
A Novel Zero-Trust Framework to Secure
IoT Communications

By

Sairath Bhattacharjya

B. Tech., Computer Science and Engineering
West Bengal University of Technology (WBUT)

Submitted to the graduate degree program in Department of Electrical
Engineering and Computer Science and the Graduate Faculty School of
the University of Kansas in partial fulfillment of the requirements for

the degree of Master of Science.

Chair: Hossein Saiedian, Ph.D.
Professor and Thesis Adviser

Alex Bardas, Ph.D.
Assistant Professor

Fengjun Li, Ph.D.
Associate Professor

Date Defended: 5 June 2020



The Thesis Committee for Sairath Bhattacharjya certifies that
this is the approved version of the following thesis:

A Novel Zero-Trust Framework to Secure IoT
Communications

Chair: Hossein Saiedian, Ph.D.
Professor and Thesis Adviser

Date Approved: June 5, 2020

ii



Abstract

The phenomenal growth of the Internet of Things (IoT) has highlighted the security and

privacy concerns associated with these devices. The research literature on the security

architectures of IoT makes evident that we need to define and formalize a framework

to secure the communications among these devices. To do so, it is important to focus

on a zero-trust framework that will work on the principle premise of “trust no one,

verify everyone” for every request and response.

In this thesis, we emphasize the need for such a framework and propose a zero-trust

communication model that addresses security and privacy concerns of devices with

no operating system or with a real-time operating system. The framework provides

an end-to-end security framework for users and devices to communicate with each

other privately. A common concern is how to implement high-end encryption algorithm

within the limited resources of an IoT device. We demonstrated that by offloading the

data and process heavy operation like audit management to the gateway we were able

to overcome this limitation. We built a temperature and humidity sensor and were

able to implement the framework and successfully evaluate and document its efficient

operations. We defined four areas for evaluation and validation, namely, security of

communications, memory utilization of the device, response time of operations, and

cost of its implementation, and for each, we defined a threshold to evaluate and validate

our findings. The results are satisfactory and are documented.

iii



Acknowledgement

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Hossein Saiedian for his guidance and patience in reviewing and correcting my writing

throughout the research. I appreciate you giving me the freedom to pursue my interest

and helping me in every step of the way. I would like to convey my gratitude to the

committee members, Dr. Alex Bardas and Dr. Fenjung Li for giving their valuable time

in reviewing my thesis.

I would like to thank Prof. Blake Bryant for helping me with the idea of the thesis

and guiding me throughout the process of implementation. He has been a constant

support and has always been available for any questions that I had. I would thank

Mr. Felix Mercader and Mr. Alex Arntson from the KU IT team for helping me with

technology and resolving issues with the lab setups. I would also thank Mr. Michael

Gurwell for taking time to help me test the resilience of the device. This thesis would

have been impossible without the support and guidance of each and everyone of them.

I also want to thank KU library for providing me the required journals for my research

and the writing center to help me formalize the ideas in words.

Lastly, I would like to thank my parents, Mr. Sailaja Nanda Bhattacharjya and Mrs.

Krishna Bhattacharjya for their endless love and care. I would also thank my wife Mrs.

Aparna Dasgupta for her constant care and mental support throughout the process

of the thesis. My family provided the environment for me at home to carry out my

experiments and supporting me in every possible way.

iv



Contents

1 Internet of Things (IoT) 1

1.1 The question of privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Trust issues in heterogeneous environment . . . . . . . . . . . . . . . . . . . 3

1.3 The world without trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Validating zero-trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Security of IoT Devices 11

2.1 The unprecedented growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Attack on IoT devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 DDoS and IoT Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Recent IoT based attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Security concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Proposed frameworks to secure the gaps . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 IoT security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 IoT authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Zero-Trust Framework 31

3.1 Understanding zero-trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.2 IoT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Data stored in gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Data stored in devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Data stored in users and delegates . . . . . . . . . . . . . . . . . . . . 39

3.4 P3 connection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Connecting user and device . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Connecting delegate and device . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Communication over untrusted medium . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Heartbeat communication . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Sending command to device . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Patch management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Addressing other security concerns . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Implementing Zero-Trust for IoT Security 62

4.1 Building the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Setting up the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 Mobile app for the user and delegate . . . . . . . . . . . . . . . . . . . 70

4.1.3 Configuring the gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.4 Creating the AWS resources . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Implementing the P3 connection model . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Communicating with the device . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Implementing the heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Executing command on the device . . . . . . . . . . . . . . . . . . . . . 107

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



5 Analyzing the Framework 120

5.1 Security in transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.1 Physical security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Memory utilization of device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Time to response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Cost of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Future of IoT Security 142

6.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Need for policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 148

A Arduino program for blink 156

B Create table script 157

C Source code of the device 159

D Template to deploy resources using SAM 170

vii



List of Figures

1.1 IoT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 IoT proposed internal architecture for temperature and humidity sensor . 9

2.1 Growth of IoT by industry 2017 – 2022 [16] . . . . . . . . . . . . . . . . . . . 12

2.2 Adoption of IoT by 2030 [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Different types of malware attacks in IoT [70] . . . . . . . . . . . . . . . . . . 16

2.4 Distributed Denial of Service (DDoS) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Parts of US effected by Dyn DNS attack [21] . . . . . . . . . . . . . . . . . . . 20

2.6 Reference IoT Architecture for E-commerce [61] . . . . . . . . . . . . . . . . 24

2.7 Trust assessment framework for cloud services [34] . . . . . . . . . . . . . . 26

2.8 Architecture of blockchain-based IIoT system for smart factory [23] . . . . 29

3.1 Generalized network communications for a IoT request . . . . . . . . . . . 34

3.2 Proposed architecture for zero-trust framework . . . . . . . . . . . . . . . . 35

3.3 ER diagram of the gateway data structure . . . . . . . . . . . . . . . . . . . . 37

3.4 P3 connection between user and device . . . . . . . . . . . . . . . . . . . . . . 42

3.5 P3 connection between delegate and device . . . . . . . . . . . . . . . . . . . 45

3.6 Heartbeat from device to gateway . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Communication between user and device via gateway . . . . . . . . . . . . . 54

3.8 Updating device firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The physical device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



4.2 Adding ESP8266 board manager to the IDE . . . . . . . . . . . . . . . . . . . 67

4.3 Installing ESP8266 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Selecting the required setting for Arduino IDE . . . . . . . . . . . . . . . . . 68

4.5 Pinout diagram for the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Android Studio 3.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Setting environment variable for React Native to work with Android Studio 73

4.8 Setting path variable for platform tools . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Verify React Native CLI installation . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Test app opened in Visual Studio Code . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Mobile devices connected to the development machine . . . . . . . . . . . . 75

4.12 Deployment of the app in emulator . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 AWS console dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.14 AWS CLI installed in the development machine . . . . . . . . . . . . . . . . . 79

4.15 Configuring AWS account for development machine . . . . . . . . . . . . . . 80

4.16 Buckets present in AWS S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.17 Roles present in IAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.18 App screen to show the current devices added . . . . . . . . . . . . . . . . . 85

4.19 App screen to add a new device . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.20 App screen to pass Wi-Fi credentials to the device after successful connec-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 Setting up heartbeat checker in AWS . . . . . . . . . . . . . . . . . . . . . . . 107

4.22 Data captured from the device on the user’s app . . . . . . . . . . . . . . . . 117

5.1 App screen to show registration, confirmation and user login . . . . . . . . 122

5.2 Email send to user for verification . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Wireshark logs showing use of TLS . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Encrypted command send from the user to the device via gateway . . . . . 127

5.5 Encrypted data sent from device to the user via gateway . . . . . . . . . . . 127

ix



5.6 Transaction audit at the gateway . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Memory error caused by DDoS attack on device . . . . . . . . . . . . . . . . 130

5.8 Available memory of the device during the attack . . . . . . . . . . . . . . . 131

5.9 Alert email send to the user when device is offline . . . . . . . . . . . . . . . 131

5.10 Memory usage during P3 connection model . . . . . . . . . . . . . . . . . . . 133

5.11 Memory utilization of device for heartbeat communication . . . . . . . . . 134

5.12 Memory utilization of device for command execution . . . . . . . . . . . . . 134

5.13 Time utilization of device for heartbeat communication . . . . . . . . . . . 136

5.14 Command execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

x



List of Tables

1.1 Contribution of ongoing European projects on IoT security [60] . . . . . . 4

3.1 Transactions of the communication between user and device . . . . . . . . 59

4.1 NodeMcu V3 specification [76] . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Components of the IoT device . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Pinout connection of the components with the microcontroller . . . . . . . 70

5.1 Comparison of signing time between RSA and ECC [65] . . . . . . . . . . . . 125

5.2 Comparison of verification time between RSA and ECC [65] . . . . . . . . . 125

5.3 Comparison of different symmetric encryption technique [2] . . . . . . . . 126

5.4 Operational time for each step in P3 connection model . . . . . . . . . . . . 135

5.5 Cost of building the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xi



Chapter 1

Internet of Things (IoT)

Oxford dictionary describes Internet of Things (IoT) as the interconnection, via the in-

ternet, of computing devices embedded in everyday objects, enabling them to send and

receive data. Technically speaking, IoT is all about turning everyday objects into digital

products and services, bringing new value and meaning to the lifeless things, making

it more intelligent. Ronen and Shemir [52] define it as “network devices which bridge

the physical and virtual world”. Effectively, this means adding cloud connectivity and

computing capabilities to the regular objects, along with adding backend services and

web and mobile apps for viewing and analyzing data and communicating with those

devices.

The concept of a network of smart devices was discussed as early as 1982, with

the modified Coke vending machine at Carnegie Mellon University becoming the first

internet connected appliance. Raji [48] published the first paper in 1994 to talk about

automation in everyday appliances. Since then it has caught the attention of the re-

search community to convert everyday things into smart objects. The term internet

of things (IoT) was coined by Kevin Ashton of Procter & Gamble, though he prefers

the phrase “internet for things”. At that point, he viewed radio-frequency identifica-

tion (RFID) as essential to IoT, which would allow computers to interact with individual

1



things [36].

The advancement of IoT into the modern world is phenomenal. This has the po-

tential to bring the next revolution to the human society as well as devastate the very

fabric of the society if not properly administered [33]. IoT is intrusive and has already

extended into our everyday lives with wearable devices and home automation systems

and eventually with become part of every city, town and country. It has the poten-

tial to become the most important innovation of the century and therefore will be an

enormous potential for abuse. This abuse in turn would not only affect the owners of

the respective devices or its manufacturers but also through sheer economy of scale, it

would affect society at large. It is imperative to say that we need a well-defined security

model that can ensure secure communications with these devices.

1.1 The question of privacy

New technology always comes with merits but also has potential concerns. In case

of IoT, the concerns are with security and privacy. In the digital world, it is better

known as cyber threat. The companies manufacturing the IoT devices focused on the

functionality of the device and security take a back seat. The time-to-market became

important to get the competitive edge. A user study was conducted with nine parent-

child pairs to understand their privacy concerns about internet connected toys, like

Hello Barbie and CogniToys Dino [38]. Unlike smart phones, these devices are always

on, blending into the background until needed. All the parents in the research voiced

their privacy concern with these toys. Another interesting study to find out if smart

toys like Hello Barbie is maintaining the privacy of the children and users [25]. They

concluded that Barbie’s technology is not advanced enough to indicate the user whether

it can keep a secret. The toy tends to share the private conversation of the child with

the parents, third parties and potentially entire network of Twitter followers. A bad

2



actor within this ecosystem could cause enormous damage.

Preserving security and privacy of the devices is one of the biggest challenges of IoT.

Due to the inherent vastness and openness, IoT is vulnerable to internet attacks. For

example, there has been multiple incidents where the internet connected toys has been

breached and hackers used those devices to eavesdrop on the owners. These issues can

be avoided using a proper encryption technique [50]. However, implementing security

solution in IoT is challenging because of its minimal capacity and lack of powerful

wireless communications. As the devices lack computational resources, development

of a lightweight efficient security techniques is of great interest.

Much of the data collected and communicated in IoT pertains to personal identifi-

able information (PII). Preserving privacy of the most sensitive data has utmost needs.

Users must be provided with options to manage their own personal data and who they

want to share it with. To ensure that the unauthorized access doesn’t happen, identity

management plays an important role. Social acceptability of IoT based applications

depends on the privacy, anonymity, liability and trust. Many research has been done to

portray the state-of-the-art security systems for IoT communications [50,60].

1.2 Trust issues in heterogeneous environment

The concept of trust is used in different meanings. Trust is a complex notion about

which no definitive consensus exists in the research community although its impor-

tance is widely acknowledged. A main problem with many approaches towards trust

definition is that they cannot be easily quantified or measured. Moreover, the satisfac-

tion of trust requirements is strictly related to user identity management and access

control issues.

A variety of research efforts focus on assessing the trust level assessment of IoT

systems [8, 14]. These researchers are conducted with the assumption that they are

3



Table 1.1: Contribution of ongoing European projects on IoT security [60]

Butler EBBITS Hydra uTRUSTit iCore HACMS NSF FIRE EUJapan

Authentication x x x x x x

Confidentiality x x x x x x x x

Access control x x x x x x x

Privacy x x x x x

Trust x x x

Enforcement

Middleware x x x

Mobile x x

used by general population without much awareness to information security and thus

they are vulnerable to malicious attacks. The world of IoT is heterogeneous due to the

numerous players in the market. As regards to worldwide projects shown in Table 1.2,

several attempts are made to address IoT requirements in terms of security, privacy

and trust in order to develop an unified framework or middleware. In IoT security,

open issues faced by each project are summarized. Currently, the efforts are aimed at

specific application contexts and the impact of these proposals on a mass-scale market

still needs to be checked.

A better approach would be to not lay a trust on anyone but to validate every inter-

action. In that way, every device or person in the heterogeneous ecosystem of IoT can

be sure that they are talking to a genuine other party. By eliminating the trust factor,

we can better focus on privacy and security of the environment.

4



Figure 1.1: IoT architecture

1.3 The world without trust

As we see above, trust is a complex issue and most of the time is difficult to quan-

tify. The problem we are trying to solve in this thesis is to eliminate trust, so that we

can focus deeply on the remaining two aspects, namely, privacy and security. The au-

thors [74] presented a eZTrust, a network-independent parameterization solution for

microservices, where they shifted parameterization targets from network endpoints to

fine-grained, context-rich microservice identities. If we closely look at the IoT devices,

and talk about the functions that they play, we will notice that each internet connected

IoT device is a small computer made for a specific purpose. They are communicat-

ing with a cloud-based endpoint (gateway) to pass some form of data to the device or

person requesting it.

Figure 1.1 shows a generalized view of the IoT architecture along with its compo-

nents. All of the actors communicate with each other seamlessly over the internet. If

we categorize the communications individually, we notice the following:

5



1. IoT device talk with the cloud-based gateway

2. User device talk with the cloud-based gateway

3. User device talks to the IoT device

4. User device talks to the delegate device

5. Delegate device talks to the IoT device

6. Delegate device talks to the cloud-based gateway

The above clearly demonstrate that each actor communicates with the other for

a specific purpose. Each of them may be manufactured by a different organization,

having different build and configurations. Putting trust in another party in this diverse

ecosystem would not be wise. Taking an analogy of the real world, we don’t hand

over the key to our house to anyone without knowing who they are. The situation

is similar here with IoT devices and all the other components. Neither one of the

components should accept or give data to another without validating their identity. The

data must also be protected as it is being transmitted over the wire. Data should be

protected in store as well as in transit and should be made available to only those who

should have access to it. This points back to the CIA trident of information security,

i.e. confidentiality, integrity and availability.

We propose a zero-trust framework for protecting the communication over the un-

trusted internet. The zero-trust model [27] was introduced by the analyst firm Forrester

Research in 2010 to confront new attack methods in information security. Behind this

model there is the simple principle of “never trust, always verify” Thus, all data traffic

generated must be untrusted, no matter if it has been generated from the internal or

external network. It is a strategic initiative that helps prevent successful data breaches

by eliminating the concept of trust from an organization’s network architecture.

Zero-Trust is a new way of thinking about information security. By adopting the

concept of zero-trust architectural framework, companies can become more secure by

6



enforcing the compliance requirement at every step of the way. A zero-trust manage-

ment model for loT would help to guarantee that the authenticity of every resource

of the infrastructure are validated every time they try to communicate. Thus, evading

the system is prevented. Also, a zero-trust management model might help to guaran-

tee that every message between resources is compliant to the policies of the company.

Finally, it would help to ensure that the nature of every transaction is verified before

executing it [55].

The methodology we are going to use to implement zero trust is by provide a unique

key for each pair of device and user that communicate with each other. The device and

gateway verify each other using their own signature that is generated by their individual

private keys. While in transit, we are planning to use SSL/TLS which encrypts the

data and protects it from replay and other network-based attacks. Our goal here is to

show that we can use the existing cryptographic infrastructure to provide an end-to-

end encryption that can be easily integrated into the current network infrastructure.

The framework provides the guidelines to enforce the principle of “never trust, always

verifyâĂŹâĂŹ and can also be easily integrated in the current network architecture. We

provide guidelines to move heavy data driven operations to the gateway and only use

the device resources for its specific purpose. The gateway also provides logging for

audit management.

1.4 Validating zero-trust

With the growth of number of internet-connected devices, the amount of data collected

and stored is growing at scale. With the proposed security architecture, we anticipate

protecting this data both in storage as well as in transit. This data needs to be encrypted

at all places and should be only available to the intended recipient. Taking an example

of an internet enabled thermostat, the owner can use a mobile app to get the current

7



temperature of the house or ask the device to change the temperature based on the

userâĂŹs need. He can also ask a home assistant (like Alexa or Google Home) to do so

on his behalf.

If we consider the example of the owner (primary user) asking Alexa (delegate) to

increase the temperate in the thermostat, a lot of communications are happening over

the wire. The user is using a Bluetooth technology to talk to Alexa. Then Alexa is

interpreting the command and talk to the cloud provider of the thermostat to pass the

instruction to the thermostat to do the work. Our goal with this thesis is to ensure

that all this communication is secure, and each party specifically knows who they are

communicating with. No one in this ecosystem must blindly trust anyone else. In

the proposed model the cloud providers work as relay of information to the device.

They should not be able to interpret the instruction that was given to the thermostat,

nor should the providers or Alexa be able to change the instruction that was given by

the primary user. On the other hand, if the primary user wants to know the current

temperature of the room, no one other than the user should be able to read the data.

To demonstrate the above scenario, we want to setup AWS API endpoints to work

as the gateway for us, and use a mobile app as a primary user. For the device, we want

to build a temperature and humidity sensor using DHT22 Digital Temperature and

Humidity Sensor connected to NodeMcu V3 board that can work as our IoT device. The

internet connectivity of the device would be provided by WIFI Module in the ESP8266

microcontroller. The device will also be able to communicate with the Bluetooth module

HC-05 present in it. The Bluetooth module will be used for setting up communications

with the user and delegates. The device (with the help of the gateway) will be able to

interact the user as well as the delegate and send notifications as and when necessary.

Figure 1.2 demonstrate the proposed internal structure of the setup.

Looking at the taxonomy of IoT architectures [62], we realize the resource limita-

tions of the IoT devices. Like mentioned above, the IoT devices are built with a specific

8



Gateway

User

NodeMcu V3
ESP8266

HC-05
Bluetooth

DHT 22
Sensor

I2C OLED Display

Device

Figure 1.2: IoT proposed internal architecture for temperature and humidity sensor

functionality in mind. They have very limited memory and CPU resource available to

them. With the cryptographic techniques that we are going to use to in the process to

ensure privacy and security, should not use too much resource, that the device becomes

useless. We are keeping a threshold of 80% of memory utilization to would measure

the actual usage in the device.

The other validations that we want to perform are security, time of execution and

cost. Providing adequate security to all communications is the key to this thesis. We

would validate that there is no information leakage anywhere in the model. We would

also verify the resistance of the device against a massive load of TCP requests and

see how it protects the availability of the device. Time of execution is critical for user

interactions. For web applications three seconds round trip time (RTT) is considered

a good benchmark. We would keep this benchmark to verify how much time it takes

for a command to get executed and the result to be returned to the user. We would

investigate the cost of the device as well. As we noted above, we are assuming that

this technology would be used in devices that are used by general users and we want

9



to keep the cost to an optimal so that its affordable to everyone. In short, our analysis

and validation of the model would be in respect to security, memory, time and cost.

1.5 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 investigates the security concerns of IoT ecosystem. We explore the cause
and effect for the vulnerabilities of IoT devices and talk about the unprecedented
growth of the number of IoT devices in the market. We also look into the different
attacks that was conducted by making the IoT devices as botnets and see how
malware like Mirai exploited the security loopholes to cause a 1.1 Tbps DDoS
attack with 148,000 vulnerable IoT devices.

Chapter 3 discusses the current architectures and security frameworks that are pro-
posed in related works. We look at the current protocols like Zigbee light link
and other network protocols proposed by the research community. We look in
the trust issues and introduce zero-trust framework. We discuss how using zero-
trust framework we can implement the simple principle of “never trust, always
verify”.

Chapter 4 walks us through the lab setup and provide details of how we implemented
zero-trust in the heterogeneous environment. We discuss code samples and look
at data structures that are implemented to achieve the goal. We also discuss
the different encryption techniques we use to optimize the cryptographic setup,
maintaining the resource limitations.

Chapter 5 validates our claim of zero-trust security with limited resource usage for
IoT devices. We will use a variety of advance tools like Wireshark to validate the
network logs. No one other than the intended user should be able to read the
data. We validate the logs in the gateway and the device to ensure that there is no
data leak. We also discuss the resource utilization of the microcontroller board
to verify our claim of no-more-than 80% resource usage. We analyze in terms of
security provided, memory utilized on the device, time of operation and cost of
building the device.

Chapter 6 concludes with our learning and outcomes. We go over the security aspects
that are not covered by the zero-trust framework and provide some insight as to
how we can mitigate them in future projects. We briefly discuss the future of IoT
and how it can shape the world. We also point out how law and policies can effect
the usage of IoT devices.

10



Chapter 2

Security of IoT Devices

With the sudden growth of the market of internet connected smart devices, researchers

are both exited and concerned about the security aspect of internet enabled devices.

Multiple proposals have proposed to support the security infrastructure of these de-

vices. However, we have not come up with a standard that is followed by all manufac-

turers. Although there are multiple RFS proposed by Internet Engineering Task Force

(IETF). Exhaustive survey about IoT security has been done to understand the current

vulnerabilities of these devices [43]. As mentioned before, privacy and security are the

number one concern for both the researchers and general users.

However, before discussing the proposed security frameworks and concerns with

IoT devices, we would investigate the reasons for the unprecedented growth in the IoT

market and how it has been abused to perform massive attacks.

2.1 The unprecedented growth

The internet of things market is highly competitive owing to the presence of many

large and small players in the market operating at a global level. It was valued at

USD 193.60 billion in 2019 and is expected to reach USD 657.31 billion by 2025, at a

11



Figure 2.1: Growth of IoT by industry 2017 – 2022 [16]

CAGR of 21% over the forecast period 2020 – 2025. With the development of wireless

networking technologies, the emergence of advanced data analytic, a reduction in the

cost of connected devices, and an increase in cloud platform adoption, the market is

expected to grow at a positive rate. According to the report from Gartner [16], there

will be 5.8 billion internet connected IoT endpoints in use by the end of 2020. Utilities

will be the highest user of IoT endpoints, totaling at 1.17 billion in 2019, and increasing

by 17% in 2020 to reach 1.37 billion endpoints as seen in Figure 2.1.

Forbes [11] did a round up of the market estimate for IoT in 2018 and here are their

findings:

• The number of cellular IoT connections is expected to reach 3.5 billion in 2023,

increasing at a CARG of 30%

12



• IoT installed base will grow from 6.3 million units in 2016 to 1.25 billion in 2030

• Worldwide technology spending on Internet of Things to reach USD 1.2 trillion in

2022

• The market of industry 4.0 products and services is expected to grow to USD 310

billion by 2023

• 90% of senior execs in technology, media and telecommunication says IoT in some

or all lines if their business

The combination of new technologies like artificial intelligence, machine learning

and real-time data streams and mission specific devices, the business case for using IoT

devices in the organizations is compelling. IoT is becoming the cornerstone of many

organizations’ remodeling, enabling them to optimize existing processes and excel at

new business models. Since the IoT devices are very focused in doing one operation,

businesses are finding extreme value in installing these devices to meet their needs.

Similarly, general home users are also finding lots of value in using these devices.

The iRobot Roomba has changed the landscape with home vacuum systems. These IoT

devices are doing an excellent job of automation of everyday work. With the marketing

done for the connected light system, it is also a source of amusement for everyone.

The connected light bulbs like Philips Hue are giving options to users to control their

home lights with home assistants like Google Home and Alexa. The demand for these

devices is growing fast and so the manufacturers are trying their best to put up with it.

In the process, a thorough penetration and security test is being sidelined. As per the

Figure 2.2, IoT adoption rate will rise to 176% by 2030.

With the sudden growth of connected devices, security issues in the implementation

is obvious. Many malware are released in the market, some even open sourced to

increase the target rate. With Mirai being made public, the number of infected devices

has doubled. In the following section we will discuss the different attacks conducted

13



Figure 2.2: Adoption of IoT by 2030 [16]

by using the weakness of IoT devices and misusing the technology to cause massive

DDoS attacks.

2.2 Attack on IoT devices

Looking at the numbers above, it is obvious that Internet of Things is a sweet spot for

the security researchers and hackers alike. With this huge competition, the manufac-

turers have enormous pressure to bring these smart devices to the market to get the

14



competitive edge. This resulted in lack of security testing of the devices before sending

it out to the stores. Many small manufacturers didn’t even provide option to patch

the devices and so if a vulnerability is found, there is no way to mitigate the problem.

Many papers have been written to demonstrate the weakness of the connected lighting

systems.

Research was conducted to demonstrated how vulnerabilities in the Zigbee Light

Link (ZLL) protocol can be used to exploit the connected lighting system [41]. With their

penetration framework, researchers were able to gain full control over three popular

connected lighting system, namely, Philips Hue, Osram Lightify and GE Link. They were

able to gain access to the devices from beyond 30 meters making ZLL-based systems

susceptible to war driving. In another experiment the researchers took it further to

demonstrate that they were able to read leaked data from a distance of over 100 meters

using cheap and readily available equipment [52]. They tested both high end smart

lighting systems (Philips Hue) as well as low-end systems (LimitlessLED). A common

conclusion from both the above-mentioned attack frameworks was that IoT designers

need to focus on security issues during design, implementation and integration of IoT

devices.

2.2.1 Malware

Malware (or “malicious software”) is a code or program that propagates through the

network to infect victims. It steals data, performs reconnaissance and other operations

that an attacker wants to do. Based on their functionality, malware can be divided into

different categories [7,53,63,72]. Usually, they work to achieve following objectives:

• Provides command and control (C&C) to the attacker

• Sends other malware from the infected system to other targeted systems.

15



Figure 2.3: Different types of malware attacks in IoT [70]

• Investigates the local network of the infected users’ system to launch further
malware attacks.

• It is used to steal the sensitive data (i.e., credit card information) from an infected

A details of various types of malware attacks on IoT devices is provided in Figure

2.3. Each one of them effect one or more of the CIA triad (confidentiality, integrity and

availability). For example, a ransomware attacks availability of the system whereas a

virus targets both availability and integrity of the victim. Rootkit targets every aspect

of security, confidentiality, integrity, authenticity and availability of the effected system

[70].

16



Source: f5.com/labs/articles/education/what-is-a-distributed-denial-of-service-attack-

Figure 2.4: Distributed Denial of Service (DDoS)

2.2.2 DDoS and IoT Botnets

Distributed Denial of Service (DDoS) attack is one of the most interesting and widely

seen cyber-attack in the modern times [68]. In DDoS, a hacker temporarily enslaves

a number of internet enabled devices into an arrangement known as botnet as shown

in Figure 2.4, and overwhelms the victim with simultaneous requests so that it ignore

legitimate requests from end users. It can exhaust the bandwidth (communication

medium) and resources of the device. These attacks are carried out by organized crim-

inals for financial gains, revenge, extortion or activism.

Another important aspect about DDoS attack is that the attacker deploys a layered

attack with multiple attack vectors to camouflage the real attack [4]. Therefore, the

real intention of a DDoS attack can be difficult to comprehend. Apart from disrupting

the daily operations, DDoS can be used to probe the defense of a victim or to just

distract the target during the actual attack using a different technique. Verisign in

17



its report [40] observed that 52% of DDoS attacks that were investigates in Q2 2018

employed multiple attack types. There was a 35% increase in the number of attacks,

with a 49% decrease in the average of attack peak sizes, when compared to Q1 2018;

however, the average of attack peak sizes has increased by 111%, year over year.

Looking at the recent incidents where the vulnerabilities of IoT devices are exploited,

it is mainly utilized by botnets to launch wide range of DDoS attacks. Researches have

shown that most DDoS attacks in recent time originate from three types of devices of

which almost 96% were IoT devices, approximately four percent were home routers and

less than one percent were compromised Linux servers. The IoT botnets not only affect

the owners of the device but also anyone on the internet.

The threat of these IoT devices are important concern because they are hard to fix.

IoT devices are low hanging fruit for the attackers. The existence of these botnets is

known since 2008. Key characteristics of IoT malware used to orchestrate DDoS attack

are as follows:

• IoT malware are Linux based.

• Majority of the malware has limited or no side effects on performance of the host.
They are activated by the command and control head.

• The malware are stored in the device memory (RAM).

• The IoT malware are difficult to re-mediate since it doesn’t use any traditional
technique of DoS/DDoS attack like amplification.

• The IoT based botnets generate high volume of traffic ranging from 100 Gbps to
1.6 Tbps.

• The botnet consist of devices distributed all over the world.

• Other than the conventional TCP, UDP traffic, some IoT botnets generates un-
conventional payload like GRE traffic and use uncommon “DNS water torture”
technique during DDoS attacks.

18



2.2.3 Recent IoT based attacks

As mentioned in Section 2.2.1, one of the main objective of the attacker is to remote

control the infected machine. In most of the attacks that took place on IoT device, the

attack vector targeted to setup a command and control (CC) with the infected devices.

This was done, so that the attacker can later use these devices to perform massive

attack on some other victim

Before looking into the different IoT malware, we would like to highlight the attack

on Dyn Inc. DNS servers [21]. On October 21, 2016 a series of DDoS attacks were

targeted on the systems of the Domain Name Service (DNS) provider Dyn. The attack

caused major internet platform and services to be unavailable to a large group of users

in Europe and North America as shown in Figure 2.5. Major companies like Amazon,

Paypal, Visa and others were effected. The DDoS was accomplished through numerous

DNS lookup requests from tens of millions of IP addresses. The activities are believed

to have been executed through a botnet consisting of many internet-connected devices,

such as printers, IP cameras, residential gateways and baby monitors that have been

infected with the Mirai malware. The common issue in all these devices was that it

used default credentials in the device.

Some of the active botnets which can launch various malware attacks in IoT envi-

ronment are discussed below [26,30,32].

• Mirai is one the most popular DDoS IoT botnet in as of today. At its peak, Mirai

infected 4,000 IoT devices per hour and currently it is estimated to have little

more than half a million infected active IoT devices. It is famous for being used in

a 1.1 Tbps attack with 148,000 IoT devices. Mirai targets mainly CCTV cameras,

DVRs and home routers. With the release of the Mirai source code, the number of

IoT infected device has doubled. Based on the IP addresses, we can identify that

the devices are distributed in over 164 countries with majority in Vietnam, Brazil,

US, China and Mexico. With its massive attacks it came into light and along with

19



Figure 2.5: Parts of US effected by Dyn DNS attack [21]

it brought the awareness of DDoS attacks to the media.

• Reaper also known as IoTroop. In the fall of 2017, information security re-

searchers discovered a different strain of botnet with improved functionality. It

was capable of compromising IoT device much more quickly as compared to the

Mirai botnet. Mirai infects the IoT devices which use default usernames and pass-

words. However, reaper is more aggressive since it targets nine different vulner-

abilities in the devices of different makers, such as D-Link, Netgear and Linksys.

Using this botnet, the attacker could also morph the code to avoid detection from

signature based IDS . As per the information provided by ‘Recorded Future’, it was

also used to attack on some EU banks (for example, ABN Amro).

• Echobot was discovered in the beginning of 2019. It is a variation of Mirai which

uses 26 malicious scripts to spread itself. Like other botnets, it takes the advan-

tage of unpatched IoT devices and then uses these vulnerabilities to harm other

enterprise applications (for example, weblogic of oracle). It was discovered by Palo

20



Alto Networks, and designed to create a larger botnet to perform DDoS attacks.

Recent studies have shown commercial availability of DDoS service. Once can anony-

mously order five to six Gbps DDoS attack lasting ten minutes or more for as low as

USD 15.00. DDoS-as-a-Service (DDoSaaS) providers sell the attack capabilities for knock-

ing websites offline or perform stress test on different network infrastructure. Recent

studies [56] have found out over 435 booter and stresser websites are available in open

internet. However, there is much more offer on the Darknet. Popular once include

ExoStress, BetaBooter, ZStress, Titanium Stresser, etc.

2.3 Security concerns

There have been other minor DDoS attacks caused by the IoT botnet networks, like

on November 07, 2016 the email publication server of Wikileaks services were made

unavailable by a DDoS attack that continued for 24 hours. Next lets evaluate a few of

the common vulnerabilities that are present in IoT devices that make it an easy target

for the attackers [43]:

• Insufficient physical security: The majority of IoT devices operate autonomously
and not supervised [37]. With minimal effort, an adversary might obtain unautho-
rized physical access to such device can cause damage to them. This can lead
to unveiling employed cryptographic scheme, replication of the firmware using
malicious nodes, or simply corrupting the device itself.

• Limited resources: IoT devices characteristically have limited memory and stor-
age and do not necessarily possess the technology to recycle them [66]. An at-
tacker might drain the memory by generating flood of spammed messages, ren-
dering the device unavailable for valid processes and users.

• Inadequate authentication: Limited resource in the devices challenge the imple-
mentation of complex authentication mechanism [19]. An attacker might exploit
ineffective authentication to install spoofed malicious nodes, or violate data in-
tegrity, thus intruding into the corporate network. Many platforms use default
credentials for authentication, which doesn’t provide adequate authentication and
can be easily replicated.

21



• Improper encryption: Data need to be protected both in transit as well as in
storage especially those operated in critical systems (i.e. power utility, manufac-
turing plants, building automation, etc.). Encryption is an effective tool to store
and transmit data in a way that only authorized users can read it. As the strength
of the cryptographic system depends on the randomness and size of the key, with
limited resources it becomes challenging to store huge keys. To this end, the at-
tacker might be able to circumvent the encryption technique to compromise the
device [9].

• Lack of access control: Strong credential management is necessary to protect IoT
devices and its data from unauthorized access. In the state-of-the-art platforms
many organizations do not enforce the requirement of a strong credential [49].
Moreover, after installation, manufacturers do not require a change of the default
credentials. To make matters more difficult, these users operate with the highest
privilege.

• Backdoor ports: Many a times developers and technicians keep ports open in
these devices to perform troubleshooting steps. However, these ports might have
vulnerabilities that can be exploited by an adversary. They might use these back-
door channels to deploy malware and use the device as a bot.

• Lack of patch management: Every code has some or the other bug in it. A proper
patch management system is essential to fix these bugs in the upcoming releases
of the firmware or software. In multiple occasions we notice that the manufac-
turer either doesn’t provide a patch or there are no capability available in the
device for patching [64].

• Missing audit management capabilities: An audit trail helps to diagnose the is-
sues in a device or system. It is an important tool for the support team to perform
a root cause analysis (RCA). In numerous situations it is seen that the manufac-
turer doesn’t have a audit mechanism for the device and thus any issues or attacks
on it goes unnoticed and rectified.

• Weak programming practice: It is always recommended to follow a proper de-
velopment guidelines and implement an effective testing mechanism by which
known errors and issues can be identified, many researchers [29] have reported
that multiple firmware are released with known vulnerabilities such as backdoors,
root access, and lack of Secure Socket Layer (SSL) usage. Hence an attacker might
easily exploit these weaknesses to perform attacks like buffer overflow, informa-
tion modification, or gain unauthorized access to the device.

In a study with connected lighting systems [41], it was realized that the first critical

point is the trust in the safekeeping of a pre-shared master key that is shared among

multiple manufacturers. These keys play an important role in securing the network

22



communications with these devices. In a ZLL-based connected lighting system, man-

ufacturers rely on the NDA-protected shared key. The ZLL link key, used for classic

communication hasn’t been leaked yet, but of course it can happen anytime even by a

mistake. Once leaked, almost every device using the ZLL protocol are prone to be at-

tacked and used for other malicious purpose like being used in a command and control

system by a attacker.

2.4 Proposed frameworks to secure the gaps

There are a lot of research done to define a security architecture for IoT. The biggest

hurdle in creating an IoT framework is its heterogeneous nature. Multiple devices from

different manufacturer have already flooded the market. Establishing an objects iden-

tity in IoT is critical to the privacy and security of both the device as well as the user.

A lack of a unified model has led to the manufacturers coming out with their own pro-

prietary model and researchers aiming at formalizing it. An effective authentication

mechanism is crucial to establish trust in the IoT ecosystem. In the following section

we will evaluate the proposed frameworks in terms of architecture, connection with the

cloud and processing commands.

We started our literature review with a broad overview of the security challenges

and reference architectures of IoT [61]. IoT devices are used in every sector including

healthcare, retail, airlines, and others. It can also perform micro-transactions on itself.

The major market for e-commerce in IoT is smart homes and wearable devices. Fig-

ure 2.6 shows an IoT architecture in e-commerce consists of warehouse management

center, cloud data centers (PaaS, IaaS and SaaS), and backend databases consisting of

catalog, customer, online purchase, etc. The warehouse is connected through RFID

sensors to catalog and shipping product database, and cloud data centers. Similarly,

delivery is connected through RFID sensors to shopping carts, shipped products, and

23



Figure 2.6: Reference IoT Architecture for E-commerce [61]

management centers. With the advent of cloud architectures, the devices can easily

connect to the gateways and exchange data on a regular basis.

2.4.1 IoT security

Many low power radio technologies suitable for IoT already exists in the market, includ-

ing Bluetooth Low Energy (Bluetooth LE), IEEE 802.15.4, Z-Wave, ANT, Dash7, Wave2M

and low power variant of IEEE 802.11 [18]. Bluetooth LE has the highest potential for

IoT use which is still missing IP capabilities. Nieminen et. al. [44] presented a holis-

tic solution for integrating Bluetooth LE devices with the IoT. The central piece of the

solution is the IPv6 over Bluetooth LE specification that is currently produced by the

24



IETF. Data transmission is protected by Bluetooth LE link layer security which supports

encryption and authentication by using the Cipher Block Chaining Message Authentica-

tion Code (CCM) algorithm and a 128-bit AES block cipher [20]. Using this solution to

build an end-to-end security framework would require a change in the current protocol

structure. It requires a change in the Bluetooth LE protocol and would need substan-

tial discussion and verification before implementation. However, the pairing of devices

using the Bluetooth LE framework is powerful and secure.

ConnectOpen was proposed to automate the integration of IoT devices [47]. In this

framework a flexible communication agent is deployed at the gateway and can adopt to

multiple communication protocols. The agent is automatically deployed on the gateway

in order to connect the device to a central platform where data is consolidated and

exposed via REST API to third party services. It showed some practical implementation

of the framework to implement in a large scale. The framework has the security service

embedded in the integration services. It is an interesting framework and remove the

IoT tangle. However, it does not address the security aspects specifically. There is no

clear explanation as to how the author wants to address them.

A DTLS based end-to-end security architecture was proposed for the low power

hardware platform suitable for IoT [31]. The proposed security scheme uses public

key cryptography (RSA), and works on top of the standard low power communication

stack. One strong notion that we can get from this article is that we can re-use the

established standards, existing implementations and security infrastructure to enable

an easy solution. Another study showed that RSA, the most commonly used public key

algorithm in the internet, can be used in sensor networks with the assistance of Trusted

Platform Module (TPM) [22]. A TPM is an embedded chip that provides tamper proof

generation and storage of RSA keys as well as hardware support for RSA algorithm.

RSA provides strong encryption. However, the key length of RSA for efficient security

is 2,048 bits. This requires a lot of storage in the device to store the key and certificate

25



Figure 2.7: Trust assessment framework for cloud services [34]

for RSA.

A dynamic defense architecture was also proposed to handle security threats to an

extent in the past period of time [35]. The proposal explains six dynamic and circu-

lar defense segments. The result from all the segments are used to create a defense

strategy. It causes the defense measure against security threat active and the whole

defense procedure is dynamic. Another cloud based IoT security model was proposed

by using trustworthy cloud services [34]. It detailed a trust assessment framework for

security and reputation of cloud services. The framework enables trust evaluation of

cloud services in order to ensure security of the cloud based IoT by integrating security

and reputation based trust assessment model as shown in Figure 2.7. As we mentioned

before measuring and quantifying trust is a difficult task.

2.4.2 IoT authentication

Establishing the identity of a user or device comes before verifying trust by access con-

trol mechanisms. Cryptographic mechanisms incur high computation and communica-

26



tion load. The resource constrained IoT devices does not easily support cryptographic

solutions. The gathering and use of data from smart devices that people interact with

on a daily basis has several implications related to privacy [3]. In this section we evalu-

ate the different techniques proposed to authenticate actors in the IoT ecosystem.

A one time password (OTP) scheme for IoT was proposed based on elliptic curve

[59]. The private key generator generates the OTP and at the same time, it assumes the

role of validating at the IoT platform. OTP generation occurs in a scheme that runs in 4

phases, namely, setup, extraction, generation and validation. This method depends on

the Lamport algorithm for its security by generating the OTP. It has been proven with

experimentally that experienced attackers can perform replay and modification attack

on OTP based authentication systems and access the system. Moreover, it becomes

cumbersome to generate and use a OPT for every communication to and from a device.

A certificate based authentication technique was presented to redress the issue of

password based authentication [6]. This technique requires that a certification author-

ity issues certificates to users. The certificate is issued and certified by a remote author-

ity who seals the link between them and public cryptographic key. The certificate-based

authentication works under very strict principles, providing that those who issue cer-

tificate and those who award access be differentiated. The interconnection proposed,

consist of smart objects, gateways and services.

An identity management (IDM) [54] system was proposed to focus on providing

access authorization as well as authentication for IoT users. The presented authentica-

tion and key based authentication method provide single sign-on to IoT devices. This

technique integrates four components, namely, the entity or the user, their identity,

identity provider (IdP) and service provider. The benefits of IdP is that it makes non-

interactive login possible. This method provides better identity check via private keys.

They are more secure than passwords, as malicious users must obtain the private key

and their corresponding passphrase to use the system.

27



The work published in [24] focused on authentication of devices in smart home en-

vironment using the physical properties of IoT device and communication. The smart

home environment uses a variety of communication protocol. The proposed methods

rely on using both the physical unclonable function (PUF) and physical key generation

(PKG). The authors promote that the combination of two methods results in an imme-

diate enhancement of security. They also suggest reusing existing hardware to reduce

overall system cost. The security mechanism used in this technique is a random set of

challenges and symmetric key encryption.

Another novel idea was proposed [23] to use blockchain system with credit based

consensus mechanism for Industrial IoT (IIoT). The proposal consists of a credit-based

proof of work (POW) mechanism for IoT devices, which can guarantee system security

and transaction efficiency simultaneously as shown in Figure 2.8. In order to protect

sensitive data confidentiality, they designed a data authority management method to

regulate the access to sensor data. In addition, the system is based on directed acyclic

graph structured blockchains, which is more efficient than the Satoshi-style blockchain

in performance. The structure described is not only suitable for smart factories but

also is able to adopt to various IIoT scenarios.

2.5 Summary

There are several shortfalls in terms of secure communications of IoT systems. This

attribute to the lack of proper encryption being employed to cipher the data being

transmitted. This results in security breaches costing companies huge penalties. The

data also requires hiding when in transit. Otherwise it might be a target of sniffing

and that can lead to critical and personal data being leaked to the unwanted recipient.

As noted in the Section 2.3, some solutions use a pre-shared master key that is pro-

tected by NDA. A strong key management system is important to evaluate to protect

28



Figure 2.8: Architecture of blockchain-based IIoT system for smart factory [23]

the devices along with the data it deals with.

The methods discussed for implementing security and authentication for IoT de-

vices have undermined the limitation of the one password scheme. If an attacker were

able to intercept messages transmitted at the login stage, they can replay it and access

the system. In a password-based system, once an attacker can get into the system as a

legitimate user, they have broken the kill chain. It will be very difficult to distinguish an

attacker from a legitimate user in this scenario. In practical IoT devices we have seen

that the manufacturers use a default credential to allow the user to plug-and-play. This

caused such devices to be used as bots using malware like Mirai. Many authentication

techniques mentioned above are prone to impersonation attack. Most of the devices

along with their cloud backend, failed to enforce strong password policy.

It has been mentioned by almost all the research that for IoT the biggest challenge

is the constraint in resources. IoT devices have a constraint on resources including

energy, memory, computational speed, and communication bandwidth. Scares re-

29



sources necessitates only lightweight operations on the smart objects, particularly if

a distributed authentication is implemented to achieve scalability.

The IoT ecosystem is very heterogeneous. Users and devices are interacting with

each other over an unreliable and untrusted medium. It is unavoidable to verify every

access from the user as well as the device. This is because neither of them knows

from where the request or response is coming. One thing is obvious, we need to use

some cryptographic solution to overcome the privacy and security problem. Keeping

the resource limitation in mind, the IoT industry needs a solution that can be easily

and effectively used without putting trust on the medium.

We propose a zero-trust framework that can work with the above limitation and

provide an end-to-end authentication system for every communication. In this solution

we rely on the existing cryptographic infrastructure that can be easily integrated into

the existing network topology.

30



Chapter 3

Zero-Trust Framework

The internet was build with a trust that it would help people communicate easily and

knowledge can be shared. People will have easy access to information and would be

able to learn if they are willing to. From the early days of internet, websites have made

a concerted effort to reassure their customers that their personal data and transac-

tions are safe. In his article “trust online, trust offline” Eric [67] raised the question,

“are people generally trusting?” He describes that there are two types of trust, namely,

strategic trust and moralistic trust. Strategic trusts reflect our experiences with partic-

ular people doing things. Moralistic trust is an optimistic view we learn at an early age:

the world is a good place and it is not so great a risk to agree that most people can be

trusted.

The internet can be both trusting and mistrusting at the same time. People who

have a higher percentage of moralistic trust, are open to try new things. They are

of the opinion that a few bad incidents cannot define that the world is a bad place.

It is generally good to be open to try new things, but we need to be careful as well.

Experiments fuel innovation and provides encouragement to people who are constantly

thriving towards making the world a better place.

31



3.1 Understanding zero-trust

Looking at all the attacks described in Section 2.2, a person with strategic trust would

get scared and avoid using IoT devices, and a person with moralistic trust would also

become skeptical. We are connected by devices all around us in homes, offices, cafes,

etc. In today’s connected world, trust is only achieved by proof. If we go for a driver’s

license, we need to prove our identity before they allow us to go ahead with the process.

Similarly, in the digital world, every entity needs to prove who they are. The burden

of proof lies on the entity asking the service as well as those from whom the service is

asked for.

Zero-trust is a strategic initiative that helps prevent successful data breaches by

eliminating the concept of trust. Rooted in the principle, “never trust, always verify”

zero-trust is designed to protect modern digital environment. It leverages network seg-

mentation, prevent lateral movement, provide threat prevention and simplifies granular

user access control. The zero-trust model recognizes trust as a vulnerability. Once in

the network, users can move freely and access or exfiltrate whatever data or resource

they are have access to. A malicious user in a network would want to escalate his priv-

ilege. We must remember from the Lockheed-Martin kill chain [51] that the point of

infiltration of an attack is not the target location. Thus, these devices can be used for

reconnaissance and network monitoring as well.

The concept of zero-trust is particularly important in the heterogeneous ecosystem

of smart devices. With the huge growth in the number of connected endpoints, it is

difficult to have a trust on a request or response that is coming from an unknown

source over an untrusted medium. The solution is to verify every incoming packet.

One of the biggest concerns in IoT devices, as seen in the previous section, is that the

resources are minimal. So, to implement a strong authentication mechanism, we need

to build an efficient framework where every request can be validated, and access can

be determined before any other operation. The concept is the same as that for a web-

32



based authentication. For a protected route, we ensure that the web token is valid, and

the user has the required role to perform an action.

In the next section we will look at the actors that are involved in the IoT ecosystem

and understand the nomenclature that would be used throughout the rest of the book.

3.2 IoT architecture

We will start by analyzing a general scenario of using a home automation system like

iRobot Roomba or a Philips Hue smart bulb. With the cloud connectivity, the device

talks to some server to keep its information and then that information is transmitted

into our mobile phone via an app. We issue commands to the device to perform some

task. For an iRobot Roomba, we schedule its cleaning cycle or ask it to clean a certain

portion of the house. Similarly, we instruct the Philips Hue to change color. With the

advent of natural language processing (NPL) and devices like Alexa and Google Home,

we send these instructions to the devices using voice commands. Using such home

assistant, we issue commands in English language like, “Hey Google, turn off the light

in the bedroom!”.

In the above situation, we have a Philips Hue smart light in the bedroom, and the

owner has downloaded the Philips mobile app to connect and configure the smart bulb.

Then, the same light is added into the Google Home app as a bedroom light. Now let’s

look at the network communications that are happening as shown in Figure 3.1. On

listening to “Hey Google” the Google Home device gets activated, and interprets the re-

maining part of the statement. It catches the phrases “turn-off” “light” and “bedroom.”

It contacts the Google server to find out what bulb is connected in the bedroom. It gets

the information and then contacts the bulb manufacturer’s server (in our case Philips)

and requests it to contact the bulb and turn it off. Now, the manufacturerâĂŹs server

looks through its database and finds the IP address of the bulb and sends out a com-

33



1. Hey Google, turn off the 
light in the bedroom!

2. What bulb is there 
in the bedroom?

Owner Google 
Home

Google 
Server

3. Philips Hue
ID: 12345

Philips
Server

4. Turn off light
ID: 12345

5. Turn off
6. State: Off

7. Done

8. Done Philips Hue
Smart Light

Figure 3.1: Generalized network communications for a IoT request

mand to turn off. The bulb performs the operation and informs the manufacturer that

the work is done. The manufacturer saves the state and informs the user and Google

Home that the operation is completed.

In the above scenario, both the Google Home and Philips Hue can be considered

as IoT devices and they communicated with each other using the cloud infrastructure.

Below is the taxonomy for each of these actors:

• Device: From now on we will be referring the IoT device as device. These are phys-

ical devices that have limited resources and are built to serve a specific purpose

(e.g. Philips Hue smart light). They are used for home automation like lighting,

heating, air conditioning, media and security. They can also be used in medi-

cal and healthcare, better known as internet of medical things (IoMT), as well as

transportation to control inter and intra-vehicular communications.

• User: The user is the owner of the device, how purchased it from the market. The

user downloads the manufacturer’s app in their phone and help pair the device to

his/her account. In the proposed architecture, there can be at most one primary

34



User Device

Gateway

Delegate

Figure 3.2: Proposed architecture for zero-trust framework

user to the device who registered it with the gateway server. Any other user who

would want to connect with the device would need approval from the user.

• Delegate: They are all the other users and devices who would want to connect to

the device. Google Home, in the earlier discussion, would be called a delegate in

our architecture. They are responsible to communicate with the device on behalf

of the user. Any interaction between the device and delegate should be logged

and communicated to the user.

• Gateway: The gateway is the manufacturer’s cloud interface that the device and

user connect with to store and retrieve information. In the example above, both

the Google server and Philips server are gateways, each to interact with its own

manufactured device. The user can interact with the device through the gateway.

Here, the gateway works as a relay to pass information between the user and the

device.

A generalized proposal is shown in Figure 3.2. We are proposing that all commu-

nication to the device happens only through the gateway. This will avoid the device

to respond to any request that comes to it. Any request whose origin and referrer

35



headers are not the gateway, will be responded with a error message. This will prevent

the device from having to respond to every incoming request. The crux of this is that

network chatter will increase and there will be two hops for the user to communicate

with the device, but this latency is acceptable for implementing a strong security archi-

tecture. A lot of spoofing attacks can be avoided by implementing this solution. In our

experiment we will measure the delay and validate if the latency is acceptable.

We are also proposing only one primary user for a device. Any other user will be

considered a delegate. The delegate will also be able to communicate in the same way

as the user, the only difference is the pairing. For the user, during the pairing process,

the device is provided the Wi-Fi credentials and a shared key is established. For the

delegates, they just create a shared key. However, before the shared key is activated,

the user needs to authorize the pairing. Only after the approval, can the delegate

communicate with the device.

3.3 Data structure

Following the basic principle of zero trust of “never trust, always verify” we are to build

a strong security framework that can verify every request to any of the component in

the ecosystem. In the proposed security framework, every component maintains a

database of all the devices it is connecting to. This ensures that any request coming

from a non-registered device is rejected and logged. In our architecture, the gateway

acts as a relay for any communication that happens between the user (or delegate) and

device. So, we will start by looking at the data structures that are maintained by the

gateway.

36



DEVICESUSERS

REGISTER

TRANSACT
WITH

user_id
device_id

transaction_id

user_id mac

mac

device_type

device_pkey

last_update

last_active

status

user_name

email

password_changed

registration_date

status

last_login

registration_date

from transaction_timestamp payload

Figure 3.3: ER diagram of the gateway data structure

3.3.1 Data stored in gateway

The gateway is a cloud infrastructure that is hosted by the manufacturer. Since they

create and market these devices, they will maintain a database of the same. In our de-

sign, we are proposing the following relations and attributes for a security framework.

DEVICES (device_id, device_mac, device_type, device_pkey, last_update, last_active,

is_online, status)

USERS (user_id, user_name, email, status, last_login, password_changed)

REGISTRATION (user_id, device_mac, registration_date, is_primary, status)

TRANSACTIONS (transaction_id, from, to, activity_date, payload)

Figure 3.3 shows the Entity-Relationship (ER) diagram of the data structure in the

gateway.

37



The gateway maintains a record of all the devices that is produced. During the

production, each device is embedded with the device_id and an ECC private key of the

device and an ECC public key of the gateway. The corresponding public key device_pkey

of the device is stored in the database. The device is also provided with the server

fingerprint as well as the public key of the server. This helps the device to communicate

with the gateway in a secured manner. The initial status of each device is inactive “I”

until the device is registered with a user. We will look closely at the registration process

in Section 3.4.

Similarly, every user must register with the gateway as well. The user relation keeps

a track of all the entities that interact with the devices. If, there is a device to device

interaction, the device needs to be added as a user in this model. As described earlier

in Section 3.2, every device has only one primary user, every other user/device that

interact with it is a delegate and the user must approve the request for a delegate to

interact with the device. The user approves the request for a delegate to interact with

the device.

We have eluded to the fact earlier, that for security reasons we are enabling all

communications via the internet with the device should go through the gateway. The

gateway can keep a log of all transactions that happen through it. If there are multiple

steps that are happening in a transaction, then all the steps are recorded individually

by the from and to field, and the entire transaction gets the same transaction_id. We

will see a clear example of this in command execution.

3.3.2 Data stored in devices

As mentioned earlier, the device maintains its own private key and the public key of the

gateway along with it’s device_id. For each of the user and delegates that it is paired

with, it maintains a symmetric key. Since, the resources of the device are limited,

it is recommended that we restrict the number of delegates to three per device. This

38



number can vary based on the storage provided with the device. For each user/delegate,

it stores the relevant information as shown here:

1 struct UserInfo {

2 char* userId ;

3 byte key [32] ;

4 byte iv [16] ;

5 } ;

We will be using 32 bytes (256 bit) keys for each of the pairing along with 16 bytes

(128 bit) initialization vector. Overall to save a record for one pairing, we would need 84

bytes (672 bits) including the UUIDv4 format for user ID. With four such pairing we will

consume around 336 bytes (2688 bits). Adding the device’s private key and gateway’s

public key and the device identifier we can restrict the storage to two kilobytes. If the

device can support more storage, then more pairing is possible. The device also stores

the Wi-Fi credentials that are shared by the user during pairing. The credentials are

stored in a structure as follows:

1 struct WiFiCred {

2 char* ssid ;

3 char* password ;

4 } ;

It is difficult to assess the size of the credentials accurately since this can be any

string set by the user.

3.3.3 Data stored in users and delegates

Users and delegates can have a similar data structure. Like, we mentioned above, both

need to register with the gateway as a user. For this thesis, we will not consider users

who are also devices. We will keep this for further research. Each of these entities are

to maintain a record of the devices that they are paired with. If they are the primary

39



users, they can also sync a list of delegates that are connected to the device. Most of

this information will be synced with the cloud, except for the pairing keys.

A symmetric key will be shared between the user/delegate and device. This key

will be known only to the sharing parties and no one else. This key will be used to

pass information between the user/delegate and device. The gateway will not have the

authority to send commands, only approved users and delegates can do so. The key

must be refreshed after every regular interval.

One thing we need to understand in implementing a security infrastructure is that,

the complexity of the system should not be too high for a general user to use. Generat-

ing a key during paring will remove the requirement of having a static key embedded in

the system or a default password. Those can be easily cracked, but an auto generated

key which is refreshed at a regular interval poses some challenge to the attacker. An-

other advantage of this strategy is that the user doesn’t need to remember any complex

password.

A simple data structure to store the above information would be as follows:

DEVICES (device_mac, device_key, iv, key_refresh, last_update)

The key_refresh holds the information as to when the last time the key was re-

freshed. The manufacturer’s app can keep a rule, that the key need to be refreshed

after X days. From a general recommendation, we would say to follow the change pass-

word rule followed in most web/mobile applications, where the key is refreshed every

60 days. For the initiation, it will be the day of pairing. The last_update attribute will

hold the timestamp as to when the user last interacted with the device. Most of the

other information that the user would need, like the list of other devices can be got

from the gateway and thus we donâĂŹt want to duplicate that information in the user.

The user should have the option to add/remove/update a delegate.

One thing to note from the above data structure is that the device is identified

primarily by the device_id between the device and gateway, whereas by device_mac

40



between the user and device. This is done to avoid using the same identifier in both

ends. During paring, the device lets the user know it’s MAC address and it is a unique

value that can be used by the user to register itself with the device at the gateway. The

gateway can link the MAC address with the right device_id and map the keys correctly

during communication with the device.

3.4 P3 connection model

In the proposed model we separated the connection initiation from the communication

over internet. For connection initiation, we propose using Bluetooth 4.0 or Bluetooth

LE [12,17,44]. Bluetooth LE has been designed for ultra-low-power application, yet keep-

ing similarities with classic Bluetooth. All modern mobile phones and smart devices are

enabled with Bluetooth LE. Another reason to use Bluetooth in setting up secret keys is

the area of access. Since the Bluetooth connection can be established only in proximity

of the device, the attack vector becomes smaller. The initiation steps are similar be-

tween the user and delegates, except that the delegates need to get additional approval

from the user to access the device. And the user need to provide the Wi-Fi credentials

to the device so that the device can connect to the internet and reach the gateway. In

the world of computers, we often hear the term plug-and-play, it refers to the concept

where you can connect the device and start using it. For IoT we prefer to use the inter-

net as a medium of communications so that we can access these devices from anywhere

in the world. So, to establish a connection we use a plug-pair-play method termed as

P3 connection model. In this method, the device is plugged to a power source and then

it pairs with a user to establish the security credentials and only then the user can play

with the device (or start using the device). The pair sets up the keys for the device and

user to communicate over the internet.

41



Hello

Hello

Send pairing information

Pairing successful

Send ECDH shared key

Send ECDH shared key

Send Enc{(Wi-Fi SSID, Wi-Fi PW), KS}
Generate session

key KS

Generate session
key KS

Initiate 
communication

Send Enc{UserID, KS}

ACK ENC{Device MAC, KS}

Send Enc{User_ID, Verifier_PKey(GW)}

Save and verify Wi-Fi credentials

ACK ENC{REGISTERED, Verifier_PKey{D}}

Generate 
symmetric key K

and save

{Device MAC, JWT}
ACK {REGISTERED}

Send Key Enc{K, KS}

Save KACK ENC{OK, KS}

Disconnect
Remove pairingRemove pairing

Save REGISTRATION
record

Connect using
 Bluetooth LE

Approve REGISTRATION
record

Figure 3.4: P3 connection between user and device

3.4.1 Connecting user and device

For the user, the connection process is initiated when the device is bought brand new

and is connected for the first time. In this step the user connects the device to the

internet and enables it to talk to the gateway. Before this process, we are assuming

that the user has registered with the manufacturer and a record is added to the USERS

relation. The process is shown in Figure 3.4.

• Pairing: The first step of the initiation is the pairing between the user and the

device. The user from his mobile app searches to find available devices. In Blue-

tooth the connection happens between a master and a slave. In this case, the

user’s phone acts as a master and the device acts as a slave. Once the user can

find the device, it pairs with it using the default pairing key embedded in the app

and initiates a connection.

42



• Generate session key: In cryptography, Curve25519 is an elliptic curve offering

128 bit of security and designed for use with the elliptic curve Diffie-Hellman

(ECDH) key arrangement scheme. Here, both the device and user, generate a

shared key using the public keys available. On exchanging each other’s public

key, the session key is created. This session key Ks is used to secure the remain-

ing transactions.

• Connect to Wi-Fi: Once the session key is established, the next step is for the

device to connect to the internet. For this, the user sends out the Wi-Fi SSID and

password encrypted with the session key Enc {< Wi-Fi SSID, Wi-Fi password >

,Ks}. On receiving this information, it tries to connect to the Wi-Fi and ensures a

successful connection. Once connected, it saves the information into its memory

to maintain a constant connection to the internet. It returns a “success” to the

user.

• User verification: After connecting to the internet, the device need to verify

the identity of the user. The user sends his user_id to the device encrypted

Enc {user_id,Ks}. The devices send this information to the gateway along with

the device’s digital signature for verification over TLS. On receiving this informa-

tion, the gateway validates if the given device_id is valid and is in an inactive state

with no prior user. It also verifies, if the given user_id is valid and registered. If

any of the validation fails, it returns a failure with status code 401. If the valida-

tions are successful, it creates a partial verified record in REGISTRATIONS table.

• Device verification: On receiving a successful verification of the user from the de-

vice, the device returns a device_mac to the user encrypted with the prior session

key Enc {device_mac,Ks}. The user forwards this session key over a TLS ses-

sion to the gateway API. The authorization used in this transaction is a JWT token

that was created when the user logged into the manufacturer’s app. The gateway

43



verified the JWT token for authorization and then checks the device_mac to verify

it against the partial verified record in the REGISTRATIONS relation. Once veri-

fied, the gateway completes the transaction and informs the user in the app that

a new device is added to its record.

• Generate and share the symmetric key: Once the user receives the confirmation

from the gateway that everything is good, the user generates 256 bits symmetric

key and shares it with the device Enc {K,Ks}. The device saves the same and

acknowledges the user that the key is saved securely.

• Disconnect: The Bluetooth interface is only used to help connect and verify the

user and device. Once this connection is established, there is no need to hold on

to the connection. The user initiates a disconnect request and the device comply.

Now, the user can send commands using the shared key K to the device relaying

through the gateway.

3.4.2 Connecting delegate and device

The delegate connects the same way as the user except the Wi-Fi credentials doesn’t

need to be provided any more. The user had already provided the details and the

device is connected to the gateway via internet. A new step for the delegate is to get

an approval from the user. This step ensures that the user is aware of all interactions

to the device. This avoids unauthorized access and provides an additional layer of

security for the device. The Figure 3.5 details the steps.

• Pairing: The pairing step is the same as in the user and device. The delegate acts

as a master and the device as slave. The pairing happens with a default pairing

key that is embedded in the app.

44



Hello

Hello

Send pairing information

Initiate 
communication

Pairing successful

Send ECDH shared key

Send ECDH shared key
Generate session

key KS

Generate session
key KS

Verify if primary user
is already present

Send Enc{UserID, KS}
Send Enc{User_ID, PKey(GW)}

ACK ENC{REGISTERED, PKey{D}}

Verify delegate

Get Approval from primary user

Approve

ACK ENC{Device MAC, KS}

Send HTTPS{Device MAC, JWT}
ACK HTTPS{REGISTERED}

Send Key Enc{K, KS}

Disconnect

Save REGISTRATION
record

Generate 
symmetric key K

and save
Save KACK ENC{OK, KS}

Remove pairingRemove pairing

Connect using
 Bluetooth LE

Approve REGISTRATION
record

Figure 3.5: P3 connection between delegate and device

45



• Generate session key: Curve25519 is used as a cryptographic technique to gen-

erate a ECDH session key. This session key Ks is used to for all the remaining

transactions.

• User verification: After connecting to the internet, the device verifies the identity

of the user. The user sends his user_id to the device encrypted Enc {user_id,Ks}.

The devices send this information to the gateway encrypted with the gateway’s

public key Enc {< user_id,device_id >, PKeyGW}. On receiving this informa-

tion, the gateway validates if the given device_id is valid and finds the primary

user. It also verifies, if the given user_id is valid and registered. If any of the

validation fails, it returns a failure with status code 401.

• User approval: This is an additional step that takes place for the delegate. The

user needs to approve the request to add another user to the device from the app.

The gateway sends the request on behalf of the device to the user using notifica-

tions or email. The user looks at the request and approves the same from the app.

Once approved, the gateway creates a partial verified record in REGISTRATIONS

and sends the information to the device. If the user rejects the transaction, then

the same is communicated back to the device and the pairing is canceled.

• Device verification: This step is same as in the user and device. The device sends

the device_mac Enc {device_mac,Ks} which in turn is send to the gateway for

verification and completing the registration process. The gateway verified the JWT

token for authorization and then checks the device_mac to verify it against the

partial verified record in the REGISTRATIONS relation. Once verified, the gateway

completes the transaction and informs the delegate and user with email that a

new device is added to its record.

• Generate and share the symmetric key: A 256 bit symmetric key is generated by

the delegate and shared with the device Enc {K,Ks}. The device saves the same

46



and acknowledges the user that the key is saved securely.

• Disconnect: The Bluetooth communication is terminated and the delegate can

interact with the device now.

One of the advantages of the P3 model is that there is no pre-shared key or password

embedded in the device for communicating with it. This has been a criticism of the

existing IoT implementations as described in Section 2.3. This model helps generate

the key and can also be used to re-generate them at a regular interval. The user doesn’t

have to type in or remember a complicated password. The system generates and saves

a secured key that can be used in all communications.

This model also follows the principle of zero-trust where both the parties verify the

identity of each other before creating a shared key. If any of the step fails validation,

the communication is terminated, and the user is informed of the invalid connection

request. It prevents the attackers from gaining access on the device without the knowl-

edge of the user. The user also has the option to terminate a delegate as and when he

wishes. If by some means, the attacker becomes the user, the gateway is informing the

legitimate user that the device already has a primary user and the user can report back

the issue to the manufacturer. The manufacturer can reset the device and trace back

the attacker from its transaction history.

This security model of plug-pair-play will be simple to use for an end user and can

also maintain a strong security protection for both the user and device.

3.5 Communication over untrusted medium

P3 connection model creates a strong authentication mechanism for the user and device

to interact with each other safely. The generated keys help with authentication as well

as confidentiality. The next important issue we wanted to tackle is the communication

with the devices. The internet is an untrusted medium. There can be people listening

47



to the conversations by wiretapping or man-in-the-middle (MITM). Sniffing is beyond

the control of the IoT ecosystem because the data is traveling over many routers and it

is beyond the control of anyone to protect all of them. The next best thing we can do is

secure the conversations and make the information unreadable in transit. Even though

someone is listening to it, they will not be able to make out anything from it. We will be

using the keys and data structures described above to implement a strong end-to-end

communication where all transactions are verified and logged.

3.5.1 Heartbeat communication

The heartbeat protocol has been implemented in many frameworks and network level

applications. This is used to indicate the health of a device. In our architecture, we are

going to use the heartbeat to tell the gateway that the device is active and functioning

well. The same can also be used to send data to the server for analysis. For example,

we can use the heartbeat to send CPU and memory utilization of the device for it to

perform an analysis of the device usage. For a sensor device, it can send the sensor data

through the heartbeat to the gateway to perform machine learning and predictions. In

short, we can reuse the heartbeat communication to cater to the need of the device and

user.

In our model, the gateway provides an API endpoint to which the device can send the

heartbeat communication. This URL is protected by SSL/TLS with a server certificate.

The device verifies the certificate before sending the data to the gateway using the

server’s fingerprint. From the perspective of the gateway, it also needs to verify the

identity of the device. As mentioned above, the device has its own private key. The

corresponding public key is saved in the DEVICES relation of the gateway. The detailed

process of the device verification is shown in Figure 3.6.

The device creates a SHA 256 hash of the heartbeat data and encrypts it with its

own private key to create a digital signature. Then it sends hash along with the current

48



Data Hash
SHA 256 Device private key

Verifier

Data

Verifier

Package send to the gateway over HTTPS

Data

Verifier

Gateway

Device

Data Hash
SHA 256

Device public key

Verifier Hash

compare and validate

Figure 3.6: Heartbeat from device to gateway

timestamp, device_id and heartbeat data.

< device_id, current_timestamp,heartbeat_data >→ data

< data, Enc {data, PrivKeydevice} >→ package

The gateway receives the package and extracts out the data from it. It takes the

device_id and finds the public key for the device from the DEVICES relation. If the

device_id doesn’t return any record from the database, then the message is logged as

error and discarded. Once the record is found, it extracts the last heartbeat_timestamp

49



record and compares the timestamp. The given timestamp must be later than the

one saved in the record otherwise this is a replay attack. Once both the verification

succeeds, the gateway computes a hash of the same. Next it extracts the provided hash

using the device public key and compares it against the computed hash. If there is a

match, the device is verified, and the heartbeat operation proceeds. The pseudo code

for the operation is described below:

1 heartbeat ( data , encryptedHash ) :

2 assert data . deviceId , ‘ ‘ Missing deviceId ’ ’

3 assert data . curTimestamp , ‘ ‘ Missing curTimestamp ’ ’

4 assert data . data , ‘ ‘ Missing data ’ ’

5 deviceinfo = getDeviceInfo ( data . deviceId )

6 i f not deviceInfo :

7 raise Exception ( ‘ ‘ Inva l id deviceId ’ ’ )

8 i f data . curTimestamp <= deviceInfo .hbTimestamp:

9 raise Exception ( ‘ ‘ Inva l id timestamp ’ ’ )

10 computedHash = computeHash(SHA256, data )

11 providedHash = decrypt ( encryptedHash , deviceInfo .pubKey )

12 i f computedHash == providedHash :

13 deviceInfo .hbTimestamp = data . curTimestamp

14 update ( deviceInfo )

15 processData ( data . data )

16 else :

17 raise Exception ( ‘ ‘ ve r i f i ca t ion fa i led ’ ’ )

The gateway saves the given timestamp in the heartbeat_timestamp field. The gate-

way also runs a cron job that verifies the heartbeat_timestamp for all the active device.

If the device has not received a heartbeat in last five minutes, the user is notified.

There can be multiple cause of the device not sending the heartbeat. The device may

be offline, the resources of the device is consumed, or the device is under a DoS/DDoS

attack. The user gets notified in real time that the device is non-responsive and can

take actions to prevent any further damage.

50



3.5.2 Sending command to device

The user and delegates can request information form the device by sending it specific

commands. In this model, we have generalized the command formatting. The list

of commands that can be sent to the device can vary based on the usage and need.

IoT devices can be diverse and the set of commands that it can respond to depends

on the type of operation that it performs. For example, a smart thermostat can have

commands like, raise the temperature of the room, change from heating to cooling, and

other. For a smart light bulb, the set of commands can be totally different, switch on

the bulb, or change the color of the bulb. So, the commands that can be interpreted by

the device can be decided by the manufacturer. However, the commands can only be

issued by the user or delegate who are registered with the device.

Like we mentioned before, all communications to the device can only happen through

the gateway. Any communication that is not from the gateway is discarded by the de-

vice. The operation is similar for both the user and delegate. Here we will work through

the security framework for the user. The same can be applied for the delegate as well.

We have established earlier in Section 3.4 that both user and delegate set up a shared

key with the device for communication. We can use that shared key to send instructions

and queries to the device.

For communicating between the user and the device, the query can be encrypted

with the shared key from the user and send to the gateway. The package_to_gateway

is sent to the gateway using an API which is protected by SSL/TLS. The user also sends

the authorization header containing the JWT token.

Enc {< current_timestamp,query >,K} → package_to_gateway

The gateway receives the package along with the headers. From the authorization

token, it verifies the identity of the user. After verification it creates a package for the

51



device including the package_to_gateway, user_id and the current timestamp. Then it

creates a hash of the whole and encrypts it with the private key of the server.

{package_to_gateway,user_id, current_timestamp} → package

{package, Enc {Hash(package, SHA256), PrivKeygateway}} → package_to_device

The package_to_device is sent to the device over HTTP. On receiving the package,

the device first verifies the identity of the request. For that it checks the origin header

to find out where the request is from. If it is someone other than the gateway, it rejects

the request. The serverâĂŹs identity is verified by provided hash with a computed hash

from the package. The timestamp is checked next to verify that the given timestamp is

not older than one minute, otherwise the request is rejected. After the verification, the

user_id is taken from the package and the respective shared key K is extracted. The key

K is used to decrypt the package. This verifies the identity of both the gateway and the

user successfully. The next step is to process the query and send the response back to

the user via gateway. The algorithm is shown below:

1 requestReceived ( package , headers , encryptedHash ) :

2 # ver i fy gateway

3 assert headers . origin == GATEWAY_URL, ‘ ‘ Inva l id origin ’ ’

4 computedHash = computeHash(SHA256, package )

5 providedHash = decrypt ( encryptedHash , GATEWAY_PUBKEY)

6 assert computedHash == providedHash , ‘ ‘ Inva l id ve r i f i e r ’ ’

7 curTimestamp = getCurrentTimestamp ( )

8 timeDiff = getTimeDiff (MIN, curTimestamp , package . timestamp )

9 assert t imediff <= 1, ‘ ‘ Inva l id package ’ ’

10

11 # ver i fy user

12 key = getSharedKey ( package . userId )

13 assert key != None, ‘ ‘ Inva l id user ’ ’

52



14 queryData = decrypt ( package . package , key )

15 assert queryData . userId == package . userId , ‘ ‘ Inva l id user ’ ’

16 timeDiff = getTimeDiff (MIN, curTimestamp , queryData . timestamp )

17 assert t imediff <= 2, ‘ ‘ Inva l id query ’ ’

18

19 # provide response

20 provideResponse ( key , queryData . query )

One thing to note here is that both the user and gateway is sending the current

timestamp when they are creating the request. The device verifies both the timestamp.

The reason for that is to prevent the gateway from using an old package from the user.

The gateway will log every transaction, and that can include the package as well. With

the encryption in place, the server will not be able to see the query but can replay the

same at a later point of time. The double timestamp verification prevents that from

happening. This process falls back to the principle of “never trust, always verify”. Here

since the package is coming via the gateway, it is important to verify both the user and

gateway before sending a response.

The next step is for the device to generate a response and send it in a secured way.

The device reads the query, performs the required operation and gathers the response

data. First it creates the package for the user. It encrypts the data along with the

device_mac and current timestamp with the shared key K.

Enc {< data,device_mac, current_timestamp >,K} → package_for_user

Similarly, the package is prepared for the gateway to accept and verify. For that the

package_for_gateway is created with package along with the device_id and current

timestamp.

{package_for_user ,device_id, current_timestamp} → package

53



User Device

Gateway

user_package: Enc {<user_id,timestamp, query>, K} 

{user_package,timestamp, user_id, 
Enc{Hash(user_package,timestamp, user_id), PrivKey(gateway)} 

device_package: Enc {<device_mac,timestamp, data>, K} 

{device_package, timestamp, device_id,
Enc{Hash(device_package, timestamp, device_id), PrivKey(device)}}

device_package

Figure 3.7: Communication between user and device via gateway

The package is hashed and the hash is encrypted with the private key of the device to

create the digital signature.

{package, Enc {Hash(package), PrivKeydevice}} → package_for_gateway

This package_for_gateway is send to the gateway.

On receiving the package, it extracts out the device_id and finds the corresponding

public key. Like the heartbeat communication, the gateway verifies the hash and times-

tamp and extracts the package for the user. The gateway responds back to the earlier

request of the user with the package.

The user on receiving the response from the gateway, performs a similar verification

of the package. The verification process like the one performed by the device. The user

verifies that the response is for the earlier request and is from the gateway. Next it

decrypts the package with the shared key to get the device_mac and timestamp. It

verifies that the device_mac matches with the one requested for and the timestamp is

no older than two minutes. This concludes the communication between the user and

the device via gateway. Figure 3.7 shows the encryption process for the exchange. The

communication between the delegate and the device will be exactly similar.

In the entire communication, every party verifies the identity of each other. The

54



gateway can log the package that is being send to the device, but it cannot read any

information out of it because the same is encrypted by a key that is known only to the

user and device. Similarly, the data being transmitted to the user from the device can-

not be interpreted by the gateway. The gateway acts as a relay to pass the information

and for the device to receive request from only one medium.

In the following section we will look at other security issues that can be solved by

this framework.

3.6 Patch management

Firmware update or patch management is one of the security issues we wanted to tackle

with this framework. This is a common problem with most of the IoT devices out there

in the market today. There is no clean way of patching the devices to rectify issues and

correct programming bugs. Thus, a bug that is found is not mitigated and such issues

can be taken advantage of by adversaries.

A lot of work has been done to come up with a security framework for updating

firmware for IoT devices [28]. In the article [75] the researchers surveyed the different

techniques for device management. The Lightweight Machine-to-Machine (LwM2M) pro-

tocol is the most prominent. It uses CoAP, which can be secured with DTLS. It provides

a simple data model and RESTful interfaces for remote management of IoT devices.

Other researches proposed solution based on block chaining [13,73]. The firmware ver-

sions and hash are compared against the information stored in the block chain server

before an IoT device is added to the network. The proposed solution allows identifica-

tion of a suitable type of firmware update and ensures integrity of the firmware.

The software on the IoT device must be prepared to support the firmware update

mechanism [75]. The typical firmware update procedure is simple. The manufacturer’s

development team fixes bugs, tests the changes, re-compiles the code and generates

55



a entirely new firmware image, which is then patched on to the devices. The flash

memory of the IoT device is split into memory region containing the bootloader and

firmware images. The new image is stored in one of the slots and the IoT device is then

reset with the bootloader and the new firmware. This process is used in MCUboot and

ESPer.

For implementing a security framework around the patch update, we followed the

architecture defined by the OMA LwM2M device management standard v2.0 [39]. After

going through the standard, we realized we can use the communication mechanism de-

signed in Section 3.5.2 and enhance it to securely initiate the firmware update process.

As we have noted many times before, the user is the owner of the device and has

total control over the device. The patch management is no exception. The initiation

of the process to inform the device starts with the user. The gateway notifies the

user that a new update is available for the device and the user requests the gateway

to send the update URL over a TLS protected API. Once it receives the update URL, it

creates a package like the one for device queries and sends it to the device via the

gateway. The device on receiving the package, verifies the identity of the gateway and

user and calls the URL provided in the package. The URL returns the updated firmware

along with a hash over TLS protected API. The device verifies the hash and initiates the

update process. Once updated, the device restarts and runs the new firmware over the

bootloader. The details of the process is shown in Figure 3.8

One thing to note here is that the framework dose not describe how the update

process is done in the device. It ensures that the update communication is received

by the device in a secured way so that it is not tampered in transit. The heartbeat

communication can be used to send the notification to the gateway about the current

version of the device. That can help the gateway notify the user if the device is not

updated after the new firmware is released. The gateway can give alert level to the

notifications to inform the user about the criticality of the update. From the user’s

56



Firmware update available

give update URL

URL

Create package P Send P to device
P

Verify gateway and user
Extract URLCall URL

Firmware and Hash

Verify hash
Update firmware
Restart device

Inform latest version using heartbeat
Update success

Figure 3.8: Updating device firmware

perspective, updating the firmware of the device is just a click of a button.

The goal of this framework is to ensure that security implementation is not a hin-

drance to operation. This framework takes into consideration this fact and ensures

that the user doesn’t have to go an extra step to implement security in the system.

Security is baked in as a backbone.

3.7 Addressing other security concerns

There are a few security issues that cannot be solved by this framework. This includes

physical security and weak programming practice. For physical security, a software

solution cannot solve it completely. However, we can take a reactive approach and let

the user know if the device is not responding. As seen in Section 3.5.1, the heartbeat

communication protocol informs the gateway that it is alive and well every minutes.

The gateway also runs a cron job regularly to check the last heartbeat_timestamp. If

the job notices that an active device is not communicating more than fifteen minutes

(skipped around five pulse) then a notification will be sent to the user is notified via

57



email/in-app notification. This will inform the user that the device is offline and needs

attention. We will not be able to solve the physical security issue but at least provide

enough information in real time for the user to take some action. The reason for

waiting for few failures is to avoid the false positive. There can be two misses due

to some other reason like a network glitch but more consecutive failure than that is a

serious problem and needs attention.

For weak programming the framework takes a reactive response, similar to physical

security. The manufacturer gets to know if there is a breach of the device in any way.

With the advent of internet, it is not difficult to get information. Once the manufacturer

rectifies the issue and updates the source code, then he can use the patch management

technique described in Section 3.6 to update the device.

Another issue we noted in the security concerns for IoT is audit management. Hav-

ing every communication flow through the gateway gives us a central location to per-

form audit and logging. In data structures described in Section 3.3, we have added a

relation called TRANSACTIONS. This relation keeps track of all communications flow-

ing through the gateway. Lets take an example of the communication happening be-

tween the user and device as described in Section 3.5.2. There we see that the user

sends a request to the gateway, which gets forwarded to the device. Then the device

communicates back to the gateway and it finally reaches the user. There are four steps

in this communication, but it is one transaction. An example if the data stored in the

TRANSACTIONS Table 3.1.

The above is a dummy dataset but it proves some valuable insights about the au-

dit management. One thing to note in Table 3.1 is that all the four records have the

same transaction_id. This way we can trace back and chain the transactions that hap-

pened for one communication. Also, the timestamp attribute records the time when

the transaction was recorded. With this we can also measure the performance of one

communication. This will measure the effectiveness of the framework in terms of time

58



Table 3.1: Transactions of the communication between user and device

Transaction_Id From To Timestamp Payload

515e9cf8-522c-
4e2c-bad7-
9bc41a2fcd4b

User:
df234545-
b36b-
4971-b0e3-
7daf18f088f3

Gateway 2020-02-
28T17:57:24

76jDv+yOBC7
//vzcuxQkKnE5jfSD
nuBsRBVuCmn-
weS8=

515e9cf8-522c-
4e2c-bad7-
9bc41a2fcd4b

Gateway Device:
89dda487-
586d-
4fad-931f-
2735323102f7

2020-02-
28T17:58:19

jB2rvzDufZlcdkL
LWVvrsHgTNNXK5p
1aV5OVtWD5OeY=

515e9cf8-522c-
4e2c-bad7-
9bc41a2fcd4b

Device:
89dda487-
586d-
4fad-931f-
2735323102f7

Gateway 2020-02-
28T17:58:37

JkMjG2eVRwn
J9Zo8V17nNuLS
j6UeD5NzP Ur-
jWDe4gk=

515e9cf8-522c-
4e2c-bad7-
9bc41a2fcd4b

Gateway User:
df234545-
b36b-
4971-b0e3-
7daf18f088f3

2020-02-
28T17:59:02

4oMSspNupP
9P0uo50mBRF
HRW8d8err1b
p7Wk7jQt2sQ=

59



and we can optimize operations to better the performance. The from and to fields gives

a clear map as to how the data flowed and the payload field, though unreadable, can

provide feedback on the load of data transmitted over the wire.

3.8 Summary

Revisiting the security issues mentioned in Section 2.3, we realized that the concerns

for IoT security are the following:

• Insufficient physical security

• Limited resources

• Inadequate authentication

• Improper encryption

• Lack of access control

• Backdoor ports

• Lack of patch management

• Missing audit management capabilities

• Weak programming practice

With the proposed zero-trust model we have covered most of the above-mentioned is-

sues. With the P3 connection model we setup the encryption technique that we can

use for proper authentication and authorization. It also helps to uniquely identify each

entity in the system and investigate the access rights for each of them. The communi-

cation model described ensures that data is protected in transit as well as from other

parties who are not supposed to listen to the details. Everyone is provided information

to the extent that they need to perform their role in the ecosystem. Another thing to

note about this model is that all communications happen over the HTTPS application

60



protocol and thus can be easily integrated into the current network architecture. We

are not using any port other than 443 in the system.

The patch management provides a clear guideline for the user to control the update

process but provides flexibility for the manufacturer to inform the user of an impor-

tant patch that can make the system vulnerable. A strong update process as mentioned

helps recover from zero-day bugs quickly and efficiently. The audit logging and noti-

fication services keeps the user updated about the well-being of the device and the

device through the heartbeat communication is in constant touch with the gateway.

Any missed pulse is logged and reported to the user to take actions.

The framework is designed to provide the user of the device full control on the

device without having to know complex passwords. The system eradicates the necessity

for default keys or passwords in the systems. It provides the manufacturers the ability

to monitor the flow of operations without interfering with the activities of the user.

This framework proves that we can follow the principle of “never trust, always verify”

within the boundaries of the resources available in an IoT device.

61



Chapter 4

Implementing Zero-Trust for IoT Security

This chapter discusses the implementation of the zero-trust framework we discussed

in Chapter 3. We will start by building the individual elements of the framework, i.e.

device, user and gateway. Next we will be building the API endpoints in the gateway

to perform the different operations like registration, audit logging, relay and others.

From there we will move on to discuss the source code to build the P3 connection

model as described in Section 3.4 and then we will look into the implementation of the

communication protocol as detailed in Section 3.5.

For building the framework different technologies and programming languages is

being used including C++, Python and JavaScript. The reason for using different pro-

gramming language is that each element in the framework works best with a specific

language to perform its operation. For example, for the device works directly with

the hardware and microcontroller and thus for hardware level efficiency it requires the

source code to be in C++ or Python. We will detail out the reason for each of our choice

in implementing the solution as we move along.

62



4.1 Building the environment

As mentioned earlier, the environment consists of four key members, i.e. device, user,

delegate and gateway. Each one plays a unique role in the ecosystem. We build up

each of the component from scratch to have better control on the functionality. The

development was done on a 64 bit Windows 10 machine on an Intel(R) Core(TM) i3-7100

U CPU @ 2.04GHz and 8 GB RAM.

4.1.1 Setting up the device

For this thesis we wanted to build a temperature and humidity sensor which can be

reached via the internet. The user and delegate will be able to interact with the device

and send specific commands. They can also request for the current reading of the

sensor as well as change the display of the device from Celsius to Fahrenheit and vice

versa. A broad overview of the device internals was shown in Figure 1.2 in Section 1.4.

Here Figure 4.1 shows the physical device after implementation.

For the microcontroller we looked at Arduino which can be used to build simple

IoT devices. We decided to use NodeMcu V3 ESP8266 as the microcontroller. The

advantage of a NodeMcu over Arduino Uno or other similar boards is that it comes

with an in-build Wi-Fi chip that can be used to connect to the internet. It can be used

as both a web server and a HTTP client using the ESP8266WiFi.h library.

NodeMCU v3 is a development board which runs on ESP8266 with the Espressif

Non-OS SDK, and hardware is based on the ESP-12 module. The device features 4MB of

flash memory, 80MHz of system clock, around 50k of usable RAM and an on chip Wi-Fi

Transceiver. The specification of the NodeMcu board is detailed in Table 4.1.

To build the temperature-humidity sensor we needed other components as shown in

Table 4.2. The HC-05 Wireless Bluetooth RF Transceiver is used as a Bluetooth receiver

for setting up the initial negotiation as described in the P3 connection model. The

63



Figure 4.1: The physical device

Table 4.1: NodeMcu V3 specification [76]

Input voltage 7–12V

Operating voltage 3.3V
CPU (Microcontroller) 32-bit RISC Tensilica Xtensa LX106 running at 80

MHz
External QSPI flash 512 KB to 4 MB* (up to 16 MB is supported)
EEPROM 512 KB
Wi-Fi IEEE 802.11 b/g/n, Integrated TR switch, balun,

LNA, power amplifier and matching network, WEP or
WPA/WPA2 authentication, or open networks

Digital I/O Pins (DIO) 16
Analog Input Pins (ADC) 1
UARTs 1 on dedicated pins, plus a transmit-only UART can

be enabled on GPIO2
SPIs 1
I2Cs 1
Flash Memory 4 MB
SRAM 64 KB
Clock Speed 80 Mhz

64



UCTRONICS 0.96 Inch OLED Module is used to display the temperature and humidity

of the room. The display was added to verify that the temperature that is taken by the

sensor is the same that is being transmitted to the user. HiLetgo DHT22 is the sensor

which is getting the actual temperature and humidity of the environment. There were

multiple options for the sensor like DHT11, DHT22, AM2302 and others. The advantage

of using the DHT22 over others is that it can measure a temperature of -40 to 125

degree centigrade with an accuracy of +/- 0.5 degrees. It also has a better humidity

measuring range from 0 to 100

The device is coded using the Arduino IDE (https://www.arduino.cc/en/main/

software). For allowing the Arduino to code for an ESP8266 board, we had to perform

the following steps:

Add ESP8266 board manager. To add additional board manager open the Arduino

IDE-File-Preferences. In the Additional Board Manager URLs add https://arduino.

esp8266.com/stable/package_esp8266com_index.json. See Figure 4.2.

Install the ESP8266 board. To add the ESP8266 board, go to Tools-Boards-Board Man-

ager. Search for esp8266 and click install. See Figure 4.3

Select the generic board and the com port. Once the installation is complete, the

next step is to select the right board, so that we can build the sketch for ESP8266 using

the Arduino IDE. Select the board by going to Tools - Board - Generic ESP8266 Module.

Next we need to select the COM port that the device is connected to by selecting Tools -

Ports - The available port. We can also verify the correct port from the system’s device

manager. Note that after connecting the device to the development system, we need to

install the device driver. In Windows 10, this automatically happens when the device is

connected for the first time. See Figure

Once the setup is complete, the IDE can be used to code the NodeMcu board. A lot

65



Table 4.2: Components of the IoT device

Component Description Quantity

ESP8266 microcontroller NodeMCU
Lua V3 WiFi with CH340G

1

HiLetgo HC-05 Wireless Bluetooth RF
Transceiver Master Slave Integrated
Bluetooth Module 6 Pin Wireless Se-
rial Port Communication BT Module
for Arduino

1

UCTRONICS 0.96 Inch OLED Module
12864 128x64 Yellow Blue SSD1306
Driver I2C Serial Self-Luminous Dis-
play Board for Arduino Raspberry PI

1

HiLetgo DHT22/AM2302 Digital
Temperature and Humidity Sensor
Module Temperature Humidity Mon-
itor Sensor Replace SHT11 SHT15
for Arduino Electronic Practice DIY

1

Breadboard Solderless with Jumper
CablesâĂŞ ALLUS BB-018 3Pc 400 Pin
Prototype PCB Board and 3Pc Dupont
Jumper Wires (Male-Female, Female-
Female, Male-Male) for Raspberry Pi
and Arduino

1 set

66



Figure 4.2: Adding ESP8266 board manager to the IDE

Figure 4.3: Installing ESP8266 board

67



Figure 4.4: Selecting the required setting for Arduino IDE

68



Figure 4.5: Pinout diagram for the device

of examples come along with the board to get us started. To test the connection, we

used the one in File - Examples - ESP8266 - Blink. The program is attached in Appendix

A. We Verified and uploaded the sketch to the device using the IDE. Once uploaded, the

blue LED light in the NodeMcu module started blinking and we successfully were able

to code the ESP8266.

We connected all the components described in Table 4.2 with the NodeMcu micro-

controller. The pin diagram is as shown in Figure 4.5 and described in Table 4.3. For

the power and ground, we are connecting the 3V and G pins of the microcontroller to

the breadboard and all the other components are getting their power from it. This is

done because there are limited power and source outlets from the microcontroller and

so we used the parallel outputs of the breadboard to get the power from one outlet into

all the other components.

69



Table 4.3: Pinout connection of the components with the microcontroller

Microcontroller pin Component Pin

V3 (via breadboard) HC-05 Bluetooth VCC
G (via breadboard) HC-05 Bluetooth GND
D5 HC-05 Bluetooth RXD
D6 HC-05 Bluetooth TXD
V3 (via breadboard) DHT22 sensor VCC
G (via breadboard) DHT22 sensor GND
D4 DHT22 sensor DATA
V3 (via breadboard) OLED I2C display VCC
G (via breadboard) OLED I2C display GND
D1 OLED I2C display SCL
D2 OLED I2C display SDA

We named the device “Saisor”.

4.1.2 Mobile app for the user and delegate

We are using the Android platform to build our app. We used a Samsung Galaxy S9

with Android 10 and kernel version 4.9.186-17655189. The mobile phone was updated

with the latest security patch as of February 01, 2020. For testing purpose, we are also

using an emulator of Google Pixel 3XL with API 29 from the Android Virtual Device

(AVD) manager.

To profile and debug our app we had to enable the developer options on our Sam-

sung S9. Developer options lets us configure system behavior and enables debugging

of the apps. To enable this option we had to go to Settings – About phone – Software

information and then tap the Build number seven times. We can enable and disable

the option from Settings – Developer options. We enabled the following features for

debugging:

• USB debugging: This option enables debug mode when USB is connected. This

helped us to deploy the debugging version of the source into the phone. In the

debugging mode. React Native reflects the changes into the device app as we

70



update.

• Stay awake: This keeps the screen awake when the USB is connected. This was

more of a convenience where we didn’t have to unlock the phone as we were

developing and debugging the screens.

To develop the app, we used React Native. React Native combines the best part

of native development with React, a JavaScript library for building user interfaces. It

provides the tools to build apps for both Android and iOS platform with the same code

base. React components wrap existing native APIs via React’s declarative UI paradigm

and JavaScript. It is developed by Facebook and has a huge community base behind it.

For this app, we are only concentrating on the core native aspects of Android and not

iOS.

The Getting Started page [1] is a very helpful place to start building apps using React

Native. For developing the React Native app for Android using a Windows machine, the

following setup is required:

Installing dependencies. We need to install Node, Python2 and Java SE Development

Kit (JDK) of the latest version for React Native to run. We used, Chocolatey, a popular

package manager for Windows to install the dependencies. For React Native to work,

we need the minimum version for Node to be 8.3 and JDK to be 8.

1 choco i n s t a l l −y nodejs . i n s t a l l python2 jdk8

Android development environment. We need to download and install the Android

studio from https://developer.android.com/studio/index.html. During the in-

stallation we must make sure that the following are checked:

• Android SDK

71



Figure 4.6: Android Studio 3.5.3

• Android SDK platform

• Performance (Intel HAXM)

• Android Virtual Devices

Android installs the latest SDK (currently 10) by default. For building apps with

React Native we require the Android 9 (Pie) SDK. This can be installed using the SDK

manager in Android Studio. The SDK manager can be found under Configuration – SDK

Manager.

Configuring the development machine. React Native require some environment vari-

ables to be set up in order to build apps with native code. To set the ANDROID_HOME

environment variable in Windows 10 go to Windows – Settings – About – System Info –

Advance System Settings. This opens the system properties. Go to Advance – Environ-

ment Variables. Add a new environment variable as shown in Figure 4.7. The default

path for the SDK will be in the user folder.

72



Figure 4.7: Setting environment variable for React Native to work with Android Studio

1 c :\ Users\YOUR_USERNAME\AppData\Local\Android\Sdk

We also need to add the platform tools in the environment variables for React Native

to build and deploy the app. In the Environment Variables under System Variables click

on Path and click Edit. Click on New and add the path to the platform tools as shown

in Figure 4.8. For default installation, it will be under the user folder.

Using React Native command line interface. React Native provides a command line

interface (CLI) to create, deploy and manage the app. To install the CLI, use Node to

install it using NPM to install it globally.

1 npm i react−native −g

To verify the installation, open command prompt and check the version as shown in

Figure 4.9.

Creating a React Native test app. To test the setup, we wanted to create a test app

using the CLI. For that we ran the following command to create a basic app. Figure 4.10

shows the TestApp open in VSCode.

1 react−native i n i t TestApp

Running the test app. Before deploying the app, we need to be sure that the emulator

and the real device is connected and accessible. For the emulators we can go into the

73



Figure 4.8: Setting path variable for platform tools

Figure 4.9: Verify React Native CLI installation

74



Figure 4.10: Test app opened in Visual Studio Code

Figure 4.11: Mobile devices connected to the development machine

AVD manager and check the devices that are connected. For knowing all the active

devices, we can run the command adb devices. Figure 4.11 shows a list of all the con-

nected devices to the development machine. The real devices are always represented

with numbers. The command must return at least one device for the deployment to

work. If no devices are shown, we need to make sure that the above steps are properly

done.

After verifying the connected devices, we run the following command to deploy the

test app into the device. Figure 4.12 shows the TestApp deployed in the emulator.

1 react−native run−android

Once we are able to see the screen with the App screen. To verify that the live

75



Figure 4.12: Deployment of the app in emulator

debugging is working fine, changes the text “Welcome to React” with “Hello World!” and

verified that the screen is accordingly updated. This enables us to use the environment

to develop the app for Saisor. The next step is to setup the gateway.

4.1.3 Configuring the gateway

For the gateway, we used Amazon Web Services (AWS). AWS is a subsidiary of Amazon

that provides on-demand cloud computing platforms and APIs to individuals, compa-

nies, and governments, on a metered pay-as-you-go basis. In aggregate, these cloud

computing web services provide a set of primitive abstract technical infrastructure and

distributed computing building blocks and tools.

Setting up an account with AWS is easy. They provide a free one-year subscription

with the sign-up. We created a free account by entering the required details and credit

card information. Immediately we got an email confirmation and we used the provided

76



Figure 4.13: AWS console dashboard

link to login into the console as shown in Figure 4.13.

We used several services offered by AWS in this thesis, including:

• Amazon Simple Storage Service (Amazon S3) is an object storage service that

offers industry-leading scalability, data availability, security, and performance.

We can use it to store and protect any amount of data for a range of use cases,

such as websites, mobile applications, backup and restore, archive, enterprise

applications, IoT devices, and big data analytics. Amazon S3 provides easy-to-

use management features so we can organize our data and configure finely tuned

access controls to meet your specific business, organizational, and compliance

requirements.

• Amazon DynamoDB is a key-value and document database that delivers single-

digit millisecond performance at any scale. It’s a fully managed, multiregion,

multimaster, durable database with built-in security, backup and restore, and in-

memory caching for internet-scale applications. DynamoDB can handle more than

77



10 trillion requests per day and can support peaks of more than 20 million re-

quests per second.

• Amazon Cognito lets you add user sign-up, sign-in, and access control to your

web and mobile apps quickly and easily. Amazon Cognito scales to millions

of users and supports sign-in with social identity providers, such as Facebook,

Google, and Amazon, and enterprise identity providers via SAML 2.0.

• Amazon API Gateway is a fully managed service that makes it easy for develop-

ers to create, publish, maintain, monitor, and secure APIs at any scale. APIs act

as the "front door" for applications to access data, business logic, or functionality

from your backend services. Using API Gateway, you can create RESTful APIs and

WebSocket APIs that enable real-time two-way communication applications. API

Gateway supports containerized and serverless workloads, as well as web applica-

tions. API Gateway handles all the tasks involved in accepting and processing up

to hundreds of thousands of concurrent API calls, including traffic management,

CORS support, authorization and access control, throttling, monitoring, and API

version management.

• AWS Lambda lets us run code without provisioning or managing servers. With

Lambda, we can run code for virtually any type of application or backend service

– all with zero administration. Lambda takes care of everything required to run

and scale our code with high availability. We can set up the code to automatically

trigger from other AWS services or call it directly from any web or mobile app.

• Amazon CloudWatch is a monitoring and observability service built for DevOps

engineers, developers, site reliability engineers (SREs), and IT managers. Cloud-

Watch provides us with data and actionable insights to monitor our applications,

respond to system-wide performance changes, optimize resource utilization, and

get a unified view of operational health. CloudWatch collects monitoring and

78



Figure 4.14: AWS CLI installed in the development machine

operational data in the form of logs, metrics, and events, providing us with a

unified view of AWS resources, applications, and services that run on AWS and

on-premises servers. We can use CloudWatch to detect anomalous behavior in

our environments, set alarms, visualize logs and metrics side by side, take auto-

mated actions, troubleshoot issues, and discover insights to keep our applications

running smoothly.

• AWS CloudFormation provides a common language to model and provision AWS

and third party application resources in the cloud environment. AWS CloudFor-

mation allows us to use programming languages or a simple text file to model and

provision, in an automated and secure manner, all the resources needed for our

applications across all regions and accounts.

To use the amazon services we need to install and configure the AWS command line

interface (CLI) on our development machine. The AWS CLI is an open source tool that

enables you to interact with AWS services using commands in your command-line shell.

We can download the CLI from https://s3.amazonaws.com/aws-cli/AWSCLI64PY3.

msi. To confirm the installation is successful we need to run the command aws –version

as shown in Figure 4.14.

The next step is to configure AWS CLI to use our AWS account. For this we went into

the AWS console and went into the identity and access management (IAM). We went into

users and selected our user “sairath.” Under the security credentials tab, we created

clicked on “create access key.” This generated a new access key ID and secret access key.

We need to add them in our development environment so that the machine can directly

79



Figure 4.15: Configuring AWS account for development machine

Figure 4.16: Buckets present in AWS S3

access the AWS resources. We need to make sure that the user which we are using

for development has admin privileges over the different services we mentioned above.

This will be required to create and maintain them from the development machine. In

our case, user “sairath” is the admin and has full privileges.

In the development machine, we opened a command prompt and typed the com-

mand aws configure. It will ask us to enter the access ID and secret key which we got

from the above step in the console. Once we enter the correct credentials, the devel-

opment environment is ready to access the AWS resources and services. This creates

a file called credentials under the .aws folder to store the credentials as the default

profile. The folder is found under the users folder for the logged in user in Windows.

To check if the values are correctly entered, type the command aws configure list in the

command prompt and it should show the details as shown in Figure 4.15.

To verify, we tried to look at the S3 buckets that are currently available in the ac-

count and so we typed the command aws s3 ls as shown in Figure ??. This returned the

correct set of buckets and confirmed that our setup was successfully done and we are

ready to use AWS as our gateway.

80



4.1.4 Creating the AWS resources

To create the databases tables in DynamoDB we used a script that we developed using

Python. Appendix B shows the sample script for the Users relation. AWS provides a

Python library boto3, which allows us to interact with the AWS resources. The library in

turn uses the AWS configuration that we created above. The setting exports appSettings

JSON that holds the region where we want to create the table.

1 appSetting = {

2 " region " : "us−east−1"

3 }

First, we create a object for the DynamoDB service from boto3. Then we call the

function create_table on it. This returns a table object. Since, DynamoDB is a document

database, we don’t need to provide all the attributes during the table creation. It only

requires the key attributes. The primary table is going to have the partition key as

“user_id”. We are also creating a secondary index on the table so that we can access

the record using the userâĂŹs email. In the billing mode, we specified the table to have

resources on demand. We wait for the table to get created and then print the status of

the table.

For the other resources, we either create it manually in the console or via CloudFor-

mation scripts in yaml format. The resources that are a onetime creation, we used the

manual method and directly created them from the console. This includes the IAM role

that all the APIs are going to use. We went in IAM and selected roles. There we created

multiple roles to meet the needs of the services. AWS prefers to keep the roles tight,

so that the service has only enough permission to perform the task it is assigned to.

We can also check the roles form the CLI using “aws iam list-roles” as shown in Figure

4.17.

The APIs and lambda functions for deployed using the CloudFormation template.

For the ease of deployment, we used AWS Serverless Application Model (SAM). SAM is

81



Figure 4.17: Roles present in IAM

an open-source framework for building serverless applications. It provides shorthand

syntax to express functions, APIs, databases, and event source mappings. With just

a few lines per resource, we can define the application we want and the model using

YAML. During deployment, SAM transforms and expands the SAM syntax into AWS

CloudFormation syntax, enabling us to build serverless applications faster. A sample

YAML file is attached in Appendix D. By default, we will be allowing CORS for all APIs

and allow the methods GET, POST, DELETE and PUT. Authentication would be added

by default to all the API endpoints unless specified for a API. The authorization check

is provided by another lambda function that is invoked before the API lambda. This

ensures that all the APIs are protected.

82



4.2 Implementing the P3 connection model

The P3 connection model is described in detail in Section 3.4. This model allows the IoT

device to connect securely with a user (mobile app). It uses Bluetooth LE to establish

a connection with the user to setup a session key. This key is used for all further

exchange between the user and the device. Once both the user and device verify each

other, a secret key is established and saved in both places. This key will be used for

all further communication between the pair. In this section we are going to describe in

detail the steps to implement the model.

In the implementation we had some limitations for lack of compatible security

frameworks for each framework that we used. So, we had to made small arrangements

to bypass the shortfall. We will explain the differences between the implementations

and the model wherever relevant. For the device, we used the Arduino cryptographic

library (https://rweather.github.io/arduinolibs/). This library provides the im-

plementation for AES256, SHA256, ED25519 and Curve25519, along with other crypto-

graphic algorithms. For the user app, we used the JavaScript NPM library react-native-

crypto-js (https://www.npmjs.com/package/react-native-crypto-js). Most of

the crypto libraries are build into Python, for ED25519, we had to use a extra library Py-

NaCl (https://pynacl.readthedocs.io/en/stable/signing/#ed25519). Next we

will look at the implementation of the steps of the P3 connection model.

Pairing and generating the session key. As of now there is no compatible library to

implement elliptic curve cryptography. All the options we found were hacks to make

it work, but there was no clear option available. We switched to passing the key and

initialization vector in a base 64 encoded format from the app to the device.

In the app, the user gets a screen that shows the devices that are currently registered

with the user as shown in Figure 4.18. There is a button that allows the user to add

a new device. On clicking on the button, the app scans and finds all the devices that

83



matches the signature of “Saisor” as shown in Figure reffig:app-add-device. In our case,

we matched the name HC-05.

On selecting the device, the following JavaScript code runs on the user app to pass

the hello message.

1 async connectToDevice ( ) {

2 const { device } = this . state ;

3 const crypto = new CryptoService ( ) ;

4 const key = crypto .generateRandom(256) ;

5 const iv = crypto .generateRandom(128) ;

6 console . log ( ’ connecting ’ ) ;

7 l e t isConnected = await BluetoothSerial . isConnected ( ) ;

8 i f ( ! isConnected ) {

9 await BluetoothSerial . connect ( device . id ) ;

10 }

11 console . log ( ’ connected ’ ) ;

12 const data = {

13 message : ’HELLO’ ,

14 key : key ,

15 i v : iv ,

16 } ;

17 await BluetoothSerial . write ( encode ( JSON. s t r ing i f y ( data ) ) ) ;

18 th is . setState ( { key , i v } ) ;

19 // wait for the response from device

20 console . log ( ’ waiting response ’ ) ;

21 await sleep (5000) ;

22 l e t response = await BluetoothSerial . readFromDevice ( ) ;

23 l e t responseInfo = crypto . decrypt ( response , key , iv , 5) ;

24 // confirm that the response message is a HELLO message

25 i f ( responseInfo !== ’HELLO ’ ) {

26 await BluetoothSerial . write ( ’CLOSE ’ ) ;

27 throw new Error ( ’No response found ’ ) ;

28 }

84



Figure 4.18: App screen to show the current devices added

85



Figure 4.19: App screen to add a new device

86



29 console . log ( responseInfo ) ;

30 }

A better option would have been to do a Dephi-Hellman key exchange using Curve25519

as described in the model. This step would be encrypted using the session key gener-

ated from the DH key exchange. In the current implementation, a random 256 bits key

and 128 bits IV is generated and send along with a hello message in an encoded format

after creating a connection. Then we wait for a response from the device for five sec-

onds. The device is expected to return a hello message encrypted with the key and IV

send to it. If the message is properly decrypted and we get a hello message, we are sure

the next steps will be secured for the exchange of the Wi-Fi credentials. If the message

is anything other than the expected hello message is received, the app terminates the

connection with a cancel request to the device. The below Arduino function runs in the

device to check if a user is requesting a Bluetooth connection.

1 void getConnected ( ) {

2 // wait t i l l someone try to connect to the device using Bluetooth

3 i f ( b tSer ia l . avai lable ( ) > 0) {

4 Ser ia l . pr int ln ( " user connecting " ) ;

5 availableMemory ( ) ;

6 // get the i n i t i a l encoded connection request

7 String input = btSer ia l . readString ( ) ;

8 const int inputLen = input . length ( ) ;

9 char dInput [ inputLen ] ;

10 device . decode ( input , dInput ) ;

11 StaticJsonDocument<200> inputJson ;

12 Deseria l izat ionError error = deserial izeJson ( inputJson , dInput ) ;

13 i f ( error ) {

14 Ser ia l . pr int ( F ( " fa i led to deseria l ize input : " ) ) ;

15 Ser ia l . pr int ln ( error . c_str ( ) ) ;

16 return ;

17 }

87



18 // check what is the connection message type

19 i f ( strcmp ( inputJson [ "message" ] , "HELLO" ) == 0) {

20 // get the key and IV

21 hexCharacterStringToBytes ( key , inputJson [ "key " ] ) ;

22 hexCharacterStringToBytes ( iv , inputJson [ " i v " ] ) ;

23 // i n i t i a t e adding a user

24 addUser ( ) ;

25 } else {

26 Ser ia l . pr int ln ( " Inva l id message" ) ;

27 }

28 // cleanup

29 inputJson . clear ( ) ;

30 }

31 }

The device waits to see if there is a connection request. Once it receives the string,

the device decodes it and extract the values for message, key and iv. The data is passed

from the app as a JSON serialized string and so the device deserializes it after decoding.

One thing to note here is that both the key and IV are passed as a Hex string. So,

we are using the function hexCharacterStringToBytes to convert the key and IV into

bytes. Then the device performs the next steps by calling the function addUser. In this

function, the device sends a hello message back in a encrypted format. The function

sendUserBT is called from the addUser function to send the response. We are using

AES256 which has a block size of 128 bits. So, the first step to return the message was

to pad the hello message to make it 16 bytes. Here we padded with zero. Then we

encrypted the message with the given key and IV and encoded it to base 64 format to

pass it back to the user app.

1 void sendUserBT ( Str ing message) {

2 // get required variables

3 in t msgLen = message . length ( ) ;

4 in t cipherLen = msgLen − (msgLen % 16) +

88



5 (msgLen % 16 > 0 ? 16 : 0) ;

6 //form message with padding

7 byte bMsg[ cipherLen ] ;

8 for ( in t i = 0; i < msgLen; i ++) {

9 bMsg[ i ] = message[ i ] ;

10 }

11 // add padding

12 for ( in t i = 0; i < ( cipherLen − msgLen) ; i ++) {

13 bMsg[msgLen + i ] = 0;

14 }

15 //encrypt

16 byte cipher [ cipherLen ] ;

17 byte plain [ cipherLen ] ;

18 crypto . clear ( ) ;

19 crypto . setKey ( key , 32) ;

20 crypto . setIV ( iv , 16) ;

21 crypto . encrypt ( cipher , bMsg, cipherLen ) ;

22 //encode

23 in t encLen = base64 . encodedLength ( cipherLen ) ;

24 char response [ encLen ] ;

25 base64 . encode ( response , ( char * ) cipher , cipherLen ) ;

26 Ser ia l . pr int ln ( response ) ;

27 btSer ia l . write ( response ) ;

28 }

Connect to Wi-Fi. All the steps from here on are part of the addUser function and in

each step, we will explain the specific part. he below code gets the Wi-Fi credentials

from the user app.

1 /* STEP2 : get user id of the user and WiFi credentials i f primary user */

2 StaticJsonDocument<200> inputJson ;

3 char plain [128];

4 rcvUserBT ( plain ) ;

89



5 Ser ia l . pr int ln ( plain ) ;

6 Deseria l izat ionError error = deserial izeJson ( inputJson , plain ) ;

7 i f ( error ) {

8 Ser ia l . pr int ( F ( " fa i led to deseria l ize input : " ) ) ;

9 Ser ia l . pr int ln ( error . c_str ( ) ) ;

10 return ;

11 }

12 Ser ia l . pr int ln ( "Message ser ia l ized " ) ;

13 const char* ssid = inputJson [ " ssid " ] ;

14 const char* password = inputJson [ "password" ] ;

15 const char* userId = inputJson [ " user_id " ] ;

16 availableMemory ( ) ;

The function rcvUserBT waits till it gets a response from the user back. Once it gets

the response, it decodes the same and decrypts it using the key and IV that was passed

before.

1 void rcvUserBT ( char* plain ) {

2 // wait to get data from user

3 while ( btSer ia l . avai lable ( ) <= 0) { }

4 String message = btSer ia l . readString ( ) ;

5 Ser ia l . pr int ln (message) ;

6 in t msgLen = message . length ( ) ;

7 char * msg = const_cast<char*>(message . c_str ( ) ) ;

8 in t encLen = base64 . decodedLength (msg, msgLen) ;

9 byte bMsg[ encLen ] ;

10 // decode

11 base64 .decode ( ( char * )bMsg, msg, msgLen) ;

12 Ser ia l . pr int ln ( "Message decoded" ) ;

13 // decrypt

14 crypto . clear ( ) ;

15 crypto . setKey ( key , 32) ;

16 crypto . setIV ( iv , 16) ;

17 crypto . decrypt ( ( byte * ) plain , bMsg, encLen ) ;

90



18 Ser ia l . pr int ln ( "Message decrypted " ) ;

19 }

As in the previous steps, the data is passed as a JSON serialized string. The device

extracts the ssid, password and user_id from it. Once it is deserialize, the function tries

to connect to the Wi-Fi of the user with the given credentials. The device waits for ten

tries to connect. If it fails it returns a failed message to the user and wait for another

new connection request. Once connected the device performs the next step to verify

the user.

1 /* STEP3 : Connect to Wif i with the given credentials */

2 Ser ia l . pr int ( "Connecting to SSID : " ) ;

3 Ser ia l . pr int ln ( ssid ) ;

4 WiFi . begin ( ssid , password ) ;

5 myDisplay .message( "Connecting to " , const_cast<char*>( ssid ) ) ;

6 // check i f able to connect to WiFi

7 in t counter = 0;

8 while ( WiFi . status ( ) != WL_CONNECTED) {

9 delay (500) ;

10 counter++;

11 Ser ia l . pr int ( " . " ) ;

12 i f ( counter >= 10) {

13 Ser ia l . pr int ln ( " Fai led to connect to WiFi " ) ;

14 return ;

15 }

16 }

17 Ser ia l . pr int ln ( ) ;

18 Ser ia l . pr int ln ( "Connected" ) ;

19 Ser ia l . pr int ln ( WiFi . loca l I P ( ) ) ;

20 myDisplay .message( "ACTION: " , " ver i fy ing user " ) ;

21 availableMemory ( ) ;

From the user app, the code is straight forward. The user provides the inputs which

91



is converted into a serialized JSON and then encrypted. The encrypted text is forwarded

to the device, which is processed as described above. The screenshot of the app is given

in Figure 4.20. The following code does the encryption in the user app. The app waits

for a period of one minute for the device to respond back after verification from the

gateway. If it doesn’t respond, the app rejects the connection request and lets the user

know of the failed attempt and asks the user to try again.

1 const { ssid , password , key , iv } = this . state ;

2 const user = await Auth . currentAuthenticatedUser ( ) ;

3 console . log ( key ) ;

4 console . log ( iv ) ;

5 const data = {

6 user_id : user . attr ibutes . sub ,

7 ssid ,

8 password ,

9 } ;

10 const crypto = new CryptoService ( ) ;

11 const encData = crypto . encrypt ( data , key , i v ) ;

12 await BluetoothSerial . write ( encData ) ;

13 th is . setState ( {

14 message : ’ WiFi credentials send , waiting response ’ ,

15 state : ’WAITING_RESPONSE ’ ,

16 } ) ;

User verification. Once the device is able to connect to the Wi-Fi, it sends the infor-

mation to the gateway to verify the identity of the user. From the addUser function

the verifyUser function is called. The user_id that is given by the app is passed as an

argument. The function creates a connection with the gateway by calling the connect

on the WiFiClientSecure object. The client is passed the fingerprint of the gateway to

verify the server certificate. Once the connection is established, the device generates

a signature and attaches it in the body of the request. Then the request is send to

92



Figure 4.20: App screen to pass Wi-Fi credentials to the device after successful connec-
tion

93



the gateway over TLS (HTTPS) and the device waits for a response. If the response is

success, the function returns true, otherwise false. The user verification is a important

step to ensure that the user is who claims he is.

1 bool verifyUser ( const char* userId ) {

2 WiFiClientSecure c l i en t ;

3 Ser ia l . pr int ( " Verifying user " ) ;

4 Ser ia l . pr int ln ( userId ) ;

5 // ver i fy that we are able to connect to the gateway

6 c l i en t . setFingerprint ( f ingerpr int ) ;

7 i f ( ! c l i en t . connect ( host , httpsPort ) ) {

8 Ser ia l . pr int ln ( " connection fa i led " ) ;

9 return fa lse ;

10 }

11 String ur l = " /Prod/ registrat ion " ;

12 uint8_t signature [64] ;

13 Ed25519 : : sign ( signature , devicePrivKey , devicePubKey ,

14 deviceId , str len ( deviceId ) ) ;

15 in t encLen = base64 . encodedLength(64) ;

16 Ser ia l . pr int ln ( "Generated signature " ) ;

17 String data = String ( " { " ) +

18 " \" device_id \ " : \ " " + deviceId + " \" , " +

19 " \" user_id \ " : \ " " + userId + " \" , " +

20 " \" mi l l i s \ " : \ " " + mi l l i s ( ) + " \" , " +

21 " \" v e r i f i e r \ " : \ " " + ve r i f i e r + " \" " +

22 " } " ;

23 String payload = String ( "PUT " ) + ur l + " HTTP/1.1\ r \n" +

24 "Host : " + host + " \ r \n" +

25 "Cache−Control : no−cache \ r \n" +

26 "Content−Type : application/json \ r \n" +

27 "Content−Length : " + data . length ( ) + " \ r \n" +

28 "Connection : close \ r \n\ r \n" +

29 data ;

94



30 c l i en t . pr int ( payload ) ;

31 // clear the header

32 while ( c l i en t . connected ( ) ) {

33 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;

34 i f ( l ine == " \ r " ) {

35 break ;

36 }

37 }

38 hash . clear ( ) ;

39 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;

40 c l i en t . stop ( ) ;

41 i f ( l ine . equals ( " { \ "message\ " : \"SUCCESS\ " } " ) ) {

42 Ser ia l . pr int ln ( " Success response from gateway " ) ;

43 return true ;

44 } else {

45 Ser ia l . pr int ln ( l ine ) ;

46 }

47 return fa lse ;

48 }

As mentioned before, the gateway consists of APIs which are hosted in the AWS

cloud. For the user verification, a lambda with the name saisor-api-AddRegistrationsFunction-

10UVAJZSI0KLE is created. This is the backend for the API endpoint PUT:/Prod/registration

that is called by the device. On receiving the input, the gateway verifies that the re-

quired values are passed, including the device_id, user_id and verifier. As we have seen

before, the gateway already has the public key of the device and so it takes the user_id

and generates a signature of the same and matches it against the verifier that is pro-

vided. Once verified, the gateway is sure that the request has come from the device

itself. Next the gateway verifies the state of the device along with the users registered

to it. If this is not the primary user, then the gateway notifies the primary user of the

request for approval. This additional step happens when a delegate tries to connect to

95



the device. Otherwise, it tags the current user as the primary user and creates a request

in the “Registrations” table. A success response is sent to the device. The below Python

lambda function does the user verification and device registration.

1 def lambda_handler ( event , context ) :

2 deviceInfo = None

3 control ler = None

4 body = json . loads ( event [ ’body ’ ] )

5 print (body )

6 # authenticate

7 t ry :

8 # ver i fy input

9 assert ’ device_id ’ in body , ’Missing device_id ’

10 assert ’ user_id ’ in body , ’Missing user_id ’

11 assert ’ m i l l i s ’ in body , ’Missing mi l l i s ’

12 assert ’ v e r i f i e r ’ in body , ’Missing ve r i f i e r ’

13 # val idate user

14 user = User (body [ ’ user_id ’ ] )

15 assert user . exists ( ) , ’ Inva l id user ’

16 # val idate device

17 deviceInfo = validateAuth . validateDevice (

18 body [ ’ device_id ’ ] , body [ ’ user_id ’ ] , body [ ’ v e r i f i e r ’ ] )

19 print ( ’device_mac : ’ , deviceInfo [ ’device_mac ’ ] )

20 except Exception as ex :

21 print ( ex )

22 return responses . AuthErrorResponse ( ’Unauthorized access . { } ’

23 . format ( ex . args [ 0 ] ) )

24 # add new record to database

25 t ry :

26 not i f i ca t ion Id = None

27 # ver i f y device

28 control ler = Registration (body [ ’ user_id ’ ] )

29 primaryUser = control ler . getPrimaryUser ( deviceInfo [ ’device_mac ’ ] )

96



30 print ( primaryUser )

31 # F i r s t user converts the status to True for the device

32 assert primaryUser == None

33 and deviceInfo [ ’ device_status ’ ] == False , \

34 ’ Inva l id device state , contact customer support ’

35 # noti fy the primary user

36 i f primaryUser != None:

37 not i f i ca t ion = Not i f icat ion (body [ ’ user_id ’ ] )

38 message = ’Need approval for device ’ + \

39 primaryUser [ ’device_nickname ’ ]

40 not i f i ca t ion Id = not i f i ca t ion .add(

41 message, ’approve ’ , {

42 ’device_mac ’ : deviceInfo [ ’device_mac ’ ] ,

43 ’ user_id ’ : body [ ’ user_id ’ ]

44 } )

45 print ( ’ user not i f ied ’ )

46 isPrimary = primaryUser == None

47 control ler . add( deviceInfo [ ’device_mac ’ ] , isPrimary )

48 print ( ’ record added successful ly ’ )

49 # i f there is no previous user , send success

50 # else send approval send notice

51 i f not i f i ca t ion Id == None:

52 return responses . successResponse ( {

53 ’message ’ : ’SUCCESS ’

54 } )

55 else :

56 return responses . successResponse ( {

57 ’message ’ : ’NEED_APPROVAL ’

58 } )

59 except Exception as ex :

60 print ( ex )

61 return responses . errorResponse ( ’ Fai led to add . { } ’

62 . format ( ex . args [ 0 ] ) )

97



Once the device receives a success from the gateway, it sends a MAC address, encrypted

with the key and IV passed in the first step, to the user. Otherwise it responds with a

failed message.

Device verification. Like we mentioned earlier, the user app waits for a response from

the device. Once it receives a response, it checks if itâĂŹs a success or failed response.

If failed, the user is notified. Otherwise, the program extracts the MAC address and

sends the same to the gateway for verification. The user calls the endpoint POST:

/prod/registration for this operation. This API is protected behind a authorizer which

extracts the authentication header and validates the JWT token from it. If the validation

fails, the gateway responds with a “Unauthorized access” message.

In the previous step the gateway created the registration record. However, there is

a field user_approved which is set to false. Here the gateway extracts the registration

record created in the previous step and validates that all the required field are as they

are supposed to be. Any discrepancy results in a error response with status code 400.

After validation, the user_approved is updated to true and enables the device and user

to communicate with each other. The gateway returns a success response to the user.

The below Python code does the registration approval.

1 def lambda_handler ( event , context ) :

2 username = None

3 # authenticate

4 t ry :

5 username = validateAuth . val idate ( event [ ’ requestContext ’ ] )

6 print ( ’username : ’ , username)

7 except Exception as ex :

8 print ( ex )

9 return responses . AuthErrorResponse ( ’Unauthorized access . { } ’

10 . format ( ex . args [ 0 ] ) )

11 # add new record to database

98



12 t ry :

13 body = json . loads ( event [ ’body ’ ] )

14 print (body )

15 assert ’device_mac ’ in body , ’Missing device_mac ’

16 # i f no nickname is provided , set the MAC as the nickname

17 i f not ’device_nickname ’ in body :

18 body [ ’device_nickname ’ ] = body [ ’device_mac ’ ]

19 control ler = Registration (username)

20 # val idate the registrat ion record

21 registrat ion = control ler . get (body [ ’device_mac ’ ] )

22 assert registrat ion != None, ’Missing registrat ion record ’

23 assert registrat ion [ ’user_approved ’ ] == False ,

24 ’ operation already performed ’

25 assert registrat ion [ ’ reg_status ’ ] == False ,

26 ’ inva l id device state ’

27 assert registrat ion [ ’device_approved ’ ] == True ,

28 ’ record not approved by device ’

29 # set required attr ibutes

30 # i f th is i s the primary user , no other approval required

31 i f registrat ion [ ’ is_primary ’ ] == True :

32 control ler . primaryUserApproved = True

33 control ler . status = True

34 control ler . userApproved = True

35 control ler . deviceMac = body [ ’device_mac ’ ]

36 control ler . deviceNickName = body [ ’device_nickname ’ ]

37 control ler . update ( )

38 # return success

39 return responses . successResponse ( { ’message ’ : ’SUCCESS ’ } )

40 except Exception as ex :

41 print ( ex )

42 return responses . errorResponse ( ’ Fai led response . ERROR: { } ’

43 . format ( ex . args [ 0 ] ) )

99



Generate and share the symmetric key. On getting a success response from the gate-

way, the user app generates a 32-byte key and 16 byte initial vector and sends it to the

device similar to step 1 but encrypted with the previously generated key and vector.

The device saves the same in EEPROM along with the user_id. It also saves the Wi-Fi

credentials. This way, if the device is disconnected and then connected back, it can use

the saved credentials to connect to the internet. Then the user disconnects from the

Bluetooth session and opens it for another user to connect.

The entire source code of the device can be found in Appendix C. The above imple-

mentation effectively replicates the P3 connection model. With this model, the device

and user can securely establish a connection and verify each other. The connection

establishment is also simple from the user’s point of view. As a user, we had to only

select the device and enter the Wi-Fi credentials. Everything else was done behind the

scene. Also, one of the weakness in the current state-of-the-art platforms is that there

are default keys set for communicating between the user and device. This model elimi-

nates the defaults and sets up a key on the fly. This enhances the security of the model

and the whole IoT ecosystem. It also opens the possibility of refreshing the key and IV

on a regular basis. For a user, that will only be a click of a button.

4.3 Communicating with the device

As described in Section 3.5 the communication can be broadly classified as heartbeat

communication and command execution. With the heartbeat, the device informs the

gateway that it is functioning properly. The command execution defines the standard

that the user must follow in order to talk to the device.

100



4.3.1 Implementing the heartbeat

In the heartbeat communication, the device sends a pulse every minute. We have set the

timing for the effectiveness of analysis but should be done based on the requirement

of the user or manufacturer. The function performing the heartbeat operation starts by

gathering the current temperature, humidity and heat index from the DHT22 sensor.

The rest of the process is like the one we have seen in user verification in the P3

connection model. The device signs the request (we have chosen the device ID) and

attaches it as a “verifier” along with the rest of the data. The data is sent over a secure

HTTPS connection to the gateway. The below code performs the operation for the

heartbeat in the device.

1 void sendHeartBeat ( ) {

2 unsigned long timeDiff = mi l l i s ( ) − heartbeatCounter ;

3 // send heartbeat every 10 min

4 i f ( t imeDiff < 60000) {

5 return ;

6 }

7 unsigned long startTime = mi l l i s ( ) ;

8 heartbeatCounter = mi l l i s ( ) ;

9 Ser ia l . pr int ln ( " I n i t i a t i ng heartbeat " ) ;

10 availableMemory ( ) ;

11 WiFiClientSecure c l i en t ;

12 // ver i fy that we are able to connect to the gateway

13 c l i en t . setFingerprint ( f ingerpr int ) ;

14 i f ( ! c l i en t . connect ( host , httpsPort ) ) {

15 Ser ia l . pr int ln ( " connection fa i led " ) ;

16 return ;

17 }

18 String ur l = " /Prod/sensor/data " ;

19 uint8_t signature [64] ;

20 Ed25519 : : sign ( signature , devicePrivKey ,

101



21 devicePubKey , deviceId , str len ( deviceId ) ) ;

22 in t encLen = base64 . encodedLength(64) ;

23 char ve r i f i e r [ encLen ] ;

24 base64 . encode ( ve r i f i e r , ( char * ) signature , 64) ;

25 Ser ia l . pr int ln ( " sending payload . . . " ) ;

26 String data = String ( " { " ) +

27 " \" device_id \ " : \ " " + deviceId + " \" , " +

28 " \" temperature \ " : " + temperature + " , " +

29 " \" humidity \ " : " + humidity + " , " +

30 " \" heatindex \ " : " + heatIndex + " , " +

31 " \" mi l l i s \ " : " + mi l l i s ( ) + " , " +

32 " \" v e r i f i e r \ " : \ " " + ve r i f i e r + " \" " +

33 " } " ;

34 String payload = String ( "PUT " ) + ur l + " HTTP/1.1\ r \n" +

35 "Host : " + host + " \ r \n" +

36 "Cache−Control : no−cache \ r \n" +

37 "Content−Type : application/json \ r \n" +

38 "Content−Length : " + data . length ( ) + " \ r \n" +

39 "Connection : close \ r \n\ r \n" +

40 data ;

41 c l i en t . pr int ( payload ) ;

42 // clear the header

43 while ( c l i en t . connected ( ) ) {

44 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;

45 i f ( l ine == " \ r " ) {

46 break ;

47 }

48 }

49 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;

50 Ser ia l . pr int ln ( " . . . response received " ) ;

51 c l i en t . stop ( ) ;

52 i f ( l ine . equals ( " { \ "message\ " : \"SUCCESS\ " } " ) ) {

53 Ser ia l . pr int ln ( " Success response from gateway " ) ;

102



54 } else {

55 Ser ia l . pr int ln ( l ine ) ;

56 }

57 availableMemory ( ) ;

58 Ser ia l . pr int ( " [ Heartbeat ] Total time : " ) ;

59 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;

60 }

On receiving the request, the gateway verifies that all the required values are present.

Then it verifies the signature passed in the “verifier” field with the public key stored in

the Devices database. Then the gateway updates the activity_timestamp field to indicate

the last time the heartbeat was received. The below code performs the operation from

the gateway to record the heartbeat.

1

2 import json

3 import validateAuth

4 import responses

5 from devicedata . control lers . DataController import DeviceData

6 from transaction . control lers . TransactionController import Transaction

7

8 log = Transaction ( )

9

10

11 def lambda_handler ( event , context ) :

12 deviceInfo = None

13 control ler = None

14 body = json . loads ( event [ ’body ’ ] )

15 print (body )

16 # authenticate

17 t ry :

18 # ver i fy input

19 assert ’ device_id ’ in body , ’Missing device_id ’

103



20 assert ’ temperature ’ in body , ’Missing temperature data ’

21 assert ’ humidity ’ in body , ’Missing temperature data ’

22 assert ’ heatindex ’ in body , ’Missing temperature data ’

23 assert ’ m i l l i s ’ in body , ’Missing mi l l i s ’

24 assert ’ v e r i f i e r ’ in body , ’Missing ve r i f i e r ’

25 # val idate device

26 deviceInfo = validateAuth . validateDevice (

27 body [ ’ device_id ’ ] , body [ ’ device_id ’ ] , body [ ’ v e r i f i e r ’ ] )

28 print ( ’device_mac : ’ , deviceInfo [ ’device_mac ’ ] )

29 except Exception as ex :

30 print ( ex )

31 return responses . AuthErrorResponse ( ’Unauthorized access . { } ’

32 . format ( ex . args [0 ] ) )

33 # add new record to database

34 t ry :

35 payload = {

36 ’ temperature ’ : body [ ’ temperature ’ ] ,

37 ’ humidity ’ : body [ ’ humidity ’ ] ,

38 ’ heatindex ’ : body [ ’ heatindex ’ ]

39 }

40 print ( )

41 control ler = DeviceData (body [ ’ device_id ’ ] )

42 control ler . add( payload )

43 # auditlog transaction

44 log .add( ’ device : ’ + body [ ’ device_id ’ ] , ’gateway ’ , payload )

45 return responses . successResponse ( { ’message ’ : ’SUCCESS ’ } )

46 except Exception as ex :

47 print ( ex )

48 return responses . errorResponse (

49 ’ Fai led to save device data . ERROR: { } ’ . format ( ex . args [ 0 ] ) )

One thing to note in the above code is the introduction of “log.” The class Trans-

action creates the interface for every operation to log the activity. This helps in audit

104



operation. Logs are an essential part of any software solution It helps in identifying

flaws and errors in code execution.

Along with the heartbeat pulse that is sent from the device, the gateway runs an-

other program called the heartbeat checker. The job of the checker is to make sure that

all active devices are sending the heartbeat regularly. If there is no heartbeat within the

last few minutes (we have specified it to five minutes for quick analysis), the checker

sends a alert email notification to the user informing that the device is not responding.

The below code performs the operation of the checker.

1 import boto3

2 from devicedata . control lers . DataController import DeviceData

3 from device . control lers . DeviceController import Device

4 from registrat ion . control lers . Registrat ionControl ler import Registration

5 from user . control lers . UserController import User

6 from datetime import datetime

7 from settings import appSetting

8

9

10 def lambda_handler ( event , context ) :

11 print ( ’ Getting a l l devices ’ )

12 deviceController = Device ( )

13 devices = deviceController . getAl lAct ive ( )

14 assert len ( devices ) > 0, ’No act ive device found ’

15 for device in devices :

16 t ry :

17 dataController = DeviceData ( device [ ’ device_id ’ ] )

18 deviceData = dataController . get ( )

19 assert deviceData != None, ’No device data present for { } ’

20 . format ( dataController . act iv i tyDate )

21 hbTime = datetime . fromisoformat (

22 deviceData [ ’ activity_timestamp ’ ] )

23 curTime = datetime .now( )

105



24 timeDiff = curTime − hbTime

25 deviceController . deviceId = device [ ’ device_id ’ ]

26 i f t imeDiff . total_seconds ( ) <= 900:

27 print ( ’ device { } i s healthy ’ . format ( device [ ’ device_id ’ ] ) )

28 deviceController . updateStatus ( True )

29 else :

30 print ( ’ device { } i s not responding ’ . format (

31 device [ ’ device_id ’ ] ) )

32 print ( timeDiff . total_seconds ( ) )

33 deviceController . updateStatus ( False )

34 # noti fy user via email

35 regController = Registration ( )

36 pUser = regController . getPrimaryUser ( device [ ’device_mac ’ ] )

37 assert pUser != None, ’ Fai led to find primary user ’

38 userController = User ( pUser [ ’ user_id ’ ] )

39 email = userController . getEmail ( )

40 assert email != None, ’ Fai led to get user email ’

41 sendEmail ( email , pUser [ ’device_nickname ’ ] ,

42 timeDiff . total_seconds ( ) )

43 print ( ’User not i f ied ’ )

44 except Exception as ex :

45 print ( ’ error in processing { } ’ . format ( device [ ’ device_id ’ ] ) )

46 print ( ex . args [0 ] )

The checker is an important part of the framework to ensure the physical safety

of the device. If the device is offline by an attack or a power outage, the user will be

informed immediately. The same architecture can also be used for critical situation

like a fire. In the temperature and humidity sensor, we can verify that the temperate

is within an acceptable range. If not, the device can inform the gateway and a similar

checker can be implemented to alert the user. For this thesis we are using email as an

alert mechanism because that is the only contact information we are collecting from

the user. A system can easily collect the phone number of the user and send a SMS

106



Figure 4.21: Setting up heartbeat checker in AWS

instead. Another option would be to implement a push notification to the users app.

To implement the checker, we added an event rule in AWS cloud watch as shown in

Figure 4.21. AWS provides the interface for setting up cron jobs that we can schedule to

run on a fixed interval or based on a occurrence of another event. For our case, we have

scheduled the job on a regular interval of 5 minutes. The timing can be customized

based on the need of the manufacturer or the user.

4.3.2 Executing command on the device

The command execution described in Section 3.5.2 model ties all the framework to-

gether. Majority of the time, a user asks an IoT device to perform some operation or

action. In our case, we had designed the temperature-humidity (HT) sensor with two

major tasks. The user can:

• Ask the current readings of the sensor

• Ask the device to switch the display from Celsius to Fahrenheit and vise-versa

Both the operations are carried out in the same way. The user encrypts the command

using the shared key created in the P3 connection model. This command is sent to

the gateway along with the device MAC and JWT token for user authentication header.

On receiving the request, the gateway verifies the user and the user’s registration with

107



the device. After successful verification, the gateway creates a signature with his own

private key and the given command. The signature along with the encrypted command

is sent to the device.

The device on receiving the package, verifies the signature to ensure that the request

is indeed coming from the gateway. Like we mentioned before, all request that comes

to the device must be from the gateway. This minimizes the load on the device to

verify the identity of every sender. Also, it ensures that no request comes to the device

from any other source. After verification, the device decrypts the command from the

user and performs the necessary action. While returning a response, the device again

encrypts the device data with the shared key and adds its own signature for the gateway

to verify. The gateway on receiving the response and successful verification, sends the

encrypted data back to the user.

One thing to note here is the upkeep of the zero-trust principle. The command that

is sent from the user to the device cannot be read by the gateway. This ensures that the

communication, though passing through the gateway, is secured between the user and

device. No other party can decipher that conversation. Next we will explain the above

implementation in detail.

We will start by explaining the request sent from the user to the gateway. The below

code runs in the user’s mobile. As you see below, the app extracts the user’s key and

IV. This key and IV was stored in the AsyncStorage by the P3 connection model when

the user connected with the device. Next the app uses that information to encrypt the

command passed as a function parameter and then executes the API call to pass the

device MAC and the encrypted command. In the P3 connection model implementation

we had seen that the user knows only the MAC address of the device, which is passed

to the gateway for registration confirmation.

1 const { device } = this . state ;

2 l e t service = new Command( ) ;

108



3 const crypto = new CryptoService ( ) ;

4 const key = await AsyncStorage . getItem ( device . device_mac + ’_key ’ ) ;

5 const iv = await AsyncStorage . getItem ( device . device_mac + ’ _iv ’ ) ;

6 console . log ( key ) ;

7 console . log ( iv ) ;

8 l e t cipherCmd = crypto . encrypt (command, key , iv ) ;

9 l e t response = await service . execute ( device . device_mac , cipherCmd) ;

On receiving the request from the user, the gateway verifies the JWT token using

the authorizer header. If the authorization fails, an error response is sent with a status

code of 401. If successfully verifies, the gateway next checks that the required infor-

mation is available in the request and goes on to verify that the user is registered to

the device. The next step is to generate the signature using the signingKey which is the

private key of the gateway and then executes a GET request to the device. One thing to

note here is that the information is being send as query parameters to the GET request.

This is because GET method doesn’t accept body field.

1 def lambda_handler ( event , context ) :

2 username = None

3 # authenticate user

4 t ry :

5 username = validateAuth . val idate ( event [ ’ requestContext ’ ] )

6 print ( ’username : ’ , username)

7 except Exception as ex :

8 print ( ex )

9 return responses . AuthErrorResponse ( ’Unauthorized access . { } ’ . format ( ex .

args [0 ] ) )

10 t ry :

11 body = json . loads ( event [ ’body ’ ] )

12 print (body )

13 assert ’device_mac ’ in body , ’Missing device_mac ’

14 assert ’command’ in body , ’Missing command’

109



15 # val idate registrat ion

16 print ( ’ Validating user registrat ion for device ’ )

17 control ler = Registration (username)

18 registrat ion = control ler . get (body [ ’device_mac ’ ] )

19 assert registrat ion != None, ’No registrat ion record found ’

20 assert registrat ion [ ’ reg_status ’ ] == True , ’ Registration not act ive ’

21 # get device info

22 control ler = Device ( )

23 device = control ler . getByMac (body [ ’device_mac ’ ] )

24 assert device != None, ’No device found ’

25 print ( ’ device IP ’ , device [ ’ ip_address ’ ] )

26

27 # execute command on device

28 print ( ’ getting data from device ’ )

29 signingKey = nacl . signing . SigningKey ( appSetting [ ’ signingKey ’ ] ,

30 encoder=nacl . encoding . HexEncoder )

31 signed = signingKey . sign ( st r . encode (body [ ’command’ ] ) )

32 ve r i f i e r = base64 .b64encode ( signed . signature ) . decode ( ’ utf−8’ )

33 uri = ’ { } ? data={}& ve r i f i e r = { } ’ . format (

34 device [ ’ ip_address ’ ] , body [ ’command’ ] , v e r i f i e r )

35 print ( ur i )

36 response = requests . get ( ur i )

On receiving the packet from the gateway, the device runs the function handleCom-

mand(). To start the device does the sanity check of the passed query parameters and

the request method.

1 Ser ia l . pr int ln ( " received command. . . " ) ;

2 availableMemory ( ) ;

3 // ver i fy GET method

4 i f ( server .method ( ) != HTTP_GET) {

5 Ser ia l . pr int ln ( " Inva l id HTTP method" ) ;

6 server . send(400, " application /json " , " Inva l id request " ) ;

7 return ;

110



8 }

9 // ver i fy parameters

10 String cipherCmd = server . arg ( " data " ) ;

11 String ve r i f i e r = server . arg ( " v e r i f i e r " ) ;

12 ve r i f i e r . replace ( ’ ’ , ’+ ’ ) ;

13 cipherCmd . replace ( ’ ’ , ’+ ’ ) ;

14 i f ( cipherCmd == " " | | v e r i f i e r == " " ) {

15 Ser ia l . pr int ln ( " . . . Missing parameters " ) ;

16 server . send(401, " text /plain " , " Inva l id parameters " ) ;

17 return ;

18 }

19 Ser ia l . pr int ln ( cipherCmd) ;

20 Ser ia l . pr int ln ( v e r i f i e r ) ;

Then it verifies the signature and ensures that it is indeed from the gateway. It uses

the public key of the gateway for verifying the identity. If the verification fails, a 401

response is sent back.

1 // ver i fy the signature − must be from gateway

2 in t sLen = ve r i f i e r . length ( ) ;

3 char* encSignature = const_cast<char*>( v e r i f i e r . c_str ( ) ) ;

4 in t encLen = base64 . decodedLength ( encSignature , sLen ) ;

5 byte signature [ encLen ] ;

6 base64 .decode ( ( char * ) signature , encSignature , sLen ) ;

7 bool isVer i f ied = Ed25519 : : ver i f y ( signature , serverPubKey , cipherCmd . c_str ( ) ,

cipherCmd . length ( ) ) ;

8 i f ( ! i sVer i f ied ) {

9 Ser ia l . pr int ln ( " . . . Signature ver i f i ca t ion fa i led " ) ;

10 server . send(401, " text /plain " , " Inva l id ve r i f i e r " ) ;

11 return ;

12 }

13 Ser ia l . pr int ln ( " Signature ver i f ied successful ly " ) ;

14 availableMemory ( ) ;

111



The command is decrypted using the user’s key and IV and based on the command,

the inFahrenheit flag is set. This flag helps to determine the display between Celsius

and Fahrenheit.

1 // decode command

2 Ser ia l . pr int ln ( " Decrypting command" ) ;

3 UserInfo user = storage . getUser ( ) ;

4 in t cipherLen = cipherCmd . length ( ) ;

5 char* cipher = const_cast<char*>(cipherCmd . c_str ( ) ) ;

6 encLen = base64 . decodedLength ( cipher , cipherLen ) ;

7 byte bCmd[ encLen ] ;

8 char command[ 6 ] ;

9 base64 .decode ( ( char * )bCmd, cipher , cipherLen ) ;

10 Ser ia l . pr int ln ( "Command decoded" ) ;

11 crypto . clear ( ) ;

12 crypto . setKey ( user . key , 32) ;

13 crypto . setIV ( user . iv , 16) ;

14 crypto . decrypt ( ( byte * )command, bCmd, encLen ) ;

15 command[6] = ’\0 ’ ;

16 i f ( strcmp (command, "TYPE_C" ) == 0) {

17 inFahrenheit = fa lse ;

18 } else i f ( strcmp (command, "TYPE_F " ) == 0) {

19 inFahrenheit = true ;

20 } else {

21 Ser ia l . pr int ln ( " . . . Inva l id command" ) ;

22 server . send(400, " text /plain " , " Inva l id command" ) ;

23 return ;

24 }

25 bool isRefreshed = refreshData ( true ) ;

26 i f ( ! isRefreshed ) {

27 Ser ia l . pr int ln ( " . . . Inva l id command" ) ;

28 server . send(400, " text /plain " , " Fai led to refresh data " ) ;

29 return ;

112



30 }

The device then encrypts the sensor data using the user’s key which it gets form

the storage using storage.getUser(). In this case, we have only implemented one user,

if there were more, then the gateway would have to send the user ID for the device to

determine who is talking to the device and get the appropriate key and IV. Also, notice

how we used padding here to make sure that the data is a multiple of 128 bits. This is

required because we are using CBC mode on AES for encrypting the data. The cipher

response is then encoded in Base64 format for transferring it over the wire.

1 Ser ia l . pr int ( "Temperature : " ) ;

2 Ser ia l . pr int ln ( temperature ) ;

3 String data = String ( " { " ) +

4 " \" temperature \ " : " + temperature + " , " +

5 " \" humidity \ " : " + humidity + " , " +

6 " \" heatindex \ " : " + heatIndex + " , " +

7 " \" counter \ " : " + mi l l i s ( ) +

8 " } " ;

9 availableMemory ( ) ;

10

11 // encrypt response data

12 in t dataLen = data . length ( ) ;

13 cipherLen = dataLen − ( dataLen % 16) + ( dataLen % 16 > 0 ? 16 : 0) ;

14 //form message with padding

15 byte bData [ cipherLen ] ;

16 for ( in t i = 0; i < dataLen ; i ++) {

17 bData [ i ] = data [ i ] ;

18 }

19 // add padding

20 for ( in t i = 0; i < ( cipherLen − dataLen ) ; i ++) {

21 bData [ dataLen + i ] = 0;

22 }

23 //encrypt

113



24 byte cipherData [ cipherLen ] ;

25 crypto . clear ( ) ;

26 crypto . setKey ( user . key , 32) ;

27 crypto . setIV ( user . iv , 16) ;

28 crypto . encrypt ( cipherData , bData , cipherLen ) ;

29 //encode

30 encLen = base64 . encodedLength ( cipherLen ) ;

31 char resData [ encLen ] ;

32 base64 . encode ( resData , ( char * ) cipherData , cipherLen ) ;

33 resData [ encLen ] = ’\0 ’ ;

34 Ser ia l . pr int ln ( " Encrypted response " ) ;

35 availableMemory ( ) ;

The last step in the device is to add the signature for the gateway to verify. Then a

200 response is sent to the gateway with the data and verifier.

1 // add signature for ver i f i ca t ion at gateway

2 uint8_t resSign [64] ;

3 Ed25519 : : sign ( resSign , devicePrivKey , devicePubKey , resData , str len ( resData ) ) ;

4 encLen = base64 . encodedLength(64) ;

5 char resVer i f ie r [ encLen ] ;

6 base64 . encode ( resVer i f ier , ( char * ) resSign , 64) ;

7 // send response to gateway

8 String response = String ( " { " ) +

9 " \" data \ " : \ " " + resData + " \" , " +

10 " \" v e r i f i e r \ " : \ " " + resVer i f ie r + " \" "

11 " } " ;

12 server . send(200, " application /json " , response ) ;

13 Ser ia l . pr int ln ( " . . . response send" ) ;

14 availableMemory ( ) ;

The gateway on receiving the response verifies that the signature of the device is

valid and passes the data component to the user with a successResponse.

1 i f ( response . status_code != 200) :

114



2 raise Exception ( ’ Fai led to get data from device ’ )

3 # ver i fy device signature

4 data = json . loads ( response . content . decode ( ’ utf−8’) )

5 print ( ’ ver i fy ing device signature ’ )

6 assert ’data ’ in data , ’Missing data element in device response ’

7 assert ’ ve r i f i e r ’ in data , ’Missing ve r i f i e r in device response ’

8 print ( data [ ’ data ’ ] )

9 print ( data [ ’ ve r i f i e r ’ ] )

10 validateAuth . validateDevice (

11 device [ ’ device_id ’ ] , data [ ’ data ’ ] , data [ ’ ve r i f i e r ’ ] )

12 # return device data to user

13 response = {

14 ’ data ’ : data [ ’ data ’ ]

15 }

16 return responses . successResponse ( response )

The user on receiving the response from the gateway, decrypts the message and

converts the response to a JSON. This ensures that the data is in the correct format.

One thing to note here is that the device sends the millis() value along with the response.

This helps the user to verify that this is not a replayed packet and it is coming from

the device itself. To check for the replay attack, the user verifies that the given counter

value is greater than the one previously sent. The user saves this information in the

AsyncStorage. This is mainly to maintain a consistent state in the app. The next time

the user comes back to this screen, he is shown the last values extracted from the

device. He can also refresh the data or change the display value in the device.

1 console . log ( response ) ;

2 l e t decData = crypto . decrypt ( response , key , iv ) ;

3 l e t index = decData . indexOf ( ’ } ’ ) ;

4 decData = decData . substring (0 , index + 1) ;

5 console . log ( decData ) ;

6 l e t data = JSON. parse ( decData ) ;

115



7 // make sure there is no replay attack

8 i f ( data . counter <= this . state . data . counter ) {

9 throw new Error ( ’ Inva l id response from device ’ ) ;

10 }

11 l e t now = new Date ( ) ;

12 l e t lastUpdated = now. toLocaleDateString ( ) + ’ ’ + now. toLocaleTimeString ( ) ;

13 await AsyncStorage . setItem ( ’ last_updated ’ , lastUpdated ) ;

14 await AsyncStorage . setItem ( device . device_mac , JSON. s t r ing i f y ( data ) ) ;

15 await AsyncStorage . setItem ( ’ type ’ , command) ;

16 th is . setState ( {

17 lastUpdated ,

18 data ,

19 } ) ;

The UI for the user app is simple. From the devices screen, the user clicks on the

arrow right to the name of the device and is taken to the detailed screen. There the

user is presented with the last data recorded from the device. The user can change the

data type and the same is reflected in the device as well as in the screen as shown in

Figure 4.22. The user can also refresh and get the latest sensor values.

The command execution uses all the security principles described in all the other

models and protocols in the framework. Like we mentioned before, for security rea-

sons, we ensured that all the communications to the device flows through the gateway.

However, we didn’t want the gateway to have the command that the user wished to exe-

cute on the device. The blanket layer of protection provided by the shared key ensured

that the communication between the device and user only within the two of them.

4.4 Summary

To summarize the security implementation, we used an ED25519 key pair for the gate-

way, another Ed25519 key-pair for the device. These key-pairs provide authentication,

116



(a) Device data in Fahrenheit (b) Device data in Celsius

Figure 4.22: Data captured from the device on the user’s app

117



integrity and non-repudiation between the device and gateway. Each provide a signa-

ture to the other using their private key and the same is verified by the other party.

Since, all communication to the device comes only through the gateway, it needs to

verify only one sender. Any failed verification is responded with an unauthorized 401

status. Elliptic curve cryptography (ECC) is particularly effective for devices with lim-

ited resources. The key size we used for the signing is 32 bytes (256 bits). This is way

smaller in comparison to the 2048 bits key from RSA. The operation was fast and could

be easily performed within the resource limitation of our device.

The heartbeat communication is a good example of the above. All the API in the

gateway are protected by SSL/TLS and thus protected in transit. This helps maintain

the confidentiality of data in transit. We used the device’s private key to sign the

payload that was send to the gateway. This added authentication and integrity check

to the data. The heartbeat checker played a role to ensure physical security of the

device as well. It maintained a threshold of five minutes to check if an active device

had sent a pulse. If not, the user is notified that the device is not functional. Here we

took a more reactive approach for detection and notification.

For the communication between the device and the user, we used AES 256 with CBC

mode. The P3 connection model helped setup this key. In the model we described us-

ing ECDH key exchange to create a session key between the user and device to protect

the remaining communications. However, due to limitation in available technology, we

were not able to implement the ECDH exchange. We shared a key and IV in a base64 en-

coded format and then used that as a session key. All other Bluetooth communication

in the P3 connection model were encrypted using that. The CBC mode provides an ef-

fective diffusion of the cipher data and is widely used. Since, the key is auto generated

we used a symmetric encryption to secure the communication between the user and

device. The command execution model brought all the above together. Here the user

encrypted the command using the shared key generated in the P3 connection and send

118



it to the device via gateway. This prevents the gateway from knowing the command

itself. However, the gateway adds its signature to the request to let the device know

that the request is coming from a genuine source. Similarly, in response, the device

encrypts the device data using the shared key and adds its own verifier for the gateway

to verify and the user to read the sensor data.

The zero-trust framework effectively secures the communications between all the

three parties, namely, device, user and gateway. Each part of the framework plays

an important role in providing the overall security. The next question to ask is how

efficient the model is. In the next chapter we will analyze the performance of the

model in four aspect: security, operational time, memory utilization of device and cost

of implementation.

119



Chapter 5

Analyzing the Framework

In this chapter we analyze the effectiveness of the zero-trust framework that we de-

scribed and implemented so far. The framework should effectively secure the com-

munications between the different actors. So, we will look at network logs to check

if there is any information leakage when the information is flowing over the insecure

medium. We will also check the memory usage of the device in each step. One of the

key issues as we have seen before with IoT devices is that the resource available for

them is very small. We will analyze if we are able to provide adequate encryption with

the limited resource of the device. The next thing we want to measure is the time of

operation. In the security framework that we have defined, there are lot of different

models and transactions. Some transactions take multiple hops to get the response

to the requestor. We need to ensure that the responses are returned in a acceptable

time-frame. Another angle we wanted to explore was the cost to build and run a IoT

device we implemented. Cost is a important factor and we kept this in mind during

our implementation. We restricted the cost of the device which can be affordable to

everyone.

So, to summarize, in the following sections we will analyze the level of security

provided by the framework, the memory utilization, the time to respond and cost of

120



building the device. In each of the sections we will delve into the different parts of

the framework, namely, P3 connection model, heartbeat communication and command

execution. We will start by looking at the effectiveness of the security framework.

5.1 Security in transit

Any user who wants to use the “Saisor” devices, need to register themselves with the

gateway. For this thesis, we kept the user details to very few required fields, namely,

email, name and password. Once the user enters the details and clicks on register,

a confirmation code is sent to the provided email. The user must enter the code in

the confirmation screen and only then they can use any device from Saisor. After a

successful confirmation of the user, the system redirects the user to the login screen

where they need to provide their email and password and enter the system. Figure 5.1

shows the registration, confirmation screen and the login screen.

Figure 5.2 shows the confirmation email sent to the user. This is the first step for

authenticating the user because in this process, the user is assigned a user identifica-

tion in the form of a UUIDv4. This unique identifier is used to locate the user record

and used everywhere else in the application. The user authentication service is main-

tained using AWS Cognito. It provides a secure user directory that can scale to millions

of users. It supports identity federation using SAML, Facebook and other social media

platforms. Cognito has support for multi-factor authentication and encryption of data

both at rest and in transit. It provides compliance with standards like HIPPA, SOC, PCI

DSS and others. With a Cognito backend, we can ensure that the user authentication

and authorization is securely handled. Any post login request sent to the gateway,

we use the JWT generated by the app and pass it to the backend API. All user centric

API are protected by an auth-guard. The auth-guard verifies the token and ensures the

identity of the user. Before passing it to the relevant AWS Lambda, the authorizer adds

121



(a) Registration screen (b) Registration confirmation screen (c) Login screen

Figure 5.1: App screen to show registration, confirmation and user login

Figure 5.2: Email send to user for verification

the identity of the user in the event request. The lambda can read and verify the user

information which is available in the request before processing it. Any failure in the

authentication step results in a 401 unauthorized access error.

The security of the device is also important. During the manufacturing of the device,

a public and private key pair is generated and embedded in the device along with its

device identification (a UUIDv4 value). Whenever communicating with the gateway, the

device adds a verifier to the request. The verifier is a signature generated and signed

with this key pair. The private key is only available to the device, but the pubic key is

122



Figure 5.3: Wireshark logs showing use of TLS

shared between the device and gateway. On receiving a request from the device, the

gateway uses the given device ID to locate the public key of the device. Then it uses the

given signature and stored public key to verify the identity of the device. Like the user,

a failed verification results in a 401 unauthorized access. This technique is used in

both the P3 connection model and heartbeat communication to authenticate the device

to the gateway.

The gateway is a set of API endpoints that are hosted in AWS API Gateway. All the

APIs are by default enabled with HTTPS. Thus, all communications that are happening

to the gateway are encrypted in transit using SSL/TLS as you can see in Wireshark logs

in Figure 5.3. To verify the identity of the gateway to the device, the fingerprint of the

server’s digital certificate is provided to the device. The device can use that to verify the

identity of the server in TLS handshaking. The server’s public key is also provided to

the device for any request coming from the server to the device. The device can utilize

this public key to verify the identity of the server. This is used in sending command

from the user app to the device via gateway. According to the model, all request to

the device should only come from the gateway and the gateway’s public key is used to

verify the request. Any unauthorized attempt is responded with a 401 unauthorized

access.

Till now we have established the protection around all communication to and from

123



the gateway. To recap, the user passes the JWT token in authorization header to val-

idate itself. For the device, it sends it device identifier along with a signature that is

signed with its own private key. This signature can be verified by the gateway. The next

step is to establish security for communication between the device and user. The P3

connection model plays a major role in setting up the keys for them to talk. As we have

described in the Section 3.4, the device and user communicate with each other to setup

a shared key. In the process both communicates with the gateway to verify the identity

of the other. This way, both the device and the user can be sure that they are talking

to a genuine other party. This key that is generated is stored locally in the user’s app

and the device. This is not passed onto the gateway. This way we can be sure that even

when the gateway is compromised, it cannot communicate to a device pretending to be

the user. The principle of “trust noone, verify everyone” prevails with this model.

The P3 connection model sets the stage for the implementation of zero-trust. In this

process, the user and device not only set up the shared key but also validates the iden-

tity of each other. The gateway is the repository of the identity of both the user and

device. It helps validate the claim of both the device and user to each other. In the cryp-

tographic techniques we have used both symmetric as well as asymmetric encryption.

The asymmetric encryption is necessary between the gateway and the device because

the keys are prepopulated. Without an asymmetric encryption, compromising one can

also compromise the other. Among the available public key encryption technology RSA

is the most popular for digital signature. However, implementing RSA would have been

expensive with the limited resources available in the device. We used ED25519 (Elliptic

Curve Cryptography Digital Signature) instead of RSA. The reason for choosing ECC is

that it provides similar security with minimal resource utilization and energy. Table

5.1 and Table 5.2 shows the signing and verification time between RSA and ECC. As

we see that RSA outperforms ECC in verification, but the signing time becomes better

for ECC in comparison to RSA as the key size grows [65]. In our case we are using a

124



Table 5.1: Comparison of signing time between RSA and ECC [65]

Table 5.2: Comparison of verification time between RSA and ECC [65]

32-byte key length and thus we see that the operational time for signing is around 400

milliseconds in the device logs.

The heartbeat communication happens on a regular basis and in there the device

must sign the request which is verified by the gateway. With the limited resources

available for the device, ECC becomes more effective when it comes to public key cryp-

tography. It also has a small key size which makes it easier to store in the device. As

we have seen in the user verification of the P3 connection model, a similar approach for

security is taken in the heartbeat communication as well. The device signs the message

with its private key and sends it to the gateway. The gateway stores the public key for

the device in its database. It uses the public key to verify the signature and confirm the

identity of the device. As we have seen earlier, failure of verification results in a 401

unauthorized access response.

125



Table 5.3: Comparison of different symmetric encryption technique [2]

The symmetric encryption is used between the device and the user. For the sym-

metric encryption we choose Advance Encryption Standard (AES). The study [2] shows

that AES outperforms most of the other symmetric encryption standard. The Table 5.3

shows the comparison between different algorithms for different file size. Using the

P3 connection model we are setting up the 32 bytes key between the user and device

along with a 16 bytes initialization vector (IV). For the mode of operation, we are using

cipher block chaining (CBC). It is the most commonly used mode of operation and can

perform better diffusion than other modes like electronic codebook (ECB).

The command execution works particularly on the zero-trust principle. As dis-

cussed before, all communications to the device via internet goes through the gateway.

However, we didn’t want the gateway to know the command that is being executed.

This is because the command execution is between the user and the device. The gate-

way has no part in it except for working as a relay of information. Figure 5.4 shows that

126



Figure 5.4: Encrypted command send from the user to the device via gateway

Figure 5.5: Encrypted data sent from device to the user via gateway

the data received in the payload is totally encrypted. The gateway only gets the infor-

mation that it needs, i.e., the device MAC address. From that information the gateway

can extract the correct device URL and send the information to the device properly.

Similarly, when the data is returned from the device to the gateway, we see that the

payload consist of data and the verifier as shown in Figure 5.5. We see the Base64 en-

coded message in both the field. The gateway can use the verifier to verify the identity

of the returned message. However, it will not be able to decipher the returned data.

This is because the message is again encrypted with the shared key that is known only

to the user and device.

Another important aspect of security is auditing. In our model, we maintained a

rule, that all information flows through the gateway to the device. This helps provide

a single location to audit and log all transactions. The Transactions relation plays a

127



Figure 5.6: Transaction audit at the gateway

key role in audit management. Figure 5.6 show a snapshot of the table. It records the

information about the sender as well as the receiver. It also records the transaction

time. Each operation can be uniquely identified using the transaction_id and transac-

tion_from. Any group of transactions that are related has the same transaction_id. This

way we can trace and easily perform an audit trail of any operation.

Overall, the framework provides end-to-end protection of data in transit as well as

in storage. The P3 connection model helps setup the shared key in a secured manner

between the user and device. This key is used to protect the data even when it is going

through the gateway. The gateway and device use their own private key to communicate

with each other. Since, these keys are preset it provides more flexibility if each have

their own set of keys and not have to share with anyone else. The signature ensures

integrity and authentication. The confidentiality of data is maintained by enabling

TLS/SSL in the gateway APIs. This makes sure that the data is protected in transit.

5.1.1 Physical security

Another aspect of the security triad is availability. To provide a complete security

model, we must address all the three aspects of the security triad, i.e., confidential-

ity, integrity and availability. We have discussed confidentiality and integrity in the

previous section. The availability aspect touches briefly in the physical security of the

device. In the paper [57], the authors discuss each area of the security triad in terms of

IoT. One of the biggest concerns in availability is the Dos/DDoS attack. An IoT device

can easily be brought down using a DDoS attack due to the limited resources available

128



in it.

To test the aspect of a DDoS attack we setup a lab with two Linux machine and

attacked the device using a TCP SYN flood. As anticipated, the device was reset by the

number of incoming TCP requests within two minutes and 10,000 hits approximately.

We continued the attack for 15 minutes to see how the device behaves. For each TCP

SYN request the device saved some storage in memory and when the memory was

overwhelmed it ended up in a stack overflow error and dumped the memory in the

console logs as shown in Figure 5.7. After that the device got reset.

We traced the available memory of the device and Figure 5.8 shows the memory

going down during the attack before it got reset.

In the zero-trust framework we took a reactive approach rather than proactive ap-

proach for physical security. Using the heartbeat protocol, we can determine the last

time a active device has sent the heartbeat pulse. In our experiment, we set the pulse

interval to one minute. At the gateway, we ran a heartbeatChecker. The responsibility

of the checker is to ensure that there is at least one pulse sent from the active devices

in every five minutes. If not, it sends an email informing the user that the device is not

responding and offline for X minutes as shown in Figure 5.9.

Our solution doesn’t provide adequate protection in terms on physical security but

provides the information in real time on the health of the device. More research is

required to harvest the energy of the devices and ensuring full-time availability [5,71].

Ensuring device security is of utmost importance. These devices are becoming an

integral part of our everyday lives. They are storing and transacting on our personal

data. Securing these devices will ensure privacy and protection for our personal in-

formation as well. This model effectively provides a secure channel for the devices to

communicate with the gateway and the users. It also ensures the proper health of these

devices using the heartbeat.

129



Figure 5.7: Memory error caused by DDoS attack on device

130



Figure 5.8: Available memory of the device during the attack

Figure 5.9: Alert email send to the user when device is offline

131



5.2 Memory utilization of device

The gateway consists of lambda functions that are deployed in AWS and have one

gigabytes of memory each. Similarly, the mobile phone we are using for building and

testing the app is having four gigabytes of RAM. The weakest link in our ecosystem

in terms of memory is the device. It has the least memory available for processing.

The NodeMcu V3 ESP28266 model we used for building out device has four megabytes

of flash memory, 64 KB of instruction RAM and 96 KB of RAM for data. This model

represents a real world IoT device with limited resources. So, we had to be very careful

in utilizing the resources of the device. We had to account for every byte that we were

using of the available space.

For convenience, we printed out the available heap memory on the serial console of

Arduino. For that we created a small function called availableMemory as shown below:

1 // Function to print the current memory usage

2 void availableMemory ( ) {

3 Ser ia l . pr int ( "Memory avai lable : " ) ;

4 Ser ia l . pr int ln ( ESP . getFreeHeap ( ) ) ;

5 }

This simple function is called everywhere in the sketch of the device to print the

available heap space. We start by analyzing memory usage in the P3 connection model.

Like we mentioned above, there is 64 KB of RAM available for instruction. The current

source code for the sketch uses 37.18 MB of the available space. With all the global

variables defined in the code along with the included headers, at start we had 43.88

KB of available data RAM out of 96 KB. Figure 5.10 shows the memory usage during P3

connection between the user and device.

As we notice, in the first two steps of getting the hello message and sending an

encrypted hello reply, the device uses only an extra 200 bytes. In the next section we

see a drop of five kilobytes to decrypt the message send by the user containing the

132



Figure 5.10: Memory usage during P3 connection model

Wi-Fi credentials. Post that we don’t see any further change in the memory usage. This

process is efficient considering we have 40% of memory still left for other processes.

The heartbeat call was important for the memory utilization. This call happens

regularly, and we had to make sure that the memory used by the function gets released

properly for the next call. We ran the heartbeat call on a interval of one minute and

Figure 5.11 shows the available memory before and after the process. As you see

around 43 KB of memory was available at the start of the function and at the end,

we see around 37 KB left. The function uses around six kilo bytes of memory for the

entire operation. We ran the test for 30 minutes and every time the available memory

remained constant. This is a good sign to indicate that there is no memory leakage

happening in the function.

We noticed a similar pattern for memory utilization in the command execution

mode. We must Note here that the heartbeat is running parallel as the command is

getting executed. We noticed that the available memory at the start of each operation

is around 42 MB. Each execution cycle took around 2,080 bytes. Figure 5.12 shows the

available memory per command execution on the device. We repeated the experiment

133



Figure 5.11: Memory utilization of device for heartbeat communication

Figure 5.12: Memory utilization of device for command execution

five times and we got the same results.

We noticed a similar pattern for memory utilization in all the three models of the

framework. Each of the process at its own cycle utilizes around 5–10% of memory. We

kept a threshold of 80% of memory utilization for any operation to determine it as a

red flag. However, at the end of each cycle, the available memory is close to 60%. For

our tests, we have run one command at a time and seen the above-mentioned results.

134



Table 5.4: Operational time for each step in P3 connection model

Operation Time (msec)

Pairing and generating the session key 1,210
Connect to Wi-Fi 3,249
User verification 6,527
Device verification 2,032
Generate and share the symmetric key 1,140
Total 14,158

5.3 Time to response

We considered time for an operation as an important factor for our analysis. In the

framework, for maintaining the security of the device, we decided to pass all request

to the device only from the gateway. So, any communication between user and device,

post the P3 connection model, would happen via the gateway. This can potentially

make the process slow and difficult for the user to use. We decided to run a full test of

the time-to-respond for each of the operations that are happening in the framework.

We start by analyzing the time for each of the step of the P3 connection model.

One thing to note here is that there are user actions involved in the process and the

system is designed to accommodate those. For example, in the P3 connection model,

the user app waits for five seconds to get a return hello message from the device. Here

we will calculating the actual time the device is taking to encrypt the hello message and

sending it back to the user. Table 5.4 shows the time taken for each operations in the

P3 connection model.

As we see in the table, it takes around 14 seconds to complete the whole operation.

User verification takes the maximum time of six seconds to get the result to the device.

We will have to consider the cold start of the lambda functions. Cold start happens

when the lambda is called for the first time, when no other instances exist. This is

when the lambda is brought in the server memory for processing for the first time. On

checking the execution time for the lambda functions, we can see that the lambda for

135



Figure 5.13: Time utilization of device for heartbeat communication

adding a registration record (user verification) took around 170 milliseconds and the

one for updating the registration (device verification) took around 193 milliseconds.

The applications allow more time for the responses. For setting up a connection,

the app allowed the device to respond in five seconds. As we see in the table, it took

around 1.2 seconds to respond. Similarly, for user verification, the user app waits for

a period of 60 seconds (one minute) for the complete operation and we see that it

completes in less than 10 seconds. The timing is not the most optimized, but within

the acceptable range considering the number of operations that are happening and the

resource availability of the device.

The cold start is clearly visible in the heartbeat calls as well. In the start we see

it takes an operational time of around ten seconds. But then we notice that the time

for a heartbeat call takes roughly seven seconds. This line up with the time taken to

perform a user verification in the P3 connection model. From the logs itâĂŹs clear that

the round trip from the AWS gateway to the device is around 5.5 seconds. We ran the

test for 30 minutes and the results can be seen in Figure 5.13.

For executing commands on the device, we saw a drastic decrease in the execution

136



Figure 5.14: Command execution time

time. We used a mix of both changing the temperature type as well as refreshing the

data on the app. The device took on an average around 938.8 milliseconds to complete

the entire operation. We repeated our experiment for ten iterations and only once we

noticed that the time taken for operation on the device went above one second, i.e.,

1037 milliseconds. The Figure 5.14 gives the execution time from the user app. We

noticed a round trip time (RTT) from the app to the device via gateway was around

2.1271 seconds. In all the ten executions we noticed the same pattern.

In comparison to the heartbeat protocol, we changed from HTTPS to HTTP for pass-

ing information from the gateway to the device. Since both our data and verifiers are

encrypted using separate keys, we found using SSL/TLS as redundant when calling the

service. By avoiding the TLS handshaking, we dramatically improved on the network

latency. This brought down the execution time from 7400 milliseconds in heartbeat to

938.8 milliseconds in command execution. We also added a replay attack protection

by passing the millis() value along with the output data. Millis is the amount of time

the device has been up and running. This value constantly increases with every micro-

controller clock cycle. In the device we are storing the information of the last counter

137



Table 5.5: Cost of building the device

Component Cost (USD)

NodeMcu V3 ESP8266 4.75
DHT22 Sensor 3.40
HC-05 bluetooth module 7.99
OLED I2C serial display 6.99
Breadboard and wires 3.50
Total 26.63

value. On receiving the new response, we compare the given value to the last stored

value to ensure that it is greater. If not, we reject the given result and inform the user

that the data is not current.

We decided on a three seconds threshold for the command execution. This is an

acceptable value for a web API call. We noticed that even though the RTT went through

the gateway and not directly to the device, we were able to maintain the same level

of performance. The entire operation didn’t take much extra time for completing the

RTT. The gateway operated quickly to relay the information to the device and then after

verification, sending the device data back to the user app. Overall, in terms of execution

time, all the operations of the framework proves that we are able to do the required

tasks in a acceptable timeframe, even after maintaining a high level of security.

5.4 Cost of the device

The cost of the device is important when we talk about IoT devices. The cost of the IoT

devices vary greatly depending on the utility. A Philips hue light bulb costs around USD

15.00 whereas a iRobot Roomba costs USD 500.00. For our temperature and humidity

sensor, we shopped from Amazon and took the components which were recommended

by Amazon and had good user reviews. Table 5.5 details the cost of the components

used to build the device.

As you see above, the cost of our device is less than USD 30.00. However, we have

138



not considered the cost of cloud hosting and development efforts. For our thesis we

used the free subscription provided by AWS for one year. And since we developed the

solution ourselves, it is difficult to quantify the cost associated with it. Considering all

possibilities, we can safely say that a device like this with total security implementation

should not cost more than USD 50.00. This is just a rough guess on what we think the

cost should be.

5.5 Summary

In this chapter we wanted to analyze the effectiveness of framework in terms of secu-

rity, memory utilization, time of operation and cost to build the device. We verified

each of these aspects for the different parts of the zero-trust framework, namely, P3

connection model, heartbeat communication and the command execution model. We

also defined thresholds in each sector of our analysis based on the standards provided

by the industry. We measured the performance of our framework against those estab-

lished standards to determine the ease of implementation of this framework in real

world.

In terms of security, we saw how both the device and the gateway are equipped with

their own ED25519 private and public key pairs. This removed the reliance of a single

shared key between them. We used the device’s private key to sign the request to get

the device verified in the gateway. Similarly, in the command execution, we see the

gateway signing the request and sending a verifier to the device for authentication and

integrity check. The P3 connection model helped establish a shared key and initializa-

tion vector, for AES256 with CBC mode symmetric encryption, between the user and

the device in an automated way to secure their future communication. This shared key

was utilized to relay the command via the gateway in the command execution model

and to send the response back in an encrypted way without the gateway knowing the

139



information. We also established that the heartbeat protocol ensures physical security

of the device in a reactive way. The transaction table maintained an audit trail for in-

vestigating communications between the different actors. Passing all communications

via the gateway provided a central location to maintain the logs effectively.

Memory utilization yielded very good results for every operation of the framework.

We initially kept a threshold of 80% and anything above that was not an acceptable

outcome. In all the different operations running in parallel in the device, we noticed

the maximum memory usage to go up to 60–65%. We also performed a stress test on

the device by conducting a DoS attack with TCP SYN flood. We noticed the memory

utilization go down and reset the device after a stack overflow. The heartbeat checker

played an effective role to inform the user when the device was offline for more than

five minutes.

Similarly, we had a good result when measuring the operational time. For the P3

connection execution we noticed an overall time taken was around 15 seconds. This

is excluding the time for the user interacting with the platform. For the heartbeat we

saw an execution time of less than seven seconds in an average to send each heartbeat

pulse and get a success response form the gateway. We were exited with the outcome

of the command execution. As stated above the commands were sent from the user app

to the device via the gateway. We realized that it took significantly less time (roughly

around two seconds) to respond back with all the cryptographic steps in each stop. We

concurred that the delay in the heartbeat was due to the handshaking with TLS in every

cycle, which we eliminated in the command execution using HTTP. We maintained the

secrecy using the shared key from the P3 connection model and the individual signing

and verification key of the device and gateway. Lastly, we compared the cost of the

device with other devices in the market. We investigated the cost of each component

we used in building the device and calculated the average price of building the device

was around USD 30.00. With the implementation and server cost added, we estimated

140



that the cost of the temperate and humidity sensor should not be more than USD 50.00.

Overall, from the analysis of the zero-trust framework, we conclude that with the

proper utilization of memory, we can circumvent the resource limitation of IoT devices

and can effectively respond to user queries in an acceptable timeframe after maintain-

ing the proper level of security. This work proves that it is possible to maintain high

privacy and security of communication with IoT devices.

141



Chapter 6

Future of IoT Security

The world has seen many revolutionary changes that have changed the entire fabric

of the human society. With every such change, we move to a new normal. Internet of

Things (IoT) is the next big revolution that is slowly making its way into our society.

Things are becoming smarter and more sophisticated with the change. These devices

are learning to adopt to the needs and started to communicate within themselves. The

lines between physical and virtual worlds are becoming more and more blur.

Credit cards and net banking have already taken over paper money. Now crypto

currency and micro transactions are changing the landscape to a globally unified finan-

cial exchange system. IoT are playing a major role in performing micro transactions

– offering a potential for easier living with technology. For example, a car can buy its

own gas when it needs, or a washing machine can buy its own detergent when it runs

out. These are not that futuristic anymore.

If the IoT devices are taking over the financial dealings of general populations, it is

imperative to think that we need a strong security system to ensure the safety of those

devices. In this thesis we demonstrated how the zero-trust framework can effectively

provide the safety in terms of communication with these IoT devices. We started off

by exploring the security weakness of IoT devices in Section 2.3. We claimed that our

142



solution would effective solve most of the problems. Here we will discuss how our

framework addressed them:

• Insufficient physical security: The heartbeat communication from the device and
the heartbeat checker at the gateway together provided reactive solution to detect
malfunctioning of the device and informing the user in real time. We performed
a DoS TCP SYN attack to bring down the device for 15 minutes and noticed how
an email was sent to the primary user of the device.

• Limited resources: With effective use of memory utilization for each operation
we proved that we were able to perform every operation with a maximum usage
of 60%. We noticed that the memory that was used in a function was effectively
getting released by the end of the job. We noticed this in both the heartbeat cycle
as well as in command execution.

• Inadequate authentication: We used public key encryption for communication
between the device and the gateway. Each provided a signature to the other using
their private key. That provided authentication as well as an integrity check for
the data. For the user and the gateway, we noticed how the JWT token was passed
for every request to the gateway for validation and authentication. Since the user
never communicated directly with the device and had to go through the gateway,
there was no need to authenticating each other.

• Improper encryption: With the zero-trust framework, we wanted to maintain
total confidentiality of data. An actor gets only the information that it needs
to operate. This was effectively shown in the command execution, where the
user sent the command to the device via the gateway. However, we didn’t want
the gateway to know what command was getting executed. The command was
encrypted using the shared key generated in the P3 connection model and only
known to the user-device pair.

• Lack of access control: The architecture clearly defined the roles and access of
each actors. Using the P3 connection model, we made sure that a user and device
gets to verify the identity of each other before providing access for command
execution. We also established using the same model, that a delegate has to get
approval from the user to access the device. The gateway, acting as a relay for
commands, is not provided access to execute commands. The model defined the
boundaries as to what each actor can perform.

• Backdoor ports: In this thesis, the only way of accessing the device via internet
was using the web server that was established in the device. It only had port
80 open and all other ports were nonfunctional. Restricting it to a single port,
we were able to track the kind of requests that were send to the device. More-
over, we required that certain parameters be passed in the request to validate the

143



authenticity of the sender. Any unauthorized access was responded with a 400
error.

• Missing audit management capabilities: In the framework we ensured that all
communications flow through the gateway to establish a central hub to log all
operations. The Transactions table maintained audit logs for each and every op-
eration. For a group of related operations, they were assigned the same trans-
action_id. At any point of time, we can exactly determine what happened on the
device.

Few of the key notable things about this framework is that:

• We followed the principle of “never trust, always verifyâĂŹâĂŹ in every transac-

tion in the framework. Every operation was authenticated to determine the iden-

tity of the sender. We also included the verifier that helped maintain the message

integrity.

• The P3 connection model helped a device and user pair with each other in a seam-

less way such that we eliminated the need of a default credential or common

shared key.

• Removing the need for transport layer security in request from gateway to device

during command execution ensured effective memory utilization on the device as

well as increased the response time 5 times.

• Routing every request through the gateway enforced single point of verification

for the device as well as allowed the gateway to do the heavy lifting of the security

requirements on behalf of the device. The gateway recorded all the logs and the

device didnâĂŹt require extra resources to store them.

• The framework effectively showed that resource limitations on the device could be

avoided by carefully programming and using cryptographic techniques designed

for such systems.

144



The Internet Engineering Task Force (IETF) is yet to come out with a security frame-

work for IoT devices. Many RFC has been produced to circumvent the problems in-

cluding RFC-8576 [46]. This RFC talks about the state-of-the-art platform for IoT and

the challenges related to it. They talk about the same issues that we targeted in this

thesis, including, resource limitation, end-to-end security, privacy protection and oth-

ers. There is no formal guidelines as of now. However, there is an IETF IoT directorate

which is an advisory board. The group coordinates the work on IoT and increases vis-

ibility of IETF IoT standards to industry alliance, standard development organization

(SDOs) and others.

6.1 Future research

In the above we talked about the security issues and how the zero-trust framework

effective solves each of those problems. However, we didn’t discuss a few topics which

fall beyond the scope of this thesis. These topics are presented here.

Improper patch management capabilities. This is one area that we haven’t explored

in the thesis. Patch management is vital for the operation of the IoT devices. As we

have seen in our laptops and phones, with every patch the device is improved in its

performance, security and optimizations. It also ensures that existing bugs are fixed

in the new releases. There is a lot of research going on to define a patch management

strategy [15,42,45].

Weak programming practice. This is another area which we didn’t explore in our

thesis. Weak programming practice causes a lot of security issues including buffer

overflow, privilege escalation, backdoor access, to name a few. A proper security testing

can be used to catch these issues during development. Unfortunately, due to the quick

time-to-market, many organizations provide minimum attention to the security testing.

145



Proper patch management need to be developed to counter these issues in the deployed

devices to counter such existing problems.

Deficient physical security. In our solution, we provided a more reactive approach of

informing the user. However, this is not enough to protect the devices. Physical security

is a huge research area. Many frameworks are proposed to counter the issue [10,58,69].

Many of these devices, including the sensor that we built, store sensitive data that can

be used to jeopardize the user and leak personal information. It is very important to

protect these data from falling into the wrong hands.

Blockchaining solution to secure IoT devices. Blockchain is another technique that

is being used by the research community to come up with solutions for securing IoT

devices. There has been multiple proposals to secure industrial IoT devices and the

micro-transactions that occur through them. Similar technology has been proposed to

patch IoT devices as well [13,23,45] .

IoT is a growing area but it has not reached its full potential yet. There are many

areas of security we will learn as it starts getting more and more attention. The usage

will reveal the need to a security framework around it. Overall, it is important to come

up with a efficient solution to the current issues that we are aware of.

6.2 Need for policy

In many situations we require the cloud to provide services to perform data analytics.

For example, in the sensor we build for our thesis, we might want to check how the

temperate is changing on a day to day basis and generate a prediction for the near

future based on the historic data. In this scenario, the gateway must know the data

gathered by the IoT device. There can be other examples where we as users want the

manufacturer to have the data to serve us better. One example of this is troubleshoot-

146



ing the device. Many times we see that the manufacturers want to gather the device

data to see what caused a particular failure and so genuinely the crash data can help

both the user as well as the manufacturer.

We need to note here that these devices are handling financial transactions as well

as dealing with personally identifiable information (PII) of the users. It is important that

the country’s judicial system steps in to provide some guidance what the manufactur-

ers can and cannot do with the data that they gather from the IoT devise. California is

the first state to come up with an IoT law that was brought into effect on January 01,

2020. As per the IoT security law, manufactures of connected devices must equip such

devices “with a reasonable security feature” that are all of the following:

• Appropriate to the nature and function of the device

• Appropriate to the information it may collect, contain, or transmit

• Designed to protect the device and any information contained therein from unau-
thorized access, destruction, use, modification, or disclosure

One thing we notice here is that the language of the bill is not very clear. Setting

a default password can be considered as a “reasonable security.” The law need to

provide more guidance and restrictions on the manufacturers to protect the privacy

and security of the citizens.

This is a good first step to bring awareness in the legislature about the need for

coming up with such bills to protect the interest of the people. However, this law is

only applicable to the state of California. The federal government need to implement

a similar statute in the country’s legislature to have a common ground throughout the

country.

The market of IoT devices is growing rapidly. As per the prediction from Gartner

[16] by the end of this year there will be 5.8 billion IP connected IoT devices in the

market. In the days to come it will be part of our everyday life and we should not

147



wait for that day to build a security framework. This is the perfect moment to define

a solution that is going to shape the future. With all its resource limitations and huge

heterogeneous ecosystem, it is possible to build a strong security framework that will

verify all requests and not lay a blind trust. This thesis lays the foundation for a “never

trust, always verify” principle for the IoT devices. We must go a long way to secure

every aspect but from this research we are positive its possible.

148



Bibliography

[1] React Native 0.61. Getting started. https://reactnative.dev/docs/
getting-started.html, 2020. accessed March 16, 2020.

[2] N. A. Advani and A. M. Gonsai. Performance analysis of symmetric encryption
algorithms for their encryption and decryption time. In 2019 6th International
Conference on Computing for Sustainable Global Development (INDIACom), pages
359–362, 2019.

[3] A. Albalawi, A. Almrshed, A. Badhib, and S. Alshehri. A survey on authentication
techniques for the internet of things. In 2019 International Conference on Com-
puter and Information Sciences (ICCIS), pages 1–5, April 2019.

[4] Kishore Angrishi. Turning internet of things(IoT) into internet of vulnerabilities
(IoV): IoT botnets. CoRR, abs/1702.03681, 2017.

[5] N. Ashraf, A. Hasan, H. K. Qureshi, and M. Lestas. Combined data rate and energy
management in harvesting enabled tactile IoT sensing devices. IEEE Transactions
on Industrial Informatics, 15(5):3006–3015, 2019.

[6] Yahya Atwady and Mohammed Hammoudeh. A survey on authentication tech-
niques for the internet of things. In Proceedings of the International Conference on
Future Networks and Distributed Systems, ICFNDS ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[7] A. Azmoodeh, A. Dehghantanha, and K. R. Choo. Robust malware detection for
internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans-
actions on Sustainable Computing, 4(1):88–95, Jan 2019.

[8] Fenye Bao and Ing-Ray Chen. Dynamic trust management for internet of things
applications. In Proceedings of the 2012 International Workshop on Self-Aware
Internet of Things, Self-IoT ’12, pages 1–6, New York, NY, USA, 2012. Association
for Computing Machinery.

[9] Alex Biryukov, Daniel Dinu, and Yann Le Corre. Side-channel attacks meet secure
network protocols. In ACNS, 2017.

[10] A. Burg, A. Chattopadhyay, and K. Lam. Wireless communication and security
issues for cyber-physical systems and the internet-of-things. Proceedings of the
IEEE, 106(1):38–60, 2018.

149



[11] Louis Columbus. 2018 roundup of internet of things forecasts and market esti-
mates. shorturl.at/bzOST, 2019. accessed January 21, 2020.

[12] A. C. Davies. An overview of Bluetooth wireless technology/sup TM/ and some
competing LAN standards. In ICCSC’02. 1st IEEE International Conference on Cir-
cuits and Systems for Communications. Proceedings (IEEE Cat. No.02EX605), pages
206–211, June 2002.

[13] S. Dhakal, F. Jaafar, and P. Zavarsky. Private blockchain network for IoT device
firmware integrity verification and update. In 2019 IEEE 19th International Sympo-
sium on High Assurance Systems Engineering (HASE), pages 164–170, Jan 2019.

[14] Fenye Bao and Ing-Ray Chen. Trust management for the internet of things and
its application to service composition. In 2012 IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–6, June
2012.

[15] M. Ge, J. Cho, C. A. Kamhoua, and D. S. Kim. Optimal deployments of defense
mechanisms for the internet of things. In 2018 International Workshop on Secure
Internet of Things (SIoT), pages 8–17, 2018.

[16] Laurence Goasduff. Gartner says 5.8 billion enterprise and automotive IoT end-
points will be in use in 2020. shorturl.at/zMN29, 2019. accessed January 21,
2020.

[17] Jonathan Goldberg. 802.15.1-2005 - ieee standard for information technology–
local and metropolitan area networks– specific requirements– part 15.1a: Wireless
medium access control (MAC) and physical layer (PHY) specifications for wireless
personal area networks (WPAN). https://standards.ieee.org/standard/802_
15_1-2005.html, 2005. accessed February 21, 2020.

[18] C. Gomez and J. Paradells. Wireless home automation networks: A survey of ar-
chitectures and technologies. IEEE Communications Magazine, 48(6):92–101, June
2010.

[19] Ibbad Hafeez, Aaron Yi Ding, Lauri Suomalainen, Alexey Kirichenko, and Sasu
Tarkoma. Securebox: Toward safer and smarter IoT networks. In Proceedings
of the 2016 ACM Workshop on Cloud-Assisted Networking, CAN ’16, pages 55–60,
New York, NY, USA, 2016. Association for Computing Machinery.

[20] Haolin Wang, Minjun Xi, Jia Liu, and Canfeng Chen. Transmitting IPv6 packets over
Bluetooth low energy based on BlueZ. In 2013 15th International Conference on
Advanced Communications Technology (ICACT), pages 72–77, Jan 2013.

[21] Scott Hilton. Dyn analysis summary of Friday October 21 attack. https:
//dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/,
2016. accessed January 28, 2020.

150



[22] Wen Hu, Hailun Tan, Peter Corke, Wen Chan Shih, and Sanjay Jha. Toward trusted
wireless sensor networks. ACM Trans. Sen. Netw., 7(1), August 2010.

[23] J. Huang, L. Kong, G. Chen, M. Wu, X. Liu, and P. Zeng. Towards secure industrial
IoT: Blockchain system with credit-based consensus mechanism. IEEE Transactions
on Industrial Informatics, 15(6):3680–3689, June 2019.

[24] C. Huth, J. Zibuschka, P. Duplys, and T. Guneysu. Securing systems on the internet
of things via physical properties of devices and communications. In 2015 Annual
IEEE Systems Conference (SysCon) Proceedings, pages 8–13, April 2015.

[25] M. L. Jones and K. Meurer. Can (and should) hello barbie keep a secret? In 2016
IEEE International Symposium on Ethics in Engineering, Science and Technology
(ETHICS), pages 1–6, May 2016.

[26] T. Kelley and E. Furey. Getting prepared for the next botnet attack : Detecting
algorithmically generated domains in botnet command and control. In 2018 29th
Irish Signals and Systems Conference (ISSC), pages 1–6, June 2018.

[27] J. Kindervag. No more chewy centers: Introducing the zero trust model
of information security. https://www.ndm.net/firewall/pdf/palo_alto/
Forrester-No-More-Chewy-Centers.pdf, 2010. accessed January 26, 2020.

[28] A. Kolehmainen. Secure firmware updates for IoT: A survey. In 2018 IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 112–117, July 2018.

[29] C. Konstantinou and M. Maniatakos. Impact of firmware modification attacks on
power systems field devices. In 2015 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pages 283–288, Nov 2015.

[30] Maria Korolov. What is a botnet? when armies of infected IoT devices
attack. https://www.csoonline.com/article/3240364/what-is-a-botnet.
html, 2019. accessed January 28, 2020.

[31] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle. A DTLS based end-to-
end security architecture for the internet of things with two-way authentication.
In 37th Annual IEEE Conference on Local Computer Networks - Workshops, pages
956–963, Oct 2012.

[32] Ayush Kumar and Teng Joon Lim. EDIMA: early detection of IoT malware network
activity using machine learning techniques. CoRR, abs/1906.09715, 2019.

[33] T. Lackorzynski and S. Koepsell. "hello barbie" - hacker toys in a world of linked de-
vices. In Broadband Coverage in Germany; 11. ITG-Symposium, pages 1–7, March
2017.

151



[34] Xiang Li, Qixu Wang, Xiao Cun Lan, Xingshu Chen, Ning Zhang, and Dajiang Chen.
Enhancing cloud-based IoT security through trustworthy cloud service: An inte-
gration of security and reputation approach. IEEE Access, 7:9368–9383, 2019.

[35] C. Liu, Y. Zhang, Z. Li, J. Zhang, H. Qin, and J. Zeng. Dynamic defense architecture
for the security of the internet of things. In 2015 11th International Conference on
Computational Intelligence and Security (CIS), pages 390–393, Dec 2015.

[36] Paolo Magrassi. Why a universal rfid infrastructure would be a good thing. https:
//www.gartner.com/en/documents/356347, 2002. accessed January 21, 2020.

[37] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan. Internet of things (IoT) se-
curity: Current status, challenges and prospective measures. In 2015 10th Inter-
national Conference for Internet Technology and Secured Transactions (ICITST),
pages 336–341, Dec 2015.

[38] Emily McReynolds, Sarah Hubbard, Timothy Lau, Aditya Saraf, Maya Cakmak, and
Franziska Roesner. Toys that listen: A study of parents, children, and internet-
connected toys. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI ’17, pages 5197–5207, New York, NY, USA, 2017. Associ-
ation for Computing Machinery.

[39] Open Mobile Alliance. Device management architecture. http://
openmobilealliance.org/release/DM/V2_0-20160209-A/OMA-AD-DM-V2_
0-20160209-A.pdf, 2005. accessed February 29, 2020.

[40] Blog moderator. Q2 2018 DDOS trends report: 52 percent of attacks employed
multiple attack types. shorturl.at/ezART/, 2018. accessed January 28, 2020.

[41] Philipp Morgner, Stephan Mattejat, and Zinaida Benenson. All your bulbs are be-
long to us: Investigating the current state of security in connected lighting sys-
tems. CoRR, abs/1608.03732, 2016.

[42] I. Mugarza, A. Amurrio, E. Azketa, and E. Jacob. Dynamic software updates to
enhance security and privacy in high availability energy management applications
in smart cities. IEEE Access, 7:42269–42279, 2019.

[43] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demystify-
ing IoT security: An exhaustive survey on IoT vulnerabilities and a first empirical
look on internet-scale IoT exploitations. IEEE Communications Surveys Tutorials,
21(3):2702–2733, thirdquarter 2019.

[44] J. Nieminen, C. Gomez, M. Isomaki, T. Savolainen, B. Patil, Z. Shelby, M. Xi, and
J. Oller. Networking solutions for connecting Bluetooth low energy enabled ma-
chines to the internet of thing. IEEE Network, 28(6):83–90, Nov 2014.

[45] M. Novak and P. Skryja. Efficient partial firmware update for IoT devices with
lua scripting interface. In 2019 29th International Conference Radioelektronika
(RADIOELEKTRONIKA), pages 1–4, 2019.

152



[46] M. Sethi O. Garcia-Morchon, S. Kumar. Internet of things (IoT) security: State of the
art and challenges. https://tools.ietf.org/html/rfc8576, 2019. accessed
May 12, 2020.

[47] N. Pazos, M. Muller, M. Aeberli, and N. Ouerhani. Connectopen - automatic integra-
tion of IoT devices. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
pages 640–644, Dec 2015.

[48] R. S. Raji. Smart networks for control. IEEE Spectrum, 31(6):49–55, June 1994.

[49] Kristi Rawlinson. Hp study reveals 70 percent of Internet of Things devices vulner-
able to attack. https://www8.hp.com/us/en/hp-news/press-release.html?
id=1744676, 2014. accessed January 18, 2020.

[50] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. Lithe: Lightweight secure
coap for the internet of things. IEEE Sensors Journal, 13(10):3711–3720, Oct 2013.

[51] Thomas Rid and Ben Buchanan. Attributing cyber attacks. Journal of Strategic
Studies, 38(1-2):4–37, 2015.

[52] E. Ronen and A. Shamir. Extended functionality attacks on IoT devices: The case
of smart lights. In 2016 IEEE European Symposium on Security and Privacy (EuroS
P), pages 3–12, March 2016.

[53] Ethan M. Rudd, Andras Rozsa, Manuel Günther, and Terrance E. Boult. A survey
of stealth malware: Attacks, mitigation measures, and steps toward autonomous
open world solutions. CoRR, abs/1603.06028, 2016.

[54] O. Salman, S. Abdallah, I. H. Elhajj, A. Chehab, and A. Kayssi. Identity-based au-
thentication scheme for the internet of things. In 2016 IEEE Symposium on Com-
puters and Communication (ISCC), pages 1109–1111, June 2016.

[55] M. Samaniego and R. Deters. Zero-trust hierarchical management in IoT. In 2018
IEEE International Congress on Internet of Things (ICIOT), pages 88–95, July 2018.

[56] J. J. Santanna, R. d. O. Schmidt, D. Tuncer, J. de Vries, L. Z. Granville, and A. Pras.
Booter blacklist: Unveiling DDoS-for-hire websites. In 2016 12th International Con-
ference on Network and Service Management (CNSM), pages 144–152, Oct 2016.

[57] V. G. Semin, E. R. Khakimullin, A. S. Kabanov, and A. B. Los. Problems of informa-
tion security technology the “Internet of Things”. In 2017 International Conference
“Quality Management, Transport and Information Security, Information Technolo-
gies” (IT QM IS), pages 110–113, 2017.

[58] V. Sharma, I. You, K. Yim, I. Chen, and J. Cho. BRIoT: Behavior rule specification-
based misbehavior detection for IoT-embedded cyber-physical systems. IEEE Ac-
cess, 7:118556–118580, 2019.

153



[59] V. L. Shivraj, M. A. Rajan, M. Singh, and P. Balamuralidhar. One time password
authentication scheme based on elliptic curves for internet of things (IoT). In
2015 5th National Symposium on Information Technology: Towards New Smart
World (NSITNSW), pages 1–6, Feb 2015.

[60] S. Sicari, A. Rizzardi, L.A. Grieco, and A. Coen-Porisini. Security, privacy and trust
in internet of things: The road ahead. Computer Networks, 76:146 – 164, 2015.

[61] S. Singh and N. Singh. Internet of things (IoT): Security challenges, business oppor-
tunities reference architecture for e-commerce. In 2015 International Conference
on Green Computing and Internet of Things (ICGCIoT), pages 1577–1581, Oct 2015.

[62] A. Taivalsaari and T. Mikkonen. A taxonomy of IoT client architectures. IEEE
Software, 35(3):83–88, May 2018.

[63] Hayate Takase, Ryotaro Kobayashi, Masahiko Kato, and Ren Ohmura. A proto-
type implementation and evaluation of the malware detection mechanism for IoT
devices using the processor information. International Journal of Information Se-
curity, 19(1):71–81, Feb 2020.

[64] A. Tekeoglu and A. Åd̄. Tosun. A testbed for security and privacy analysis of IoT
devices. In 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), pages 343–348, Oct 2016.

[65] D. Toradmalle, R. Singh, H. Shastri, N. Naik, and V. Panchidi. Prominence of ECDSA
over RSA digital signature algorithm. In 2018 2nd International Conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, pages
253–257, 2018.

[66] W. Trappe, R. Howard, and R. S. Moore. Low-energy security: Limits and opportu-
nities in the internet of things. IEEE Security Privacy, 13(1):14–21, Jan 2015.

[67] Eric M. Uslaner. Trust online, trust offline. Communications of the ACM, 47(4):28–
29, April 2004.

[68] An Wang, Wentao Chang, Songqing Chen, and Aziz Mohaisen. Delving into internet
DDoS attacks by botnets: Characterization and analysis. IEEE/ACM Transactions
on Networking, 26(6):2843–2855, December 2018.

[69] D. Wang, B. Bai, K. Lei, W. Zhao, Y. Yang, and Z. Han. Enhancing information
security via physical layer approaches in heterogeneous IoT with multiple access
mobile edge computing in smart city. IEEE Access, 7:54508–54521, 2019.

[70] M. Wazid, A. K. Das, J. J. P. C. Rodrigues, S. Shetty, and Y. Park. IoMT malware
detection approaches: Analysis and research challenges. IEEE Access, 7:182459–
182476, 2019.

154



[71] J. Xiong, J. Ren, L. Chen, Z. Yao, M. Lin, D. Wu, and B. Niu. Enhancing privacy and
availability for data clustering in intelligent electrical service of IoT. IEEE Internet
of Things Journal, 6(2):1530–1540, 2019.

[72] Ping Yan and Zheng Yan. A survey on dynamic mobile malware detection. Software
Quality Journal, 26(3):891–919, Sep 2018.

[73] A. Yohan and N. Lo. An over-the-blockchain firmware update framework for IoT
devices. In 2018 IEEE Conference on Dependable and Secure Computing (DSC),
pages 1–8, Dec 2018.

[74] Zirak Zaheer, Hyunseok Chang, Sarit Mukherjee, and Jacobus Van der Merwe.
Eztrust: Network-independent zero-trust perimeterization for microservices. In
Proceedings of the 2019 ACM Symposium on SDN Research, SOSR ’19, pages 49–
61, New York, NY, USA, 2019. Association for Computing Machinery.

[75] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli. Secure firmware
updates for constrained IoT devices using open standards: A reality check. IEEE
Access, 7:71907–71920, 2019.

[76] Zerynth. NodeMCU v3. https://docs.zerynth.com/latest/official/board.
zerynth.nodemcu3/docs/index.html, 2020. accessed March 9, 2020.

155



Appendix A

Arduino program for blink

1 /*
2 ESP8266 Blink by Simon Peter
3 Blink the blue LED on the ESP−01 module
4 This example code is in the public domain
5

6 The blue LED on the ESP−01 module is connected to GPIO1
7 ( which is also the TXD pin ; so we cannot use
8 Ser ia l . pr int ( ) at the same time )
9

10 Note that th is sketch uses LED_BUILTIN to find
11 the pin with the internal LED
12 */
13 void setup ( ) {
14 // I n i t i a l i z e the LED_BUILTIN pin as an output
15 pinMode( LED_BUILTIN , OUTPUT) ;
16 }
17

18 // the loop function runs over and over again forever
19 void loop ( ) {
20 // Turn the LED on ( Note that LOW is the voltage leve l
21 dig i ta lWr i te ( LED_BUILTIN , LOW) ;
22 // but actual ly the LED is on; th is i s because
23 // i t i s act ive low on the ESP−01)
24

25 // Wait for a second
26 delay (1000) ;
27 // Turn the LED off by making the voltage HIGH
28 dig i ta lWr i te ( LED_BUILTIN , HIGH) ;
29 // Wait for two seconds ( to demonstrate the act ive low LED)
30 delay (2000) ;
31 }

156



Appendix B

Create table script

1 import boto3
2 from settings import appSetting
3

4 dynamodb = boto3 . resource ( ’dynamodb ’ , region_name=appSetting [ ’ region ’ ] )
5

6 table = dynamodb. create_table (
7 TableName= ’ Registrations ’ ,
8 KeySchema=[
9 {

10 ’AttributeName ’ : ’ user_id ’ ,
11 ’KeyType ’ : ’HASH’ # Par t i t ion key
12 } ,
13 {
14 ’AttributeName ’ : ’device_mac ’ ,
15 ’KeyType ’ : ’RANGE’ # Sort key
16 }
17 ] ,
18 Attr ibuteDefinit ions =[
19 {
20 ’AttributeName ’ : ’ user_id ’ ,
21 ’ AttributeType ’ : ’S ’
22 } ,
23 {
24 ’AttributeName ’ : ’device_mac ’ ,
25 ’ AttributeType ’ : ’S ’
26 }
27

28 ] ,
29 GlobalSecondaryIndexes=[
30 {
31 ’IndexName ’ : ’ registationsByMac ’ ,
32 ’KeySchema ’ : [
33 {
34 ’AttributeName ’ : ’device_mac ’ ,
35 ’KeyType ’ : ’HASH’
36 }
37 ] ,
38 ’ Projection ’ : {

157



39 ’ ProjectionType ’ : ’ALL ’ ,
40 }
41 } ,
42 ] ,
43 BillingMode="PAY_PER_REQUEST"
44 )
45

46 table .meta . c l i en t . get_waiter ( ’ table_exists ’ ) . wait (TableName= ’ Registrations ’ )
47

48 print ( " Table status : " , table . table_status )

158



Appendix C

Source code of the device

1 #include <ESP8266WiFi .h>
2 #include <SoftwareSerial .h>
3 #include <SPI .h>
4 #include <Wire .h>
5 #include <Adafruit_GFX .h>
6 #include <Adafruit_SSD1306 .h>
7 #include <AES .h>
8 #include <CBC.h>
9 #include <ArduinoJson .h>

10 #include <WiFiClientSecure .h>
11 #include <ESP8266WebServer .h>
12 #include <ESP8266mDNS.h>
13 #include <ED25519.h>
14 #include "DHT.h"
15 #include " Storage .h"
16 #include " Display .h"
17 #include " Device .h"
18

19 // global objects used across many functions
20 SoftwareSerial btSer ia l (14 , 12) ;
21 Adafruit_SSD1306 display (128, 64, &Wire , LED_BUILTIN ) ;
22 DHT dht (2 , DHT22) ;
23 ESP8266WebServer server (80) ;
24 f loa t temperature , humidity , heatIndex ;
25 Display myDisplay ( display ) ;
26 Storage storage ;
27 Device device ;
28 bool isConnected ;
29 byte key [32] , i v [16] ;
30 Base64Class base64 ;
31 CBC<AES256> crypto ;
32 unsigned long refreshCounter = 0, heartbeatCounter = 0;
33 bool inFahrenheit = true ;
34

35 // Function to print the current memory usage
36 void availableMemory ( ) {
37 Ser ia l . pr int ( "Memory avai lable : " ) ;
38 Ser ia l . pr int ln ( ESP . getFreeHeap ( ) ) ;

159



39 }
40

41 void connectToWiFi ( ) {
42 isConnected = storage . isConnected ( ) ;
43 i f ( isConnected ) {
44 WiFiCred cred = storage . getWiFiCredentials ( ) ;
45 Ser ia l . pr int ( "Connecting to SSID : " ) ;
46 Ser ia l . pr int ln ( cred . ssid ) ;
47 WiFi . begin ( cred . ssid , cred . password ) ;
48 myDisplay .message( "Connecting to " , cred . ssid ) ;
49 // check i f able to connect to WiFi
50 in t counter = 0;
51 while ( WiFi . status ( ) != WL_CONNECTED) {
52 delay (500) ;
53 counter++;
54 Ser ia l . pr int ( " . " ) ;
55 i f ( counter >= 10) {
56 myDisplay . error ( " Fai led to connect to WiFi " ) ;
57 isConnected = false ;
58 return ;
59 }
60 }
61 Ser ia l . pr int ln ( ) ;
62 Ser ia l . pr int ln ( "Connected" ) ;
63 Ser ia l . pr int ln ( WiFi . loca l I P ( ) ) ;
64 refreshData ( true ) ;
65 sendHeartBeat ( ) ;
66 } else {
67 myDisplay . error ( "No connection info avai lable " ) ;
68 }
69 }
70

71 void sendHeartBeat ( ) {
72 unsigned long timeDiff = mi l l i s ( ) − heartbeatCounter ;
73 // send heartbeat every 10 min
74 i f ( t imeDiff < 60000) {
75 return ;
76 }
77 unsigned long startTime = mi l l i s ( ) ;
78 heartbeatCounter = mi l l i s ( ) ;
79 Ser ia l . pr int ln ( " I n i t i a t i ng heartbeat " ) ;
80 availableMemory ( ) ;
81 WiFiClientSecure c l i en t ;
82 // ver i fy that we are able to connect to the gateway
83 c l i en t . setFingerprint ( f ingerpr int ) ;
84 i f ( ! c l i en t . connect ( host , httpsPort ) ) {
85 Ser ia l . pr int ln ( " connection fa i led " ) ;
86 return ;
87 }
88 String ur l = " /Prod/sensor/data " ;
89 uint8_t signature [64] ;
90 Ed25519 : : sign ( signature , devicePrivKey , devicePubKey , deviceId , str len ( deviceId )

) ;
91 in t encLen = base64 . encodedLength(64) ;

160



92 char ve r i f i e r [ encLen ] ;
93 base64 . encode ( ve r i f i e r , ( char * ) signature , 64) ;
94 Ser ia l . pr int ln ( " sending payload . . . " ) ;
95 String data = String ( " { " ) +
96 " \" device_id \ " : \ " " + deviceId + " \" , " +
97 " \" temperature \ " : " + temperature + " , " +
98 " \" humidity \ " : " + humidity + " , " +
99 " \" heatindex \ " : " + heatIndex + " , " +

100 " \" mi l l i s \ " : " + mi l l i s ( ) + " , " +
101 " \" v e r i f i e r \ " : \ " " + ve r i f i e r + " \" " +
102 " } " ;
103 String payload = String ( "PUT " ) + ur l + " HTTP/1.1\ r \n" +
104 "Host : " + host + " \ r \n" +
105 "Cache−Control : no−cache \ r \n" +
106 "Content−Type : application/json \ r \n" +
107 "Content−Length : " + data . length ( ) + " \ r \n" +
108 "Connection : close \ r \n\ r \n" +
109 data ;
110 c l i en t . pr int ( payload ) ;
111 // clear the header
112 while ( c l i en t . connected ( ) ) {
113 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;
114 i f ( l ine == " \ r " ) {
115 break ;
116 }
117 }
118 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;
119 Ser ia l . pr int ln ( " . . . response received " ) ;
120 c l i en t . stop ( ) ;
121 i f ( l ine . equals ( " { \ "message\ " : \"SUCCESS\ " } " ) ) {
122 Ser ia l . pr int ln ( " Success response from gateway " ) ;
123 } else {
124 Ser ia l . pr int ln ( l ine ) ;
125 }
126 availableMemory ( ) ;
127 Ser ia l . pr int ( " [ Heartbeat ] Total time : " ) ;
128 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
129 }
130

131 void sendUserBT ( Str ing message) {
132 // get required variables
133 in t msgLen = message . length ( ) ;
134 in t cipherLen = msgLen − (msgLen % 16) + (msgLen % 16 > 0 ? 16 : 0) ;
135 //form message with padding
136 byte bMsg[ cipherLen ] ;
137 for ( in t i = 0; i < msgLen; i ++) {
138 bMsg[ i ] = message[ i ] ;
139 }
140 // add padding
141 for ( in t i = 0; i < ( cipherLen − msgLen) ; i ++) {
142 bMsg[msgLen + i ] = 0;
143 }
144 //encrypt
145 byte cipher [ cipherLen ] ;

161



146 byte plain [ cipherLen ] ;
147 crypto . clear ( ) ;
148 crypto . setKey ( key , 32) ;
149 crypto . setIV ( iv , 16) ;
150 crypto . encrypt ( cipher , bMsg, cipherLen ) ;
151 //encode
152 in t encLen = base64 . encodedLength ( cipherLen ) ;
153 char response [ encLen ] ;
154 base64 . encode ( response , ( char * ) cipher , cipherLen ) ;
155 Ser ia l . pr int ln ( response ) ;
156 btSer ia l . write ( response ) ;
157 }
158

159 void rcvUserBT ( char* plain ) {
160 // wait to get data from user
161 while ( btSer ia l . avai lable ( ) <= 0) { }
162 unsigned long startTime = mi l l i s ( ) ;
163 String message = btSer ia l . readString ( ) ;
164 Ser ia l . pr int ln (message) ;
165 in t msgLen = message . length ( ) ;
166 char * msg = const_cast<char*>(message . c_str ( ) ) ;
167 in t encLen = base64 . decodedLength (msg, msgLen) ;
168 byte bMsg[ encLen ] ;
169 // decode
170 base64 .decode ( ( char * )bMsg, msg, msgLen) ;
171 Ser ia l . pr int ln ( "Message decoded" ) ;
172 // decrypt
173 crypto . clear ( ) ;
174 crypto . setKey ( key , 32) ;
175 crypto . setIV ( iv , 16) ;
176 crypto . decrypt ( ( byte * ) plain , bMsg, encLen ) ;
177 Ser ia l . pr int ln ( "Message decrypted " ) ;
178 Ser ia l . pr int ( " [ Step 2] Total time : " ) ;
179 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
180 }
181

182 bool verifyUser ( const char* userId ) {
183 WiFiClientSecure c l i en t ;
184 Ser ia l . pr int ( " Verifying user " ) ;
185 Ser ia l . pr int ln ( userId ) ;
186 // ver i fy that we are able to connect to the gateway
187 c l i en t . setFingerprint ( f ingerpr int ) ;
188 i f ( ! c l i en t . connect ( host , httpsPort ) ) {
189 Ser ia l . pr int ln ( " connection fa i led " ) ;
190 return fa lse ;
191 }
192 String ur l = " /Prod/ registrat ion " ;
193 uint8_t signature [64] ;
194 Ed25519 : : sign ( signature , devicePrivKey , devicePubKey , deviceId , str len ( deviceId )

) ;
195 in t encLen = base64 . encodedLength(64) ;
196 char ve r i f i e r [ encLen ] ;
197 base64 . encode ( ve r i f i e r , ( char * ) signature , 64) ;
198 Ser ia l . pr int ln ( "Generated signature " ) ;

162



199 String data = String ( " { " ) +
200 " \" device_id \ " : \ " " + deviceId + " \" , " +
201 " \" user_id \ " : \ " " + userId + " \" , " +
202 " \" mi l l i s \ " : \ " " + mi l l i s ( ) + " \" , " +
203 " \" v e r i f i e r \ " : \ " " + ve r i f i e r + " \" " +
204 " } " ;
205 String payload = String ( "PUT " ) + ur l + " HTTP/1.1\ r \n" +
206 "Host : " + host + " \ r \n" +
207 "Cache−Control : no−cache \ r \n" +
208 "Content−Type : application/json \ r \n" +
209 "Content−Length : " + data . length ( ) + " \ r \n" +
210 "Connection : close \ r \n\ r \n" +
211 data ;
212 c l i en t . pr int ( payload ) ;
213 // clear the header
214 while ( c l i en t . connected ( ) ) {
215 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;
216 i f ( l ine == " \ r " ) {
217 break ;
218 }
219 }
220 String l ine = c l i en t . readStringUnti l ( ’ \n ’ ) ;
221 c l i en t . stop ( ) ;
222 i f ( l ine . equals ( " { \ "message\ " : \"SUCCESS\ " } " ) ) {
223 Ser ia l . pr int ln ( " Success response from gateway " ) ;
224 return true ;
225 } else {
226 Ser ia l . pr int ln ( l ine ) ;
227 }
228 return fa lse ;
229 }
230

231 void addUser ( ) {
232 unsigned long startTime = 0;
233 /*STEP1 : send encrypted hello message back to the user */
234 startTime = mi l l i s ( ) ;
235 sendUserBT ( "HELLO" ) ;
236 Ser ia l . pr int ln ( "Send confirmation to user . waiting response " ) ;
237 availableMemory ( ) ;
238 Ser ia l . pr int ( " [ Step 1.2] Total time : " ) ;
239 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
240

241 /* STEP2 : get user id of the user and WiFi credentials i f primary user */
242 startTime = mi l l i s ( ) ;
243 StaticJsonDocument<200> inputJson ;
244 char plain [128];
245 rcvUserBT ( plain ) ;
246 Ser ia l . pr int ln ( plain ) ;
247 Deseria l izat ionError error = deserial izeJson ( inputJson , plain ) ;
248 i f ( error ) {
249 Ser ia l . pr int ( F ( " fa i led to deseria l ize input : " ) ) ;
250 Ser ia l . pr int ln ( error . c_str ( ) ) ;
251 return ;
252 }

163



253 Ser ia l . pr int ln ( "Message ser ia l ized " ) ;
254 const char* ssid = inputJson [ " ssid " ] ;
255 const char* password = inputJson [ "password" ] ;
256 const char* userId = inputJson [ " user_id " ] ;
257 availableMemory ( ) ;
258 Ser ia l . pr int ( " [ Step 2 FULL ] Total time : " ) ;
259 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
260

261 /* STEP3 : Connect to Wif i with the given credentials */
262 startTime = mi l l i s ( ) ;
263 Ser ia l . pr int ( "Connecting to SSID : " ) ;
264 Ser ia l . pr int ln ( ssid ) ;
265 WiFi . begin ( ssid , password ) ;
266 myDisplay .message( "Connecting to " , const_cast<char*>( ssid ) ) ;
267 // check i f able to connect to WiFi
268 in t counter = 0;
269 while ( WiFi . status ( ) != WL_CONNECTED) {
270 delay (500) ;
271 counter++;
272 Ser ia l . pr int ( " . " ) ;
273 i f ( counter >= 10) {
274 Ser ia l . pr int ln ( " Fai led to connect to WiFi " ) ;
275 return ;
276 }
277 }
278 Ser ia l . pr int ln ( ) ;
279 Ser ia l . pr int ln ( "Connected" ) ;
280 Ser ia l . pr int ln ( WiFi . loca l I P ( ) ) ;
281 myDisplay .message( "ACTION: " , " ver i fy ing user " ) ;
282 availableMemory ( ) ;
283 Ser ia l . pr int ( " [ Step 3] Total time : " ) ;
284 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
285

286 /* STEP4 : ver i fy user from gateway */
287 startTime = mi l l i s ( ) ;
288 bool isVer i f ied = verifyUser ( userId ) ;
289 i f ( ! i sVer i f ied ) {
290 availableMemory ( ) ;
291 myDisplay . error ( " Fai led to ver i fy user " ) ;
292 btSer ia l . write ( " FAILED " ) ;
293 return ;
294 }
295 availableMemory ( ) ;
296 Ser ia l . pr int ( " [ Step 4] Total time : " ) ;
297 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
298

299 /* STEP5 : Store credentials in EEPROM */
300 startTime = mi l l i s ( ) ;
301 myDisplay .message( "ACTION: " , " completing setup " ) ;
302 storage . wif iSSID = const_cast<char*>( ssid ) ;
303 storage . wifiPassword = const_cast<char*>(password ) ;
304 storage . userId = const_cast<char*>(userId ) ;
305 storage . userKey = key ;
306 storage . userIV = iv ;

164



307 isConnected = storage . addPrimaryUser ( ) ;
308 availableMemory ( ) ;
309 Ser ia l . pr int ( " [ Step 5] Total time : " ) ;
310 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
311

312 /*STEP6 : confirm success to user*/
313 startTime = mi l l i s ( ) ;
314 sendUserBT ( WiFi .macAddress ( ) ) ;
315 myDisplay .message( "ACTION: " , " setup complete " ) ;
316 delay (1000) ;
317 availableMemory ( ) ;
318 Ser ia l . pr int ( " [ Step 6] Total time : " ) ;
319 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
320 // cleanup
321 inputJson . clear ( ) ;
322 }
323

324 // function to cater to new user connect request
325 void getConnected ( ) {
326 unsigned long startTime = 0;
327 // wait t i l l someone try to connect to the device using bluetooth
328 i f ( b tSer ia l . avai lable ( ) > 0) {
329 startTime = mi l l i s ( ) ;
330 Ser ia l . pr int ln ( " user connecting " ) ;
331 availableMemory ( ) ;
332 // get the i n i t i a l encoded connection request
333 String input = btSer ia l . readString ( ) ;
334 const int inputLen = input . length ( ) ;
335 char dInput [ inputLen ] ;
336 device . decode ( input , dInput ) ;
337 StaticJsonDocument<200> inputJson ;
338 Deseria l izat ionError error = deserial izeJson ( inputJson , dInput ) ;
339 i f ( error ) {
340 Ser ia l . pr int ( F ( " fa i led to deseria l ize input : " ) ) ;
341 Ser ia l . pr int ln ( error . c_str ( ) ) ;
342 return ;
343 }
344 // check what is the connection message type
345 i f ( strcmp ( inputJson [ "message" ] , "HELLO" ) == 0) {
346 // get the key and IV
347 hexCharacterStringToBytes ( key , inputJson [ "key " ] ) ;
348 hexCharacterStringToBytes ( iv , inputJson [ " i v " ] ) ;
349 // i n i t i a t e adding a user
350 Ser ia l . pr int ( " [ Step 1.1] Total time : " ) ;
351 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
352 addUser ( ) ;
353 } else {
354 Ser ia l . pr int ln ( " Inva l id message" ) ;
355 }
356 // cleanup
357 inputJson . clear ( ) ;
358 }
359 }
360

165



361 bool refreshData ( bool forCommand) {
362 unsigned long timeDiff = mi l l i s ( ) − refreshCounter ;
363 i f ( ! forCommand && timeDiff < 5000) {
364 return fa lse ;
365 }
366 refreshCounter = mi l l i s ( ) ;
367 temperature = dht . readTemperature ( inFahrenheit ) ;
368 humidity = dht . readHumidity ( ) ;
369 i f ( isnan ( humidity ) | | isnan ( temperature ) ) {
370 temperature = 0;
371 humidity = 0;
372 heatIndex = 0;
373 myDisplay . error ( " Fai led to read sensor " ) ;
374 return fa lse ;
375 }
376 heatIndex = dht . computeHeatIndex ( temperature , humidity ) ;
377 myDisplay . data ( temperature , humidity , heatIndex , inFahrenheit ) ;
378 // availableMemory ( ) ;
379 // Ser ia l . pr int ln ( " Data refreshed " ) ;
380 return true ;
381 }
382

383 void handleRoot ( ) {
384 Ser ia l . pr int ln ( " received root . . . " ) ;
385 server . send(200, " text /plain " , " Hello Saisor ! " ) ;
386 Ser ia l . pr int ln ( " . . . response send" ) ;
387 }
388

389 void handleCommand ( ) {
390 unsigned long startTime = mi l l i s ( ) ;
391 Ser ia l . pr int ln ( " received command. . . " ) ;
392 availableMemory ( ) ;
393 // ver i fy GET method
394 i f ( server .method ( ) != HTTP_GET) {
395 Ser ia l . pr int ln ( " Inva l id HTTP method" ) ;
396 server . send(400, " application /json " , " Inva l id request " ) ;
397 return ;
398 }
399 // ver i fy parameters
400 String cipherCmd = server . arg ( " data " ) ;
401 String ve r i f i e r = server . arg ( " v e r i f i e r " ) ;
402 ve r i f i e r . replace ( ’ ’ , ’+ ’ ) ;
403 cipherCmd . replace ( ’ ’ , ’+ ’ ) ;
404 i f ( cipherCmd == " " | | v e r i f i e r == " " ) {
405 Ser ia l . pr int ln ( " . . . Missing parameters " ) ;
406 server . send(401, " text /plain " , " Inva l id parameters " ) ;
407 return ;
408 }
409 Ser ia l . pr int ln ( cipherCmd) ;
410 Ser ia l . pr int ln ( v e r i f i e r ) ;
411

412 // ver i fy the signature − must be from gateway
413 in t sLen = ve r i f i e r . length ( ) ;
414 char* encSignature = const_cast<char*>( v e r i f i e r . c_str ( ) ) ;

166



415 in t encLen = base64 . decodedLength ( encSignature , sLen ) ;
416 byte signature [ encLen ] ;
417 base64 .decode ( ( char * ) signature , encSignature , sLen ) ;
418 bool isVer i f ied = Ed25519 : : ver i f y ( signature , serverPubKey , cipherCmd . c_str ( ) ,

cipherCmd . length ( ) ) ;
419 i f ( ! i sVer i f ied ) {
420 Ser ia l . pr int ln ( " . . . Signature var i f i ca t ion fa i led " ) ;
421 server . send(401, " text /plain " , " Inva l id ve r i f i e r " ) ;
422 return ;
423 }
424 Ser ia l . pr int ln ( " Signature ver i f ied successful ly " ) ;
425 availableMemory ( ) ;
426

427 // decode command
428 Ser ia l . pr int ln ( " Decrypting command" ) ;
429 UserInfo user = storage . getUser ( ) ;
430 in t cipherLen = cipherCmd . length ( ) ;
431 char* cipher = const_cast<char*>(cipherCmd . c_str ( ) ) ;
432 encLen = base64 . decodedLength ( cipher , cipherLen ) ;
433 byte bCmd[ encLen ] ;
434 char command[ 6 ] ;
435 base64 .decode ( ( char * )bCmd, cipher , cipherLen ) ;
436 Ser ia l . pr int ln ( "Command decoded" ) ;
437 crypto . clear ( ) ;
438 crypto . setKey ( user . key , 32) ;
439 crypto . setIV ( user . iv , 16) ;
440 crypto . decrypt ( ( byte * )command, bCmd, encLen ) ;
441 command[6] = ’\0 ’ ;
442 i f ( strcmp (command, "TYPE_C" ) == 0) {
443 inFahrenheit = fa lse ;
444 } else i f ( strcmp (command, "TYPE_F " ) == 0) {
445 inFahrenheit = true ;
446 } else {
447 Ser ia l . pr int ln ( " . . . Inva l id command" ) ;
448 server . send(400, " text /plain " , " Inva l id command" ) ;
449 return ;
450 }
451 bool isRefreshed = refreshData ( true ) ;
452 i f ( ! isRefreshed ) {
453 Ser ia l . pr int ln ( " . . . Inva l id command" ) ;
454 server . send(400, " text /plain " , " Fai led to refresh data " ) ;
455 return ;
456 }
457 Ser ia l . pr int ( "Temperature : " ) ;
458 Ser ia l . pr int ln ( temperature ) ;
459 String data = String ( " { " ) +
460 " \" temperature \ " : " + temperature + " , " +
461 " \" humidity \ " : " + humidity + " , " +
462 " \" heatindex \ " : " + heatIndex + " , " +
463 " \" counter \ " : " + mi l l i s ( ) +
464 " } " ;
465 availableMemory ( ) ;
466

467 // encrypt response data

167



468 in t dataLen = data . length ( ) ;
469 cipherLen = dataLen − ( dataLen % 16) + ( dataLen % 16 > 0 ? 16 : 0) ;
470 //form message with padding
471 byte bData [ cipherLen ] ;
472 for ( in t i = 0; i < dataLen ; i ++) {
473 bData [ i ] = data [ i ] ;
474 }
475 // add padding
476 for ( in t i = 0; i < ( cipherLen − dataLen ) ; i ++) {
477 bData [ dataLen + i ] = 0;
478 }
479 //encrypt
480 byte cipherData [ cipherLen ] ;
481 crypto . clear ( ) ;
482 crypto . setKey ( user . key , 32) ;
483 crypto . setIV ( user . iv , 16) ;
484 crypto . encrypt ( cipherData , bData , cipherLen ) ;
485 //encode
486 encLen = base64 . encodedLength ( cipherLen ) ;
487 char resData [ encLen ] ;
488 base64 . encode ( resData , ( char * ) cipherData , cipherLen ) ;
489 resData [ encLen ] = ’\0 ’ ;
490 Ser ia l . pr int ln ( " Encrypted response " ) ;
491 availableMemory ( ) ;
492

493 // add signature for ver i f i ca t ion at gateway
494 uint8_t resSign [64] ;
495 Ed25519 : : sign ( resSign , devicePrivKey , devicePubKey , resData , str len ( resData ) ) ;
496 encLen = base64 . encodedLength(64) ;
497 char resVer i f ie r [ encLen ] ;
498 base64 . encode ( resVer i f ier , ( char * ) resSign , 64) ;
499 // send response to gateway
500 String response = String ( " { " ) +
501 " \" data \ " : \ " " + resData + " \" , " +
502 " \" v e r i f i e r \ " : \ " " + resVer i f ie r + " \" "
503 " } " ;
504 server . send(200, " application /json " , response ) ;
505 Ser ia l . pr int ln ( " . . . response send" ) ;
506 availableMemory ( ) ;
507 Ser ia l . pr int ( " [command] Total time : " ) ;
508 Ser ia l . pr int ln ( mi l l i s ( ) − startTime ) ;
509 }
510

511 void handleNotFound ( ) {
512 Ser ia l . pr int ln ( " inva l id request received . . . " ) ;
513 String message = " F i l e Not Found\n\n" ;
514 message += " URI : " ;
515 message += server . ur i ( ) ;
516 message += " \nMethod: " ;
517 message += ( server .method ( ) == HTTP_GET) ? "GET" : "POST" ;
518 message += " \nArguments : " ;
519 message += server . args ( ) ;
520 message += " \n" ;
521 for ( uint8_t i = 0; i < server . args ( ) ; i ++) {

168



522 message += " " + server .argName( i ) + " : " + server . arg ( i ) + " \n" ;
523 }
524 server . send(404, " text /plain " , message) ;
525 Ser ia l . pr int ln ( " . . . response send" ) ;
526 }
527

528 void setup ( ) {
529 Ser ia l . begin(9600) ;
530 btSer ia l . begin(9600) ;
531 dht . begin ( ) ;
532 myDisplay . setup ( ) ;
533 dht . begin ( ) ;
534 connectToWiFi ( ) ;
535 server .on( " / " , handleRoot ) ;
536 server .on( " /command" , handleCommand) ;
537 server .onNotFound( handleNotFound ) ;
538

539 server . begin ( ) ;
540 Ser ia l . pr int ln ( "HTTP server started " ) ;
541 }
542

543 void loop ( ) {
544 i f ( ! isConnected ) {
545 getConnected ( ) ;
546 return ;
547 }
548 refreshData ( fa lse ) ;
549 sendHeartBeat ( ) ;
550 server . handleClient ( ) ;
551 MDNS. update ( ) ;
552 }

169



Appendix D

Template to deploy resources using SAM

1 AWSTemplateFormatVersion : ’2010−09−09’
2 Transform : AWS: : Serverless−2016−10−31
3 Description : Saisor − Categories
4

5 Globals :
6 Function :
7 MemorySize : 1024
8 Timeout : 180
9 Runtime : python3.7

10 CodeUri : .
11 Api :
12 Cors :
13 AllowMethods : " ’OPTIONS,GET,POST,DELETE ,PUT’ "
14 AllowHeaders : " ’ Authorization , Content−Type , Access−Control−Allow−Origin ’ "
15 AllowOrigin : " ’ * ’ "
16 Auth :
17 Authorizers :
18 BasicAuthorizer :
19 FunctionArn : arn :aws : lambda : us−east−1:767100225279:function : saisor−

authorizer−AuthorizerFunction−GXBWTH890W5W
20 DefaultAuthorizer : BasicAuthorizer
21 AddDefaultAuthorizerToCorsPreflight : False
22

23

24 Resources :
25

26 GetRegistrationsFunction :
27 Type : AWS: : Serverless : : Function
28 Properties :
29 Handler : registrat ion /get . lambda_handler
30 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
31 Events :
32 GetRegistrationsApi :
33 Type : Api
34 Properties :
35 Path : / registrat ion
36 Method: GET
37

170



38 AddRegistrationsFunction :
39 Type : AWS: : Serverless : : Function
40 Properties :
41 Handler : registrat ion /put . lambda_handler
42 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
43 Events :
44 AddRegistrationsApi :
45 Type : Api
46 Properties :
47 Path : / registrat ion
48 Method: PUT
49 Auth :
50 Authorizer : NONE
51

52 UpdateRegistrationsFunction :
53 Type : AWS: : Serverless : : Function
54 Properties :
55 Handler : registrat ion /post . lambda_handler
56 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
57 Events :
58 UpdateRegistrationsApi :
59 Type : Api
60 Properties :
61 Path : / registrat ion
62 Method: POST
63

64 addDeviceDataFunction :
65 Type : AWS: : Serverless : : Function
66 Properties :
67 Handler : devicedata/put . lambda_handler
68 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
69 Events :
70 addDeviceDataApi :
71 Type : Api
72 Properties :
73 Path : /sensor/data
74 Method: PUT
75 Auth :
76 Authorizer : NONE
77

78 sendCommandFunction :
79 Type : AWS: : Serverless : : Function
80 Properties :
81 Handler : command/post . lambda_handler
82 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
83 Events :
84 sendCommandApi:
85 Type : Api
86 Properties :
87 Path : /command
88 Method: POST
89

90 addDeviceFunction :
91 Type : AWS: : Serverless : : Function

171



92 Properties :
93 Handler : device/create . lambda_handler
94 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
95

96 addTransactionFunction :
97 Type : AWS: : Serverless : : Function
98 Properties :
99 Handler : transaction/put . lambda_handler

100 Role : arn :aws : iam::767100225279: role /dynamodb−service−role
101

102 heartbeatCheckFunction :
103 Type : AWS: : Serverless : : Function
104 Properties :
105 Handler : devicedata/heartbeatcheck . lambda_handler
106 Role : arn :aws : iam::767100225279: role /dynamodb−service−role

172


