several project delivery studies, such as Touran et al. (2011) and Sullivan et al. (2017). In their 

study analyzing nine case study transit projects in the U.S., Touran et al. (2011) descriptively 

concluded that D-B produces more cost savings than D-B-B; additionally, no statistical inference 

was found in their study. According to the comprehensive literature review study of Sullivan et 

al. (2017), D-B-B showed a higher cost growth (mean = 5.1%) compared to D-B (mean = 2.8%) 

in an investigation of 2,919 construction projects. These studies, however, did not consider 

project complexity and risks in the comparison between D-B-B and D-B. This study, on the other 

hand, takes into account these two attributes in the clustering process. Since these two project 

attributes contribute significantly to the variation of the cost performance (Touran et al. 2009a; 

Tran et al. 2016), this may explain the unexpected comparison results between the two delivery 

methods. For example, the D-B-B bridge projects in cluster 6 were reconstructed with a low 

level of complexity and very low risk impacts, making the corresponding result of very low cost 

growth (mean = 0%) appear to be logical.  

 

Project Complexity and Risks 

In highway projects with a higher level of complexity and greater risk exposure, this study 

generally found that D-B outperformed D-B-B. From clusters 4 and 7, D-B showed a low cost 
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growth (ranging from 0% to 5%) in highway projects characterized with the highest level of 

complexity and risk impacts within the FHWA dataset. In addition, the construction and 

environmental risk factors had a high impact on D-B project cost performance. On the other 

hand, D-B-B, in cluster 3, produced a high cost growth (mean = 15%) in highway projects with 

the same level of complexity and even lower levels of risk impacts. This finding supports the use 

of D-B in complex highway projects and is in line with Park and Kwak (2017) in which D-B is 

recommended to use for transit projects that have a high level of complexity and involve a large 

number of project risks.  

 

CONCLUSIONS  

This study investigates the similarity in cost performance between highway projects based on 

project characteristics, project complexity, and delivery risks to identify the pattern of project 

performance delivered under D-B-B and D-B. Since the decision-making process of delivery 

selection depends upon a combination of quantitative and qualitative variables, this study 

implements fuzzy set theory in the context of fuzzy cluster analysis, which is an effective 

approach for simultaneously considering quantitative and qualitative variables. The proposed 

approach provides the utilization of historical project data available in construction to support 

project delivery decision-making.  

The findings of this study successfully addressed the three research questions. For the 

research question 1, as one of the first attempts to implement fuzzy cluster analysis in the domain 

of delivery selection, this study identified seven common groups of cost performance based on 

facility type, project type, project complexity, and delivery risks under the use of D-B-B and D-

B. For the research questions 2 and 3, the pairwise comparisons between D-B-B and D-B derived 
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from the seven identified clusters provide insights into cost performance of these two delivery 

methods in the highway sector. D-B-B produces a large variation of cost growth (ranging from 

0% to 20%) in highway projects. Specifically, it produces low cost growth (mean = 5%) for 

cluster 1, but medium to high cost growth (mean = 15%) for cluster 3. On the other hand, D-B 

shows a relatively small variation of cost growth (ranging from -1% to 5%) in highway projects. 

Particularly, it produces low cost growth (mean = 2.25%) for clusters 2, 4, 5, and 7. For cluster 6, 

there is no difference in cost growth between D-B-B and D-B. This study also found that D-B 

typically outperformed D-B-B in new construction, complex, and highly risk-involved projects 

whereas D-B-B was a better choice in certain reconstruction projects in the highway sector. 

 

Research Contributions 

This study contributes to the project delivery body of knowledge by identifying seven clusters of 

highway projects that share high commonalities in project characteristics, project complexity, 

delivery risks, and cost performance associated with the use of D-B-B and D-B. The proposed 

application is a rigorous solution for measuring a combination of quantitative and qualitative 

variables to support decision-making in project delivery selection. This application can be 

applied to other decision scenarios in construction that require both quantitative and qualitative 

inputs. Within the decision scenario context of delivery method selection, the proposed 

approach, fuzzy cluster analysis, recognized distinct clusters that enables the pairwise 

comparisons between them. With the common groups of cost performance identified based on D-

B-B and D-B, this study confirms the applicability of fuzzy cluster analysis in the domain of 

project delivery selection.  
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To the construction industry, the seven identified clusters of similar highway projects 

help practitioners identify empirical trends of cost performance under the use of D-B-B and D-B. 

These common groupings of cost performance may aid DOT’s agencies in making initial project 

delivery decisions in the feasibility and planning phases of new highway projects where very 

little information was available. This study also provides different scenarios of comparing D-B-B 

and D-B in the highway sector based on facility type, project type, project complexity, delivery 

risks, and cost performance identified in seven clusters. The finding of this study provides a 

valuable decision aid because the decision maker can match and compare a new project’s inputs 

with the features of the identified clusters to determine an appropriate delivery method under 

different scenarios.  

 

Limitations and Recommendations for Future Research 

There are several limitations in this study. First, this study only conducted fuzzy cluster analysis 

for D-B-B and D-B projects because of the limited amount of CM/GC highway project data 

available. Future research may need to collect more completed CM/GC highway projects to 

overcome this limitation. The second limitation of this study is that only highway construction 

projects were considered. Different project types from the vertical sector or other infrastructure 

projects can benefit from similar analysis. Further, additional project attributes, including project 

size, procurement method, and payment method may be incorporated. Finally, this study did not 

concentrate on evaluating the extent to which the various input factors were linked with cost 

performance outcomes; rather, the intent of this exploratory study was to essentially identify 

different groupings of cost performance within highway projects delivered by D-B-B and D-B 

based on the degree of similarity of five particular project characteristics. Therefore, the varying 
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effects between selected project characteristics and cost performance were not examined, and 

this is considered an opportunity for future work. In addition, future studies may utilize 

additional applications of fuzzy set theory in the environment of supervised learning techniques, 

such as fuzzy logic, fuzzy inference system, and fuzzy pattern recognition, to develop a 

comprehensive decision-aid system for selection of delivery methods. 
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INTRODUCTION  

The construction industry contains a large amount of historical data that can be used to analyze 

potential patterns between project delivery methods, project performance, and various project 

attributes. Since there is no “one-size-fits-all” delivery method for construction projects, project 

delivery selection is a critical task in early pre-construction decision-making processes that relies 

on many criteria (Shrestha et al. 2012; Sullivan et al. 2017; Touran et al. 2009; Tran et al. 2013). 

Many delivery selection decision-aids have been proposed for decades to help select an 

appropriate delivery method from the traditional design-bid-build (D-B-B) to alternative delivery 

methods, such as design-build (D-B) and construction manager/general contractor (CM/GC). The 

previously developed decision-aids provide a robust process to quantify historical project data 

and investigate project performance (e.g., cost, schedule, and quality) associated with different 

delivery methods (Tran et al. 2015).  

Project delivery selection often involves a variety of qualitative data in terms of 

subjective judgements and opinions of experts in addition to quantifiable data (Douglas et al. 

2016). For instance, risk assessment and analysis play a pivotal role in determining an 

appropriate delivery method (Tran and Molenaar 2015). Current scientific and quantitative 

approaches enhance statistical probabilities to robustly assess project performance based on 

historical data. For example, several researchers have developed decision-aided models based on 

probabilistic approaches (Molenaar and Songer 1998; Tran and Molenaar 2015) for selecting an 

appropriate delivery method. However, there still exists a challenge in the decision scenarios 

where a combination of quantitative (i.e. numeric) and qualitative (i.e. categorical) inputs should 

be sufficiently accommodated (El Asmar et al. 2013). The currently deployed probabilistic 

approaches are not an ideal means to address the uncertainty encountered in qualitative data 
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inputs. Fuzzy set theory, on the other hand, is a decision-aid tool that is efficient in modeling 

subjective expressions and investigating a combination of quantitative and qualitative data (Ross 

2010). Few studies have attempted to apply statistical techniques with fuzzy sets to develop 

sophisticated hybrid models that are specifically suited to accommodate both quantitative and 

qualitative inputs in delivery selection (Mafakheri et al. 2007; Mostafavi and Karamouz 2010).  

The objective of this study was to investigate the applicability of fuzzy pattern 

recognition for delivery selection for highway design and construction projects. Specifically, this 

study aimed at investigating how to recognize potential delivery methods associated with cost 

growth for new highway projects by using common delivery patterns built upon historical data. 

To achieve the research objective, this study has attempted to complete the following research 

tasks: 

1. Select and build fuzzy membership functions of facility type, project type, project 

complexity, delivery risk, and cost performance under the use of different delivery 

methods (e.g., D-B-B and D-B); 

2. Develop a fuzzy rule-based inference system based on particular project attributes and a 

collected empirical highway dataset using R programming; 

3. Demonstrate the process of fuzzy pattern recognition for highway construction projects 

through a case example; and 

4. Discuss the applicability of fuzzy pattern recognition in the context of fuzzy inference 

system in construction through validation results of the proposed approach in this study 

compared with other disciplines. 
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BACKGROUND 

This section provides a literature review of four main relevant areas to this study: (1) an 

overview of decision-aid approaches in project delivery method selection; (2) the use of fuzzy 

sets in project delivery decision-making; (3) fuzzy pattern recognition; and (4) fuzzy inference 

system. 

 

Decision-Aid Approaches in Project Delivery Method Selection 

Although numerous decision-aids have been proposed to assist practitioners in project delivery 

method selections, these aids have traditionally been limited to either quantitative or qualitative 

approaches separately rather than in combination (Nguyen et al. 2020). For instance, Al Nahyan 

et al. (2018) proposed a decision-aid system to empirically rank delivery methods commonly 

used in mega projects based on qualitative variables, including project risks, project constraints, 

and opportunities of investments. Tran and Molenaar (2015) attempted to quantify the 

differences in project cost performance between project delivery methods with a risk-based 

approach. Qualitative approaches concentrate on identifying and investigating qualitative 

variables, such as levels of complexity, impacts of delivery risks, and owner’s satisfaction, which 

are decisive factors in construction project delivery method selection (Bypaneni and Tran 2018; 

Choi et al. 2019). In fact, the majority of project delivery method decision-making in the 

construction industry is based on subjective judgements of experts and guidelines from 

professional organizations regarding qualitative variables (Korkmaz et al. 2010). Quantitative 

approaches typically rely on probabilistic statistical models to evaluate different sets of project 

delivery method selection criteria (Tran and Molenaar 2015) as well as empirically comparing 

project delivery alternatives based on historical data (Sullivan et al. 2017). However, human-
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related bias in using quantitative approaches to deal with qualitative inputs (e.g., ratings of risk 

impacts and project complexity levels) is apparent and may cause uncertainty in findings. A gap 

in the existing body of knowledge of project delivery method decision-making is to investigate 

the applicability of statistical approaches that are specifically suited to simultaneously 

accommodate both quantitative and qualitative variable inputs. 

 

Fuzzy Sets in Project Delivery Decision-Making 

Construction research has attempted to investigate fuzzy sets to support decision-making in 

project delivery selection with sophisticated and hybrid models, which may lead to difficulties in 

practically reproducing the research processes (Chan et al. 2009; Elbarkouky et al. 2016; Paek et 

al. 1992). Mostafavi and Karamouz (2010) presented a technical note discussing the use of a 

fuzzy approach to incorporating risk analysis in developing a project delivery selection model. 

However, the authors did not provide validation of the risk-based fuzzy model, which might 

question the applicability of this approach to the domain of project delivery selection. Khanzadi 

et al. (2016) developed a fuzzy Analytic Hierarchy Process (AHP) multi-criteria decision-making 

framework to evaluate delivery methods based on subjective judgements of a group of experts. 

This proposed AHP model mainly relies on weights and scores for input selection criteria. Using 

a dam and hydropower plant project to evaluate the applicability of the proposed model, the 

authors suggested using more sample projects to provide better validation of the model’s outputs 

(Khanzadi et al. 2016). To handle uncertainties in the project delivery selection process, Martin 

et al. (2017) established a forward normal cloud model based on fuzzy sets with a normal 

distribution membership function to represent preferences of decision makers. Validation of the 

fuzzy-based cloud model was confirmed by six construction professionals with an average 
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experience of 22 years. Al Nahyan et al. (2018) proposed a fuzzy logic model in selecting an 

appropriate delivery method for mega projects in the United Arab Emirates (UAE) with 127 

completed survey responses mainly focusing on risk assessments. Although Al Nahyan et al. 

(2018) employed fuzzy sets in project delivery decision-support systems by producing a decision 

matrix for project delivery selection, it falls short of providing an inference system to assist 

decision makers. In summary, the previous studies showed particular advantages of using fuzzy-

based approaches to better understanding project delivery decisions, modeling uncertainty, 

handling imprecise measurements, accommodating combinations of different types of variables, 

and providing computational flexibility.     

  

Fuzzy Pattern Recognition 

Fuzzy pattern recognition has been used in many engineering fields as a promising tool to 

accommodate the measurement of subjective and qualitative input data (Elwood 2014). Pattern 

recognition is a mathematical technique to determining and understanding potential latent 

structures in data by comparing them to known structures, which are established through 

classifications (Nagalakshmi and Jyothi 2013). Different from a typical classification process, 

such as cluster analysis, support vector machines, and k-nearest neighbor classifier, fuzzy pattern 

recognition aims at systematically classifying input data to one of known data patterns (Elwood 

2014). Fuzzy pattern recognition combines fuzzy sets to the recognition process to identify the 

most matching groups for inputs based on the mean and covariance of data features (Bezdek 

1999). This fuzzy-based classification is typically used in exploratory studies because of its 

ability to accommodate various combinations of different types of input variables based on 

similarities and dissimilarities (Viattchenin et al. 2013). Commonly, data classification has been 
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studied under probability theory with crisp sets of numbers (Hastie et al. 2009). Different from 

probability theory, where the frequency and likelihood of a datum in a class of number are 

indicated, fuzzy set theory demonstrates the similarity and dissimilarity of a datum to the class. 

Therefore, when classification involved uncertainties and imprecise information, the use of fuzzy 

sets is more appropriate than probability (Ross 2010).  

 

Fuzzy Inference System 

The algorithm of fuzzy pattern recognition is built upon a fuzzy inference system, where fuzzy 

set theory is used to map input data to possible output patterns (Hoppner et al. 1999). 

Specifically, a set of unlabeled (or unknown class) data as inputs are reasoned via a definite set 

of rule-based inference engines to recognize possible patterns for them as outputs. The fuzzy 

system is appropriate for quantifying uncertainties involving human intuitive thinking and 

opinions because it models ambiguity in human cognitive process and deal with imprecise 

information (Zeng and Starzyk 2018). One of critical elements in establishing a fuzzy inference 

system is to generate knowledge bases, which contain a set of fuzzy “If-Then” rules. Because the 

set of rules can be formulated by experts or extracted from historical data, fuzzy systems 

practically provide reasoning rules observed from empirical information. The input data sets 

have to be fuzzified before proceeding through any inference engines. It is noted that the use of 

fuzzy systems in the construction industry is mainly related to triangular and trapezoidal 

membership functions (Fayek and Oduba 2005).  
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RESEARCH MOTIVATION  

Current project delivery selection predominantly depends on different combinations of 

quantitative and qualitative inputs (Khanzadi et al. 2016; Mafakheri et al. 2007). However, 

current statistical approaches face many obstacles in investigating qualitative selection criteria 

(Al Nahyan et al. 2018; Chen et al. 2011), which creates a gap in project delivery selection (Chan 

et al. 2009). Fuzzy sets in the context of fuzzy pattern recognition can support decision makers in 

project delivery selection by providing an appropriate means to handle different types of 

variables, approximate missing and imprecise information, and model uncertainty in the 

selection process. The fuzzy inference system can be adjusted with a relative ease by modifying 

either the overlapping membership functions or the fuzzy rule base, which can help with 

incorporating new knowledge (Elwood and Corotis 2015). By providing rule-based classifiers 

with the benefit of membership functions and geometric interpretability, fuzzy pattern 

recognition is appropriate in modeling subjective information and uncertainty in project delivery 

selection. For instance, the fuzzy inference system can be used as a deterministic approach to 

quantify qualitative independent variables (Fayek and Oduba 2005). However, no project-

delivery-selection-based study has investigated the use of fuzzy pattern recognition to identify 

and recognize the potential common patterns of delivery methods used in highway construction. 

This study bridges the literature gap of project delivery selection by demonstrating and 

validating the application of fuzzy pattern recognition in identifying cost performance associated 

with two main project delivery methods used in the highway construction industry: D-B-B and 

D-B. 

Decision-making practices for highway project delivery method selection are oftentimes 

subjective and have historically depended upon the experience of the agency with respect to the 
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selection criteria that are considered. These criteria are often formed based on a combination of 

qualitative and quantitative variables. Common quantitative variables consist of project type, 

facility type, and project performance. Project type is an element factor to selecting possible 

delivery methods in highway projects (Tran et al. 2018) while project performance, such as cost 

growth, schedule growth, and quality, has been extensively used to distinguish and prioritize 

project delivery alternatives (Douglas et al. 2016; Sullivan et al. 2017). Common qualitative 

variables involve levels of project complexity and impact of delivery risks. The intuition of 

project complexity and ratings of delivery risk impacts greatly contribute to selection of an 

appropriate delivery methods in highway projects (Al Nahyan et al. 2018; Tran and Molenaar 

2015). Since each construction project is unique and has a distinct set of associated quantitative 

and qualitative variables, the identification, collection, and investigation of common selection 

criteria of project delivery method selection are challenging. The use of fuzzy pattern recognition 

can avoid biases of subjective decisions made by the project team and accommodate different 

combinations of quantitative and qualitative variables. 

 

RESEARCH QUESTIONS AND METHODOLOGY 

This study attempts to investigate the following research question: How does fuzzy pattern 

recognition implement project delivery selection in the highway sector? To respond to this 

research question, the research methodology of this study includes two main phases: (1) 

development of a fuzzy rule-based inference system based on historical project data (i.e., training 

the data) and (2) verification and validation of the proposed fuzzy pattern recognition process 

(i.e., testing the system). Figure 1 shows an overview of the methodology. Specifically, this 

study first conducted a comprehensive literature review of delivery method selection and fuzzy-
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based applications in this domain to identify the research gaps. Then, a fuzzy rule-based 

inference system was developed based on six project attributes, including facility type, project 

type, project complexity, delivery risk, delivery method, and cost growth, in an R programming 

environment. Subsequently, a case example was performed to illustrate the pattern recognition 

capability of the system (i.e., delivery methods and cost growth) for a new highway project based 

on its project attributes. Finally, the study presents the results of the case example in detail and 

discusses the validation process.  

 

Phase 1 – Development of Fuzzy Rule-based Inference System 
based on Historic Data

Project Delivery Methods
Design-Bid-Build (D-B-B)

Design-Build (D-B)

Data Sampling 
n = 254 highway projects 

Project Attributes
Facility type
Project type

Project complexity
Delivery risk
Cost growth  

Data Standardization
Ranging method

0 1

1

µ(x) 

x

F(x) = (µ, σ)

Fuzzy Membership Function
Gaussian type F(x)
Cluster centroid (µ)
Spread of cluster (σ)

Recognized Patterns
Delivery methods 
(D-B-B and D-B)

Cost growth
(-10% to 20%)

Phase 2 – Verification and Validation of  Fuzzy 
Pattern Recognition Process

Cluster 
1

Cluster 
2

Cluster 
3

Cluster 
n

...

System Verification  
Inputs from a new highway 

construction project

Data Classification
Fuzzy cluster analysis

µ(1) µ(2) 

µ(3) 

µ(n)

Fuzzy Rule-based Inference System
Decision rules for classifiers 

“If-Then” rule
Fuzzy inferential engine 
“Max-Min” inference

System Validation
K-fold cross-validation method

 

Figure 1. Research methodology 

 

PHASE 1 – DEVELOPMENT OF FUZZY RULE-BASED INFERENCE SYSTEM  

The core function of fuzzy pattern recognition refers to the use of a fuzzy inference system, 

which is established based on experience of experts or rules extracting from reasoning 

approximations. This study employed the “If-Then” rule-base in reasoning and recognizing a 

matching pattern for inputs developed by Mamdani and Assilian (1975). There are three main 

steps of establishing a fuzzy Mamdani inference system, including (1) fuzzification, (2) rule-
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based inference, and (3) defuzzification (Chiu 1997). First, fuzzy membership functions, which 

convert raw inputs to fuzzy values, are developed. Second, fuzzy values are aggregated with the 

fuzzy Mamdani rule-base inference to assign data to appropriate groups. Finally, assigned fuzzy 

data are converted back to crisp values. As prerequisites of the pattern recognition technique, 

data standardization and classification need to be executed before utilizing the main fuzzy 

inference system (Duda et al. 2001). To demonstrate the use of fuzzy-based techniques in this 

study, custom fuzzy-based programming functions were coded, developed, and employed in R 

programming environment based on Garibaldi et al. (2017), Knott et al. (2013), and Riza et al. 

(2014). 

 

Data Sampling  

This study utilized the empirical database of 291 completed highway construction projects 

collected from 28 state DOTs. The collected dataset contained empirical information regarding 

facility type, project type, delivery methods, procurement methods, payment methods, overall 

performance (i.e., cost, schedule, and quality), and risk profiles. Three fundamental project 

delivery methods including D-B-B, D-B, and CM/GC were included in the survey. However, it is 

noted that there was a limited number of CM/GC projects in the dataset because of CM/GC was 

still relatively new to many state DOTs at the time of data collection. Project cost data includes 

the engineer’s estimate, contract award, and final cost of each collected project. Missing data and 

outliers critically influence the execution of fuzzy pattern recognition (Kruse et al. 2007). 

Therefore, boxplots and the missingness map of 291 collected highway projects were examined 

using R programming descriptive statistics packages in terms of project type, facility type, 

project complexity, delivery risks, and cost growth. Accordingly, 37 projects were identified 
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with extreme outliers, either greater than 20% or less than -10% of cost growth. After 

eliminating missing data and extreme outliers, the final dataset (dataset P herein) included 254 

projects with six project attributes: facility type, project type, project complexity, delivery risk, 

delivery methods, and cost performance. It is important to note there were only 27 CM/GC 

projects out of 254 projects (10.6%). As a result, CM/GC is not a dominant delivery method in 

this sample. More discussion on project delivery patterns can be found at Nguyen et al. (2020).  

The facility type variable was measured by estimated percentages of the total project cost 

ranging from 0 to 100% and consisted of five sub-categories: road, bridge, drainage, intelligent 

transportation system (ITS), and other facility types. ITS is an advanced system which aims to 

improve traffic efficiency, safety, and mobility by providing innovative transportation services, 

such as sensing and control technologies, local real-time traffic information, and transportation 

network analysis (Zhankaziev et al. 2018). The other facility types include temporary traffic 

controls, beacons, pedestrian trails, park-and-ride, retaining walls, tolling structures, and bridge 

coatings. The project type was measured using three sub-categories: new construction, 

reconstruction, and other project types. The other project types include guardrail repair safety 

maintenance, bridge replacement, stream restoration, road widening, and new sidewalk. The 

level of project complexity was measured based on a 3-point ordinal scale and defined by “most 

complex”, “moderately complex”, and “non-complex”. The “most complex” group includes 

major scopes of work, such as new highways, new interchanges, capacity adding/major 

widening, and large reconstruction projects, and requires congestion management studies as well 

as the statement of environmental impacts. The “moderately complex” group includes 

reconstruction projects which do not add capacity, such as minor roadway relocations, non-

complex bridge replacements, and requires minor environment assessment or categorical 
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exclusion. The “non-complex” group includes maintenance betterment, overlay projects, simple 

widening without right-of-way and little or no utility coordination, non-complex enhancement 

projects without new bridges, and categorical exclusion.  

The risk profile consists of thirty-one project risks rated with a 5-point ordinal scale, 

which represents five potential degrees of risk impacts (i.e., very low, low, moderate, high, and 

very high) on cost performance. This study utilized the result of exploratory factor analysis 

(EFA) from Bypaneni (2017) and Mathew et al. (2018) to reduce 31 risk factors to seven 

underlying risk factors which are commonly impacting the selection of project delivery methods 

in highway construction. Bypaneni (2017) found the factor loadings of seven critical risk factors 

within D-B-B and D-B using EFA and established the interrelationships between them to support 

selection of project delivery methods. Mathew et al. (2018) attempted to identify the relationship 

between delivery risks and cost growth in highway construction projects using structural 

equation modeling. The resulting seven risk factors used in this study were defined as follows: 

1) Complexity risk factor contains project complexity, uncertainty in geotechnical 

investigation, legal challenges, and changes in law, intergovernmental agreements and 

jurisdiction, and difficulty in obtaining other agencies.  

2) Quality risk factor contains construction quality control and quality assessment process 

and design quality assurance.  

3) Constructability risk factor contains delays in procuring critical materials, labor, and 

specialized equipment and significant increase in material, labor and equipment cost. 

4) Construction risk factor contains work zone traffic control and construction sequencing, 

staging, and phasing.  
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5) Utility and right-of-way (ROW) risk factor contains unexpected utility encounter, delays 

in completing utility agreements, and delays in ROW process. 

6) Management risk factor contains staff experience and availability, project and program 

management issues, and conformance with regulations, guidelines, and design criteria. 

7) Environmental risk factor contains challenges to obtain appropriate environmental 

documentation and environmental impacts.  

The cost performance variable was considered in terms of cost growth at the project 

completion. It is the percentage change in cost between the contract awarded amount and the 

final cost. The final cost was the sum of the contract award value and costs of all change orders 

while the contract award is the total amount indicated in the signed contract.  

To develop the fuzzy pattern recognition, six project attributes were used, including 

facility type, project type, project complexity, delivery risk, and project cost growth. Each 

project attribute has a particular number of sub-categories as discussed above. Project delivery 

methods (e.g., D-B-B and D-B) were used as control variables. As a result, a set of 17 variables 

were used for developing fuzzy pattern recognition described as follows: 

• Facility type (m1 = 5): road, bridge, drainage, ITS, and others. 

• Project type (m2 = 3): new construction, reconstruction, others. 

• Project complexity (m3 = 1): most complex, moderately complex, and non-complex 

highway projects. 

• Delivery risk (m4 = 7): complexity risk factor, quality risk factor, constructability risk 

factor, construction risk factor, utility and ROW risk factor, management risk factor, and 

environmental risk factor. 

• Cost performance (m5 = 1): cost growth. 
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It is noted that the number of selected features practically affects the accuracy of the 

classification and pattern recognition results (Elwood 2014). This study focused on 

demonstrating the practical use of this fuzzy-based technique in early project delivery decision-

making in highway construction. Therefore, the selected variables include common project 

attributes (i.e., facility type, project type, project complexity, delivery methods, and risk factors) 

and project cost performance. This selection is supported by the literature.  For example, Al 

Nahyan et al. (2018) stated that project type and complexity are typically recorded in aiding 

selection of appropriate delivery methods while Creedy et al. (2010) and Mostafavi and 

Karamouz (2010) indicated risk factors play an important role in the pool of project delivery 

selection criteria. Khanzadi et al. (2016) and Touran et al. (2011) recommend the use of cost 

performance in any project delivery decision-making processes.  

 

Data Standardization and Classification 

To guarantee the validity of classification-based applications, raw data need to be standardized to 

obtain the same measuring scale (Ross 2010). In this study, raw data were standardized by using 

Min-Max normalization, a method produces a unified numerical scale (i.e., 0 to 1) for raw values 

by ranging (Elwood and Corotis 2015). Kassambara (2017) recommends the use of ranging 

approach with the min and max values of each variable to preserve the relationships among data 

by treating separately based on its own range and sample. Accordingly, normalized data of 17 

selected variables were ranged from 0 to 1 and proceeded with fuzzy cluster analysis to identify 

typical groups of highway projects in terms of delivery methods and cost growth. The qualitative 

variables in this study, including project complexity and delivery risk factors, were normalized 

before being assigned to clusters representing particular attributes. Based on the distances 
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between projects (i.e., data points) within clusters, membership values of each project to specific 

variables (i.e., qualitative – project complexity and delivery risk factors, and quantitative – 

project type, facility type, cost growth) were given.  

Prior to implementing fuzzy pattern recognition to the collected dataset, typical patterns 

of cost performance were identified by using fuzzy classification in the context of fuzzy cluster 

analysis. This technique helps allocate common groupings of selected variables (Novák et al. 

2016). The focus of this study was to develop a fuzzy rule-based inference system from 

clustering results. Membership functions and “If-Then” rules are formulated directly from the 

data clusters with the cluster centers performing as representations for fuzzy rules. The analysis 

provides a powerful mean to investigate and assess the fuzzy rules in multiple dimensions 

(Castellano et al. 2007). Fuzzy cluster analysis not only generates the rule base but also designs 

classifiers, which represent patterns for recognizing input data. The theoretical procedure of 

using fuzzy cluster analysis can be found in Elwood (2014) and Ross (2010). 

Table 1 shows seven groups classified based on the degree of similarity of project 

attributes, delivery methods, and cost performance. Each fuzzy cluster represents a typical set of 

highly similar project attributes, selected delivery methods associated with cost growth, based on 

the cluster center and the membership degree of data points within the clusters. For example, 

cluster 2 (D-BLow), contains D-B highway projects with low cost growth. The membership 

degree of each project to a specific cluster was measured by the distance between the project and 

the center of that cluster. The number of clusters was subjectively determined based on the 

goodness of clustering results via cluster validity indices (Lantz 2015). Using five typical fuzzy 

cluster validity indices shown in Das (2013), seven clusters demonstrated the most reasonable 

groupings within the collected dataset. Mathematically, the procedure of fuzzy pattern 
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recognition proposed in this study was developed based upon the collected dataset P consisting 

of 254 highway projects, { }1 2 3 254, , ,...,=P P P P P . Each project Pi has 17 variables (e.g., five sub-

facility types, three sub-project types, project complexity, seven risk factors, and cost growth)

{ }1 2 3 4 17, , , ,...,=i i i i i iP P P P P P . A set of seven predefined clusters serve as classifiers in the fuzzy 

rule-based inference system { }1,2,3,...,7=jC .  

 

Table 1. Predefined clusters of selected project attributes  
 

No. Cluster N Facility Type Project Type Project 
Complexity 

Risk 
Impact 

1 D-B-BSaving-Low 52 Road Reconstruction Moderate *VL to 
L 

2 D-BLow 34 Bridge New 
construction Moderate VL to L 

3 D-B-BMedium-High 39 Road New 
construction Most VL 

4 D-BSaving-Low 34 Road New 
construction Most L to M 

5 D-BLow 23 Road Combination Moderate VL  to L 

6 D-B-BNone and 
D-BNone 

39 Bridge Reconstruction Moderate VL to L 

7 D-BNone-Low 33 Road and Bridge New 
construction Most VL to L 

*VL – Very Low; L – Low; M – Medium 
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Fuzzification 

The fuzzifying process converts input values into standardized fuzzy numbers prior to the 

inferential reasoning process. In this study, each input project is represented as a multi-

dimensional data vector, consisting of the number of selected variables. The objective of the 

fuzzification process is to manipulate input data with Gaussian fuzzy membership function to 

convert raw inputs and insert membership values (Hwang 2004). The Gaussian-based functions 

are more appropriate than other types of membership functions, including triangular, trapezoidal, 

and sigmoid to handle a combination of quantitative and qualitative inputs (Daneshvar 2011). 

The Gaussian-based membership function has the maximum value of 1. The linguistic labels 

were assigned to each approximated membership function of 17 selected variables based on the 

values of cluster centers.   

 

Rule-based Inference System  

A rule base is projected from the membership function and written in terms of the input attributes 

and output group labels (i.e., rule antecedents and rule consequents, respectively) (Setnes et al. 

1998). In the fuzzy rule-based system, each rule demonstrates a membership value that exhibits 

the extent to which the project attributes belong to a cluster Ci. With pre-defined groups 

partitioned with fuzzy cluster analysis (i.e., input values were ready in terms of fuzzy sets), the 

Mamdani “If-Then” fuzzy inference system is recommended to use for identifying relationships 

between the cluster center and within-cluster projects (Mamdani and Assilian 1975). For 

example, if the membership value of project P1 shown in Cluster C1 is higher than the 

membership values of this project in other clusters within a 17-D space then project P1 belongs 

to Cluster C1. In other words, in the “Road” variable space, the highest membership value of 
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project P1 is identified in Cluster C1; similar to the other 16 variable spaces (e.g., bridge, 

drainage, ITS, risk factors 1 to 7). Another example, if project P2 has its highest membership 

values in terms of 17 variables in cluster C2 compared to other clusters, project P2 belongs to 

cluster C2. Given a new highway project with membership values of particular variables in each 

cluster, the inference system identifies the cluster that contains the given project based on a pre-

defined set of rules. That is, a rule points out the cluster that shows the highest membership 

values of that project in the variable spaces. To maintain the interpretability of fuzzy inference 

systems in the domain of pattern recognition, the number of input attributes and the number of 

fuzzy rules should be limited to 7 ± 2 (Castellano et al. 2007). The “If-Then” rule aims to match 

the input variables to the most likely pattern with the highest membership values. 

 

Defuzzification 

Fuzzy values obtained from the rule-based inferential system are converted to crisp values via 

the defuzzification process. The rule-based classifier represents a nonlinear relationship between 

the inputs (i.e., project attributes) and outputs (i.e., clustering groups). After recognizing the 

matching pattern for the input project, fuzzy results were converted to be crisp values using the 

variation of the proposed ranging method to maximize the interpretability of the fuzzy rule-based 

inference system.  
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PHASE 2 – VERIFICATION AND VALIDATION OF FUZZY PATTERN 

RECOGNITION  

This phase consists of two main tasks. First, the verification of the proposed fuzzy inference 

system was presented using a case example in which possible patterns of delivery methods and 

relevant cost growth were recognized for a randomly selected highway project. Second, the 

validation of the proposed system was performed with k-fold cross-validation. This section aims 

at providing a step-by-step guideline to help practitioners select an appropriate delivery method 

by using the proposed fuzzy system for any given set of project input attributes.  

 

Fuzzy System Verification 

To demonstrate the step-by-step process of the fuzzy rule-based inference system, the authors 

randomly selected a highway project in dataset P: a new construction road project, “SR25 

Hoosier Heartland Highway” (Case Project hereafter), in Indiana. This project was characterized 

as a four-lane divided limited-access rural highway. The total project cost was $36,424,873. 

There were 38 issued change-orders related to the final quality adjustment resulting in an 

increase of $1,235,701. The main reason for a total cost growth of 18% was that this project 

faced a high level of cost impact from complexity- and quality-related risks. 

 

Step 1 – Fuzzifying Inputs 

Based on the data collected, Table 2 summarizes Case Project’s attributes, including facility 

type, project type, project complexity, and delivery risk factors, as raw and standardized inputs. 
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Table 2. Example of project inputs to Fuzzification process 

No. Variables Range Raw Inputs Standardized 
Inputs 

1 Road  0 - 100% 80% 0.80 
2 Bridge  0 - 100% 20% 0.20 
3 Drainage  0 - 100% 0% 0 
4 ITS  0 - 100% 0% 0 
5 Other Facility Types  0 - 100% 0% 0 
6 New Construction 0 - 100% 100% 0.10 
7 Reconstruction  0 - 100% 0% 0 
8 Other Project Types 0 - 100% 0% 0 
9 Project Complexity 1 - 3 1 0 
10 RF1 - Complexity Risk Factor 1 - 6 2 0.20 
11 RF2 - Quality Risk Factor 1 - 6 2 0.20 
12 RF3 - Constructability Risk Factor 1 - 6 2 0.20 
13 RF4 - Construction Risk Factor 1 - 6 2 0.20 
14 RF5 - Utility and ROW Risk Factor 1 - 6 2 0.20 
15 RF6 - Management Risk Factor 1 - 6 2 0.20 
16 RF7 - Environmental Risk Factor 1 - 6 1 0.10 

 

Gaussian membership function was used to fuzzify input variables, consisting of facility 

type, project type, project complexity, and risk factors (Table 2). Project attributes of a new 

highway project were entered to the fuzzy system by using a developed graphical user interface 

(GUI) with predefined attributes along with associated Gaussian membership functions. For 

instance, Case Project’s attributes were entered using GUI, including facility type (road = 80%, 

bridge = 20%), project type (new construction = 100%), project complexity (most), risk factor 1 

(very low), risk factor 2 (very low), risk factor 3 (very low), risk factor 4 (low), risk factor 5 

(low), risk factor 6 (very low), and risk factor 7 (low).  Figure 2 displays project inputs to the 

fuzzy inference system. Afterwards, the standardized inputs were proceeded using the Mamdani 

rule-based inference system. 
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Figure 2. Example of project inputs to fuzzy inference system using GUI 

 

There were two primary inputs for the algorithm of fuzzy pattern recognition. The first 

input was the matrix of membership values that assigns relevant membership values to each 

defined cluster. The second input was a vector of cluster centers that provides a geometric 

relationship with individual membership values which are estimated with fuzzy membership 

functions. Equation (1) shows an example of the center value of cluster 1 with the selected 

variable “Road”. This formula is essentially replicated for each variable to define the overall 

value of the cluster. In other words, the membership value of Case Project in cluster 1 in the 

“Road” space was summed up with the other 253 membership values to calculate the center 

value of cluster 1 in the “Road” space. The overall combination (i.e., the vector of cluster 

centers) was established in a 17-dimensional space (i.e., a space built upon 17 selected project 

variables) per cluster to produce the outputs. 
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In this study, the vector of cluster centers contained seven cluster centers developed 

based on a 17-D space while the matrix of membership values illustrated the degree of 

membership of each project to each selected attribute within a particular group of cost 

performance. The inputs of 17 selected project variables are established by approximating the 

rows of the matrix of membership values; for example, ( )1 1Road Case CaseP− −=µ µ  with ( )1 Road CaseP−µ , 

the degree to which Case Project belongs to cluster 1 based on the project variable “Road”, as 

shown in Eq. (2): 

( ) 1
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1exp
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Case Road Road
Road Case

Road

PP − −
−

−

  −
= −  

  

µµ
σ

   (2) 

Where: 1 Road−µ is the centroid value of cluster 1 in the “Road” variable space (i.e., the 

maximum value of all memberships in cluster 1) and 1 Road−σ is the spread of the membership 

function (i.e., fuzziness of the cluster), which demonstrates the distance from the center of cluster 

1 to the farthest project assigned to cluster 1. This equation is replicated for all seven clusters in 

terms of 17 selected project variables. Figure 3 shows an example of the Gaussian membership 

function for the “Road” variable within cluster 1. Each project that has the feature of “Road” 

involves in cluster 1 with a particular degree of membership. On the horizontal axis, the 

Gaussian membership function describes the standardized value of each project regarding the 

road’s percentage of it. On the vertical axis, the membership value of each project that belongs to 

cluster 1 with the representative road-type is provided on a scale of 0 to 1.  
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Figure 3. Example of Gaussian membership function of “Road” variable in cluster 1 

 

Step 2 – Recognizing Patterns  

After defining the inputs (i.e., attributes of Case Project) to the fuzzy inference interface, 

the project attributes were assigned to seven clusters based on the degree of membership values 

to the associated membership function of each cluster. The Mamdani “If-Then” rule base 

implemented in this study is strictly adhere to the Min-Max inference method, an aggregating 

approach proposed by Mamdani and Assilian (1975) for fuzzy-based inference systems. In Min-

Max inference, the “and” conjunction in each rule is evaluated by the fuzzy set minimum 

operator and the aggregation over all the rules is evaluated by the maximum operator (Elwood 

and Corotis 2015). Accordingly, this method, first, calculated the membership values of 

seventeen variables, and then selected the minimum value of each variable within seven clusters. 

Based on the identified minimum values, the recognized pattern was the one that obtains the 
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maximum values of degree of membership among seven clusters. This inference assesses if the 

input project satisfies the minimum requirement of the recognized cluster along with obtaining 

the maximum degree of belongingness of the project to that cluster. The degree of membership 

of Case Project in the “Road” variable presented in that variable’s projection space is

[ ]1 ( ) 0,1Road CaseP− ∈µ . The membership values in each cluster that describes the degree of 

similarity are denoted by ( ) { }1 2 3 254 1, , ,..., min ( )Ci Road iP P P P P−=µ µ  for i = 1 to 254. Aggregation 

over all of the individual rules was denoted by

( ) { }1 2 3 254 1 2 3 7, , ,..., max , , ,..., |= =C C C C C iP P P P C Cµ µ µ µ µ . Where Cµ is the membership degree 

to which the vector of Case Project’s variables ( Case RoadP − , Case BridgeP − , Case DrainageP − , …, 5Case RFP − ,

6Case RFP − , and 7Case RFP − ) is assigned to a cluster C1. Figure 4 illustrates a detailed process of 

implementing the fuzzy rule-based inference system with five main predominant attributes and 

seven predefined clusters.  
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Figure 4. Illustration of fuzzy pattern recognition process  

 

Step 3 – Defuzzzifying Outputs 

The fuzzy membership values were defuzzified before interpreting the outputs of recognized 

patterns. This task must be taken place prior to computing and evaluating classification error 

rates. The defuzzifying process generates a recognized pattern for input projects using Eq. (3) 

(Emily and Corotis 2015). This equation provides the mechanism of assigning a vector of input 

project attributes ( 1 RoadP− , 1 BridgeP− , 1 DrainageP− , …, 1 7−RFP ) to the clustering group where the 

project represented the highest membership. 

( )1 2 3 254, , ,...,C P P P P = Ci if 1 2 3 254 1 2 3 254( , , ,..., ) ( , , ,..., )>
i jC CP P P P P P P Pµ µ  for all Ci ≠ Cj         (3) 

For Case Project, Eq. (3) was written as: ( )CaseC P = C3 if 
3
( ) ( )

jC Case C CaseP P>µ µ  for all C3 

≠ Cj. Figure 4 shows that Case Project represented the highest membership values within cluster 
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3 (75% of degree of membership) compared to other clusters. Therefore, Case Project belonged 

to cluster 3 where information about the typical delivery method used associated with cost 

growth was provided. Using the ranging conversion method, standardized values of 17 variables 

of this project were converted to crisp values for the interpretation purposes. As a result, Case 

Project, a new construction road project with the highest level of project complexity, was 

delivered by D-B-B and resulted in a medium to high cost growth (10% - 20%).  Through 

comparing with the actual project delivery method used and project performance, the result 

indicates that the fuzzy classifiers recognized the correct grouping for this project.  

 

Fuzzy System Validation 

This study utilized a k-fold cross-validation method to validate the fuzzy system where the 

collected data were iteratively computed with the matching rates of the recognizing patterns. The 

k-fold validation method is commonly used in the domain of fuzzy pattern recognition (Piegat 

2001). Conducting this method, the collected data were divided into two main sets: training and 

testing. The training set (i.e. consisting of 90% of the entire dataset) was used to formulate 

parameters of the fuzzy classifiers (i.e., design the fuzzy inference system). The testing set (i.e., 

consisting of 10% of the entire dataset) was used to assess the rate of misclassification and 

compute the degree of recognizing errors (i.e., validate the capability of the fuzzy system). The 

training and testing error rates are computed by counting the number of misclassifications of data 

in the fuzzy classifiers based on the degree of membership (Elwood 2014). The training error 

rate (Etraining) is used to assess if the model validity and computed by finding the ration of Nincorrect 

to Ntraining, where Nincorrect is the number of misclassified projects; Ntraining is the total number of 

projects in the training set. The testing error rate (Etesting) is used to assess if the model reliability 
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and computed by finding the ratio of Nincorrect to Ntesting, where Nincorrect is the number of 

misclassified projects and Ntesting is the total number of projects in the testing set.  

Because a 10-fold cross-validation was used in this study, the ratio of the training set to 

the testing set should follow a 90:10 split (Hastie et al. 2009). The 90:10 split is used in 

validating the applications of fuzzy pattern recognition in other fields, such as mechanical 

engineering (Tran et al. 2009) and computer engineering (Ye et al. 2006). Accordingly, the 

training set consists of 228 projects (i.e., 90% of the entire dataset) while the testing set contains 

26 projects (i.e., 10% of the entire dataset). Specifically, 10 different combinations of each set 

were run and replaced iteratively. The variation between 10 separate runs was low (less than 

2%). This study utilized fuzzy cluster analysis with fuzzy C-Means algorithm prior to the fuzzy 

pattern recognition process, so the sensitivity to noise of the developed inference system 

becomes less (Ross 2010). After running 10 iterations of the validation and testing sets, the 

average training and testing error rates of the fuzzy inference system were recorded. From the 

training set, 31.3% of the clustered projects suffered low memberships compared to the actual 

projects. From the testing set, 29.6% of the clustered projects suffered low memberships 

compared to the actual projects. It is noticed that this result can in part be explained by the 

definition of fuzzy set theory and pattern recognition, where each data point has a partial degree 

of membership to the recognized cluster (Bezdek 1999). In addition, because the clustering 

results are typically extracted from an n-dimensional space (i.e., 17 dimensions in this study), no 

data point has a full membership to a specific cluster (Niskanen 2004; Ross 2010). As a result, 

the interpretation of the fuzzy recognizing results should be referred to the highest value of data 

points in the identified cluster. 
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DISCUSSION 

This study demonstrated that fuzzy inference systems can serve as a decision-aid in selecting an 

appropriate delivery method in highway design and construction projects. This approach 

attempts to systematically map the inputs of a new highway project to one or more fuzzy 

classifiers based on the degree of similarity in project variables and then provide information 

about delivery methods used associated with cost growth. For example, if a new highway project 

has a similar set of project variables to Case Project, the system recognized the pattern of D-B-B 

with a likelihood of 75% to produce an average cost growth of 15%. Based on the recognition 

result, adjustments of the inputs can be made based on decision maker’s judgements on the level 

of risk impacts and project complexity, to come up with a more appropriate delivery method. For 

instance, the impacts of seven risk factors used in the inference process can be adjusted by 

sliding up and down the inputs from the “risk factor” bars in GUI. Different judgements on seven 

risk factors may lead to multiple decision scenarios with different recognized patterns of delivery 

methods associated with cost growth to aid the decision maker to select a suitable delivery 

method. The Case Example illustrates a simple and easy-to-use procedure with predefined 

historic patterns of delivery methods (D-B-B and D-B) associated with cost growth performance.  

The proposed fuzzy system aids decision makers in accommodating and adjusting 

subjective inputs in project delivery selection (i.e., project complexity and risk impact) to meet 

their needs. In many cases, highway projects with similar facility types and project types may 

end up with different cost growths and delivery methods used due to differences in other 

qualitative factors, such as project complexity and delivery risk. For instance, considering Case 

Project in two different scenarios of inputting data as shown in Figure 5: (5a) actual project 

attributes and (5b) similar project attributes but higher risk impacts. Raising the level of risk 
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impacts as new inputs to the system leads to a new recognized group of cost growth and delivery 

method. With new inputs from seven risk factors, Cluster 4 was recognized with the highest 

membership value of 82%. The classified cost growths of two scenarios were exclusively 

different because of different degree of risk impacts. In scenario 5a, the membership values of 

cost growth were unstable and produced a “bimodal” distribution where the first peak was at A, 

B, and C and the second peak was at D, E, and F (Figure 5a). On the other hand, scenario 5b 

provided stable membership values of cost growth with a “normal” distribution where B, C, and 

D were merged. Specifically, after converting to crisp values, scenario 5b had a lower cost 

growth average (2%) than scenario 5a (18%). In addition, the cost growth range in scenario 5a 

also had a larger variation (15%) than scenario 5b (5%). Different from scenario 5a, where 

Cluster 3 was matched to Case Project, the system in scenario 5b recognized Cluster 4, which 

contains highway projects with low cost growth and delivered by D-B. These results show that 

this system is able to consider the adjustment of subjective inputs based on experience and 

preferences of the decision makers (e.g., their risk attitudes and confidence of project 

complexity) to recommend an appropriate project delivery method for a new highway project.  
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Figure 5. Two output scenarios of recognized patterns:                                                             

(5a) Actual inputs resulting in “bimodal” distribution.                                                                   

(5b) Adjusted inputs with higher risk impacts resulting in “normal” distribution. 

 

In current project delivery decision-making, both quantitative and qualitative approaches 

have been used to establish ranking models, compare project performance, and demonstrate 

simulations to determine the most optimal delivery methods (Al Nahyan et al. 2018; Chen et al. 

2011; Mafakheri et al. 2007; Shrestha et al. 2012; Sullivan et al. 2017; Touran et al. 2011; Tran 

and Molenaar 2015). The proposed fuzzy pattern recognition approach in this study does not 

attempt to either rank or compare project delivery methods based on a set of selection criteria. 

Rather, it systematically maps the empirical patterns of delivery methods associated with cost 

growth to new highway projects based on similarities in project variables to recommend an 

appropriate delivery method based on empirical data. This approach also does not quantify any 

selection criteria, but relationships between chosen project variables, both quantitative and 

qualitative, were modeled in terms of fuzzy membership functions to explore the degree of 

similarities between them. Because of the inherent overlaps of project variables between fuzzy 

classifiers, a new project can belong to more than one cluster. Therefore, the representation of 

each fuzzy classifier relies on the control variable, type of delivery methods (D-B-B and D-B) 
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and the output of cost growth’s ranges and means. Among the 17 input variables, the seven risk 

factors produce a high sensitivity to the recognized patterns of project delivery methods and cost 

growth. The Gaussian membership functions associated with the seven risk factors have the 

highest degree of overlaps, which leads to elasticity in changing between clusters and output 

attributes based upon the input project’s risk profile (Iqbal et al. 2015). For example, given the 

project attributes of Cluster 7 (new road projects delivered by D-B) as inputs with changing the 

seven risk factors’ ratings to 2 instead of 1, the system produces the output pattern of Cluster 3 

(new road projects delivered by D-B-B). 

It is important to note several reasons for the error rates. First, a large number of input 

features and the number of clusters may create confusion and ambiguity in applications of fuzzy 

pattern recognition (Elwood 2014). Fuzzy-based research emphasizes that the optimal selection 

of the number of clusters and input variables is application-dependent (Bezdek et al. 1999). This 

study selected a total number of 17 features that might cause counterproductive problems to the 

fuzzy rule-based models. In fact, the number of selected features and the number of identified 

clusters should each be limited to 7 ± 2 (Castellano et al. 2007; Zeng and Starzyk 2018). 

Therefore, future applications of fuzzy pattern recognition in delivery-selection-based studies 

should consider this restriction in selecting appropriate features as well as in clustering datasets. 

Second, bias in collected data, which is normal in any decision-making frameworks because of 

uncertainty in human-related activities. Clustering assignment of a data point also depends 

heavily on the clustering assignment of other data points in the same cluster. Thus, appearance of 

biased data points can critically affect the classification leading to high error rates in the 

subsequent pattern recognition results. However, in the context of fuzzy set theory, it is 

acceptable because fuzzy sets are non-interactive, and there is restriction of a membership value 
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based on assignment of other membership values. For instance, in structural engineering, a 

fuzzy-based system to recognize seismic damage for concrete structures developed by Elwood 

and Corotis (2015) using 136 projects and testing with confusion matrices observed the training 

error and testing error rates of 27% and 78%, respectively. Similarly testing with k-fold cross-

validation in mechanical engineering, a fuzzy inference system developed by Tran et al. (2009) 

with 90 motor loads resulted in a testing error rate of 23.3%. Further, Ross (2010) concluded that 

the validation of fuzzy-based applications is not assessed in the context of numerical error 

measures as long as the computed results are rational. These relevant fuzzy-based studies in 

other fields support the validation results of this study that emphasizes implications for 

construction practices.  

 

CONCLUSION 

This study investigated the use of fuzzy pattern recognition in identifying an appropriate project 

delivery method for new highway construction projects. The developed graphical user interface 

provides an example of how fuzzy pattern recognition can be used by practitioners to 

accommodate a combination of quantitative (e.g., facility type and project type) and qualitative 

(level of complexity and risk impacts) variables in project delivery selection. Based on seven 

predefined groups of highway projects, a fuzzy inference system was developed using 17 

variables and seven “If-Then” rules to produce empirical patterns of delivery methods (D-B-B 

and D-B) associated with cost growth. A 90:10 split ratio was used to train (228 highway 

projects) and test (26 highway projects). To further verify the applicability of the developed 

system, a case example was conducted with a randomly selected highway construction project in 

the testing set. The result shows the correct cluster of the selected project with a likelihood of 
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75% to produce an average cost growth of 15%. In addition, a 10-fold cross-validation technique 

was utilized to examine the reliability of the proposed fuzzy system. The resulting variation 

between the 10 separate runs was low (less than 2%). Accordingly, 29.6% of the clustered 

projects suffered low memberships compared to the actual projects. This validation result is well 

in line with other fuzzy-related studies in other fields, which supports the purpose of this study to 

demonstrate the use of fuzzy pattern recognition in project delivery method selection. 

The proposed fuzzy rule-based inference system accounts for uncertainty and imprecision 

in the decision-making by standardizing all input variables and interpreting them in the context 

of linguistic expressions. In addition to standardization, the fuzzy inference system is also 

proceeded with a uniform numerical scale that eliminates the impact of data and modeling 

uncertainty (Elwood 2014). Although the system can only recognize patterns of the input project 

based on seven predefined clusters, it can explicitly measure the degree of appropriateness of the 

project to each cluster. Modification of the fuzzy rules are also straightforward according to the 

decision maker’s preference and experience. In addition, the proposed fuzzy rule-based inference 

system provides sufficient information about degrees of membership in each classified group and 

each feature, which help measure suitability of each delivery method to specific project 

attributes. It is important to note that although this fuzzy-based technique produces a precise 

level of detail in addressing uncertainty in project delivery decision-making problems, it still 

suffers a bias of human-involved processes. There is a trade-off between ability to accommodate 

various combinations of different types of variables and degrees of overlapping in the 

recognizing results within the domain of fuzzy pattern recognition. 
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Research Contributions 

This study contributes to the body of knowledge by developing a fuzzy inference system to 

recognize possible groups of delivery methods associated with cost growth for new highway 

projects. It is one of the first attempts to apply fuzzy pattern recognition in the project delivery 

literature to leverage the evaluation of a combination of quantitative and qualitative selection 

criteria, which makes this study unique compared with traditional decision-aid approaches. 

Specifically, a mathematical approach to identifying the possible pattern of new highway 

projects based on their attributes and selected delivery methods was proposed. The flexibility in 

controlling input variables of this framework can help decision makers define and adjust critical 

project attributes and selection criteria. For example, the highway agencies are able to add 

important variables based on their preferences or remove unnecessary variables to develop a 

customized fuzzy inference system to recognize cost performance patterns for new highway 

construction projects. In addition, this data-driven fuzzy inference system also allows for 

multiple decision scenarios based on the decision maker’s judgements of delivery risks and 

project complexity.  

 To practitioners, the proposed approach helps determine the most appropriate delivery 

method for a new highway project based upon project attributes and cost performance with 

available historical data. This study provides a decision-making tool to enhance subjective 

probability in the project delivery selection process. The proposed framework also helps the 

project team evaluate the degree of appropriateness between a new highway project with 

available project delivery options. By replicating the process of fuzzy pattern recognition 

presented in this study, industry practitioners can investigate their own empirical datasets to 

recognize possible patterns of data in supporting their project delivery decision.  
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Limitations and Future Work 

There are several limitations in this study. First, the number of classifiers (i.e., the historic groups 

of cost growth based on delivery methods) was limited due to the available highway project data. 

More project data may need to be collected in future research to enhance the reliability in 

supporting project delivery selection. In addition, this study applied fuzzy pattern recognition to 

two common project delivery methods D-B-B and D-B because of the limited amount of CM/GC 

highway project data available. Future research may need to collect more completed CM/GC 

highway projects to overcome this limitation. Second, this study only considered highway 

construction projects to develop the fuzzy inference system. Other vertical projects and 

infrastructure projects can also be used to perform a similar analysis. In addition, other project 

attributes, such as project size, procurement method, and payment method can be included to 

enhance the inference system. Finally, this study only investigated project cost performance 

(e.g., cost growth) for the project delivery fuzzy pattern recognition. Other dependent variables 

such as schedule performance and quality can be incorporated in the inference system to enhance 

the delivery decision. This study removed 37 projects which were identified as outliers because 

fuzzy-based methods are very sensitive to outliers (Kruse et al. 2007; Ross 2010). Future work 

may analyze the reduced model prediction due to outlier removal; however, such analysis was 

beyond the scope of the current study. Future research may also concentrate on leveraging the 

developed fuzzy inference system to extend the application of fuzzy pattern recognition in the 

construction industry.    
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INTRODUCTION 

Design-bid-build (D-B-B) and design-build (D-B) have been used to deliver highway 

construction projects for many years. Each has advantages and disadvantages that directly impact 

project performance. In addition, each delivery method is attached with a number of risks and 

level of complexity that are subjectively assessed by experts. Selection of project delivery 

methods is usually conducted in the early stages of a project with the involvement of uncertainty 

and imprecise information that makes this decision-making process become more complex. In 

delivery method selection, construction experts are likely to provide a possible range of 

numerical values, a linguistic expression or subjective judgement (e.g., true, false, high, medium, 

and low) of particular selection criteria, or a fuzzy number of probabilistic uncertainties. To 

comprehensively select an appropriate project delivery method for new highway projects, there 

is a need of scientific approach to analyzing logical relationships between project attributes and 

updating with posterior probability for subjective variables (e.g., project complexity and delivery 

risks).  

Bayesian networks, a probabilistic graphical model for graphically representing the 

relationships among a set of variables, are capable of computing the probabilities of a project 

attribute event under given evidence (Bayraktar and Hastak 2009; Khodakarami and Abdi 2014; 

Luu et al. 2009; Thanathornwong 2018; Yang et al. 2006). However, Bayesian applications in 

selection of project delivery methods are limited because of the prerequisite requirement of 

precise input information (e.g., prior probability and causal relationships of node variables) 

(Bakht and El-Diraby 2015; Hastie et al. 2009). In fact, it is difficult or nearly impossible to 

obtain precise information to aid selection of project delivery methods due to insufficient data 

and incomplete knowledge in the early stages of a construction project (Kim 2011; Weber et al. 
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2012). Fuzzy set theory is a commonly used tool in engineering to accommodate the 

involvement of subjective judgements, uncertainty, and imprecise data by utilizing membership 

functions and providing a possibilistic range of results (Bezdek 1993; Corona-Suárez et al. 2014; 

Kumar et al. 2013). Fuzzy Bayesian approach is able to accommodate and quantify both numeric 

and subjective variables in the decision-making process of selecting project delivery methods 

(Cheng et al. 2019; Eleye-Datubo et al. 2008; Ersel and İçen 2014; Ren et al. 2009; Sun et al. 

2018; Yazdi and Kabir 2017). This approach has been adopted in many fields (e.g., engineering, 

business, economics, and computer science) to enhance the probability updating process with 

fuzzy evidences by utilizing the conditional probability densities and the membership functions 

of the evidence's values (Ferreira and Borenstein 2012; Kawamura 1993; Nguyen et al. 2016; 

Ung 2018; Zarei et al. 2019; Zhang et al. 2015; Zoullouti et al. 2017). 

This chapter extends the work from Chapters 2 and 3 of this dissertation regarding the 

development of a fuzzy-based hybrid approach to support selection of project delivery methods 

in highway construction. Chapter 2 established seven highway project clusters that share high 

commonalities in project characteristics, project complexity, delivery risks, cost growth, and 

delivery methods using fuzzy cluster analysis. Chapter 3 developed a fuzzy rule-based inference 

system to recognize possible delivery methods of new highway projects based on historically 

established clusters using fuzzy pattern recognition. The fuzzy rule-based inferential engines are 

derived from fuzzy Gaussian membership function and reasoning based on the possibility theory 

(e.g., project A has 80% of chance to be recognized with D-B-B and 20% of chance to be 

recognized with D-B). This chapter proposes a hybrid approach of Bayesian theory and fuzzy set 

theory in terms of a fuzzy Bayesian inference system (FBIS) to support decision-making in 

selection of delivery methods for new highway projects. 
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RESEARCH MOTIVATION  

Many studies have developed decision-aid models and frameworks to quantify risks and take 

into account uncertainty in the decision-making process (Molenaar and Songer 1998; Tran and 

Molenaar 2015). However, selection of project delivery methods also includes a large number of 

qualitative inputs that are difficult to be evaluated using current quantitative approaches 

(Gransberg and Shane 2010; Touran et al. 2011). This involvement makes the interaction 

between variables become even more complex in the selection process. This gap requires a 

scientific approach that can accommodate a combination of quantitative and qualitative variables 

to take into account uncertainty and risks in the selection process and the causality and 

interactions between selection criteria and project delivery methods. 

Fuzzy set theory departures from traditional probabilistic approaches to leverage the 

evaluation of both quantitative and qualitative data in decision-making processes. Fuzzy sets, a 

mathematical approach developed by Zadeh (1978), have been used to mainly capture the 

qualitative inputs to generate deterministic decision-making models and widely applied to many 

engineering areas, such as computer science, mechanical engineering, aerospace engineering, 

and chemical engineering (Chan et al. 2014; Elwood 2014; Kruse et al. 2007). As a promising 

method to mathematically handle qualitative variables (Khanzadi et al. 2016), fuzzy sets were 

applied in this dissertation in terms of a soft clustering method, fuzzy cluster analysis, introduced 

by Bezdek (1993). The use of fuzzy sets requires extensive understandings of modern 

mathematics about human cognitive process and sophisticated designs (Li et al. 2013; Marzouk 

and Moselhi 2004). Therefore, fuzzy-based applications in construction often rely on particularly 

developed systems and models (Fayek and Lourenzutti 2018). However, the main limitation of 

fuzzy reasoning approaches is the lack of ability to conduct inference inversely (Li et al. 2012). 
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This limits the ability of investigating the causal relationships between project delivery methods 

and input project attributes.  

 

RESEARCH OBJECTIVES 

In the first two phases of this dissertation, a set of seven empirical project clusters and a fuzzy 

rule-based inference system were developed to help recognize the patterns of project delivery 

methods and cost growth used in highway construction. The developed fuzzy system experiences 

overlapping clusters, which leads to high testing error rates based on traditional probability 

theory. Therefore, the synergy of a commonly used approach in the probability theory, Bayesian 

networks, and fuzzy set theory is expected to overcome the shortfall of the developed fuzzy 

inference system and bridge the gaps in the current practices of project delivery method 

selection. 

The objective of this chapter is to theoretically demonstrate a step-by-step procedure of 

using FBIS to support selection of project delivery methods in highway construction. In other 

words, how fuzzy-based variables are treated by Bayesian networks to increase the accuracy and 

reliability of the empirically developed rule-based inference system to identify a “true” delivery 

method for a new highway project. Given a set of project attributes of a new highway project, 

including project type, facility type, project size and duration, project complexity, and delivery 

risks, the theoretically developed FBIS is expected to identify an appropriate delivery method. 

This chapter also aims to scientifically accommodate a combination of qualitative and 

quantitative variables and take into account the interrelationship between them in the problem of 

selection of project delivery methods. Future work is to provide verification and validation of the 
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applicability of the theoretical FBIS approach in supporting highway agencies in selecting 

appropriate project delivery methods.  

 

LITERATURE REVIEW 

This section describes a summary of current decision-aid approaches to the selection of project 

delivery methods and investigates the use of a hybrid approach of fuzzy sets and Bayesian 

networks in this area. Specifically, the practices of decision aids in selection of project delivery 

methods are summarized and discussed in terms of the evaluation of decision criteria. 

Subsequently, applications of fuzzy Bayesian approaches to construction decision-making is 

investigated to enhance the accuracy and reliability in project delivery method selection. 

  

Evaluation of Decision Criteria in Selection of Project Delivery Methods 

Selection of appropriate PDMs have been found to improve project performance, including 

lower cost growth, shorter schedule durations, higher quality, and better safety (Al Khalil 2002; 

Col Debella and Ries 2006; Ibbs et al. 2003). The traditional D-B-B delivery method is 

considered to foster adversarial relationships among project participants which often can result in 

negative performance outcomes (Park and Kwak 2017). On the other hand, alternative 

contracting methods (ACMs), including D-B and CM/GC, aim to shorten the project schedule, 

optimize total cost, and achieve a satisfactory level of project quality (Francom et al. 2016). 

Under particular circumstances, such as projects with a high level of uncertainty or complexity 

D-B has been found to provide better project performance than D-B-B (Nikou Goftar et al. 2014; 

Rojas and Kell 2008). In the U.S., state departments of transportation (DOTs) have increasingly 

used ACMs, which inspires the assessment of whether transportation projects result in better 
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project performance and identify common performance patterns to support selection of PDMs 

(Touran et al. 2009b).  

Decision-making frameworks for selection of appropriate PDMs are considered to be an 

important element of successful construction projects (Bakht and El-Diraby 2015; Mahdi and 

Alreshaid 2005). Many decision-making studies have been proposed to support project owners to 

select the most suitable PDM for their projects (Al Khalil 2002; Bypaneni 2017; Mostafavi and 

Karamouz 2010; Tran and Molenaar 2015). The typical methods of analysis in PDM decision-aid 

systems or models can be classified into two main categories: qualitative and quantitative 

approaches (Konchar and Sanvido 1998; Touran et al. 2011). The majority of current selection 

approaches in the construction industry are based upon subjective assessments of experts and 

guidelines from professional organizations (WSDOT 2016). Rising approaches of mathematical 

theories have been developed with critical selection criteria, mostly focusing on project 

performance. There are several types of inputs to decision-making models for PDMs including 

project characteristics, complexity, and project risks. Among all, project risks are considered as 

one of the most difficult inputs to quantify due to their subjective nature and qualitative units of 

measure (Diab et al. 2012). Project risks in selection of PDM are considered based on 

simulations and probabilistic approaches with which potential ranges of risk impacts to project 

performance are provided (Tran et al. 2016). However, it is difficult to incorporate two different 

types of inputs, numeric data from project characteristics and subjective data from risks, into a 

PDM-selection-supportive models. Thus, there is a need to utilize a new method to take into 

account both types of inputs and provide more accurate outcomes to support selection of PDMs. 
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Applications of Fuzzy Sets and Bayesian Networks in Construction Decision-Making 

The main function of fuzzy set theory is to convert linguistic statements, which are only 

meaningful to human beings, to be quantifiable by a computer (Zadeh 1965, 1975). Fuzzy set 

theory has been used in a wide range of domains to evaluate incomplete, imprecise, or subjective 

inputs (Anderberg 2014). In the field of engineering, fuzzy set theory has been used to capture 

qualitative domain professional judgements to generate theoretical decision-making models and 

widely applied to many areas, such as computer science, mechanical engineering, aerospace 

engineering, chemical engineering, structural engineering, and construction management 

(Elwood 2014; D’Urso 2007; Hoppner et al. 1999; Nguyen et al. 2020; Seo et al. 2004). Within 

the construction industry, fuzzy set theory has been rarely used, and has mostly dealt with 

problems in risk-based management (Dikmen et al. 2007; Elbarkouky et al. 2016; Lam et al. 

2001; Pawan and Lorterapong 2016). Hegazy and Ayed (1998) indicated that fuzzy set theory is 

notably useful in the construction industry where realistic historical project data are limited. In 

fact, it has demonstrated its applicability in quantifying some project performance metrics. For 

example, Knight and Fayek (2002) implemented fuzzy set theory and fuzzy logic to predict cost 

overruns of the design phase in vertical building projects. Li et al. (2006) attempted to forecast 

project status in terms of cost overruns and schedule delays based on fuzzy logic. Due to the 

dynamic nature of construction project data and information, the probability and severity of 

events cannot be satisfied by the crisp values (Ross 2010). Therefore, the probability of linguistic 

expressions can be transformed into fuzzy numbers.  
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Bayesian networks are an inference engine used to compute the probability of an event 

given the occurrences of other events. To construct a Bayesian network, a directed acyclic graph, 

consisting of nodes (i.e., discrete or continuous variables) and arcs (i.e., dependence between 

variables), is developed to illustrate the conditional dependence and causal relationships between 

nodes (Sun et al. 2018). The directed acyclic graph produces a set of conditional probabilities 

while missing arcs implies conditional independence between variables. The graph also allows 

joint and priori probability distributions to be specified and updated in terms of conditional 

probability tables (Zhang et al. 2016).  

Fuzzy Bayesian inference is a hybrid technique that synergies a combination of 

possibility theory (fuzzy logic) and Bayesian networks (probability theory) in a unified inference 

system (Viertl 1987). It is defined as a multi-criteria decision-aid system which allows the 

decision maker to prioritize and select the most appropriate alternative under uncertainty (Sedki 

et al. 2010). By accommodating the causal interactions among the variables, FBIS allows the 

decision maker to solve more complex problems based on a variety of variables.  

FBIS has been widely used in engineering research (Eleye‐Datubo et al. 2008; Luque and 

Straub 2019; Zhang et al 2016; Uusitalo 2007), but limited studies have investigated its 

applications in project delivery decision problems. Based on the fuzzy rule-based inference 

system in Chapter 3, which was established using quantitative and qualitative variables, the 

proposed FBIS attempts to demonstrate the causal relationships between input variables (e.g., 

project characteristics, project complexity, delivery risks, and project cost performance) and 

project delivery method candidates. Using FBIS is able to provide understandable interpretations 

of variables compared to other machine learning approaches, such as support vector machines, 

decision trees, Monte Carlo simulation, sensitivity analysis, stochastic approaches, and artificial 
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neural network (Guidotti et al. 2018; Ren et al. 2009). In addition, FBIS is capable of integrating 

different sources of information and knowledge, dealing with incomplete data sets, modeling 

causal relationships among variables, and accommodating uncertainty occurred in decision-

making processes (Uusitalo 2007) 

 

RESEARCH QUESTIONS  

The motivation of this chapter is to overcome the shortage of the developed fuzzy inference 

system in Chapter 3 by incorporating a probabilistic aspect of Bayesian networks to increase the 

accuracy and reliability of the rule-based inference system with updatable conditional probability 

of variables. To achieve the research objective, this chapter attempts to address the following 

research questions: 

1) How do project attributes, project complexity, delivery risk factors, and cost performance 

interact with different project delivery methods (i.e., D-B-B and D-B)? 

To answer the first question an application of Bayesian networks and fuzzy sets is 

proposed to describe the dependencies between variables both qualitatively and 

quantitatively. Causal relationships between facility type, project type, project 

complexity, delivery risks, cost performance, and project delivery methods are addressed 

in this research question.  
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2) What new information would be gained by using a developed fuzzy Bayesian inference 

system to selection of project delivery methods? 

To answer the second question, a theoretical fuzzy Bayesian rule-based inference 

system is developed and expected to practically demonstrate via a Case example with a 

step-by-step procedure of selecting an appropriate delivery method associated with cost 

growth for highway projects.  

 

THEORETICAL FRAMEWORK OF FUZZY BAYESIAN INFERENCE SYSTEM 

In engineering decision-making, FBIS has been constructed by using two common approaches. 

The first approach develops a fuzzy Bayesian network with structures and parameters on the 

basis of historical data (Sun et al. 2018). This approach requires a large amount of training data 

which is often difficult to collect in the context of project delivery methods. The second 

approach establishes a fuzzy Bayesian network based on experts’ experience and knowledge, 

which is commonly used in fuzzy Bayesian studies in engineering (Leu and Chang 2013; 

Nguyen et al. 2016). This chapter proposes the application of the first approach with empirical 

project data collected from highway agencies.  

The key feature of the fuzzy Bayesian networks and inference system is to establish a 

possibility-probability directed acyclic graph of all variables to capture the logical network and 

provide causal probabilistic relationships between them (İçen and Ersel 2019; Islam and Nepal 

2016; Liu et al. 2013; Viertl and Sunanta 2013; Zarikas et al. 2014). The inputs to the Bayesian 

Networks are fuzzy values determined by fuzzy membership functions. Figure 1 shows the entire 

process to develop a FBIS including the following steps: 
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• Determine empirical project clusters based on the commonality in project attributes, 

delivery methods, and cost growth between highway projects. 

• Establish a fuzzy rule-based inference system to identify potential project delivery 

methods based on common groups of highway projects in terms of facility type, project 

type, project complexity, delivery risks, delivery methods, and cost growth. 

• Create causal relationships between fuzzy values of project attributes, cost performance, 

and project delivery methods with probabilistic nodes and arrows from Bayesian 

networks. To extend the classic Bayesian networks into a fuzzy Bayesian inference 

system, it is essential to choose a proper fuzzy probability measure to conduct fuzzy 

Bayesian inference.  

• Establish fuzzy Bayesian rule-based inference engines with prior, joint, and conditional 

probabilities observed and calculated from the previously developed fuzzy inference 

system. The final conditional probability table provides the degree to which a more 

appropriate project delivery method can be selected with updated information as the 

project is developing. The decision nodes (i.e., D-B-B and D-B) are identified in terms of 

True (%) and False (%) given a set of input variables and updated information as the 

project is developing.  

• Conduct the defuzzification process to produce crisp values of the output project delivery 

methods. Validation and verification procedures are conducted to ensure the accuracy and 

reliability of the developed FBIS.  
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Figure 1. Research Approach of Fuzzy Bayesian Rule-based Inference System 

 

The theoretical framework of FBIS in this chapter follows five specific steps: (1)  fuzzify 

all input variables, (2) develop a causal (Bayesian) network including all variables or nodes (i.e., 

root nodes, intermediate nodes, and consequence nodes), (3) calculate all probabilities, including 

prior (or marginal), joint, and conditional, for the final Conditional Probability Tables of the 

developed network, (4) determine the fuzzy rule-based inference engines and select decision 

alternatives based on causal relationships between variable nodes, and (5) defuzzify the outputs 

of the fuzzy-Bayesian inference process. 

The theoretical framework of FBIS in this chapter is developed based on a dataset X 

consisting of n highway projects, { }1 2 3, , ,..., nX X X X X= . Each project Xi has m variables (i.e., 

project characteristics, project complexity, delivery risks, and project performance indicators)

{ }1 2 3, , ,...,i i i i imX X X X X= . Using fuzzy cluster analysis, a set of c predefined clusters serve as 

classifiers in the fuzzy rule-based inference system { }1,2,3,...,jC k= . Prior to inputting data to 

the fuzzy Bayesian networks, a standardization process is conducted to ensure that all of the 

variables have a unified scale to avoid impacts of dissimilarity measures. Ranging method is one 
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of the recommended standardization methods in the fuzzy logic area and denoted as Equation 1 

(Klir and Yuan 1995): 

min

max min
STD

X XX
X X

−=
−

      (1) 

Where: XSTD = standardized value; X = crisp value; Xmin = minimum value of the project 

attribute; Xmax = maximum value of the project attribute. 

 

Step 1: Fuzzification of Inputs 

The fuzzifying process converts input values into standardized fuzzy numbers prior to the 

inferential reasoning process. The result of this process provides a set of standardized input 

variables (quantitative and qualitative) in a unified scale to avoid impacts of dissimilar measures. 

Each input project is represented as a multi-dimensional data vector, consisting of the number of 

selected variables. The detailed fuzzification process can be found in Chapter 3: Fuzzy Pattern 

Recognition. The objective of the fuzzification process is to manipulate input data with Gaussian 

fuzzy membership function to convert raw inputs and insert membership values (Hwang 2004). 

The Gaussian functions are more appropriate than other types of membership functions, 

including triangular, trapezoidal, and sigmoid to handle a combination of quantitative and 

qualitative inputs (Daneshvar 2011). The Gaussian membership function has the maximum value 

of 1. The linguistic labels are assigned to each approximated membership function of input 

variables based on the values of cluster centers. The Gaussian membership function is illustrated 

in Equation 2 (Ross 2010):  
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Where µi and σi are the cluster center and spread of the ith project attribute with Gaussian 

membership function fi (i.e., facility, project type, project size and duration, project complexity, 

delivery risks, and cost growth). Detailed of the establishment of cluster centers and spreads can 

be found in Nguyen et al. (2020).  

 

Step 2: Development of Bayesian Networks (Causal Relationships) 

Bayesian networks contribute to the establishment of causal relationships between pre-defined 

clusters, project size and duration, and delivery method candidates (i.e., D-B-B and D-B). Figure 

2 shows the Bayesian network of the 17 selected variables in the fuzzy rule-based inference 

system established in Chapter 3. The seven project clusters were developed based on project 

characteristics, level of project complexity, delivery risk factors, and historical cost growth in 

Chapter 2. The seven clusters and input variables of project size and duration serve as parent 

nodes to help estimate the posterior conditional probability of project delivery methods (i.e., D-

B-B and D-B). The final results of two delivery methods, considered as discrete variables, are 

represented in two states: True and False, associated with a statistically probability-possibility 

percentage. The established Bayesian network between input and output variables is a foundation 

to determining fuzzy Bayesian inference engines in the next step. 
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Figure 2. Development of Fuzzy Bayesian Networks 

 

 

 Figures 3 and 4 illustrate the causal relationship between (1) project attributes and project 

clusters and (2) project clusters, project size, project duration, and delivery methods (i.e., D-B-B 

and D-B), respectively. In Figure 3, the relationships between project attributes (i.e., project type, 

facility type, project complexity, and delivery risk factors) and project clusters were developed 

based on fuzzy clustering analysis. In Figure 4, in addition to seven project clusters, project size 

and duration are added to increase the accuracy of the selection of project delivery methods. 

Figure 5 illustrates an example of identifying project delivery methods using project cluster 1, 

where the conditional probabilities of D-B-B and D-B in terms of “True” or “False” percentages 

are provided. Specifically, the conditional probabilities of project cluster 1 are updated based on 

the prior probabilities of input project attributes, including facility type – road, project type – 

reconstruction, moderate project complexity, construction risk factor, and environment risk 

factor.  
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Figure 3. Causal Relationships between Project Attributes and Empirical Project Clusters 
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Figure 4. Causal Relationships between Project Clusters, Project Size and Duration, and 

Delivery Methods. 
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Figure 5. Example of Identifying Project Delivery Methods Using Project Cluster 1 
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Step 3: Calculation of Probabilities for Conditional Probability Tables 

The developed directed acyclic graph shown in Figure 2 is used to represent the probabilistic 

causal relationship between the historical project characteristics, clustered project groups, new 

project characteristic inputs (cost and duration), and project delivery method candidates (i.e., D-

B-B and D-B). The graphical conditional dependencies between facility type, project type, 

project size and duration, project complexity, delivery risks, and cost growth are probabilistically 

represented using the conditional probability tables. Three typical probabilities, including priori, 

joint, and conditional, of the developed FBIS are calculated and updated based on Bayes theorem 

(Corona-Suárez et al. 2014; Sedki et al. 2010).  

First, the joint probability of the input project attribute X is denoted as Equation 3: 

1

1( ) ( | ,..., )
n

i i n
i

P X P X X X
−

+=∑     (3) 

Where: Xi+1 is a causally related project attribute of Xi. The probability of project 

attribute X in the ith project P(Xi) is calculated as ( ) ( )

i

i
X
X

P X P X=∑ .  

Second, the prior probability of the input project attributes is calculated as follows: 

• Facility type includes road, bridge, drainage, intelligent transportation system 

(ITS), and other. The prior probability of each sub-category is computed based on 

the frequency of them in the collected dataset. For example, the probability of 

road variable equals to the percentage of road projects throughout the entire 

dataset (i.e., if road represents 60% of the collected highway projects, the prior 

probability of road variable is 0.6).  
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• Project type includes new construction, reconstruction, and other. Similar to the 

facility type categories, each sub-project type produces prior probability based on 

the percentage of them throughout the entire dataset. 

• Project complexity produces the prior probability of each level of complexity 

including the most, moderate, and none complex with similar computation to the 

previous variables. 

• Delivery risk factors 1 to 7 produce the prior probability by calculating the 

frequency of each delivery risk and multiplied by the exploratory factor loadings 

within each risk factor. For example, Risk Factor 3 – Constructability consists of 

two delivery risks, including Risk #17: delays in procuring critical materials, 

labor, and specialized equipment with a factor loading of 0.85 and Risk #18: 

significant increase in material, labor and equipment cost with a factor loading of 

0.76. The prior probability of Risk Factor 3 is calculated based on the prior 

probability of risks #17 and #18 throughout the entire dataset. 

• Cost growth produces prior probability of five categories: savings, none, low, 

medium, and high with similar computation to the previous variables. 

As the project is thoroughly developing, newly updated information of input variables 

can be loaded to the FBIS to enhance the accuracy of the selection of an appropriate delivery 

method. The priori probabilities can be updated by using Equation 4 below (Kim 2011; Islam 

and Nepal 2016; Yang et al. 2006): 

( ) ( ) ( | ) ( )
( | )

( ) ( ) ( )
i

i j i j j i i
i j

j i j jX

P X T P X T P T X P X
P X T

P T P X T P T
∩ ∩ ×

= = =
∩∑    (4) 

 



97 

Where:  

Tj represents a set of new information given throughout the project development that 

affect the created variables in the FBIS.  

( | )i jP X T  is the posterior probability of variable Xi given new information Tj 

( )iP X  is the prior probability of variable Xi calculated from the data-driven clustering 

groups.  

( )jP T  is the probability of state j of the newly given information T, which can be 

estimated from the developed Bayesian networks.  

( | )j iP T X  is the degree of belief in the accuracy of variable Xi given the new information 

Tj, which can be calculated based on the fuzzy rule-based inference system in Chapter 3.  

Third, the conditional probability table of all the nodes (e.g., root, intermediate, and 

consequence) in the proposed Bayesian network is computed with fuzzy values derived from 

Gaussian membership function as shown in Table 1. The root nodes include project attributes: 

project type, facility type, project complexity, delivery risks, and historical cost growth. The 

intermediate nodes consist of empirically identified project clusters, project size, and project 

duration. The consequence (or leaf) nodes consist of two project delivery method candidates: D-

B-B and D-B.  
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Table 1. Theoretical Conditional Probability Table  

Variable Project Delivery Method Candidates (PDM) 

P(PDM |Ci, mi, xi) Design-Bid-Build Design-Build 

P(Ci| mi, xi) Seven Project Clusters, Project Size, and Project Duration 

P(mi| xi) Facility Types, Project Types, Project Complexity, Delivery Risk Factors 

P(xi) 

Road, Bridge, New Construction, Re-construction, Moderate Complex, 

Most Complex, Risk Factor 1, Risk Factor 2, Risk Factor 3, Risk Factor 

4, Risk Factor 5, Risk Factor 6, Risk Factor 7 

 

Step 4: Determination of Inference Engines and Decision Alternatives 

Mapping the fuzzy input data into the Bayesian belief network is the process of determining the 

degree to which the project cluster Ci belong to a project delivery method (i.e., D-B-B or D-B) 

associated with conditional probabilities of the causal relationship between them. A rule base is 

projected from the membership function and written in terms of the input characteristics and 

group labels (rule antecedents and rule consequents, respectively) (Elwood 2014). The 

established rule base is able to accommodate the fuzziness and membership values of variables. 

This chapter continues to utilize the definition of Mamdani-type fuzzy inference system 

developed in Chapter 3 to logically reason multiple inputs via “If-Then” rule-based engines and 

produce multiple outputs. Specifically, an example of rule-based inference engines is shown 

below: 
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IF Cluster 1 is {%True and %False} and Cluster 2 is {%True and %False } and Cluster 

3 is {%True and %False } and … Cluster 7 is {%True and %False } and Project Size is {small, 

medium, or high} and Project Duration is {decreased or increased} THEN the appropriate 

project delivery method is D-B-B {%True and %False} or D-B {%True and %False}. 

Where: Clusters 1 to 7, Project Size, and Project Duration are mutually different fuzzy 

sets while {%True and %False} is calculated with the conditional probability tables. 

If-then propositions of this form can be aggregated (the process of determining the final 

consequent over all of the rules) in different ways (D’Urso 2007). In the Max-Min inference 

method, the “and” conjunction in each rule is evaluated by the fuzzy set minimum operator and 

the aggregation over all the rules is evaluated by the maximum operator (Elwood 2014).  

The probability results from the conditional probability tables provide a rule-based 

probability-possibility inferenced outcome of each project delivery method to investigate how 

suitable of them to particular project input attributes. Since the outputs are represented in terms 

of fuzzy values, the output with the maximum Gaussian membership function is selected. 

Specifically, the outcomes of the proposed FBIS show the following: 

• Suitability of D-B-B = True Percentage = P(D-B-B |Ci, mi, xi) = X% 

• Unsuitability of D-B-B = False Percentage = P(D-B-B |Ci, mi, xi) = 1- X% 

• Suitability of D-B = True Percentage = P(D-B |Ci, mi, xi) = Y% 

• Unsuitability of D-B = False Percentage = P(D-B |Ci, mi, xi) = 1- Y% 
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Step 5: Defuzzification of Outputs 

The inferenced outcomes of decision alternatives are hardened to convert fuzzy outcomes into 

crisp values for subsequent humanistic judgements; this process is called defuzzification. Some 

common defuzzification approaches in engineering applications include the centroid of area, 

maxima, mean of maxima, and center average weighting (Ung 2018). This chapter utilizes the 

centroid of area approach to determine the outcome of the proposed FBIS. Equation 5 shows the 

calculation of the centroid of area approach (Zhang et al. 2016): 

( )

( )
i PDM i i i

PDM
i PDM i i

x x x dx
Centroid

x x dx

×
=

×
∫
∫

µ

µ
     (5) 

 Where PDMµ  represents the maximum membership value of the Gaussian membership 

function x of the ith input project attribute. 

Although this approach requires a high load of computing burdens when using Gaussian 

membership function, it is capable of providing highly accurate outcomes (Ross 2010). Figure 6 

shows the example of using the centroid of area approach to determine the maximum Gaussian 

membership value of D-B-B with the state of being True = X%.  

 

Figure 6. Defuzzification of FBIS using Centroid of Area Approach  
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In addition, ranging method is utilized to maximize the interpretability of the fuzzy rule-

based inference system (Kruse 2007). Equation 6 is used to transform the fuzzy values to crisp 

values of the FBIS’s outcomes (Nguyen et al. 2020).  

( )max min minSTD X X XX X × − +=      (6) 

Where XSTD = standardized value; X = crisp value; Xmin = minimum value of the project 

attribute; Xmax = maximum value of the project attribute. 

 

VALIDATION  

To validate the proposed fuzzy Bayesian inference system, a 10-fold cross-validation is proposed 

to determine the validation and testing error rates. This cross-validation approach is able to 

produce low bias and low variance results (Sargent 2013). Using this validation approach, the 

data is divided into two main sets: training and testing; while the training set also includes the 

validation set used in the subsequent cross-validating process. For fuzzy-based classification 

problems, a 90:10 split ratio is recommended to treat the dataset (Ross 2010). In other words, 

90% of the entire dataset is used for training the proposed FBIS while 10% of the entire dataset 

is used for testing the system. Specifically, the training set is split into ten subsets (i.e., ten folds) 

of equal size. The nine subsets are used to train the system while the remaining one subset is 

used to validate the system with ten iteration rounds of re-sampling the entire training set. The 

testing set is used separately to assess the accuracy of the FBIS’s outcomes. To apply FBIS in 

practice, a web-based user interface can be developed with the R programming language, which 

allows users to input numerical project data, including facility type and project type, along with 

qualitative judgements, including project complexity and delivery risk factors, to provide 

predictive cost growths associated with appropriate project delivery methods. 
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DISCUSSION  

This section summarizes the theoretical implications of the theoretically developed fuzzy 

Bayesian rule-based inference system within the domain of project delivery method selection. 

These implications are expected to shed light on the use of Bayesian networks to overcome 

shortages of fuzzy set theory to support project delivery decision-making under uncertainty.   

 

Theoretical Implications  

The theoretical FBIS framework provides decision makers with insights regarding the 

implementation of Bayesian networks to (1) establishing the structural relationships between 

project delivery decision variables and (2) increasing the accuracy of fuzzy input variables using 

prior and posterior probabilities. These two insights are expected to help decision makers 

overcome the constraints of fuzzy-based applications.  

Due to the fact that fuzzy cluster analysis increases the overlaps among clustered 

patterns, the outcome of fuzzy-based classification often reserves pretty high training and testing 

error rates compared with normal statistical tests (Elwood and Corotis 2015, Ross 2010). By 

computing and updating the prior and posterior probabilities of fuzzy input variables, Bayesian 

networks are capable of improving the interactions between them and supporting fuzzy rule-

based inference engines. This chapter recommends the use of R programming to create the FBIS 

framework with two packages of BnLearn and gRain. Details of these two R packages can be 

found in Scutari (2009).  
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Structural Relationship between Variables in Project Delivery Method Selection 

The first implication refers to the theoretically developed Bayesian (causal) network between 

project attributes, seven empirically established project clusters, and project delivery methods. 

This network can be used for determining the existing statistical dependencies between variables 

in project delivery method selection. The structure of the Bayesian network in this dissertation 

was formed based on statistical evidences (the seven pre-defined project clusters); thus, this is 

defined as a Bayesian probability network (Zarikas 2014).  

The relationship between the seven pre-defined project clusters and input project 

attributes can be identified based on the within- and between-clusters membership values of 

those attributes. For instance, in the project cluster 1, reconstruction road projects were 

correlated with the moderate project complexity and two delivery risk factors (construction and 

environment risks). In the project cluster 2, new construction bridges were also correlated with 

the moderate project complexity and two delivery risk factors (construction and environment 

risks). In project cluster 3, new construction roads were correlated with the most project 

complexity and four delivery risk factors (construction, complexity, utility-and-ROW, and 

environment risks). In the project cluster 4, new road construction projects were correlated with 

the most project complexity and five delivery risk factors (construction, quality, complexity, 

utility-and-ROW, and environment risks). In the project cluster 5, other types of road projects, 

such as road widening and new sidewalks, were correlated with the moderate project complexity 

and one delivery risk factor (construction risks). In the project cluster 6, reconstruction bridges 

were not correlated with any critical delivery risk factors, but the moderate project complexity. 

In the project cluster 7, new construction roads and bridges were correlated with the most project 

complexity and all seven delivery risk factors.  
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Highway agencies can utilize the outcome of the theoretical Bayesian probability 

network to identify the interrelationship between project characteristics, impacts of delivery 

risks, level of project complexity, and cost performance and select an appropriate delivery 

method for their new highway projects. Because the seven project clusters were established 

based on the degree of the commonalities across input project attributes, there is a need of 

collecting a large data sample size to improve the validity and reliability of the developed 

Bayesian probability network. 

 

Computing and Updating Probabilities of Input Variables 

Another theoretical implication to project delivery decision makers is that using Bayesian 

probability networks can improve the accuracy of fuzzy input variables by computing and 

updating prior and posterior probabilities. The prior probabilities of the input fuzzy variables 

were calculated based on the likelihood of their occurrence (i.e., fuzzy membership values) 

within a particular cluster, which might be affected by the overlaps between fuzzy-based project 

clusters. However, the posterior probabilities were computed based on Bayes theorem taking into 

account the probabilistic causal relationship between the variables and updated project 

information (İçen and Ersel 2019). This process provides a legitimate set of conditional 

probability distributions used in the rule-based inference engines to reason the suitability of 

project delivery methods. The final conditional probability table produces the specific True and 

False probabilities of each project delivery method candidate. This outcome is expected to help 

public agencies determine the most appropriate delivery method for their new highway projects 

given the initial project attributes and updated project information.  
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CONCLUSION 

The majority of decision-making in selection of project delivery methods in highway 

construction rely upon a combination of qualitative (e.g., experts’ experience and judgements on 

delivery risk impacts and levels of complexity) and quantitative (e.g., project size, duration, type, 

and historical performance) variables. This chapter attempts to quantify a set of qualitative and 

quantitative variables to support decision-making in selecting an appropriate project delivery 

method for new highway construction projects. A deterministic probability-possibility inference 

system with a synergy of fuzzy set theory and Bayesian causal networks was proposed to aid the 

selection of project delivery methods in highway construction. This inference system is 

anticipated to overcome the drawbacks in the established fuzzy rule-based inference system in 

Chapter 3. An empirical dataset of 254 highway projects is used to validate and verify the 

developed theoretical framework. A Case project is selected to illustrate and test the system. 

Validation or applicability of fuzzy Bayesian rule-based inference system in highway project 

delivery decision-making by cross-validation approach and a Case project. 

This chapter is anticipated to contribute to the body of knowledge by proposing a 

theoretical framework of FBIS with a step-by-step process to identify an appropriate delivery 

method for a new highway project based on associated project characteristics, level of 

complexity, delivery risks, and historical clusters. The developed system provides a 

comprehensive understanding of causal relationships between facility type, project type, project 

complexity, delivery risks, cost performance, and project delivery methods. Highway agencies 

can use the developed system as a reference to select an appropriate delivery method for new 

projects based on historic data.  
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Limitation and Future Work  

There are several limitations in the theoretically developed FBIS framework that can be 

addressed in future work. First, the number of project clusters established was limited due to the 

availability of historical highway project data. In fact, the use of fuzzy sets enables a high degree 

of overlaps between project clusters based on the membership coefficients of each project within 

a given cluster (Kassambara 2017). The distance between project data and the cluster center 

determines the possible number of project clusters. Therefore, a larger data sample size can 

reduce the total overlapping variation and increase the compactness of the project clusters.  

Second, delivery risks are one of the critical variables in any decision-making processes 

of project delivery method selection (Tran and Molenaar 2015). This qualitative variable 

involves a high degree of subjective judgements and depends upon experience and risk 

preferences (i.e., risk averse, risk neutral, and risk acceptant) of decision makers. The risk ratings 

of the pre-defined project clusters were provided when the projects were done, which might 

expose to some biases. Future work should consider collecting delivery risk assessments that 

were completed prior to project initiation. In addition, the seven pre-defined project clusters 

accounted for only delivery risk impacts on cost performance. The potential delays due to 

schedule risk events are also critical in the selection of project delivery methods (FHWA 2018). 

Thus, schedule risk ratings should be also considered in future work to provide decision makers 

with insights regarding the interrelationship between cost and schedule delivery risks.  

Third, other project characteristics, such as procurement and payment methods, are 

interconnected with project delivery methods. The procurement process and payment provision 

can also be empirically clustered to help recognize the common combinations of those methods 

associated with particularly selected project delivery methods. In addition, the total value of the 
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change/extra work orders also greatly contributes to the selection of project delivery methods. 

This decision variable may include agency directed changes, changes in planned quantities, 

unforeseen or external project conditions, and errors and omissions in the plans. 
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SUMMARY 

Decision-making in construction projects is highly complex and involves numerous risks and 

points of uncertainty because of the dynamic nature of the construction industry. To make an 

appropriate decision, a set of relevant decision variables are necessarily identified and evaluated 

under uncertainty. Within the context of a construction project, the relevant decision variables 

often include both quantitative and qualitative factors. This dissertation attempted to support 

decision-making processes under uncertainty in construction projects by demonstrating the 

applications of fuzzy set theory and fuzzy logic, which are scientific and quantitative approaches 

to model and measure a combination of qualitative and quantitative decision variables. 

Accordingly, the utilization of fuzzy-based approaches was illustrated using the decision 

problem of project delivery method selections in highway construction projects. 

Selection of project delivery methods is a rising problem of the current construction 

industry to pursue better project performance which requires more empirically scientific 

approaches. The majority of project delivery method selection in highway construction rely upon 

subjective judgements and experience of decision makers. The selection of project delivery 

methods typically involves two types of variables: quantitative (e.g., project type, facility type, 

project size, and project duration) and qualitative (e.g., project complexity and delivery risks). 

Current decision aids in project delivery method selection lack deterministic approaches to 

accommodate a combination of quantitative and qualitative variables. To bridge this gap, this 

dissertation aimed at supporting selection of project delivery methods by utilizing applications of 

fuzzy set theory and fuzzy logic to simultaneously take into account common quantitative and 

qualitative variables and empirically investigate the relationship between them. Three fuzzy-
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based approaches were derived from fuzzy cluster analysis, fuzzy pattern recognition, and fuzzy 

Bayesian networks. The motivating question for this dissertation is shown below: 

“How to demonstrate the applications of fuzzy set theory and fuzzy logic to support project 

delivery method selections in highway construction?” 

To answer to the motivating question, this dissertation sampled an empirical dataset of 

254 completed highway construction projects collected from 28 public agencies across the U.S. 

Then, common groups of projects within the collected data were identified using fuzzy cluster 

analysis. Next, the pre-defined groups were used to train and test the fuzzy inference system. 

Finally, Bayesian networks were incorporated to leverage the accuracy of fuzzy variables using 

prior and posterior probabilities. 

 

Main Findings and Discussion 

Within the context of project delivery method selections, this dissertation supports public 

agencies to empirically identify the common trends (patterns) of using delivery methods in their 

highway projects in terms of project complexity, delivery risks associated, and cost performance. 

Taking into account the empirically identified patterns of project delivery methods, this study 

developed a quantitative inference system to help the agencies match their new coming highway 

projects with their historical database. Accordingly, the use of delivery methods associated with 

cost growth in the previous projects that share high similarities in project characteristics, the 

level of complexity, and delivery risks involved can be used as a reference to make better project 

delivery decisions.  
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Demonstrating three fuzzy-based applications provides several findings. First, fuzzy 

cluster analysis was used to establish seven project clusters which produce critical observations 

related to the appropriateness of project delivery methods to project characteristics and risk 

profiles. Accordingly, new highway construction projects delivered by D-B was privileged over 

D-B-B in terms of more project complexity and higher delivery risk impacts which is in 

consistent with previous studies (CII 2018; Goodrum et al. 2011; Hale et al. 2009; Koppinen and 

Lahdenperä 2004; McWhirt 2007; Migliaccio 2006; Rosner et al. 2009; Shrestha 2007a, 2007b; 

West Valley Construction, 2019). D-B projects are found with mostly moderate complexity. 

However, this result is not in line with Minchin et al. (2013), which compared sixty highway and 

bridge projects from Florida DOT and stated that using D-B-B resulted in better cost 

performance than using D-B. A possible reason is that this study takes into account uncertainty 

impacts of project complexity and risks while Minchin et al. (2013) did not include these 

inherent factors.  

Based on the sample of 254 projects, this study showed that highway projects delivered 

by D-B-B was preferred over D-B in terms of reconstruction projects with higher construction 

and environmental risks. New project, either road or bridge, are likely to have higher delivery 

risk impacts and the most complexity if procured by D-B; however, it only shows very low-cost 

growth with the mean of 0%. Reconstruction bridge projects with moderate complexity are likely 

to have no delivery risk impact if procured by either D-B-B or D-B. The construction and 

environmental risk factors are likely to have higher impacts on D-B projects than D-B-B 

projects. New construction projects have higher cost growth than reconstruction and other 

project types. Road projects have higher cost growth than bridge projects. To help practitioners 

investigate the differences between D-B-B and D-B in terms of facility type, project type, project 
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complexity, associated delivery risk factors, and cost growth, pairwise comparisons between 

seven project clusters are provided as follows:  

• D-B-B versus D-B in Road Projects 

Road projects delivered by D-B performed better than D-B-B road projects in terms of 

cost growth. This result is in line with Shrestha et al. (2012) and Tran et al. (2018), where 

a total of 4,203 highway projects delivered by D-B-B and D-B was analyzed. According 

to clusters 1 and 4, D-B was selected for new construction road projects with high 

complexity and risk impacts while D-B-B was selected for reconstruction road projects 

with lower complexity. Both clusters were observed with low cost growth and slightly 

different between D-B-B and D-B projects, 2% and 5%, respectively. In new construction 

roads (clusters 3, 4, and 7), projects procured by D-B were observed with lower cost 

growth than projects delivered by D-B-B even though D-B projects had higher 

complexity and risk impacts. Quality, constructability, and construction risks were 

observed to have a critical impact on cost performance in new D-B road projects. In 

reconstruction road projects (clusters 1 and 5), D-B-B was mainly selected to use with 

moderate project complexity and low risk impacts, which resulted in low cost growth. 

Environmental risks were observed to have a critical impact on cost performance when 

using D-B-B in reconstruction road projects. 

• D-B-B versus D-B in Bridge Projects 

D-B-B reconstruction-bridge projects were observed to have lower cost growth than D-B 

delivered new-construction-bridge projects according to clusters 2, 6, and 7. This is not in 

line with other PDM-comparisons-based studies, such as Touran et al. (2009a, 2011) and 

Sullivan et al. (2017). A possible reason is that the D-B-B bridge projects in the dataset 
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were reconstructed with only moderate complexity and observed with very low risk 

impacts resulting in 0% of cost growth. On the other hand, D-B was selected for new-

construction-bridge projects with high complexity and risk impacts resulting in low cost 

growth. Construction risks were observed to have a critical impact on the use of D-B in 

this case. 

• D-B-B versus D-B in terms of Project Complexity and Risks 

New construction highway projects with high complexity and risk impacts selected D-B 

instead of D-B-B and resulted in none-to-low cost growth. Under circumstances where 

D-B-B was selected for complex highway projects, medium-to-high cost growths were 

observed even though there were very low risk impacts involved. Contrarily, 

reconstruction highway projects with moderate complexity delivered by D-B-B were 

observed to have lower cost growth than D-B projects. Construction, utility and ROW, 

and environmental risks were observed to have a high impact on cost performance of D-

B-B highway projects while D-B projects experienced high impacts of construction risks.  

 

Second, based on the seven established project clusters, fuzzy pattern recognition was 

used to develop the fuzzy rule-based inference system which systematically maps the inputs of a 

new highway project to one or more project clusters (i.e., fuzzy classifiers) based on the 

similarity in project attributes (i.e., membership values within seven identified project clusters) 

and provides information regarding the use of delivery methods associated with cost growth. 

This inference system does not attempt to quantify any project delivery selection criteria, yet 

relationships between chosen project variables were established in terms of fuzzy membership 

functions to explore the similarities between them. Because of the inherent overlaps of project 
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variables between fuzzy classifiers, a new project can belong to more than one cluster. 

Therefore, the representation of each fuzzy classifier relies on the control variable – type of 

delivery methods used and associated cost growth. To account for the qualitative input variables, 

different judgements on seven risk factors may lead to multiple decision scenarios with different 

patterns of project delivery methods associated with cost growth to aid the decision maker to 

select an appropriate delivery method. Therefore, in many cases, highway construction projects 

with similar facility types and project types may end up with different cost growths and delivery 

methods used.  

A programming-based graphical user interface to support selection of delivery methods 

with new project inputs of characteristics, project complexity, and delivery risk impacts, was 

coded via R programming. This chapter also provides public agencies with seven common 

patterns of highway projects in terms of project delivery methods and associated cost growth. 

Utilizing fuzzy pattern recognition increases the overlaps among the clustering groups. 

Therefore, this might not be optimistic in terms of statistics and probability theory because of a 

great error rate. However, in the context of fuzzy set theory, it is acceptable because fuzzy sets 

are non-interactive, and there is restriction of a membership value based on assignment of other 

membership values (Elwood and Corotis 2015; Ross 2010). 

Third, the theoretical framework of fuzzy Bayesian inference system aimed to overcome 

the restriction of fuzzy set theory by investigating the dependencies between project 

characteristics, project complexity, delivery risks, cost growth, and project delivery methods, as 

well as calculating and updating probabilities of all variables as new information becomes 

available. There are five steps to establish the theoretical framework, including:  
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1. Fuzzify all variables, including project type, facility type, project size and duration, 

project complexity, delivery risks, and cost growth. 

2. Develop a Bayesian network including all variables. 

3. Calculate all probabilities, such as prior, joint, and conditional, for the final Conditional 

Probability Tables of the developed network. 

4. Determine the fuzzy rule-based inference engines and select decision alternatives based 

on causal relationships between variables. 

5. Defuzzify the outputs of the fuzzy-Bayesian inference process. 

 

RESEARCH CONTRIBUTIONS 

This dissertation contributes to the body of knowledge by demonstrating the applications of 

fuzzy hybrid approaches to support decision-making under uncertainty within the decision 

scenario of project delivery method selections. A set of quantitative and qualitative decision 

variables in the selection of delivery methods for highway projects were modeled and assessed 

using fuzzy set theory and fuzzy logic. A theoretical framework of an empirical inference system 

utilizing fuzzy set theory and Bayesian networks was also proposed to enhance the accuracy of 

fuzzy-based applications in decision-making under uncertainty. This study is one of the first 

attempts that applied fuzzy cluster analysis, fuzzy pattern recognition, and fuzzy Bayesian 

inference system to support the selection of project delivery methods in highway construction. 

This dissertation also sheds light on the applicability of fuzzy set theory, fuzzy logic, and fuzzy 

hybrid approaches to the broader construction research areas within the topics of decision-

making under uncertainty and the opportunity to utilize statistical techniques that are well-suited 

for such decisions.  
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To construction practitioners, the implications of this dissertation can benefit public 

highway agencies in making better project delivery decisions based on their historical data and 

inputs of project characteristics. In other words, given the information of a new highway project, 

the agency can utilize the developed fuzzy-based applications to identify an appropriate delivery 

method associated with a potential range of cost growth. In addition, they can also update their 

input information during the project development to improve the accuracy of their decision-

making. This study provides several practical implications in project delivery method selections. 

The seven empirical groups of highway projects that share high commonalities in project 

attributes provided insights regarding cost performance comparisons between D-B-B and D-B 

delivery methods to highway agencies. Using the fuzzy rule-based inference system developed 

based upon the seven project clusters, new highway projects can be systematically matched with 

an empirically recognized delivery methods associated with potential cost growth. Decision 

makers can also adjust the inputs of delivery risk impacts and levels of complexity to match their 

risk attitudes and opinions about project complexity. A graphical user interface was developed 

by R programming to help decision makers recognize project delivery method patterns with the 

inputs of project characteristics, project complexity, and delivery risks. The theoretical 

framework of fuzzy Bayesian inference system provided a comprehensive understanding of 

causal relationships between facility type, project type, project complexity, delivery risks, cost 

performance, and project delivery methods.  
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LIMITATIONS  

Although this dissertation is one of the first studies attempting to investigate the hybrid fuzzy 

approaches to accommodate a combination of quantitative and qualitative variables in the 

selection of project delivery methods, it has several limitations as follows:  

1) Increasing the sample size. There was a lack of collected CM/GC-delivered highway 

projects (n=34) compared with D-B-B (n=114) and D-B (n=119) in the collected dataset. 

The collected cost risk ratings might be biased because of project administrators and 

managers were asked to rate the risk profiles when the project had already completed. 

Only five project attributes: facility type, project type, project complexity, delivery risks, 

and project delivery methods were considered. Cost growth was the only project 

performance indicator that was taken into account.  

2) Expanding the hybrid fuzzy approaches to other construction sectors. This 

dissertation concentrated on highway construction projects. Therefore, the results would 

not be applicable for other construction sectors, such as vertical, medical, and aviation. 

3) Investigating the underlying effects across project characteristics, delivery risks, 

project delivery methods, and cost performance. The fuzzy-based applications in this 

dissertation did not attempt to examine the underlying effects of facility type, project 

type, project size, project duration, project complexity, and delivery risks on cost growth 

associated with project delivery methods.  

4) Validating and testing the hybrid fuzzy approaches. The validation of the developed 

fuzzy inference system in Chapter 3 experienced relatively high training and testing error 

rates compared with the normal statistical tests.  
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5) Expanding the hybrid fuzzy approaches to other decision-making scenarios. This 

dissertation only focused on supporting project delivery method selection.  

 

POTENTIAL AREAS FOR FUTURE RESEARCH 

The existing limitations in the application of fuzzy sets and hybrid fuzzy approaches can be 

removed with the suggestions for future research under three major areas.  

• First, the limitations #1 and #2 can be removed by collecting more data, considering other 

decision variables, and expanding the developed hybrid fuzzy approaches to other 

sectors.  

• Second, the limitations #3 and #4 can be removed by incorporating the developed hybrid 

fuzzy approaches with other statistical and machine learning techniques.  

• Third, the limitation #5 can be removed by considering the application of the developed 

hybrid fuzzy approaches in other construction decision scenarios.  

 

Fuzzy Hybrid Approaches with Other Decision-Making Variables 

The first potential area of this dissertation aims to augment the developed hybrid fuzzy 

approaches by considering other decision variables and collecting more highway project data.  

1) Increasing the sample size. 

Due to the limited sample size of CM/GC highway projects in this dissertation, the results 

mainly referred to D-B-B and D-B highway projects. The reason is that state DOTs were 

asked to provide only completed CM/GC projects at the time of the data collection; 

however, CM/GC was still relatively new to many state DOTs at that time. In addition, 

other project delivery methods, such as public-private partnerships (P3), integrated 
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project delivery (IPD), design-build-operate-maintain (DBOM), design-build-operate-

transfer, and design-build-finance, should also be considered to enhance the applications 

of the hybrid fuzzy approaches in more project delivery decision-making scenarios. 

Other project performance indicators, such as schedule growth, quality, 

maintenance costs, and sustainability problems, should also be considered in future work. 

The accommodation of these performance indicators can provide more insights regarding 

the advantages and disadvantages of the project delivery method candidates. However, 

adding these dependent variables may increase the complexity of the developed 

approaches as well as require more computational burdens. Increasing the number of 

dependent variables (which serve as cluster centers) leads to a larger number of the multi-

dimensional spaces and more complex computations of distances within and between 

clusters.  

2) Expanding the hybrid fuzzy approaches to other sectors. 

The hybrid fuzzy approaches can be applied to support the selection of project delivery 

methods in other horizontal project types, such as infrastructure and other transportation 

projects, and the vertical sector, including airport, commercial, and industrial projects. In 

the aviation sector, there is a need to deliver airport capital projects quickly from the 

planning phase to the design and construction phases. Due to the budget constraints, the 

number of deferred capital projects has been increased; as a result, many airports have 

progressively partnered with the private sector to transfer the responsibility for project 

delivery and performance. Currently, airports have applied various project delivery and 

financing methods to accelerate their major capital projects. Thus, there is a demand in 

the aviation sector to apply comprehensive decision-aid applications to project delivery 
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method selection. Additional survey questionnaires, interviews, and case studies may be 

required to collect information regarding project complexity and delivery risk factors in 

those sectors.  

 

Fuzzy Hybrid Approaches with Statistical and Machine Learning Techniques 

The second potential area of this dissertation aims to improve the robustness of the developed 

hybrid fuzzy approaches by incorporating other statistical and machine learning techniques, such 

as Structural Equation Modeling (SEM), Monte Carlo simulation, and Bayesian belief networks. 

3) Investigating underlying effects across project characteristics, delivery risks, project 

delivery methods, and cost performance. 

The effects between input project characteristics, project complexity, and delivery risk 

factors on cost growth may impact the outcomes of the developed hybrid fuzzy 

approaches. To remove this limitation, SEM is a comprehensive statistical tool which 

helps model covariance between decision variables and assess the underlying interrelated 

relationships between their constructs (Mueller 2012). This technique is capable of 

producing the insights of observed and unobserved (or latent) variables simultaneously in 

terms of direct and indirect effects that exist between them (Raykov and Marcoulides 

2012). For instance, in project delivery method selection, observed variables include 

project complexity and project cost growth while unobserved variables include project 

characteristics and delivery risks.  

4) Validating and testing the hybrid fuzzy approaches. 

Initially, the dataset contained 291 highway construction projects collected from 28 state 

DOTs. This study removed 37 projects identified with outliers in project cost data and 
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delivery risks because fuzzy-based methods are very sensitive to outliers (Ross 2010). 

Analyzing reduced model predictions can support the verification, validation, and 

implementation of the developed hybrid fuzzy approaches. Monte Carlo simulation can 

help reduce the uncertainty in the prediction modeling process within the developed 

hybrid fuzzy approaches. Additionally, sensitivity analyses may also help identify the 

critical variables that affect the selection of project delivery methods. Future studies can 

implement Bayesian belief networks, which are established based on experts’ opinions, to 

investigate the relationship between quantitative (project size and duration) and 

qualitative variables (project complexity and cost and schedule risk events).  

 

Fuzzy Hybrid Approaches with Other Decision Scenarios in Construction 

The third potential area of this dissertation aims to implement the developed hybrid fuzzy 

approaches to non-project-delivery-method decision-making scenarios in construction projects. 

5) Expanding the hybrid fuzzy approaches to other decision-making scenarios. 

This dissertation supports the selection of project delivery methods by accommodating a 

combination of quantitative and qualitative variables and investigating the causal 

relationship between them. The developed data-driven fuzzy approaches can also be 

applied in other scenarios of decision-making under uncertainty, such as asset 

management, financial budgeting and planning decisions, design and structural 

engineering decisions, and procurement decisions in international construction projects.  
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APPENDIX A – FUZZY CLASSIFICATION 

A.1. Exploratory Factor Analysis Result 

Table A.1. Exploratory Factor Analysis of 31 Critical Delivery Risks (Bypaneni 2017) 

 

Risk Factors Loading % of Variance Cumulative (%) 

Risk Factor 1: Complexity Risk   24.99 24.99 
Project complexity 0.71   

Uncertainty in geotechnical investigation 0.59   
Legal challenges and changes in law 0.58   
Intergovernmental agreements and jurisdiction 0.57   
Difficulty in obtaining other agency 0.49   

Risk 2: Quality Risk   10.91 35.90 
Construction QC/QA process 0.93   
Design Quality Assurance 0.88   

Risk 3: Constructability Risk  10.15 46.05 
Delays in procuring critical materials, labor, and 
specialized equipment 

0.85   

Significant increase in material, labor and 
equipment cost 

0.76   

Risk 4: Construction Risk   7.53 53.59 
Work zone traffic control 0.86   
Construction sequencing/staging/phasing 0.83   

Risk 5: Utility and ROW Risk   6.69 60.28 
Unexpected utility encounter 0.76   
Delays in completing utility agreements 0.71   
Delays in right-of-way (ROW) process 0.63   

Risk 6: Management Risk  5.79 66.07 
Staff experience/availability 0.80   
Project and program management issues 0.76   
Conformance with regulations/guidelines/design 
criteria 

0.72   

Risk 7: Environmental Risk  5.06 71.13 
Challenges to obtain appropriate environmental 
documentation 

0.61   

Environmental impacts 0.48   
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A.2. Determination of Number of Clusters 

Selection of an optimal number of clusters is subjective and depends on methods of 

similarity measurement and clustering parameters. Table 2 provides results associated with four 

utilized methods of identifying the most optimal number of meaningful clusters. As a result of 

the four methods, the range of the potential numbers of clusters was from two to ten clusters, and 

the most selected optimal number of clusters was seven. Accordingly, seven clusters were pre-

defined as the input for the number of cluster centers to the FCM algorithm.  

• Elbow Method 

o Chooses a number of clusters so that adding another cluster doesn't improve much 

better the total WSS. 

 

 

Figure A.2. Elbow method for fuzzy cluster analysis 
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• Silhouette Method 

o Determines how well each object lies within its cluster. A high average silhouette 

width indicates a good clustering. 

 

Figure A.3. Silhouette method for fuzzy cluster analysis 
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• Gap Statistics Method 

o Compares the total within intra-cluster variation for different values of k with 

their expected values under null reference distribution of the data. The estimate of 

the optimal clusters will be value that maximize the gap statistic (nboot = 50). 

 

Figure A.4. Gap statistic method for fuzzy cluster analysis 
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• NbClust Method  

o Using 27 clustering indices to determine an appropriate number of clusters. 

 

Figure A.5. NbClust method for cluster analysis 
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Figure A.6. Distribution of the Five Cost Growth Groups within the Collected Dataset 

 

A.3. Fuzzy C-means Cluster Analysis Algorithm 

• Coding Procedure in R 

o R package - Probabilistic and Possibilistic Cluster Analysis (ppclust): This 

method is the most advanced fuzzy cluster analysis up-to-date can optimize the 

issues of outliers and minimize overlapping clustering groups. 

o Cluster centers = 7, fuzziness (m) = 1.65, nstart = 5 
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Figure A.7. Coding Demonstration of Fuzzy Cluster Analysis in R Programming 

 

Table A.2. Number of objects in the clusters 

Cluster 3 Cluster 4 Cluster 2 Cluster 7 Cluster 5 Cluster 6 Cluster 1 

39 23 34 33 34 39 52 

o Between-cluster sum of squares: 144.54 

 

Table A.3. Within-cluster sum of squares for each cluster 

Cluster 3 Cluster 4 Cluster 2 Cluster 7 Cluster 5 Cluster 6 Cluster 1 

12.18 9.77 21.62 26.72 32.74 15.26 31.26 

o Total within-cluster sum of squares: 149.53  

(between_SS / total_SS = 50.00%) 
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Figure A.8. Silhouette Plot of the Seven Identified Clusters 

Table A.4 shows the cluster centers of 17 variables after hardening for interpretation. All 

of the data are hardened in terms of their original data type. The cluster centers of cost growths 

are then used to claim the cost performance patterns for subsequent analyses. Tables A.5 and A.6 

demonstrate distributions of project delivery methods in established clusters with a cut-off point 

of 30%. Tables A.7 and A.8 demonstrate distributions of cost growth patterns in clusters with a 

cut-off point of 20%.  
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Table A.4. Terminal Cluster Center and Spread Values of the FHWA data set 

Variables Cluster 3 Cluster 4 Cluster 2 Cluster 7 Cluster 5 Cluster 6 Cluster 1 

No. of Projects 
39 

(15.3%) 
23 (9.1%) 

34 

(13.4%) 

33 

(13.0%) 

34 

(13.4%) 

39 

(15.3%) 

52 

(20.5%) 

Fac-Road (%) 67.97 62.98 28.13 41.45 65.52 11.85 59.14 

Fac-Bridge (%) 14.01 16.55 55.25 30.55 9.14 83.52 23.10 

Fac-Drainage (%) 9.14 9.62 4.55 10.64 3.91 1.78 6.62 

Fac-ITS (%) 2.56 3.03 2.68 6.37 1.57 0.32 2.03 

Fac-Other (%) 6.36 7.85 9.41 11.02 19.89 2.54 9.13 

Pro-New (%) 89.02 86.17 81.66 67.29 5.24 2.05 4.40 

Pro-Reno (%) 7.44 9.32 10.20 21.93 8.52 95.94 91.32 

Pro-Other (%) 3.54 4.51 8.13 10.78 86.24 2.00 4.29 

Complexity 1.22 1.29 1.91 1.37 2.37 1.82 1.67 

RF1 2.54 2.65 2.26 3.22 2.06 2.02 2.40 

RF2 2.33 2.44 2.14 3.09 2.05 1.97 2.31 

RF3 2.31 2.41 2.04 3.02 2.10 1.97 2.32 

RF4 2.52 2.64 2.44 3.48 2.60 2.20 3.12 

RF5 2.48 2.60 2.07 3.20 1.81 1.93 2.22 

RF6 2.11 2.18 2.02 2.66 1.94 1.98 2.15 

RF7 2.68 2.80 2.54 3.39 2.05 2.09 2.36 

Cost Growth (%) 15 5 3 0 4 1 2 

Spread (Fuzziness) 0.16 0.12 0.14 0.11 0.18 0.25 0.21 
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Table A.5. Distribution of Project Delivery Methods in Clusters (Count) 

Cluster  DBB DB CMGC Total Dominance  

3 24 12 3 39 DBB 

4 7 13 3 23 DB 

2 10 22 2 34 DB 

7 9 17 7 33 DB 

5 12 19 3 34 DB 

6 18 17 4 39 DBB and DB 

1 29 14 9 52 DBB 

Total 109 114 31 254 - 

Dominance  C1, C6, and C7 C3 and C5 C4 and C7 - - 

 

Table A.6. Distribution of Project Delivery Methods in Clusters (Cut-off point = 30%) 

Cluster DBB DB CMGC Total Dominance 

3 62% 31% 8% 100% DBB 

4 30% 57% 13% 100% DB 

2 29% 65% 6% 100% DB 

7 27% 52% 21% 100% DB 

5 35% 56% 9% 100% DB 

6 46% 44% 10% 100% DBB and DB 

1 56% 27% 17% 100% DBB 
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Table A.7. Distribution of Cost Growth Patterns in Clusters (Count)  

Cluster Cost Eff. None Low Medium High Total Dominance 

3 5 9 5 11 9 39 Medium - High 

4 5 5 6 2 5 23 CE - Low 

2 7 6 10 4 7 34 Low 

7 4 8 9 4 8 33 None - Low 

5 4 3 18 6 3 34 Low 

6 5 22 10 1 1 39 None 

1 18 7 12 8 7 52 CE 

Total 48 60 70 36 40 254 - 

Dominance C7 C6 C5 C1 C1, C3, and C7 - - 

 

Table A.8. Distribution of Cost Growth Patterns in Clusters (Cut-off point = 20%) 

Cluster Cost Eff. None Low Medium High Total Dominance 

3 13% 23% 13% 28% 23% 100% Medium - High 

4 22% 22% 26% 9% 22% 100% CE - Low 

2 21% 18% 29% 12% 21% 100% Low 

7 12% 24% 27% 12% 24% 100% None - Low 

5 12% 9% 53% 18% 9% 100% Low 

6 13% 56% 26% 3% 3% 100% None 

1 35% 13% 23% 15% 13% 100% CE 
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Figure A.9. Distributions of Five Groups of Cost Growth within Seven Clusters 

 



150 

 

Figure A.10. Distributions of Project Delivery Methods within Seven Clusters 
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Figure A.11. Heat Map of 17 Variables within Seven Clusters 
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Table A.9. 17 Selected Variables. 

Variable Data Type Mean Min Max 

Facility Type - Road Continuous  45.56 0 100 

Facility Type - Bridge Continuous 33.58 0 100 

Facility Type - Drainage Continuous 6.71 0 90 

Facility Type – Intelligent Transportation Systems (ITS) Continuous 3.08 0 100 

Facility Type - Other Continuous 11.10 0 100 

Project Type – New Continuous 45.47 0 100 

Project Type – Reconstruction Continuous 39.46 0 100 

Project Type – Other Continuous 15.07 0 100 

Project Complexity Ordinal 2 1 3 

Risk Factor 1 - Complexity Continuous 2.47 1 5.27 

Risk Factor 2 - Quality Continuous 2.36 1 6 

Risk Factor 3 - Constructability Continuous 2.33 1 5 

Risk Factor 4 - Construction Continuous 2.78 1 6 

Risk Factor 5 - Utility and ROW Continuous 2.37 1 6 

Risk Factor 6 - Management Continuous 2.16 1 5 

Risk Factor 7 - Environmental Continuous 2.57 1 6 

Project Delivery Method Nominal - - - 

Cost Performance  Continuous 0.03 -0.12 0.24 
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APPENDIX B – FUZZY PATTERN RECOGNITION 

B.1. Fuzzy Membership Functions of All Variables 

 

 

Figure B.1. Membership Function of Fac-Road 
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Figure B.2. Membership Function of Fac-Bridge 
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Figure B.3. Membership Function of Fac-Drainage 
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Figure B.4. Membership Function of Fac-ITS 
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Figure B.5. Membership Function of Fac-Other 
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Figure B.6. Membership Function of Pro-New 
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Figure B.7. Membership Function of Pro-Reno 
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Figure B.8. Membership Function of Pro-Other 
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Figure B.9. Membership Function of Project Complexity 
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Figure B.10. Membership Function of Risk Factor 1 – Complexity Risk Factor 
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Figure B.11. Membership Function of Risk Factor 2 – Quality Risk Factor 
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Figure B.12. Membership Function of Risk Factor 3 – Constructability Risk Factor 
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Figure B.13. Membership Function of Risk Factor 4 – Construction Risk Factor 
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Figure B.14. Membership Function of Risk Factor 5 – Utility and ROW Risk Factor 
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Figure B.15. Membership Function of Risk Factor 6 – Management Risk Factor 
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Figure B.16. Membership Function of Risk Factor 7 – Environmental Risk Factor 
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Figure B.17. Membership Function of Cost Growth Patterns 
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B.2. Rule-Based Inference Formulation 

Rule 1: If (Fac-Road is Dominance) and (Fac-Bridge is Non-Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Non-Dominance) and (Pro-Reno is Dominance) and (Pro-Other is Non-Dominance) 

and (Complexity is Moderate) and (Risk Factor 1 - Complexity Risk Factor is Very Low) and 

(Risk Factor 2 - Quality Risk Factor is Very Low) and (Risk Factor 3 - Constructability Risk 

Factor is Very Low) and (Risk Factor 4 - Construction Risk Factor is Low) and (Risk Factor 5 - 

Utility and ROW Risk Factor is Very Low) and (Risk Factor 6 - Management Risk Factor is 

Very Low) and (Risk Factor 7 - Environmental Risk Factor is Low) then (Cost Growth 

Percentage is from Efficient to Low for D-B-B Projects). 

Rule 2: If (Fac-Road is Dominance) and (Fac-Bridge is Non-Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Dominance) and (Pro-Reno is Non-Dominance) and (Pro-Other is Non-Dominance) 

and (Complexity is Most) and (Risk Factor 1 - Complexity Risk Factor is Low) and (Risk Factor 

2 - Quality Risk Factor is Low) and (Risk Factor 3 - Constructability Risk Factor is Very Low) 

and (Risk Factor 4 - Construction Risk Factor is Low) and (Risk Factor 5 - Utility and ROW 

Risk Factor is Low) and (Risk Factor 6 - Management Risk Factor is Very Low) and (Risk 

Factor 7 - Environmental Risk Factor is Low) then (Cost Growth Percentage is from Efficient 

to Low for D-B Projects). 

Rule 3: If (Fac-Road is Non-Dominance) and (Fac-Bridge is Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Non-Dominance) and (Pro-Reno is Dominance) and (Pro-Other is Non-Dominance) 
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and (Complexity is Moderate) and (Risk Factor 1 - Complexity Risk Factor is Very Low) and 

(Risk Factor 2 - Quality Risk Factor is Very Low) and (Risk Factor 3 - Constructability Risk 

Factor is Very Low) and (Risk Factor 4 - Construction Risk Factor is Very Low) and (Risk 

Factor 5 - Utility and ROW Risk Factor is Very Low) and (Risk Factor 6 - Management Risk 

Factor is Very Low) and (Risk Factor 7 - Environmental Risk Factor is Very Low) then (Cost 

Growth Percentage is None for D-B-B and D-B Projects). 

Rule 4: If (Fac-Road is Dominance) and (Fac-Bridge is Dominance) and (Fac-Drainage is Non-

Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and (Pro-new 

is Dominance) and (Pro-Reno is Non-Dominance) and (Pro-Other is Non-Dominance) and 

(Complexity is Most) and (Risk Factor 1 - Complexity Risk Factor is Low) and (Risk Factor 2 - 

Quality Risk Factor is Low) and (Risk Factor 3 - Constructability Risk Factor is Low) and (Risk 

Factor 4 - Construction Risk Factor is Medium) and (Risk Factor 5 - Utility and ROW Risk 

Factor is Low) and (Risk Factor 6 - Management Risk Factor is Low) and (Risk Factor 7 - 

Environmental Risk Factor is Medium) then (Cost Growth Percentage is from None to Low 

for D-B Projects).  

Rule 5: If (Fac-Road is Non-Dominance) and (Fac-Bridge is Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Dominance) and (Pro-Reno is Non-Dominance) and (Pro-Other is Non-Dominance) 

and (Complexity is Moderate) and (Risk Factor 1 - Complexity Risk Factor is Very Low) and 

(Risk Factor 2 - Quality Risk Factor is Very Low) and (Risk Factor 3 - Constructability Risk 

Factor is Very Low) and (Risk Factor 4 - Construction Risk Factor is Low) and (Risk Factor 5 - 

Utility and ROW Risk Factor is Very Low) and (Risk Factor 6 - Management Risk Factor is 
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Very Low) and (Risk Factor 7 - Environmental Risk Factor is Low) then (Cost Growth 

Percentage is Low for D-B Projects). 

Rule 6: If (Fac-Road is Dominance) and (Fac-Bridge is Non-Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Non-Dominance) and (Pro-Reno is Non-Dominance) and (Pro-Other is Dominance) 

and (Complexity is Moderate) and (Risk Factor 1 - Complexity Risk Factor is Very Low) and 

(Risk Factor 2 - Quality Risk Factor is Very Low) and (Risk Factor 3 - Constructability Risk 

Factor is Very Low) and (Risk Factor 4 - Construction Risk Factor is Low) and (Risk Factor 5 - 

Utility and ROW Risk Factor is Very Low) and (Risk Factor 6 - Management Risk Factor is 

Very Low) and (Risk Factor 7 - Environmental Risk Factor is Very Low) then (Cost Growth 

Percentage is Low for D-B Projects). 

Rule 7: If (Fac-Road is Dominance) and (Fac-Bridge is Non-Dominance) and (Fac-Drainage is 

Non-Dominance) and (Fac-ITS is Non-Dominance) and (Fac-Other is Non-Dominance) and 

(Pro-new is Dominance) and (Pro-Reno is Non-Dominance) and (Pro-Other is Non-Dominance) 

and (Complexity is Most) and (Risk Factor 1 - Complexity Risk Factor is Low) and (Risk Factor 

2 - Quality Risk Factor is Very Low) and (Risk Factor 3 - Constructability Risk Factor is Very 

Low) and (Risk Factor 4 - Construction Risk Factor is Low) and (Risk Factor 5 - Utility and 

ROW Risk Factor is Low) and (Risk Factor 6 - Management Risk Factor is Very Low) and (Risk 

Factor 7 - Environmental Risk Factor is Low) then (Cost Growth Percentage is from Medium 

to High for D-B-B Projects). 
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B.3. R-Codes of Fuzzy Rule-Based Inference System 

 

 

Figure B.18. Example of R Codes of Gaussian Membership Function 

 

Figure B.19. Example of R Codes of K-fold Cross-Validation (Training, Validation, and 

Testing Datasets) 
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Figure B.20. Example of R Codes of Establishing Seven Rules for Fuzzy Inference System 

 

Figure B.21. Example of R Codes of Fuzzy Inferencing Process 

 


