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Abstract 

The purpose of this study is to investigate the effects of simulated somatosensory 

deficit and vision on (1) linear measures and (2) rambling-trembling-derived measures of 

the COP during quiet standing. It was hypothesized that (1) linear COP measures will 

show greater changes from baseline as deficit severity increases and there will be an 

interaction between the deficit severity and visual condition, with the effect greater in the 

eyes-closed condition compared to the eyes-open, and (2) rambling (RM) and trembling 

(TR) parameters will show similar trends across deficit and vision conditions, but with 

different magnitudes, and present greater sensitivity to deficit detection compared to the 

COP measures. The long-term goal of this study is to understand postural sway from a 

mechanistic perspective and use this information to develop a clinically-relevant measure 

of balance that is sensitive to changes in somatosensation abilities.  

Fifty-two healthy young adults (aged 22.10 ± 1.88 years, 29 male, 23 female) 

participated in the study. Participants were asked to stand on two force plates (AMTI, 

Watertown, MA) with a standardized stance and either eyes open (EO) or closed (EC). 

Five foam thickness conditions (0”, 1/8”, 1/4”, 1/2”, and 1”, corresponding to F0, F1, F2, 

F3, and F4, respectively) were used to simulate varying degrees of somatosensory deficit. 

Participants completed three trials with EO and EC for each randomly-ordered foam 

condition. Foot-floor kinetic data were filtered with a 10 Hz lowpass Butterworth filter and 

analyzed using MATLAB software (Mathworks, Natick, MA). Force and COP data were 

used to calculate RM and TR time series, as detailed by Zatsiorsky & Duarte (1999). 

Velocity, acceleration, and jerk in the mediolateral (ML) and anteroposterior (AP) 

directions were calculated for every measure type (COP, RM, and TR). Percent changes 
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were calculated using F0 as the baseline. MATLAB software was used to perform three-

way analyses of variance with Tukey’s HSD post hoc tests with p<0.01 to determine 

analyze effects of vision, foam thickness, and measure type. Linear regression of each 

parameter across foam thickness was performed to estimate measure means across the 

full spectrum of simulated deficit. 

The EO condition produced no statistically significant differences across any foam 

condition, often plateauing after F2. Therefore, further analysis was performed primarily 

using EC data. For EC trials, the F4 condition showed greatest percent changes from 

baseline for all assessed parameters, with an upward trend in mean values from F1 to F4 

for COP, RM, and TR measures. In general, standard deviations were very large, likely 

due to the large sample size and inherent variability in postural sway between subjects. 

However, some statistically significant differences between COP, RM, and TR 

acceleration and jerk were still able to be found.  

In terms of sensitivity, COP captures the smallest change in foam thickness, but 

RM provides a robustness across parameters that is not found in COP or TR. 

Dependence on sway direction is evident, with AP parameters often showing greater 

percent changes across foam thickness. RM and TR measures showed different behavior 

in the AP- and ML-direction, with RM greater than COP and TR in the AP-direction. This 

result is particularly interesting when considering the physiological mechanisms attributed 

to RM and TR, as these results suggest that movement in AP-direction may be more 

heavily influenced by the central nervous system. The findings of this study suggest that 

RM-TR derived measures may: (1) provide a greater degree of deficit detection ability 
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than traditional linear COP measures, and (2) reveal previously unknown mechanisms of 

postural control.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

Nearly 30,000 fatal falls occur in America every year, making accidental falls 

among the leading causes of death in older adults in the United States (Burns & Kakara, 

2018; Hartholt, 2016). Medical care from non-fatal falls amount to approximately $50 

billion dollars annually, a significant portion of which can be attributed to surgical and 

rehabilitative efforts (Florence et al., 2018). Even when provided proper medical attention, 

patients experience considerable challenges in maintaining quality of life and 

independence.  

Falls are often the result of sensory dysfunction and subsequent errors in body 

position estimation. In healthy individuals, visual, vestibular, and somatosensory 

feedback mechanisms allow for sophisticated movements. Falls in older adults are often 

multifactorial and can primarily be attributed to diminished function of one or more of these 

individual systems in addition to lowered sensorimotor processing rates from age-linked 

neural degeneration (Speers, Kuo, & Horak, 2002; Wickremaratchi & Llewelyn, 2006). 

Fall risk assessments typically consist of a physical examination, medication 

dosing review, and a falls history (CDC, 2013). Some common risk factors include hip 

weakness, low balance score, and taking more than 4 medications (Robbins et al., 1989). 

However, in elderly patients without any identified risk factors, there remains an estimated 

12% chance of fall over the course of a year (Robbins et al., 1989). Using these 

established risk factors, a substantial portion of the population is declared a non-risk and 

may not receive vital preventative care. If caught early, fall risk can be minimized through 
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various intervention strategies, such as physical therapy. Thus, the need for more 

sensitive balance measures is evident (Berg, Maki, Williams, Holliday, & Wood-

Dauphinee, 1992). 

Balance has been studied in a research setting primarily through posturography, 

which uses reaction forces and moments to calculate center-of-pressure (COP), a point 

which represents the location of a concentrated sum of bodily pressure under the soles 

of the feet. COP can be plotted as a time-series, which allows for calculations of linear 

and nonlinear parameters such as path length, range, velocity, and entropy. These 

measures have been used extensively in balance research across age and pathology, 

but lack a connection to the physiological mechanisms that dictate them (Berg et al., 1992; 

Doyle, Hsiao-Wecksler, Ragan, & Rosengren, 2007; Lin, Seol, Nussbaum, & Madigan, 

2008).  

It is well documented that COP movement is influenced by the body’s center of 

gravity (COG) and inertial forces, and there has been a significant effort to decompose 

COP signals into components that describe these control mechanisms (Murray, Seireg, 

& Scholl, 1967). Zatsiorsky and King developed a method for determining position of the 

gravity line (GL), a vertical line estimation of the body’s COG (Vladimir M. Zatsiorsky & 

King, 1998). With the goal of differentiating GL movement from inertial forces, Zatsiorsky 

and Duarte later developed a COP signal decomposition method that calculates rambling 

(RM), movement of the body’s instant equilibrium point, and trembling (TR), oscillations 

around said reference point (V. M. Zatsiorsky & Duarte, 1999, 2000).  

Effects of age, stance position, and vision have all been investigated using RM-TR 

methods and findings suggest that sensory information: (1) plays a key role in modulating 
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standing balance and (2) influences RM and TR components differently (Ferronato & 

Barela, 2011; Mochizuki, Duarte, Amadio, Zatsiorsky, & Latash, 2006; Sarabon, Panjan, 

& Latash, 2013). RM-TR decomposition analysis has the potential to change how sway 

is analyzed in both research and clinical settings. Expanding knowledge of postural sway 

mechanisms will aid in our understanding of healthy aging and pathological complications 

in addition to informing fall risk detection and mitigation strategies.  

1.2 Specific Aims 

The specific aims of this study are to: investigate the effects of simulated balance 

deficit and vision on (1) linear measures and (2) RM-TR-derived measures of the COP 

during quiet standing. It is hypothesized that: (1) linear COP measures will show 

increasing changes from baseline as deficit severity increases and there will be an 

interaction between the deficit severity and visual condition, with the effect greater in the 

eyes-closed condition compared to the eyes-open, and (2) RM and TR parameters will 

show similar trends across deficit and vision conditions, but with different magnitudes, 

and present greater sensitivity to deficit detection compared to the linear COP measures.  

The long-term goal of this research is to develop a sensitive measure of balance 

deficit that can be used in a research and clinical setting to better understand postural 

sway on a population- and patient-scale.  

1.3 Thesis Content 

This document contains four chapters. Chapter 1 contains a brief introduction to 

posturography and its shortcomings in research and clinical settings. Chapter 2 details 

relevant background information regarding physiological dynamics, postural sway 
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feedback mechanisms, existing measures of balance, and medical interventions. Chapter 

3 contains a manuscript of the background, motivation, methods, results, and discussion 

of the study investigating the effects of simulated somatosensory deficit on rambling-

trembling sway trajectories. Chapter 4 summarizes the present study and proposes 

recommendations for future work.   
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Chapter 2: Background 

2.1 Physiology of Postural Sway 

2.1.1 Neural Signaling 

The nervous system is divided into the central and peripheral components. The 

central nervous system (CNS) is comprised of the brain and spinal cord, and the 

peripheral nervous system (PNS) defines all nerves that extend throughout the body. It 

communicates through neuronal connections, which relay chemical messages from one 

neuron to the next in order to provide information from various receptors within the body. 

The body is constantly collecting data that informs our voluntary (conscious) and 

involuntary (subconscious) activities. Signals from sensors placed throughout the body 

are integrated into the PNS and CNS, forming feedback loops that produce appropriate 

output based on input. Sensory receptors generate signals based on environmental 

stimuli, which are transmitted through afferent neuronal pathways to the brain for 

processing.  

Neurons, the basic unit of the nervous system, are composed of three essential 

structures: the postsynaptic terminal, the axon, and presynaptic terminal. They may have 

multiple pre- and post-synaptic terminals, which are responsible for sending and receiving 

signals, respectively. The axon lies between the two terminals and propagates the 

received signal through the neuron and discharges chemical signals that trigger 

subsequent neurons. Neurons operate through the use of action potential, an all-or-

nothing signal that is propagated within and between neurons. To perceive stimuli, the 

signal must be strong enough to reach the sensation threshold, the minimum signal 
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strength required to activate the receptor and trigger action potential. Stimulus strength 

can be amplified through spatial or temporal summation (Figure 1). Spatial summation 

occurs when multiple postsynaptic terminals of a single neuron are activated 

simultaneously, covering a larger area than a single terminal. Together, the potentials can 

sum to achieve threshold. Temporal summation is the result of repeated discharge from 

a single presynaptic terminal. If close enough in time, the effects of repeated discharge 

can summate in the postsynaptic terminal. Sensation threshold is the body’s way of 

filtering stimuli to determine relative importance of the input.  

To produce appropriate motion, input from the body and environment, as well as 

sufficient processing of such input, is vital. The human body utilizes neural input from 

vestibular, visual, and somatosensory systems to determine body position and 

environmental conditions to maintain balance. The vestibular system provides information 

about head position and rotational forces, vision allows input from the environment and 

body orientation, and somatosensation gathers proprioceptive and cutaneous touch 

information.  

Figure 1. Depiction of (a) weak signal, resulting in no action potential (b) temporal 
summation of neuron A, and (c) spatial summation of adjacent neurons A and B. (b) and 
(c) reach sensation threshold and thus trigger an action potential 
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2.1.2 Vestibular System 

The vestibular apparatus is located in the inner ear and acts as an accelerometer 

and inertial sensor for the head. It consists of membranous tubes and cavities, called the 

membranous labyrinth. Within the labyrinth, the semicircular ducts, the utricle, and the 

saccule gather information about head position and rotations.  

The basic functional unit of the vestibular system is the 

hair cell (Figure 2). Hair cells are comprised of three 

essential components: the cilia (kinocilium and 

stereocilia), the cell body, and the nerve. When the hair 

cell is externally stimulated, an influx of potassium ions 

depolarizes the hair cell. This causes depolarization of the 

cell and triggers the opening of voltage-gated ion 

channels, which causes an influx of calcium ions. In the 

presence of calcium ions, the hair cell releases vesicles 

of excitatory neurotransmitters, which are expelled into 

the synaptic cleft. The adjacent nerve receives the 

neurotransmitter, which triggers an afferent neural signal 

cascade and allows for perception of the signal. 

There are three semicircular ducts in each ear, oriented in the anterior, posterior, 

and lateral directions. Each duct has a crest called a crista ampullaris, which is home to 

the cupula, a gelatinous mass of tissue that connects to innervated hair cells. Semicircular 

ducts are filled with a fluid called endolymph; when the head is rotated, fluid flow 

manipulates the shape of the cupula, exciting the hair cell cilia (Hall, 2011; Pfeiffer, Serino, 

Stereocilia 

Kinocilium 

Nerve 

Figure 2. Representative 
drawing of a typical hair cell 
that is vital to the vestibular 
senses. 
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& Blanke, 2014). The three semicircular ducts are used primarily to detect 3-directional 

head rotations.  

The utricle and saccule are chambers within the ear that house sensory organs 

called maculae. Maculae in the utricle and saccule determine orientation of the head in 

the horizontal and vertical plane, respectively. Each macula has hair cells that connect to 

a gelatinous tissue layer. When the head moves, gravity bends cilia embedded in the 

gelatinous layer, stimulating the hair cells and generating a neural signal (Hall, 2011; 

Pfeiffer et al., 2014). The utricle and saccule are particularly important for detecting linear 

accelerations and modulating static equilibrium during standing (Hall, 2011).  

2.1.3 Vision 

The body also heavily relies on visual input to coordinate movement. The retina, 

the light-receptive portion of the eye, is composed of cone and rod cells, which detect 

color of light and brightness. Each rod and cone is connected to bipolar, amacrine, and 

ganglion cells that relay signals to the optic nerve (Hall, 2011). To reach the retina at the 

back of the eye, light passes through the cornea and pupil and refracts on the convex 

lens to create a focal point. The lens can be manipulated to adjust focal length through a 

process called accommodation, which allows the eye to switch between focus on near 

and far objects.  

Vision is key to perceiving environmental conditions and the obstacles that 

accompany them. Information is processed by both focal (central) and ambient 

(peripheral) mechanisms. The central component primarily processes object recognition 

and motion, while the peripheral component processes movement and is thought to be 

responsible for the majority of postural control (Bardy, Warren, & Kay, 1999).  
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2.1.4 Somatosensation 

Within somatosensation, receptors can be classified as mechanoreceptors 

(touch), thermoreceptors (temperature), nociceptors (pain), chemoreceptors (chemicals), 

and proprioceptors (body orientation). Within somatosensation, postural control relies 

most critically on mechanoreceptors and proprioceptors (Speers et al., 2002).  

Human skin contains four main types of mechanoreceptors, including Meissner’s 

corpuscles, Pacinian corpuscles, Merkel’s disks, and Ruffini’s corpuscles. Receptors can 

be described based on their responsiveness (adaptability) and activation threshold. 

Based on their adaptive speed and threshold, these four mechanoreceptors allow for 

different sensation abilities: Meissner corpuscles detect light touch, Pacinian corpuscles 

detect pressure and high-frequency vibration, Merkel’s disks detect hair follicle 

movement, and Ruffini’s corpuscles detect pressure and low-frequency vibration. These 

sensors are placed throughout the body, including the soles of the feet, and allow for 

sensation of conditions such as texture and bodily pressure distribution. 

Proprioceptors provide information regarding body orientation relative to itself. This 

ability relies on input from three basic types of receptors: muscle spindles, Golgi tendon 

organs, and joint receptors. Muscle spindles are responsible for sensing muscle length 

and velocity. Golgi tendon organs monitor force at the muscle-tendon interface, and allow 

assessment of force-based resistance to motion. Joint receptors gather information 

regarding compressive forces within the joint capsules. Together, these sensors provide 

a sense of joint position, kinesthesia, and resistive force.  
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2.2 Age-Related Changes 

Over the course of a lifetime, many different conditions can disrupt sensory 

processing. Some of the most notable conditions include stroke, Parkinson’s disease, and 

diabetes, but perhaps the most prevalent is healthy aging. As we age, we experience 

sensory losses due to degradation in vestibular sense, vision, or somatosensation. This 

is manifested as heightened sensory thresholds that prevent previously-detectable 

signals from reaching threshold and triggering action potential. Any one deficit can 

detrimentally affect postural sway, but more often than not, multiple-system failures are 

responsible for age-related decline in balance.  

2.2.1 Vestibular System 

 Hair cells within the semicircular ducts, utricle, and saccule convert physical 

conditions to electrical signals. With age, the number and quality of hair cells decreases, 

making it more difficult to perceive position and subtle head rotations during quiet 

standing (Speers et al., 2002).  

2.2.2 Vision 

It is well known that vision declines with age. Presbyopia, the most common mode 

of failure with age, is the loss of lens elasticity, which dampens the process of 

accommodation. This condition is considered a standard symptom of aging and is usually 

remedied through the use of reading glasses. However, studies have also shown that 

healthy older adults experience decreases in sensitivity to low-frequency spatial motion 

(Sekuler & Hutman, 1980). Elderly people are also at heightened risk for diseases such 

as cataracts, glaucoma, macular degeneration, and diabetic retinopathy, that can 

severely impact visual acuity and depth perception. 
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2.2.3 Somatosensation 

It is estimated that one in five elderly individuals experiences peripheral 

neuropathy, the loss of touch sensation in the extremities (Richardson, Ashton-Miller, 

Lee, & Jacobs, 1996). Neuropathy can be exacerbated by co-morbid conditions, such as 

diabetes, but can also occur in healthy aging individuals. These deficits arise from a 

variety of causes, including decreased sensitivity (heightened threshold) of mechanical 

stimuli and age-linked degeneration of myelinated afferent fibers (Wickremaratchi & 

Llewelyn, 2006).  

2.3 Fall Prevalence 

According to the United States Census Bureau, the number of adults aged 65 or 

older are expected to make up 23.4% of the total population by the year 2060 (United 

States Census Bureau, 2017). Life expectancy has increased nearly linearly at a rate of 

two years per decade (Crimmins, 2015; Oeppen & Vaupel, 2002).  As life expectancy 

continues to increase, the population of elderly persons also continues to grow, which 

presents a unique challenge to healthcare and geriatric medicine. 

Between 2007 and 2016, there was a 31% increase in falls in adults aged 65 years 

and above, making falls the 7th leading cause of death in older adults (Burns & Kakara, 

2018). In 2016, falls in older adults resulted in 25,189 deaths in the United States. Among 

those who survived, medical costs amounted to nearly $50 billion, presenting a significant 

burden on the healthcare system.  
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2.4 Fall Risk Detection and Prevention 

The CDC outlines four basic steps for preventing falls, including: 1) consulting with 

a healthcare professional about fall risk, 2) exercising to improve balance and muscle 

strength, 3) checking eye function and foot sensitivity regularly, and 4) adapting the home 

to be safer (CDC, 2013). The Center for Disease Control (CDC) recently created an 

initiative for healthcare providers called Stopping Elderly Accidents, Deaths & Injuries 

(STEADI), that encourages doctors to carefully screen, assess, and intervene to reduce 

fall risk (CDC, 2017). STEADI hinges on the validity and detection of established fall risk 

factors, including prescription history, orthostatic blood pressure, visual acuity, footwear, 

vitamin D deficiencies, and comorbidities. Based on these risk factors, doctor may 

prescribe interventions such as altered medication dosing, physical therapy, or dietary 

supplementation. However, in a study assessing the accuracy of fall risk designation, 

Robbins et. al (1989) found that in a patient with no commonly-identified fall risk factors, 

there remains a 12% chance of fall (Robbins et al., 1989). To supplement these risk 

factors, doctors may choose to employ a variety of clinical balance assessments. 

2.5 Clinical Balance Assessment 

Physical therapists may utilize a variety of standardized balance tests, including 

(but not limited to) the dynamic balance test, Berg balance scale (BBS), and timed up and 

go (TUG) (Dixon, Knight, Binns, Ihaka, & O’Brien, 2017). During a dynamic balance test, 

participants are asked to walk as quickly and accurately as possible across a five-meter-

long beam (Dixon et al., 2017). The Berg Balance Scale is a succession of 14 tasks that 

increase in difficulty, including single-leg and bipedal stance and moving from a seated 

to standing position. Performance during each task is ranked from 0-4, with 4 representing 
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successful completion of the task (Dixon et al., 2017). Finally, the TUG test measures the 

time required to raise from a chair, walk 3 meters, turn around, walk back, and sit down. 

Patients are designated as healthy or unhealthy based on adherence to a cutoff time.  For 

estimating fall risk, the cutoff time is typically set to 20 seconds, with a time less than 20 

seconds signifying no fall risk, 20-30 representing moderate risk, and greater than 30 

seconds flagging a significant risk of fall and dependence in activities of daily living 

(Shumway-Cook, Baldwin, Polissar, & Gruber, 1997). A unifying trend found in most 

clinical tests is the aim to test functional abilities and limits; outcomes are designed to 

measure impact on activities of daily living, and not the influence of individual 

physiological systems. Research-based methods, on the other hand, provide a broader 

scope of information pertaining to performance on an individual and group scale using a 

mechanistic approach.  

2.6 Research-based Balance Assessment 

2.6.1 Postural Sway 

Postural sway is the primary method of static balance measurement in a research 

setting. Quiet standing requires signal integration from the visual, vestibular, and 

somatosensory systems in order to maintain upright stance (Winter, 1995). Subtle sway 

movements can be measured using force plates, which collect foot-floor force and 

moment data. Center of Pressure (COP) is a commonly used measure of balance and 

can be described as a point which represents the location of a concentrated sum of bodily 
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pressure under the soles of the feet (Winter, 1995). COP can be calculated in the 

mediolateral and anteroposterior directions according to the following equations: 

 

The reference system used to generate these equations orients the x-axis in the 

mediolateral direction, with positive x pointing to the lateral right of the body. The y-axis 

represents the anteroposterior direction, with positive y pointing posteriorly. The z-axis 

represents the inferior-superior bodily direction, with positive z pointing directly down onto 

the force plates. M and F represent moments and forces in the designated direction, as 

measured by the force plate, and dz represents the distance from the top surface of the 

force plate to the origin of the coordinate system, as provided by the force plate 

manufacturer. Experimental trials typically last between 30 and 90 seconds and require 

the subject to stand quietly with arms resting at the sides.  

Posturography has the power to reveal valuable information about balance and the 

control mechanisms that govern it, and has both medical and research applications. Sway 

analysis has been used extensively to study balance in a wide variety of subject 

demographics, including, but not limited to, healthy young individuals, the elderly, and 

individuals with pathological complications such as peripheral neuropathy. To analyze 

sway, the COP time series is used to calculate various linear measures, depending on 

the nature of the research. A summary of relevant linear measures can be found in Table 

1, below. 

Equation 1. Calculations for center-of-pressure (COP) time-series 

 

Equation 2. Calculations for center-of-pressure (COP) time-series 
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Table 1. Summary of commonly used COP measures, including the time-series, parameter, and 
a selection of relevant research findings that utilize them. 

Time Series Measure Findings 

COP 

Path Length 
- ML-direction reliable with eyes-open or eyes-

closed (Li et al., 2016) 
- Greater in individuals with spinal cord injury 

(Lemay et al., 2014) 

Range 
- Test-retest reliable (Degani et al., 2017) 
- Can differentiate between healthy young 

control and non-faller elderly. (Degani et al., 
2017) 

COP 

Velocity 

Mean 

- Sensitive in both eyes-open and eyes-closed 
conditions (Prieto et al., 1996) 

- Increases shown in elderly and patients with 
vestibular deficiency (Baloh et al., 
1998)(Prieto et al., 1996) 

- COP velocity is correlated to center of mass 
(COM), velocity, but is more correlated with 
COM acceleration (Masani, Vette, Abe, & 
Nakazawa, 2014) 

Maximum - Differentiates between healthy young, elderly 
non-fallers, and elderly fallers (Hewson et al., 
2010) 

COP 

Acceleration 

Mean 
- Due to high correlation of COP velocity and 

COM acceleration, derivative of COP 
acceleration represents COM (body) jerk 
(Masani et al., 2014) 

Root Mean 

Square (RMS) 

- Lower in persons with Multiple Sclerosis than 
healthy controls (Huisinga, Mancini, St. 
George, & Horak, 2013) 

COP 

Jerk 
Mean 

- Associated with “smoothness” of movement 
- Decreases shown in older adults with 

proprioceptive-training intervention (Tai Chi) 
compared to standard care (Hass et al., 2004) 

- Increases shown in older adults (Huang & 
Brown, 2013) 
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2.6.2 Rambling-Trembling  

2.6.2.1 Origins and History 

It is well documented that the COP time series is modulated by migration of the 

center of gravity and inertial forces exerted on the body (Murray et al., 1967; Winter, 1995; 

Vladimir M. Zatsiorsky & King, 1998). Center of gravity is measured by the gravity line, 

the estimated location of a vertical line that passes through the body’s center of gravity. 

There has been significant effort in the last two decades to decompose COP signals into 

static and dynamic components, representing the gravity line and inertial forces, 

respectively, in order to better understand sway biomechanics and postural control 

mechanisms (King & Zatsiorsky, 1997).  

In 1999, Zatsiorsky and Duarte proposed a new decomposition method, coining 

the terms “rambling” and “trembling” (V. M. Zatsiorsky & Duarte, 1999). The goal of this 

method was to develop a measure of two distinct sources of motion: (1) a set, or 

reference, point that moves with time, called rambling, and (2) oscillation of the COP 

around such a point, termed trembling. The primary objective of the development of 

rambling-trembling decomposition was to analyze sway from a mechanistic perspective 

to better understand postural control and its shortcomings (V. M. Zatsiorsky & Duarte, 

1999). 

2.6.2.2 Mathematical Calculation 

Calculation of the rambling and trembling time series is relatively simple and can 

be performed using software such as MATLAB (Mathworks, Natick, MA). The process of 

decomposition is shown in Figure 2 and can summarized in three primary steps:  

1. Find instances when Fhor = 0, known as instant equilibrium points (IEPs).  
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2. Plot COP values at identified IEPs and interpolate points using a cubic spline 

function. This interpolated time series represents an estimation of the rambling 

trajectory. 

3. Subtract COP from the rambling trajectory to estimate the trembling time series. 

 

2.6.2.3 Applications and Secondary Calculations 

Just as with the COP time series, rambling and trembling time series can be used 

to calculate several linear parameters, including velocity, acceleration, and jerk. 

(a) 

(b) 

(c) 

Figure 3. Sample rambling-trembling decomposition COP data (a) shows the 
horizontal force with the zero-crossing points. (b) shows the interpolation of Fhor 
=0 timepoints, shown in red. (c) shows trembling, the difference between COP 
and rambling. 
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Parameter calculations for RM, TR, and COP time series can be studied independently 

and can be used to better understand the relative contributions of each component to 

overall balance. 

Rambling-trembling decomposition has been used to analyze the postural sway of 

healthy young subjects, healthy old subjects, and subjects with pathological complications 

such as multiple sclerosis and spinal cord injury (Sarabon et al., 2013; Shin, Motl, & 

Sosnoff, 2011; Shin & Sosnoff, 2017). Mochizucki et al. (2006) investigated rambling-

trembling patterns in healthy young adults and found rambling velocity to be greater than 

trembling in the anteroposterior direction, and noted that perception of task difficulty had 

a significant influence on outcome. Degani et al. (2017) investigated the changes with 

age and showed larger, faster, and shakier sway in both rambling and trembling 

components (Degani et al., 2017).  

Analysis of these populations has informed several theories of postural control, 

including the equilibrium point hypothesis and the supraspinal-peripheral control 

hypothesis. The equilibrium point, or Feldman’s Lambda, hypothesis suggests that the 

central nervous system maintains upright posture by shifting the COP from one 

equilibrium point to the next, using sensory input to dictate muscular contributions and 

angular adjustments (Feldman, 1986). This theory aligns with the theoretical framework 

for rambling-trembling, equating rambling to movement of the equilibrium point, and 

trembling to the inherent tonic stretch reflex in muscles.  

The supraspinal-peripheral control hypothesis goes further to propose that 

perturbations cause “resetting” of the reference point (rambling) as dictated by the central 

nervous system. According to this hypothesis, movement of the COP is an attempt to 
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constantly restore torsional balance. This centrally-planned motion is subject to deviations 

caused by muscle contraction, reflexes, or external perturbations in the periphery.  This 

interference can be measured as the trembling component of sway (Tahayori, Riley, 

Mahmoudian, Koceja, & Hong, 2012; V. M. Zatsiorsky & Duarte, 1999).   

 Despite the potential value to the study of postural sway, there remains a 

significant gap in knowledge regarding rambling-trembling trajectory analyses and their 

implications for postural control in the presence of visual and somatosensory deficit. 

Therefore, the goals of the current study are to: investigate the effects of simulated 

somatosensory deficit and vision on (1) linear COP measures and (2) RM-TR-derived 

measures of the COP during quiet standing. It was hypothesized that: (1) linear COP 

measures will show increasing changes from baseline as deficit severity increases and 

there will be an interaction between the deficit severity and visual condition, with the effect 

greater in the eyes-closed condition compared to the eyes-open, and (2) RM and TR 

parameters will show similar trends across deficit and vision conditions, but with different 

magnitudes, and present greater sensitivity to deficit detection compared to the linear 

COP measures.  
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Chapter 3: An Investigation of Rambling-Trembling Sway Trajectories 

with Simulated Somatosensory Deficit 

Note: Formatted according to Gait & Posture standards, in anticipation for manuscript 

submission. 
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3.1 Abstract 

Background: Falls in older adults are often multifactorial, but can primarily be attributed 

to diminished sensory detection abilities from age-linked neural degeneration (Speers, 

Kuo, & Horak, 2002; Wickremaratchi & Llewelyn, 2006).  A novel method for center-of-

pressure (COP) analysis, called rambling-trembling (RM-TR) decomposition, has 

potential to provide valuable information about postural sway, with research- and 

clinically-relevant applications (Zatsiorsky & Duarte, 1999, 2000).  

Research Question: What are the effects of vision and simulated somatosensory deficit 

on RM-TR-derived measures of COP, as compared to traditional COP measures? 

Methods: Fifty-two healthy young adults (aged 22.10 ± 1.88 years) participated in the 

study. Participants stood on two force plates with a standardized stance with either eyes 

open (EO) or eyes closed (EC). Five foam thicknesses (F0-F4) were used to simulate 

somatosensory deficit. Force and moment data were filtered using a 10Hz lowpass 

Butterworth filter and used to calculate COP, RM, and TR time series, as detailed by 

Zatsiorsky & Duarte (1999). MATLAB software was used to perform three-way analyses 

of variance with Tukey’s HSD post hoc tests with p<0.01 to determine statistical 

significance. Linear regression of each parameter across foam thickness was performed 

to estimate measure means across the full spectrum of simulated deficit. 

Results: The EO condition showed minimal changes with foam thickness. Therefore, 

analysis is focused primarily on EC, which showed an upward trend is apparent from F1 

to F4 in all measures, with variable magnitudes across measure type. COP captures the 

smallest change in foam thickness, but RM provides a robustness across parameters that 
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is not found in COP or TR. Dependence on sway direction is evident, with AP parameters 

often showing greater changes across foam thickness.  

Significance: Findings suggest that RM-TR derived measures may act as a compliment 

to, or provide a greater sensitivity than, traditional COP measures.  

 

Word Count (300 limit): 297  

Keywords: Center of pressure; Postural control; Balance; Falls 
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3.2 Introduction 

Nearly 30,000 fatal falls occur in America every year, making accidental falls 

among the leading causes of death in older adults in the United States (Burns & Kakara, 

2018; Hartholt, 2016). Medical care from non-fatal falls amount to approximately $50 

billion dollars annually, a significant portion of which can be attributed to surgical and 

rehabilitative efforts (Florence et al., 2018). Even when provided proper medical attention, 

patients experience considerable challenges in maintaining quality of life and 

independence.  

Most falls are the result of sensory dysfunction and subsequent errors in body 

position estimation. In healthy individuals, visual, vestibular, and somatosensory 

feedback mechanisms allow for sophisticated movements. Falls in older adults are often 

multifactorial and can be attributed to diminished function within one or more of these 

individual systems in addition to lowered sensorimotor processing rates from age-linked 

neural degeneration (Speers et al., 2002; Wickremaratchi & Llewelyn, 2006). In elderly 

patients without any identified fall risk factors, there remains an estimated 12% chance of 

a fall over the course of a year (Robbins et al., 1989). If caught early, fall risk can be 

minimized through various intervention strategies, such as physical therapy. Thus, the 

need for more sensitive balance measures is evident (Berg, Maki, Williams, Holliday, & 

Wood-Dauphinee, 1992). 

Balance has been studied in a research setting primarily through posturography, 

which uses reaction forces and moments to calculate center-of-pressure (COP), a point 

which represents the location of a concentrated sum of bodily pressure under the soles 

of the feet. COP can be plotted as a time-series, which allows for calculations of linear 
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parameters such as path length, range, and velocity. These measures have been used 

extensively in balance research across age and pathology, but lack a connection to the 

physiological mechanisms that dictate them (Berg et al., 1992; Doyle, Hsiao-Wecksler, 

Ragan, & Rosengren, 2007; Lin, Seol, Nussbaum, & Madigan, 2008).  

A novel method for center-of-pressure (COP) analysis, called rambling-trembling 

(RM-TR) decomposition, has potential to provide valuable information about postural 

sway, with research- and clinically-relevant applications (Zatsiorsky & Duarte, 1999, 

2000). This decomposition method calculates rambling (RM), movement of the body’s 

instant equilibrium point (IEP), and trembling (TR), oscillations around such a point 

(Zatsiorsky & Duarte, 1999, 2000).  

Effects of age, stance position, and vision have all been investigated using RM-TR 

methods and findings suggest that sensory information: (1) plays a key role in modulating 

standing balance and (2) influences RM and TR components differently (Ferronato & 

Barela, 2011; Mochizuki, Duarte, Amadio, Zatsiorsky, & Latash, 2006; Sarabon, Panjan, 

& Latash, 2013). RM-TR decomposition analysis has the potential to change how sway 

is analyzed in both research and clinical settings. Expanding knowledge of postural sway 

mechanisms will aid in our understanding of healthy aging and pathological complications 

in addition to informing fall risk detection and mitigation strategies.  

The purpose of this study is to investigate the effects of simulated balance deficit 

and vision on (1) linear measures and (2) RM-TR-derived measures of the COP during 

quiet standing. It is hypothesized that: (1) linear measures will show increasing changes 

from baseline as deficit severity increases and there will be an interaction between the 

deficit severity and visual condition, with the effect greater in the eyes-closed condition 
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compared to the eyes-open, and (2) RM and TR parameters will show similar trends 

across deficit and vision conditions, but with variable magnitudes, and present greater 

sensitivity to deficit detection compared to the traditional COP measures. The long-term 

goal of this research is to identify a sensitive measure of balance deficit that can be used 

in a research and clinical setting to better understand postural sway on a population- and 

patient-scale.  

3.3 Methods 

3.3.1 Participants 

Fifty-two healthy young adults (aged 22.10 ± 1.88 years, 29 males, 23 females) 

volunteered to participate in the study. All participants were informed of the study risks 

and benefits, and provided written consent, as approved by the University of Kansas 

Institutional Review Board. Participants with a history of neurological disorder, balance 

problems, and/or significant injury in the back and legs were excluded from participation 

in the study. One subject (s1022) was removed from the study due to significant deviation 

from parameter means (> 3 standard deviations) and subsequent classification as an 

outlier.  

3.3.2 Testing Conditions 

Participants were asked to stand naturally, with arms at the sides, on two force 

plates (AMTI, Watertown, MA). A standardized stance width of 17cm with a 20° angle 

between feet was used (McIlroy & Maki, 1997). Five randomly-ordered foam thickness 

conditions (no foam, 1/8”, 1/4”, 1/2”, and 1”, corresponding to F0, F1, F2, F3, and F4, 

respectively) were used to simulate varying degrees of somatosensory deficit. Foam pads 
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utilized in this study were 12”x12” with a density of 2 lbf/ft3 and pressure to compress 25% 

of 4 psi (McMaster-Carr, Chicago, IL, USA). Two randomly-ordered visual conditions, 

eyes-open (EO) and eyes-closed (EC), were also used.  During the EO condition, 

participants were asked to keep their eyes focused on a target, placed at eye level 

approximately 3 meters from the subject. For the EC condition, participants were asked 

to keep head upright, as if looking at the target. Three 60-second trials were completed 

for every foam thickness and visual condition for a total of 30 trials per subject, with a 5-

minute seated break after every 6 trials.  

3.3.3 Data Collection and Analysis 

Participants were recorded with a video camera for the duration of the testing 

session in order to ensure task instruction compliance. Foot-floor kinetic data were 

collected at 100 Hz using two 6-axis AMTI force plates (Advanced Mechanical 

Technology Inc., Watertown, MA, USA) and a 16-bit A/D acquisition system (Cambridge 

Electronic Design, Cambridge, England, UK). Data were exported as text files and 

analyzed using MATLAB software (Mathworks, Natick, MA). Force and moment data 

were filtered using a 10Hz lowpass Butterworth filter and down-sampled to 50 Hz. Signals 

from the two force plates were combined to form a singular set of force and moment time-

series. These combined signals were then used to calculate a 2-D position vector 

describing the center-of-pressure (COP), the projection of resultant forces on the floor 

surface. Mediolateral (ML) and anteroposterior (AP) COP were calculated according to 

the following equations (Winter, Patla, & Frank, 1990):  
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Force and COP position trajectories were used to calculate RM and TR time series 

in the AP and ML directions, as detailed by Zatsiorsky & Duarte (1999). Briefly, COP 

positions at instant equilibrium points, the time when horizontal force (Fhor) = 0, were found 

and interpolated to estimate RM trajectory. The RM trajectory was subtracted from the 

COP to calculate the TR trajectory. For simplicity, these three distinct time series will be 

referred to as COP, RM, and TR.    

COP, RM, and TR time-series were numerically differentiated with 4th order 

accuracy to calculate COP velocity (1st derivative of position), acceleration (1st derivative 

of velocity), and jerk (1st derivative of acceleration). Mean values were extracted from 

these time series. Calculations for each parameter were done separately in the AP- and 

ML-directions and EO and EC conditions. Relative percent change from baseline (F0, no 

foam) was used to describe parameter values. Sensitivity was defined by: (1) the number 

of significant differences between foam conditions for within- and between-measure 

comparisons, (2) the thinnest detectable foam thickness difference, and (3) the slope of 

the regression line across simulated deficit. 

3.3.4 Statistics 

MATLAB software was used to perform two types of statistical analyses. Three-

way analyses of variance (ANOVA) with Tukey’s HSD post hoc tests were used to 

determine statistical significance between and within foam thickness, measure type, and 

vision groups. Statistical significance was set to p<0.01.  

To perform linear regression, foam thickness was modeled as a dependent 

variable in order to estimate means across the full length of simulated deficit. Statistical 
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significance of coefficients was set to p<0.01 and a 90% confidence interval was 

calculated for each linear model.  

3.4 Results 

3.4.1 EO versus EC 

 The EC condition shows significantly greater changes (p<0.01) across foam 

thickness as compared to EO in all measured parameters. The EO condition resulted in 

a change of approximately 20% or less from baseline to F1-F4 (Figure 1). EC trials show 

a steady increase in mean percent change from F1 to F4, whereas EO often results in a 

plateau at F2, leaving all measures relatively unaffected by the F3 and F4 foam 

thicknesses. Due to the relative lack of sensitivity to foam thickness in the EO condition, 

further analysis is focused on the EC condition.  

3.4.2 RM, TR, and COP Means 

COP, RM, and TR parameters are able to differentiate between various levels of 

foam (Table 1). With p<0.01 accuracy, the COP time series is able to differentiate 

between 10 pairs of foam thicknesses, RM between 17, and TR between 8. RM is able 

consistently distinguish between foam thickness differences of 1/2" or greater. With 

p<0.05 or p<0.1, RM can differentiate between a thickness difference as small as 3/8”. 

COP ML velocity is able to recognize the difference between the smallest change of foam 

thickness, 1/8”, with p<0.05. TR AP velocity shows significant changes for 3/8” differences 

or larger, but presents minimal significance for TR ML velocity, AP acceleration, or ML 

acceleration. With p<0.05, TR ML jerk can differentiate 1/2" or greater.  
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Acceleration and jerk show significant COP-RM and RM-TR differences in the AP, 

but not the ML (Table 2, Table 3). A significant difference between COP and TR is found 

in ML jerk. AP RM means remain relatively constant across velocity, acceleration, and 

jerk, where other parameters tend to decrease with increasing derivative order.   

3.4.3 Linear Regression 

Linear regression across foam thickness was performed on velocity, acceleration, 

and jerk measures (Figure 2). All regression models show upward trends with foam and 

statistically significant slope values, with the exception of ML jerk COP and RM.   

AP Velocity: COP, RM, and TR measures all show significant upward trends with the 

greatest R2 values attributed to COP and RM. Significant overlap between measures, and 

therefore insignificant slope differences, is apparent.  

ML Velocity: COP and TR have higher R2 values than RM. Slopes are nearly identical, 

ranging narrowly from 41.8951 to 43.3057. Confidence intervals show nearly complete 

overlap, suggesting insignificant slope differences. 

AP Acceleration: RM shows the greatest slope. There is no overlap of the RM 90% 

confidence interval with COP and minimal overlap with TR. A significant difference is 

found between RM and COP.  

ML Acceleration: COP shows the greatest slope, but there is substantial overlap between 

the three measures. RM shows the narrowest 90% confidence interval and greatest R2 

value.  

AP Jerk: RM slope is greater than both COP and TR. COP and TR show similar slopes 

and overlapping confidence intervals, but neither measure overlaps with RM, indicating 

significant difference of RM from COP and TR.  
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ML jerk: COP has the lowest of all R2 values (0.0021). COP and RM models have 

insignificant p-values, evidenced by the large confidence intervals. TR, on the other hand, 

shows a clear upward trend with a significant slope and narrow confidence interval.  

3.5 Discussion 

The body relies on information collected by the somatosensory, visual, and 

vestibular sense in order to maintain standing balance. The high measure sensitivity of 

EC, compared to EO, sheds some light onto the dependence on vision under conditions 

of somatosensory deficit. When the eyes are open, our healthy participants used vision 

to compensate for the lack of somatosensory feedback, shifting the sensory weight onto 

the visual and vestibular systems. When the eyes are closed, the body is forced to shift 

sensory weight onto the vestibular system, leaving a larger gap in sensory detection 

abilities. These findings are consistent with the first hypothesis, which stated that there 

would be an interaction between deficit severity and visual condition, with the effect 

greater in the eyes-closed condition compared to the eyes-open.  

This form of sensory weighting is well known in the literature and presents a 

substantial challenge to older adults, who feel the compounding effects of 

somatosensory, visual, and vestibular degeneration. Despite the prevalence, there are 

very few interventions available for somatosensory or vestibular deficits. Visual aids, such 

as glasses or contacts, offer the ability to re-shift sensory weighting onto vision, but there 

is evidence that vision overdependence can lead to falls (Yeh, Cluff, & Balasubramaniam, 

2014). For research-based applications, these findings reinforce the use of eyes-closed 

balance measurement, commonly found in fall risk assessment, as the lack of visual 
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feedback more easily identifies persons experiencing somatosensory and vestibular 

deficits. 

Within- and between-measure comparisons and regression findings support the 

first part of the second hypothesis, which states that COP, RM, and TR parameters will 

show similar trends across deficit and vision conditions, but with variable magnitudes. All 

parameters showed positive upward trends from baseline across foam thickness, but the 

magnitudes of these changes, demonstrated by regression slope values, are not always 

equal. AP RM acceleration and jerk exhibit significantly greater slope values than COP 

and TR. ML TR jerk shows a statistically significant slope, where COP and RM do not. 

These results demonstrate the direction-dependence of both overall sway and the 

individual RM and TR components, and may provide insight into postural control 

mechanisms.  

Much debate surrounds the attribution of physiological mechanisms to RM and TR, 

but a leading theory suggests that RM trajectories are centrally-controlled, while TR 

trajectories are peripherally-controlled (Tahayori, Riley, Mahmoudian, Koceja, & Hong, 

2012). The prominence of RM slopes in the AP direction is particularly interesting when 

considering the physiological mechanisms attributed to RM and TR, as these results may 

suggest that movement is more heavily controlled centrally in the AP. These findings 

highlight the need for further exploration of RM-TR decomposition in the context of 

postural control. 

Conclusions to be made regarding the second part of the second hypothesis are 

less clear. Sensitivity was defined three separate ways: (1) the number of significant 

differences between foam conditions for within- and between-measure comparisons, (2) 
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the thinnest detectable foam thickness difference, and (3) the slope of the regression line 

across simulated deficit. 

All parameters, with the exception of ML acceleration and AP jerk, were able to 

differentiate F1 from F4 (7/8” of foam), which, assuming linearity of parameter change 

across foam thickness, presents the greatest possible difference and most obvious 

contrast. Few parameters could detect a foam difference of 3/8”, and even fewer could 

differentiate the smallest change in foam, 1/8”. COP showed greater detectability for lower 

levels of deficit (F1 vs. F2), while RM was able to consistently differentiate between higher 

levels of deficit (F2 vs F4 and F3 vs F4). The COP time series’ ability to differentiate 

between 1/8” of foam could be crucial in the detection of early-stage somatosensory 

deficit. However, the RM time series was able to differentiate nearly twice as many foam 

levels as COP and TR, suggesting that RM may be a more robust measure for 

intermediate stages of somatosensory loss.   

Regression yielded low p-values implying model significance, but low R2 values 

signifying relatively poor fit, limiting the implications of these models. This was expected 

due to large standard deviation measurements. However, these results in combination 

with 90% confidence intervals may provide valuable diagnostic abilities that span the full 

length of deficit simulation. The RM time series showed significantly greater slope across 

foam thickness than COP and TR in AP acceleration and jerk, highlighting this measure’s 

sensitivity to simulated deficit.  

Together, these three types of sensitivity can be used to inform the most 

appropriate measure of postural sway, depending on direction of interest (AP versus ML) 

and target deficit detectability (early- versus late-stage somatosensory loss).  
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Limitations 

There are several limitations to this study that restrict the implications of our 

findings. First, and perhaps most restricting, foam was used to model somatosensory 

deficit by limiting the amount of feedback provided by the ground surface. This technique 

is common in the study of sway, along with plantar cooling and anesthetics, but is limited 

in its direct application to patient populations (Hoch & Russell, 2016; Patel, Fransson, 

Johansson, & Magnusson, 2011). In this case, foam was the most viable option to 

minimize adverse effects to subjects and this benefit outweighed the marginal differences 

found in other forms of simulated deficit. Previous work has shown sway response to 

foam to be highly dependent on foam density and elastic modulus, but nonetheless 

resulted in altered postural sway patterns (Patel, Fransson, Lush, & Gomez, 2008). While 

the use of foam does not directly mirror the effects of clinical deficit, it does present a 

challenge to balance by introducing a degree of instability that requires altered control 

mechanisms.  

Second, the use of healthy individuals also presented difficulties due to the 

inherent variability in healthy sway. Healthy subjects were used to isolate the effect of the 

simulated somatosensory deficit and decrease the likelihood of confounding medical 

conditions, but resulted in high parameter variance that limited the significance of the 

study’s findings. Significance may have also been limited by the robust balance of healthy 

young individuals, who are able to quickly and efficiently adapt to sensory challenges, 

minimizing contrast between foam thicknesses. Individuals with clinical deficits, on the 

other hand, would not possess this same robust adaptability, potentially yielding even 

greater contrasts, and therefore sensitivity, throughout real-life deficit progression. Third, 
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parameter behavior was assumed to have a linear relationship with simulated deficit, 

which, given the relatively low R2 values, is not necessarily true. Finally, only a limited 

number of parameters were examined in this study. The use of velocity, acceleration, and 

jerk does not fully capture the potential of rambling-trembling methods and leaves the 

door open for further analysis. 

Future Work 

Future work should continue the investigation of rambling-trembling decomposition 

with patient populations, such as Parkinson’s or diabetic peripheral neuropathy, in order 

to further understand its strengths for deficit detection and research-based analysis. It 

may also be beneficial to explore the use of different regression models, such as logistic, 

in search of a better fit of sample data to the model. Researchers may also choose to 

include a wider variety of sway parameters, both linear and nonlinear, to capture a 

broader scope of rambling-trembling behavior.   

3.6 Conclusions 

 Further exploration of rambling-trembling analysis is needed, but current findings 

shed light on the potential value of these methods in both research- and clinically-based 

applications. Understanding postural sway from a mechanistic perspective and identifying 

fall risk in a clinical setting are both vital to reducing falls and maintaining high quality of 

life with age. With this knowledge and improved measure sensitivity, clinicians may soon 

be able to accurately detect fall risk, preventing falls and saving thousands of lives every 

year.  
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Tables and Figures 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Representative EC versus EO analysis. EC magnitudes are consistently greater than EO 
in all parameters, including ML velocity. Significant differences are shown with (***), signifying p < 
0.001.  
 

 

Figure 1. Representative EC versus EO analysis. EC magnitudes are consistently greater than EO 
in all parameters, including ML velocity. Significant differences are shown with (***), signifying p < 
0.001.  
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Table 1. Within-measure foam comparisons in ascending thickness difference order. Color-coded 
significant differences are shown.  
 

p < 0.01
p < 0.05

p < 0.1

Thickness 
Difference AP Vel ML Vel AP Acc ML Acc AP Jerk ML Jerk

1 2 1/8" -15.9703 -21.2044 -4.8486 -2.8398 -3.1401 1.1786
2 3 1/4" -9.4006 -11.9066 -6.5432 -5.5126 -3.5700 -13.9659
1 3 3/8" -25.3710 -33.1110 -11.3917 -8.3524 -6.7101 -12.7872
3 4 1/2" -34.0337 -13.7039 -14.4753 -14.5273 -10.5651 -23.2811
2 4 3/4" -43.4343 -25.6105 -21.0185 -20.0399 -14.1351 -37.2469
1 4 7/8" -59.4047 -46.8149 -25.8670 -22.8797 -17.2751 -36.0683
1 2 1/8" -1.7323 -2.0305 -1.5303 -1.8283 -4.9513 -4.4218
2 3 1/4" -7.0819 -5.6769 -7.0331 -6.9828 -9.5236 -11.5084
1 3 3/8" -8.8142 -7.7074 -8.5634 -8.8112 -14.4749 -15.9302
3 4 1/2" -12.3436 -12.6222 -11.8766 -12.1725 -23.7055 -24.5876
2 4 3/4" -19.4255 -18.2991 -18.9097 -19.1553 -33.2291 -36.0960
1 4 7/8" -21.1578 -20.3296 -20.4400 -20.9836 -38.1805 -40.5178
1 2 1/8" -8.5812 -3.9050 -5.5734 0.0839 -5.1361 -1.1613
2 3 1/4" -13.2351 -7.7458 -8.4381 -0.2703 -4.1207 -5.8869
1 3 3/8" -21.8163 -11.6508 -14.0115 -0.1864 -9.2568 -7.0483
3 4 1/2" -22.1350 -19.4351 -9.9494 -4.1258 -3.4914 -10.4743
2 4 3/4" -35.3701 -27.1809 -18.3875 -4.3961 -7.6121 -16.3613
1 4 7/8" -43.9513 -31.0859 -23.9609 -4.3122 -12.7483 -17.5226

CO
P

RM
TR

Foam
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Table 2. Mean changes in velocity, acceleration, and jerk from baseline (F0) to F4.  
 

Table 2. Mean changes in velocity, acceleration, and jerk from baseline (F0) to F4.  

p < 0.01
p < 0.05

p < 0.1

Table 3. P-values for measure-type comparisons for mean change from baseline to F4.  

COP RM TR
AP Vel 43.186 48.687 40.766
ML Vel 46.526 48.011 45.712
AP Acc 24.043 42.380 20.425
ML Acc 22.009 24.260 26.059
AP Jerk 20.329 43.779 13.860
ML Jerk 5.987 16.3444 23.905

COP RM TR COP RM TR COP RM TR
COP 0.7086 0.9355 0.0255 0.8653 0.0161 0.7272
RM 0.4901 0.0053 0.0013
TR

COP RM TR COP RM TR COP RM TR
COP 0.9776 0.9932 0.9376 0.8118 0.2756 0.0218
RM 0.9471 0.9597 0.5024
TR

Mean Velocity Mean Acceleration Mean Jerk

AP
M

L
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3.3233
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Figure 2. Linear regression of velocity, acceleration, and jerk for the C
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Chapter 4: Summary 

4.1 Summary of Study 

The purpose of this study is to investigate the effects of simulated somatosensory 

deficit and vision on center-of-pressure (COP) and rambling-trembling-derived measures 

of sway during quiet standing. Fifty-two healthy young adult volunteers (aged 22.10 ± 

1.88 years) were asked to stand with arms at their sides, with either eyes-closed (EC) or 

eyes-open (EO), on two force plates. A stance width of 17cm with a 20° angle between 

feet was used. Five randomly-ordered foam thicknesses (no foam, 1/8”, 1/4”, 1/2”, and 

1”, corresponding to F0, F1, F2, F3, and F4) were used to simulate varying degrees of 

somatosensory deficit. Percent change from baseline (F0) of mean velocity, acceleration, 

and jerk were extracted from COP, rambling, and trembling time-series.  

As expected, the EC condition exhibited significantly greater changes across foam 

thickness as compared to EO in all measured parameters, showing EC conditions to be 

more sensitive to changes in simulated somatosensory deficit. With EC, COP, rambling, 

and trembling parameters all showed positive, upward trends with increasing deficit, but 

with variable magnitudes. Anteroposterior rambling is shown to have a greater magnitude 

of change across deficit severity in acceleration and jerk parameters. Mediolateral 

trembling jerk exhibited greater changes than COP or rambling. Overall, the rambling 

time-series was able to differentiate the greatest number of foam level comparisons.  

4.2 Conclusions and Recommendations 

In research-based applications, rambling is thought to represent centrally-

controlled movement of a non-stationary COP equilibrium point, while trembling captures 
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small, peripherally-controlled muscular adjustments and reflexes. Our findings suggest 

that these components of sway are influenced differently in the presence of 

somatosensory deficit. Further exploration of rambling-trembling is needed, but these 

differences highlight the potential directionality of postural control mechanisms, linking 

anteroposterior movement to the central nervous system and mediolateral to the 

peripheral nervous system.  From a clinical perspective, rambling may serve as a robust 

measure of somatosensory loss-induced balance changes. However, the most sensitive 

measure for an individual may depend on direction of interest (anteroposterior versus 

mediolateral) and target deficit detectability (early- versus late-stage somatosensory 

loss).  

4.3 Limitations and Future Work 

Findings from this study are limited by several factors, including the use of foam 

as a deficit model, variability and adaptability of healthy young subjects, assumption of a 

linear relationship between deficit and parameter magnitude, and limited number of 

parameters studied. Future work should continue the investigation of rambling-trembling 

decomposition with patient populations, such as Parkinson’s or diabetic peripheral 

neuropathy, in order to further understand its strengths for deficit detection and research-

based analysis. It may also be beneficial to explore the use of different regression models, 

such as logistic, in search of a better fit of sample data to the model. Researchers may 

also choose to include a wider variety of sway parameters, both linear and nonlinear, to 

capture a broader scope of rambling-trembling behavior. Expansion of this study may 

lead to identification of highly sensitive sway measures that could be used to better 
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understand postural sway from a mechanistic approach and mitigate fall risk in a clinical 

setting.  

 



 

 

50 

Appendix A: Supplementary Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

Figure 1. Sample RM-TR decomposition using data from s1052. Plots are representative of 
the study data.  
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Figure 2. Sample stabilogram from RM-TR decomposition using data from s1052.  
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Figure 3. Eyes closed (EC) versus eyes-open (EO) averages for each parameter and measure 
type, including standard deviation and significant differences (* p<0.1, ** p<0.05, *** p<0.01) 
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Figure 4. Mean percent changes from baseline to F4, including standard deviation and significant 
differences (* p<0.1, ** p<0.05, *** p<0.01) 



 

 

54 

Appendix B: Experimental Protocol Documents 

Verbal Prompts 

Biodynamics Prompts for Sway Task - updated 8/31/19 
This experiment involves a standing task, which involves: 

• Multiple trials, each lasting 1 minute.  
o You will say “ready” when you are ready for a trial to begin,  
o We will say “begin” at the start of a trial and “done” at the end of the trial.  

• We will ask you to stand on a variety of foam pads. We will ask you to take a step 
backwards when we change the foam pad. 

• Some trials will be done with your eyes open and others will be done with your eyes 
closed.  

o For the eyes open trials, please keep your eyes focused on the target directly in 
front of you for the entire 1 minute trial.  

o For the eyes closed trials, please keep your eyes closed for the entire 1 minute 
trial. You may open your eyes between the trials. 

• During each 1 minute trial, please: 
o Stand relaxed and as naturally as possible, be careful not to lock your knees, 
o Keep your arms at your side, breathe normally, and 
o Do not turn your head or speak. If you feel uncomfortable or fatigued, please 

tell us immediately. 
• When a trial is done, feel free to relax, move your arms and bend your legs, but please 

do not move your feet. 
• After doing 6 trials, we will change the foam pads and you will have the option to sit 

down and take a break. 
• “We are not testing how good your balance is, we are just testing how the foam affects 

your natural balance” 
• Do you have any questions? 

We are ready to start our first/next trial.  

• This is an eyes open trial: please breathe normally, focus on the target, and 
say “ready” when you are ready to begin … “ready” … “begin” … “done”  

• This is an eyes closed trial: please close your eyes,  breathe normally, and 
say “ready” when you are ready to begin … “ready” … “begin” … “done” 

Reminders: 
• Eyes open:  Please keep your feet in place, your arms at your side, and your eyes 

focused on the target in front of you. Breathe normally and please say “ready” when 
you are ready to begin the next trial.   

• Eyes closed: Please keep your feet in place, your arms at your side, and your eyes 
closed. Breathe normally and say “ready” when you are ready to begin the next trial. 
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Signed Consent Form 
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Adult Informed Consent Statement

“Quiet Standing Analysis during Somatosensory and Visual Deficiencies”

INTRODUCTION

The Biodynamics Research Laboratory at the University of Kansas supports the practice of protection for 

human subjects participating in research. The following information is provided for you to decide whether 

you wish to participate in the present study. You may refuse to sign this form and not participate in this 

study. You should be aware that even if you agree to participate, you are free to withdraw at any time. If 

you do withdraw from this study, it will not affect your relationship with this unit, the services it may 

provide to you, or the University of Kansas.

PURPOSE OF THE STUDY

The purpose of this project is to collect quiet standing data on healthy adults under different levels of 

somatosensory feedback deficiency (standing on various thickness of foam) with either eyes open or 

closed. This data will be used to develop new measurement and analysis techniques used to detect 

somatosensory deficits patients with various pathologies. It is expected that the results from this study 

will help us to better understand the contribution of the somatosensory feedback in quiet standing, and 

how the body maintains its balance under a somatosensory deficiency. In the future, we hope to 

investigate the application or our new measurement and analysis techniques on patient populations (e.g. 

diabetes, stroke, Parkinson’s disease) to determine how well they work to detect somatosensory deficits. 

Our long-term goal is to improve the physician’s tool for detecting somatosensory deficits, so that an 

intervention can be introduced which would reduce the risk of the patient experiencing a fall. 

In this project, movement, force, and electromyography (EMG - muscle and heart activity) data will be 

collected from healthy adults while each stand quietly on foam of different thicknesses. All tests are non-

invasive and considered to be low-risk to the participant. The testing will provide the investigators with 

information about the how the participant’s motor control system controls balance while standing on 

foam.

PROCEDURES

For this study, we will look at your quiet standing balance. First, you will be asked to change into your 

personal attire (shorts and t-shirt) that will allow us to easily place the sensors on your skin in the correct 

location. Next, we will record the following demographic and physical information:

� Name

� Gender

� Height

� Weight

� Age

� Email address and/or phone number

� Distance from ankle to bottom of the foot

� Distance from ankle to knee

� Distance from knee to hip

We will also ask you to review your phone screen answers, and confirm that the answers have not changed 

since the phone call.

KU LaZrence IRB # STUDY00141250 _ Approval Period 9/20/2019 ± 9/19/2020
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Sensors will be placed on your feet, calves, quads and around your sternum. We will place the kinematic 
and EMG sensors with adhesive tape. Once the sensors are confirmed to be working properly, you will 
stand relaxed on the force plates while we record the natural sway of your body. You will wear a safety 
harness and will be under close supervision by a research associate to aid in the case of a very unlikely 
fall. While wearing the harness, you will be asked to stand with your eyes open or closed, and on a varying 
thickness of foam that will range from no foam to a maximum of 2.4” of foam. Trials will be 60 seconds in 
duration and you will be given at least 30 seconds of rest between sets of six trials. You will also be given 
the opportunity for seated rest whenever you choose. Each of the conditions will be repeated three times. 
During these trials, we will monitor muscle activity, movement, and forces, as described below. In 
addition, we will use a video camera to record all trials. The trials are being recorded so that the 
investigators can view them if any trials produce unexpected results. These recordings will be completely 
secured and only accessible by members of the research team. These recording will have sound due to 
the nature of the video camera, but the audio recordings will not be used for any purpose.

Assessment of Muscle Activity: Our EMG system (BagnoliTM Desktop EMG – 8 Channels) measures your 
muscle activity. Non-invasive surface electrodes are applied on your skin over your muscle. Alcohol wipes 
and/or a pumice stone are used to clean your skin and then an electrode unit is placed over each area. 
Lower leg and thigh muscles will be monitored, including anterior tibialis, gastrocnemius, quadriceps, and 
hamstrings. Our EMG system gathers information from your muscles but does not give any feedback back 
to you. Application of the electrodes takes 10-15 minutes.

Assessment of Heart Activity: Similar to the assessment of muscle activity, heart activity will be assessed 
using our EMG system (Bagnoli Desktop EMG – 8 Channels). Alcohol wipes and/or a pumice stone are 
used to clean your skin and then an electrode unit is placed around your sternum to record your pulse. 
Our EMG system gathers information from your muscles but does not give any feedback back to you. 
Application of the electrodes takes 5 minutes.

Assessment of Movement: Our motion capture system (NDI Optotrak Certus) measures the movement of 
your body while you perform a task.  We will place markers on your skin and record the movement of 
those markers. The location of the markers will be feet, calves, quadriceps, sternum, and lower back. The 
application of the markers takes approximately 15 minutes.

Assessment of Force: Our force plate system (AMTI OR6) measures the forces your feet exert on the floor 
while you perform a task. The force plates are mounted in the floor. You will be standing barefoot on the 
force plates or standing on top of foam that is placed on top of the force plate. The surfaces are sterilized 
in between each subject.
 
RISKS  
Understand that there may be possible risks for participating.

� Postural Control: There may be a risk of falling during the balance testing but this risk will be 
minimized by close monitoring from a research associate and a safety harness that will catch you 
in the event of a fall. 

� EMG: There are no known risks to the use of EMGs. There may be skin irritation under the 
electrodes. 

� Movement testing: There are no known risks to movement tracking. You may experience mild 
skin irritation in the area the markers were applied. 

� Force testing: There are no known risks to force testing.
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BENEFITS
There are no direct benefits to you for participating in this study. It is anticipated that information 
gathered in this study will contribute to current scientific knowledge of quiet standing in healthy 
individuals under normal stance conditions and more challenging conditions created by the foam surface.

PAYMENT TO PARTICIPANTS 
There are no costs or payments for participating in this study. 

PARTICIPANT CONFIDENTIALITY 
The researchers will protect your information, as required by law. Absolute confidentiality cannot be 
guaranteed because persons outside the study team may need to look at your study records. Your name 
or any information that reveals your identity will not be associated in any report, publication or 
presentation with the information collected about you or with the research findings from this study. 
Instead, the researcher(s) will use a study number rather than your name. Your identifiable information 
will not be shared unless (a) it is required by law or university policy, or (b) you give written permission.

Your study-related health information will be used at the Biodynamics Research Lab by Dr. Luchies, 
members of the research team, the KU Human Subjects Committee and other committees and offices 
that review and monitor research, if a regulatory review takes place. 

All study information that is sent outside the Biodynamics Research Lab will have your name and all 
other identifying characteristics removed, so that your identity will not be known. Because identifiers 
will be removed, your health information will not be re-disclosed by outside persons or groups and will 
not lose its federal privacy protection. 

Your permission to use and disclose your health information remains in effect until the study is complete 
and the results are analyzed. After that time, information and video recordings that personally identifies 
you will be removed from the study records.

INSTITUTIONAL DISCLAIMER STATEMENT 
In the event of injury, the Kansas Tort Claims Act provides for compensation if it can be demonstrated 
that the injury was caused by the negligent or wrongful act or omission of a state employee acting within 
the scope of his/her employment.
  
REFUSAL TO SIGN CONSENT AND AUTHORIZATION
You are not required to sign this Consent and Authorization form and you may refuse to do so without 
affecting your right to any services you are receiving or may receive from the University of Kansas or to 
participate in any programs or events of the University of Kansas. However, if you refuse to sign, you 
cannot participate in this study.

CANCELLING THIS CONSENT AND AUTHORIZATION
You understand that your participation in this study is voluntary and that the choice not to participate or 
to quit at any time can be made without penalty or loss of benefits. The entire study may be discontinued 
for any reason without your consent by the investigator conducting the study. 

You have a right to change your mind about allowing the research team to have access to your health 
information. If you want to cancel permission to use your health information, you should send a written 
request to Dr. Luchies. The mailing address is Carl Luchies PhD, 3135B Learned Hall, Lawrence, KS 66045. 
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If you cancel permission to use your health information, you will be withdrawn from the study. The 
research team will stop collecting any additional information about you. The research team may use and 
share information that was gathered before they received your cancellation.

QUESTIONS ABOUT PARTICIPATION
You have read the information in this from. Dr. Luchies or his associates have answered your questions to 
your satisfaction. You know that if you have more questions after signing this form, you may contact Dr. 
Luchies at (785) 864-2993 or luchies@ku.edu. If you have questions about your rights as a research 
subject, you may call or write the Human Research Protection Program (HRPP) at (785) 864-7429 or 2385 
Irving Hill Road, Lawrence, KS 66045.

Researcher Contact Information

Carl Luchies Ph.D. Camilo Giraldo                    Logan Sidener  
Principal Investigator            Co-Investigator Co-Investigator
Bioengineering Dept. Biodynamics Lab Biodynamics Lab
3135B Learned Hall 2110 Learned Hall 2110 Learned Hall
University of Kansas               University of Kansas University of Kansas
Lawrence, KS 66045              Lawrence, KS 66045 Lawrence, KS 66045
785 864 2993             785 408 7036 785 408 7036
luchies@ku.edu cgiral2@ku.edu lsidener@ku.edu 

KEEP THIS SECTION FOR YOUR RECORDS. IF YOU WISH TO PARTICIPATE, PLEASE TEAR OFF THE 
FOLLOWING PAGE AND RETURN IT TO THE RESEARCHER(S).
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“Quiet Standing Analysis during Somatosensory and Visual Deficiencies”

IRB # 00141250

PARTICIPANT CERTIFICATION:

If you agree to participate in this study please sign where indicated, then tear off this section and return 
it to the investigator(s). Keep the consent information for your records.

I have read this Consent and Authorization form. I have had the opportunity to ask, and I have received 
answers to, any questions I had regarding the study and the use and disclosure of information about me 
for the study.  

I agree to take part in this study as a research participant. By my signature, I affirm that I am at least 18 
years old and that I have received a copy of this Consent and Authorization form. 

______________________________________________ ____________________________
Type/Print Participant's Name Participant Number

______________________________________________ ____________________________  
 Participant's Signature Date

KU LaZrence IRB # STUDY00141250 _ Approval Period 9/20/2019 ± 9/19/2020
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Phone Screen Questionnaire 

Phone Screen Answers Healthy Foam Study

Interviewer:
________________________________________________________

Date:
________________________________________________________

Oral Consent:          YES          NO

Participant Information
Name:
________________________________________________________

Email Address or Phone Number:
________________________________________________________

Gender:          Male          Female          Other

Question YES NO When? Or Notes

Have you had any head injuries or concussions?

Have you ever experienced any dizziness or fainting spells?

Do you have osteoporosis in lower extremity joints (hip, knees, ankles, 
foot)?

Have you had, or do you have arthritis in your legs that limits mobility or 
causes pain?

Have you had, or do you have any hip, knee, ankle, or foot problems or 
injuries that limit mobility or cause pain?

Do you have back problems that limit mobility or cause pain?

Do you have nerve damage that is affecting your legs?

Have you had, or do you have muscle problems in your legs that limit 
mobility or causes pain?

Have you ever broken any bones in your legs, ankles, or feet?

have you ever broken any bones in your spine?

Have you had, or do you suffer from fibromyalgia? Or, have you had, or 
do you have constant muscle fatigue or aches in your body?

Do you have any joint replacement in your leg joints?

Do you have any joint fusion?

Have you had, or do you have poor circulation in your legs that causes 
them to be cold or numb?

Have you had, or do you have any lung disease (besides asthma?)
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Phone Screen Answers Healthy Foam Study

Have you had, or do you have any heart problems?

Have you had, or do you have any chest pain from heart disease?

Have you had, or do you have any vascular problems?

Have you ever had a heart attack?

Do you have high blood pressure? If yes, are you taking medication?

Do you have any neurological disease?

Do you suffer from Parkinson's disease?

have you ever had a stroke?

If subject is female : Are you pregnant?

Any other issues we haven't mentioned that we should know about?
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Phone Screen Inclusion/Exclusion Criteria 

 

 

 

 

 

 

 

 

 

Question YES NO When? Exclude?

Have you had any head injuries or concussions? Yes if less than 1 yr ago

Have you ever experienced any dizziness or fainting spells? Case-by-case decision

Do you have osteoporosis in lower extremity joints (hip, knees, ankles, 

foot)? Yes

Have you had, or do you have arthritis in your legs that limits mobility or 

causes pain? Yes if less than 1 yr ago

Have you had, or do you have any hip, knee, ankle, or foot problems or 

injuries that limit mobility or cause pain? Yes if less than 1 yr ago

Do you have back problems that limit mobility or cause pain? Yes if less than 1 yr ago

Do you have nerve damage that is affecting your legs? Yes

Have you had, or do you have muscle problems in your legs that limit 

mobility or causes pain? Yes if less than 1 yr ago

Have you ever broken any bones in your legs, ankles, or feet? Yes if less than 2 yr ago

have you ever broken any bones in your spine? Yes if less than 2 yr ago

Have you had, or do you suffer from fibromyalgia? Or, have you had, or 

do you have constant muscle fatigue or aches in your body? Yes

Do you have any joint replacement in your leg joints? Yes

Do you have any joint fusion? Yes

Have you had, or do you have poor circulation in your legs that causes 

them to be cold or numb? Yes

Have you had, or do you have any lung disease (besides asthma?) Yes if severe

Have you had, or do you have any heart problems? Yes if also yes to below

Have you had, or do you have any chest pain from heart disease? Yes

Have you had, or do you have any vascular problems? Yes

Have you ever had a heart attack? Yes if less than 6 mo ago

Do you have high blood pressure? If yes, are you taking medication? No by itself

Do you have any neurological disease? Yes

Do you suffer from Parkinson's disease? Yes

have you ever had a stroke? Yes

If subject is female : Are you pregnant? Yes

Any other issues we haven't mentioned that we should know about? Case-by-case decision

Inclusion/Exclusion Criteria: Phone Screen

Standing Foam Study
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Participant Information Collection Sheet 

Participants Information  Healthy Foam Study  

Interviewer:
________________________________________________________

Date:
________________________________________________________

Signed Consent:          YES          NO

Phone Screen Answers Review
Have the answers from the phone screen changed from the day of
the coversation to today?         YES          NO

If yes, what has changed?
___________________________________________________________

___________________________________________________________

Participant Information
Name:
________________________________________________________

Number:
_________________

Email Address or Phone Number:
________________________________________________________

Gender:          Male          Female          Other

Height:
________________________________________________________

Weight:
________________________________________________________

Age:
________________________________________________________

Distance from ankle to bottom of the foot:
________________________________________________________

Distance from ankle to knee:
________________________________________________________

Distance from knee to hip:
________________________________________________________
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Appendix C: MATLAB Codes  

%% Main_Sway_Analysis 
% Written by Logan Sidener (lsidener@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Modified by Eryn Gerber (eryngerber@ku.edu)  
% Last updated 2/19/2020  
%  
% Purpose: This is the main script used to analyze the foam study data  
clear; clc; close all; 
  
% Sampling Parameters 
fsample = 100; %[Hz] 
fdown = 50; %The desired frequency (in Hz) after downsampling the data   
trial_time = 60; %[s] 
trial_dt = 1/fsample; %[s] 
g = 9.80665; %[m/s^2] 
  
% Force plate information 
gain_fp = 1000; 
  
%% Load Subject Information 
subject_info = xlsread('/Users/eryngerber/Documents/Biodynamics Lab/Foam 
2.0/Subject_Data.xlsx',1,'B3:G55'); 
%% Establish the path to the data 
path = '/Users/eryngerber/Documents/Biodynamics Lab/Foam 2.0/Raw Data/s'; 
  
% Choose the conditions of the trial(s) to be analyzed 
maxsubj = 1052; 
maxfoam = 4; 
maxvision = 1; % EC=0,EO=1 
maxtrial = 3; 
  
% Initialize empty results matrices 
final_data = zeros(3,72); 
final_data_avg = zeros(5,72); 
all_data=zeros(900,73); 
  
ii=0; 
for subject = 1001:maxsubj 
    
    % Code progress updates (during run) 
    fprintf([datestr(clock,21) ' \n']); 
    fprintf('subject %d\n',subject) 
     
    % Read the zeros file and calculate the mean for each channel 
    zeromean = mean(dlmread([path int2str(subject) 
'/zeros000.txt'],'\t',1,0)); 
     
    % Initialize the count and set figure number to match subject number 
    fignum=subject; 
    count = 0; 
    for numvision = 0:maxvision 
        fprintf('vision %d\n',numvision); 
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        if numvision == 0 
            vision = 'EC'; 
        else 
            vision = 'EO'; 
        end 
        for foam = 0:maxfoam  
            fprintf('foam %d\n',foam); 
            for trial = 1:maxtrial 
                ii=ii+1; 
                % Define the file to be analyzed and read the data 
                fname = [path int2str(subject) '/Foam_' int2str(foam) '_' 
vision '_' int2str(trial) '.txt']; 
                data = dlmread(fname,'\t',1,0); 
                 
                % Apply a 10 Hz lowpass filter to the raw data, as used in  
                order = 2; %2nd order filter 
                cutoff_freq_max = 10; %cutoff frequency in Hz 
                data=Low_Pass_Filt(order,cutoff_freq_max,fsample,data); 
               
                 
                % Downsample the time series to the desired sampling 
frequency 
                ratio = fsample/fdown; 
                if length(data)==6001 
                    data = downsample(data, ratio); 
                    time = data(:,1); 
                end 
  
                % EAPtract the appropriate subject info 
                info=subject_info(subject-1000,:); 
                age=info(2); 
                gender=info(3); %0 or 1, 0=male 
                height=info(4); %given in cm 
                weight=info(5); %kg 
                bmi=info(6); 
                 
                % Add to the count, used for the subplot function 
                count = count+1; 
                 
                % Calibrate data from volts to force and moments for both FPs 
                force_right = V2f_fp3364(data,zeromean,2:7);    %FP 3364 
                force_left = V2f_fp3477(data,zeromean,8:13);   %FP 3477 
                 
                % ApplML a 90deg CCW rotation about the z-axis to make +AP 
the 
                % anterior direction and +ML to subject's right 
                force_right=[-force_right(:,2) force_right(:,1) 
force_right(:,3) ... 
                    -force_right(:,5) force_right(:,4) force_right(:,6)];        
%FP3364 
                force_left=[-force_left(:,2) force_left(:,1) force_left(:,3) 
... 
                    -force_left(:,5) force_left(:,4) force_left(:,6)];           
%FP3477 
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                % Combine calibrated force plate data together 
                % Coordinate sMLstem is as above: +AP=anterior, +ML=subject's 
right 
                force_comb = comb_FPs(force_left, force_right); 
                 
                 
                force_ML_avg = mean(force_comb(:,1)); 
                force_AP_avg = mean(force_comb(:,2)); 
                force_ML_cent = force_comb(:,1)-force_ML_avg; 
                force_AP_cent = force_comb(:,2)-force_AP_avg; 
                 
                % Calculate COPAP and COPML (centered) 
                COP_comb = comb_FPs_COP(force_comb); 
                COP_AP=COP_comb(:,1)-mean(COP_comb(:,1)); % + = anterior 
                COP_ML=COP_comb(:,2)-mean(COP_comb(:,2)); % + = subject's 
right 
                 
                % Calculate linear COP pos parameters 
                [COP_tot_path_length, COPAP_path_length, COPML_path_length, 
COP_SD, ... 
                    COP_range_AP, COP_range_ML, RMS_COP, RMS_COP_AP, 
RMS_COP_ML]=sway_process_pos(COP_AP(100:2901), COP_ML(100:2901), fdown); 
                 
                % Calculate linear COP vel and acc parameters 
                a=2; %Fourth order accuracy differentiation 
                [vel_mean, vel_AP_mean, vel_ML_mean, vel_max, vel_AP_max, 
vel_ML_max ... 
                    
,acc_AP_max,acc_ML_max,jerk_ML_max,jerkrate_ML_max,jerk_AP_max,jerkrate_AP_ma
x,acc_ML_mean,acc_AP_mean,jerk_ML_mean,jerk_AP_mean] = 
sway_process_velacc(COP_AP(100:2901),COP_ML(100:2901), fdown, a); 
                 
                % Calculate Non-linear parameters (SE and DFA parameters) 
                [SampEntAP] = sway_process_nonlinear(COP_AP(100:2901), 
fdown); 
                [SampEntML] = sway_process_nonlinear(COP_ML(100:2901), 
fdown); 
            
                % Calculate Rambling and Trembling parameters using 
                % centered force data 
                
[F_zero_index,F_zero_COP,F_zero_time,ML_Rambling,ML_Trembling,ML_RMS_Ram,ML_R
MS_Trem,ML_path_length_Ram,ML_path_length_Trem,ML_max_vel_Trem,ML_max_acc_Tre
m,ML_max_vel_Ram,ML_max_acc_Ram,ML_COP_SD_Trem,ML_COP_SD_Ram,ML_max_jerk_Trem
,ML_max_jerk_Ram,ML_max_jerkrate_Trem,ML_max_jerkrate_Ram,ML_mean_vel_Trem,ML
_mean_vel_Ram,ML_mean_acc_Trem,ML_mean_acc_Ram,ML_mean_jerk_Trem,ML_mean_jerk
_Ram] = RamblingTrembling(force_ML_cent,COP_ML,time,fdown); 
                
[F_zero_index,F_zero_COP,F_zero_time,AP_Rambling,AP_Trembling,AP_RMS_Ram,AP_R
MS_Trem,AP_path_length_Ram,AP_path_length_Trem,AP_max_vel_Trem,AP_max_acc_Tre
m,AP_max_vel_Ram,AP_max_acc_Ram,AP_COP_SD_Trem,AP_COP_SD_Ram,AP_max_jerk_Trem
,AP_max_jerk_Ram,AP_max_jerkrate_Trem,AP_max_jerkrate_Ram,AP_mean_vel_Trem,AP
_mean_vel_Ram,AP_mean_acc_Trem,AP_mean_acc_Ram,AP_mean_jerk_Trem,AP_mean_jerk
_Ram] = RamblingTrembling(force_AP_cent,COP_AP,time,fdown);  
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                % Trim first and last 2 seconds of time 
                time = time(100:2901); 
                 
                % Store parameters in matrix 
                % final data = 3 trials for 1 foam (1 subject) 
                final_data(trial,:)=[subject, foam, numvision, age, gender, 
COP_tot_path_length, ...  
                    COPAP_path_length, COPML_path_length, COP_SD, 
COP_range_AP, COP_range_ML, RMS_COP, RMS_COP_AP, RMS_COP_ML, ... 
                    vel_mean, vel_AP_mean, vel_ML_mean, vel_max, vel_AP_max, 
vel_ML_max, 
acc_AP_max,acc_ML_max,jerk_ML_max,jerkrate_ML_max,jerk_AP_max,jerkrate_AP_max
,... 
                    SampEntAP, 
SampEntML,AP_RMS_Ram,AP_RMS_Trem,AP_path_length_Ram,AP_path_length_Trem,ML_RM
S_Ram,ML_RMS_Trem,ML_path_length_Ram,ML_path_length_Trem,... 
                    
AP_max_vel_Trem,AP_max_acc_Trem,AP_max_vel_Ram,AP_max_acc_Ram,AP_COP_SD_Trem,
AP_COP_SD_Ram,ML_max_vel_Trem,ML_max_acc_Trem,ML_max_vel_Ram,ML_max_acc_Ram,.
.. 
                    
ML_COP_SD_Trem,ML_COP_SD_Ram,ML_max_jerk_Trem,ML_max_jerk_Ram,ML_max_jerkrate
_Trem,ML_max_jerkrate_Ram,... 
                    
AP_max_jerk_Trem,AP_max_jerk_Ram,AP_max_jerkrate_Trem,AP_max_jerkrate_Ram,acc
_ML_mean,acc_AP_mean,jerk_ML_mean,jerk_AP_mean... 
                    
ML_mean_vel_Trem,ML_mean_vel_Ram,ML_mean_acc_Trem,ML_mean_acc_Ram,ML_mean_jer
k_Trem,ML_mean_jerk_Ram,... 
                    
AP_mean_vel_Trem,AP_mean_vel_Ram,AP_mean_acc_Trem,AP_mean_acc_Ram,AP_mean_jer
k_Trem,AP_mean_jerk_Ram]; 
                % all data = 3 trials, all foams, all subject averages 
                all_data(ii,:)=[subject, foam, numvision, trial, age, 
gender,COP_tot_path_length,  ... 
                    COPAP_path_length, COPML_path_length, COP_SD, 
COP_range_AP, COP_range_ML, RMS_COP, RMS_COP_AP, RMS_COP_ML, ... 
                    vel_mean, vel_AP_mean, vel_ML_mean, vel_max, vel_AP_max, 
vel_ML_max, acc_AP_max,acc_ML_max, 
jerk_ML_max,jerkrate_ML_max,jerk_AP_max,jerkrate_AP_max,... 
                    SampEntAP, 
SampEntML,AP_RMS_Ram,AP_RMS_Trem,AP_path_length_Ram,AP_path_length_Trem,ML_RM
S_Ram,ML_RMS_Trem,ML_path_length_Ram,ML_path_length_Trem,... 
                    
AP_max_vel_Trem,AP_max_acc_Trem,AP_max_vel_Ram,AP_max_acc_Ram,AP_COP_SD_Trem,
AP_COP_SD_Ram,ML_max_vel_Trem,ML_max_acc_Trem,ML_max_vel_Ram,ML_max_acc_Ram,.
.. 
                    
ML_COP_SD_Trem,ML_COP_SD_Ram,ML_max_jerk_Trem,ML_max_jerk_Ram,ML_max_jerkrate
_Trem,ML_max_jerkrate_Ram,... 
                    
AP_max_jerk_Trem,AP_max_jerk_Ram,AP_max_jerkrate_Trem,AP_max_jerkrate_Ram,acc
_ML_mean,acc_AP_mean,jerk_ML_mean,jerk_AP_mean... 
                    
ML_mean_vel_Trem,ML_mean_vel_Ram,ML_mean_acc_Trem,ML_mean_acc_Ram,ML_mean_jer
k_Trem,ML_mean_jerk_Ram,... 
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AP_mean_vel_Trem,AP_mean_vel_Ram,AP_mean_acc_Trem,AP_mean_acc_Ram,AP_mean_jer
k_Trem,AP_mean_jerk_Ram];  
                 
            end 
            % Store the calculated data in the final results matrix 
            final_data_avg(foam+1,1:3)=final_data(1,1:3); 
            
final_data_avg(foam+1,4:size(final_data,2))=mean(final_data(:,4:size(final_da
ta,2))); 
        end 
        index=5*(subject-1001)+1; 
        if numvision==0 
            final_data_EC(index:index+4,:)=final_data_avg; 
        else 
            final_data_EO(index:index+4,:)=final_data_avg; 
        end 
    end 
end 
%% Save Data 
save('all_data.mat','all_data') 
save('final_data.mat','final_data_EC', 'final_data_EO') 
  
%% Organize Results 
% Sort final_data_EC and EO by foam (ordered 0-4) 
load('final_data.mat') 
load('all_data.mat') 
final_data_EC_byfoam = sortrows(final_data_EC,2); 
final_data_EC_Foam0 = final_data_EC_byfoam(1:52,:); 
final_data_EC_Foam1 = final_data_EC_byfoam(53:104,:); 
final_data_EC_Foam2 = final_data_EC_byfoam(105:156,:); 
final_data_EC_Foam3 = final_data_EC_byfoam(157:208,:); 
final_data_EC_Foam4 = final_data_EC_byfoam(209:260,:); 
  
final_data_EO_byfoam = sortrows(final_data_EO,2); 
final_data_EO_Foam0 = final_data_EO_byfoam(1:52,:); 
final_data_EO_Foam1 = final_data_EO_byfoam(53:104,:); 
final_data_EO_Foam2 = final_data_EO_byfoam(105:156,:); 
final_data_EO_Foam3 = final_data_EO_byfoam(157:208,:); 
final_data_EO_Foam4 = final_data_EO_byfoam(209:260,:); 
  
% Sort all_data by EC/EO 
all_data_EC=zeros(780,73); 
all_data_EO=zeros(780,73); 
j=1; 
k=1; 
for i=1:length(all_data) 
    if all_data(i,3)==0 
        all_data_EC(j,:)=all_data(i,:); 
        j=j+1; 
    elseif all_data(i,3)==1 
        all_data_EO(k,:)=all_data(i,:); 
        k=k+1; 
    end 
end 
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save('all_data_EC.mat','all_data_EC') 
save('all_data_EO.mat','all_data_EO') 
  
%% Remove Outlier Subjects 
% delete outlier subjects (>=30% of data > 3 std devs from sample mean; 
outlier - 1022 pregnancy) 
delete_subject = 1022; 
[delete_rows1] = find(final_data_EC==delete_subject); 
[delete_rows2] = find(all_data_EC==delete_subject); 
final_data_EC_removed = final_data_EC([1:delete_rows1(1)-
1,delete_rows1(5)+1:end],:); 
final_data_EC_removed_TOT_avg = mean(final_data_EC_removed); 
final_data_EO_removed = final_data_EO([1:delete_rows1(1)-
1,delete_rows1(5)+1:end],:); 
final_data_EO_removed_TOT_avg = mean(final_data_EO_removed); 
all_data_EC_removed = all_data_EC([1:delete_rows2(1)-
1,delete_rows2(15)+1:end],:); 
all_data_EO_removed = all_data_EO([1:delete_rows2(1)-
1,delete_rows2(15)+1:end],:); 
  
num_subjects = length(final_data_EC_removed)/5; 
  
final_data_EC_removed_byfoam = sortrows(final_data_EC_removed,2); 
final_data_EC_removed_Foam0 = final_data_EC_removed_byfoam(1:num_subjects,:); 
final_data_EC_removed_0_avg = mean(final_data_EC_removed_Foam0); 
final_data_EC_removed_0_std = std(final_data_EC_removed_Foam0); 
final_data_EC_removed_Foam1 = 
final_data_EC_removed_byfoam(num_subjects+1:2*num_subjects,:); 
final_data_EC_removed_1_avg = mean(final_data_EC_removed_Foam1); 
final_data_EC_removed_1_std = std(final_data_EC_removed_Foam1); 
final_data_EC_removed_Foam2 = 
final_data_EC_removed_byfoam(2*num_subjects+1:3*num_subjects,:); 
final_data_EC_removed_2_avg = mean(final_data_EC_removed_Foam2); 
final_data_EC_removed_2_std = std(final_data_EC_removed_Foam2); 
final_data_EC_removed_Foam3 = 
final_data_EC_removed_byfoam(3*num_subjects+1:4*num_subjects,:); 
final_data_EC_removed_3_avg = mean(final_data_EC_removed_Foam3); 
final_data_EC_removed_3_std = std(final_data_EC_removed_Foam3); 
final_data_EC_removed_Foam4 = 
final_data_EC_removed_byfoam(4*num_subjects+1:5*num_subjects,:); 
final_data_EC_removed_4_avg = mean(final_data_EC_removed_Foam4); 
final_data_EC_removed_4_std = std(final_data_EC_removed_Foam4); 
  
final_data_EO_removed_byfoam = sortrows(final_data_EO_removed,2); 
final_data_EO_removed_Foam0 = final_data_EO_removed_byfoam(1:num_subjects,:); 
final_data_EO_removed_0_avg = mean(final_data_EO_removed_Foam0); 
final_data_EO_removed_0_std = std(final_data_EO_removed_Foam0); 
final_data_EO_removed_Foam1 = 
final_data_EO_removed_byfoam(num_subjects+1:2*num_subjects,:); 
final_data_EO_removed_1_avg = mean(final_data_EO_removed_Foam1); 
final_data_EO_removed_1_std = std(final_data_EO_removed_Foam1); 
final_data_EO_removed_Foam2 = 
final_data_EO_removed_byfoam(2*num_subjects+1:3*num_subjects,:); 
final_data_EO_removed_2_avg = mean(final_data_EO_removed_Foam2); 
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final_data_EO_removed_2_std = std(final_data_EO_removed_Foam2); 
final_data_EO_removed_Foam3 = 
final_data_EO_removed_byfoam(3*num_subjects+1:4*num_subjects,:); 
final_data_EO_removed_3_avg = mean(final_data_EO_removed_Foam3); 
final_data_EO_removed_3_std = std(final_data_EO_removed_Foam3); 
final_data_EO_removed_Foam4 = 
final_data_EO_removed_byfoam(4*num_subjects+1:5*num_subjects,:); 
final_data_EO_removed_4_avg = mean(final_data_EO_removed_Foam4); 
final_data_EO_removed_4_std = std(final_data_EO_removed_Foam4); 
  
save('final_data_EC_removed_avg.mat','final_data_EC_removed_0_avg','final_dat
a_EC_removed_1_avg','final_data_EC_removed_2_avg','final_data_EC_removed_3_av
g','final_data_EC_removed_4_avg') 
save('all_data_removed.mat','all_data_EC_removed','all_data_EO_removed') 
%% Add headers to final results tables  
load('final_data.mat'); 
load('all_data.mat'); 
  
col_headers1={'Subject', 'Foam', 'Vision', 'Age', 'Gender','Total Length', 
'AP Length', 'ML Length', 'COP SD', 'Range_AP',... 
    'Range_ML', 'COP RMS', 'COP RMS_AP', 'COP RMS_ML', 'Mean Velocity', 'Mean 
Vel_AP', 'Mean Vel_ML', 'max Velocity', 'max Vel_AP', 'max 
Vel_ML','acc_AP_max','acc_ML_max','max jerk ML','max jerk rate ML','max jerk 
AP','max jerk rate AP'... 
    'Samp En_AP', 'Samp En_ML','RMS_RM_AP','RMS_TR_AP','Length RM_AP','Length 
TR_AP','RMS_RM_ML','RMS_TR_ML','Length RM_ML','Length 
TR_ML','AP_vel_Trem','AP_acc_Trem','AP_vel_Ram','AP_acc_Ram',... 
    
'AP_COP_SD_Trem','AP_COP_SD_Ram','ML_vel_Trem','ML_acc_Trem','ML_vel_Ram','ML
_acc_Ram','ML_COP_SD_Trem','ML_COP_SD_Ram',... 
    
'ML_max_jerk_Trem','ML_max_jerk_Ram','ML_max_jerkrate_Trem','ML_max_jerkrate_
Ram','AP_max_jerk_Trem','AP_max_jerk_Ram','AP_max_jerkrate_Trem','AP_max_jerk
rate_Ram','acc_ML_mean','acc_AP_mean','jerk_ML_mean','jerk_AP_mean'... 
    
'ML_mean_vel_Trem','ML_mean_vel_Ram','ML_mean_acc_Trem','ML_mean_acc_Ram','ML
_mean_jerk_Trem','ML_mean_jerk_Ram',... 
    
'AP_mean_vel_Trem','AP_mean_vel_Ram','AP_mean_acc_Trem','AP_mean_acc_Ram','AP
_mean_jerk_Trem','AP_mean_jerk_Ram'}; 
col_headers2={'Subject', 'Foam', 'Vision', 'Trial', 'Age', 'Gender','Total 
Length', 'AP Length', 'ML Length', 'COP SD', 'Range_AP',... 
    'Range_ML', 'COP RMS', 'COP RMS_AP', 'COP RMS_ML','Mean Velocity', 'Mean 
Vel_AP', 'Mean Vel_ML', 'max Velocity', 'max Vel_AP', 'max 
Vel_ML','acc_AP_max','acc_ML_max','max jerk ML','max jerk rate ML','max jerk 
AP','max jerk rate AP'... 
    'Samp En_AP', 'Samp En_ML','RMS_RM_AP','RMS_TR_AP','Length RM_AP','Length 
TR_AP','RMS_RM_ML','RMS_TR_ML','Length RM_ML','Length 
TR_ML','AP_vel_Trem','AP_acc_Trem','AP_vel_Ram','AP_acc_Ram',... 
    
'AP_COP_SD_Trem','AP_COP_SD_Ram','ML_vel_Trem','ML_acc_Trem','ML_vel_Ram','ML
_acc_Ram','ML_COP_SD_Trem','ML_COP_SD_Ram',... 
    
'ML_max_jerk_Trem','ML_max_jerk_Ram','ML_max_jerkrate_Trem','ML_max_jerkrate_
Ram','AP_max_jerk_Trem','AP_max_jerk_Ram','AP_max_jerkrate_Trem','AP_max_jerk
rate_Ram','acc_ML_mean','acc_AP_mean','jerk_ML_mean','jerk_AP_mean'... 



 

 

71 

    
'ML_mean_vel_Trem','ML_mean_vel_Ram','ML_mean_acc_Trem','ML_mean_acc_Ram','ML
_mean_jerk_Trem','ML_mean_jerk_Ram',... 
    
'AP_mean_vel_Trem','AP_mean_vel_Ram','AP_mean_acc_Trem','AP_mean_acc_Ram','AP
_mean_jerk_Trem','AP_mean_jerk_Ram'}; 
  
% 261 x 72 matrices (with labels) averaged trials for every subject 
final_data_EC_cell=[col_headers1; num2cell(final_data_EC)]; 
final_data_EO_cell=[col_headers1; num2cell(final_data_EO)]; 
all_data_cell=[col_headers2; num2cell(all_data)]; 
all_data_EC_cell = [col_headers2; num2cell(all_data_EC)]; 
all_data_EO_cell = [col_headers2; num2cell(all_data_EO)]; 
  
save('data_cells.mat','final_data_EC_cell', 'final_data_EO_cell', 
'all_data_cell','all_data_EC','all_data_EO'); 
  
% 5 x 67 matrices (no labels) averaged for all subjects 
final_data_EC_avg = 
[final_data_EC_removed_0_avg(6:end);final_data_EC_removed_1_avg(6:end);final_
data_EC_removed_2_avg(6:end);final_data_EC_removed_3_avg(6:end);final_data_EC
_removed_4_avg(6:end)]; 
final_data_EO_avg = 
[final_data_EO_removed_0_avg(6:end);final_data_EO_removed_1_avg(6:end);final_
data_EO_removed_2_avg(6:end);final_data_EO_removed_3_avg(6:end);final_data_EO
_removed_4_avg(6:end)]; 
final_data_EC_std = 
[final_data_EC_removed_0_std(6:end);final_data_EC_removed_1_std(6:end);final_
data_EC_removed_2_std(6:end);final_data_EC_removed_3_std(6:end);final_data_EC
_removed_0_std(6:end)]; 
final_data_EO_std = 
[final_data_EO_removed_0_std(6:end);final_data_EO_removed_1_std(6:end);final_
data_EO_removed_2_std(6:end);final_data_EO_removed_3_std(6:end);final_data_EO
_removed_0_std(6:end)]; 
  
save('data_avg_std.mat','final_data_EC_avg', 
'final_data_EO_avg','final_data_EC_std','final_data_EO_std') 
 
 
function y_filt=Low_Pass_Filt(order,cutoff_freq,freq,y) 
%% y_filt=Low_Pass_Filt(order,cutoff_freq,freq,y) 
%COP Linear Measures Calculator 
%Camilo Giraldo (c318g339@ku.edu)  
%Updated by Logan Sidener 
%The University of Kansas - Biodyanmics Lab 
%Last Update: 3/7/2017 
% 
%Purpose: This function uses a low pass filter to filter the time series y 
using the order specified 
%by the user 
% 
%Inputs: 
%   order:       order of the filtering function 
%   cutoff_freq: maximum frequency that will be allowed in filtered time 
%                series [Hz] 



 

 

72 

%   freq:        sampling frequency of time series 
%   y:           raw time series 
% 
%Outputs: 
%   y_filt: filtered time series 
% 
%Future Work: 
%   - Add more type of filters to this function, and allow user to choose 
  
%% Beginnning of Function 
%Low-Pass Filter Parameters 
nyquist_freq=freq/2;                    %Nyquist freq [hz] 
norm_cutoff=cutoff_freq/nyquist_freq;   %Normalized cutoff frequency 
  
%Design of nth order digital low-pass filter 
[b,a]=butter(order,norm_cutoff,'low'); 
  
%Filtering time series 
y_filt=filtfilt(b,a,y); 
  
end 
 
 

function fm_3364=V2f_fp3364(volt,zeross,cols) 
%% fm_3364=V2f_fp3364(volt,zeross,cols) 
%Force Plate 3364 Volts to Force and Moments 
%Camilo Giraldo (c318g339@ku.edu) 
%The University of Kansas - Biodynamics Lab 
%Last Update: 11/03/2016 
% 
%Purpose: This function turns the voltage data of 3364 into N and N-m 
% 
%Inputs: 
%   Volt: Force plate 3364 data in volts 
%   Zero: 1x6 vector with the mean volts for no load on force plate 
%   Cols: Columns where force plate 3364 is located 
% 
%Outputs: 
%   fm_3364: force and moments columns in a matrix (Fx,Fy,Fz,Mx,My,Mz) 
% 
%Future Work; modify the function so it does not need the variable "cols" 
  
%% Beginning of function 
%Gain of the force plate in [Amps] 
gain=1000;     
  
%KU Biomechanics Lab Force Plate 3364 Calibration Matrix 
SIcalmat_3364=[1.506 0.003  0.01  -0.003 -0.013  0.006; 
              -0.012 1.513 -0.01   0.01   0.001  0.009; 
               0.001 0.002  5.895 -0.002  0.008  0.017; 
              -0.001 0.0    0.0    0.732 -0.002 -0.001; 
               0.0   0.0    0.0    0.001  0.732  0.003; 
               0.001 0.004 -0.02  -0.001 -0.001  0.385]; 
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% Substract zeros from force plate volts data 
[volt_rows,~]=size(volt);                           %Number of rows in data 
zero_offset=(zeross'*ones(1,volt_rows))';             %Zero offset in matrix 
volt_rowsx6 [Volts] 
volt(:,cols)=volt(:,cols)-zero_offset(:,cols);      %Volt data minus the zero 
values 
  
%Converting volt data of FP 3364 to N and N-m 
GF=(1.e6)/(gain*10);                                %Equation given by AMTI 
fm_3364=GF.*volt(:,cols)*SIcalmat_3364';            %FP 3364 data in N and N-
m 
  
end 
 
 
 
function fm_3477=V2f_fp3477(volt,zeross,cols) 
%% fm_3477=V2f_fp3477(volt,zeross,cols) 
%Force Plate 3477 Volts to Force and Moments 
%Camilo Giraldo (c318g339@ku.edu) 
%The University of Kansas - Biodynamics Lab 
%Last Update: 11/03/2016 
% 
%Purpose: This function turns the voltage data of 3477 into N and N-m 
%  
%Inputs: 
%   Volt: Force plate 3477 data in volts 
%   Zero: 1x6 vector with the mean volts for no load on force plate 
%   Cols: Columns where force plate 3477 is located 
% 
%Outputs: 
%   fm_3477: force and moments columns in a matrix (Fx,Fy,Fz,Mx,My,Mz) 
% 
%Future Work; modify the function so it does not need the variable "cols" 
  
%% Beginning of function 
%Gain of the force plate in [Amps] 
gain=1000;     
  
%KU Biomechanics Lab Force Plate 3364 Calibration Matrix 
SIcalmat_3477=[1.498 -0.002  0.004  0.003 -0.006  0.011; 
               0.006  1.500  0.001 -0.014  0.003  0.015; 
              -0.002  0.016  5.930 -0.001  0.003  0.000; 
               0.001 -0.001  0.0    0.740 -0.003 -0.001; 
              -0.001  0.0    0.0    0.002  0.740  0.001; 
               0.0    0.003 -0.002  0.0    0.001  0.383]; 
  
% Substract zeros from force plate volts data 
[volt_rows,~]=size(volt);                           %Number of rows in data 
zero_offset=(zeross'*ones(1,volt_rows))';             %Zero offset in matrix 
volt_rowsx6 [Volts] 
volt(:,cols)=volt(:,cols)-zero_offset(:,cols);      %Volt data minus the zero 
values 
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%Converting volt data of FP 3364 to N and N-m 
GF=(1.e6)/(gain*10);                                %Equation given by AMTI 
fm_3477=GF.*volt(:,cols)*SIcalmat_3477';            %FP 3477 data in N and N-
m 
  
end 
 

 
function FP = comb_FPs(fp_left, fp_right) 
%% FP = comb_FPs(fp_left, fp_right) 
%Combination of Force Plates into One Force Plate 
%Camilo Giraldo (c318g339@ku.edu) 
%Modified by Logan Sidener 
%The University of Kansas - Biodynamics Lab 
%Last Update: 3/7/2016 
% 
%Purpose: this function combines the analog data (already converted to SI  
%units) of two force plates labeled as left and right foot. It is assumed 
%that the coordinate systems of both force plates are: +x is to the 
%anterior direction, +y is to the right hand of the subject, and +z is 
%into the ground. 
% 
%Inputs: 
%   fp_right: calibrated analog data of FP1 3364 (Fx,Fy,Fz,Mx,My,Mz) 
%   fp_left:  calibrated analog data of FP2 3477 (Fx,Fy,Fz,Mx,My,Mz) 
% 
%Outputs: 
%   FP: Combined force plate data (Fx,Fy,Fz,Mx,My,Mz) 
  
%% Beginning of function 
%Distance from center of force plates to middle of force plates 
d = 231.5/1000;         %[m] 
  
%Combined force plate components 
    %Fx component [N] 
    FP(:,1)=fp_left(:,1)+fp_right(:,1); 
     
    %Fy component [N] 
    FP(:,2)=fp_left(:,2)+fp_right(:,2); 
     
    %Fz component [N] 
    FP(:,3)=fp_left(:,3)+fp_right(:,3); 
     
    %Mx component [N-m] 
    FP(:,4)=fp_left(:,4)+fp_right(:,4)-d*fp_left(:,3)+d*fp_right(:,3); 
     
    %My component [N-m] 
    FP(:,5)=fp_left(:,5)+fp_right(:,5); 
     
    %Mz component [N-m] 
    FP(:,6)=fp_left(:,6)+fp_right(:,6)+d*fp_left(:,1)-d*fp_right(:,1); 
                
% New coordinate system 
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%             x  
%             ^ 
%             | 
%             | 
%             | 
%             | 
%             X- - - - - - > y         
  
end 
 
function COP=comb_FPs_COP(data_cal) 
%% COP=COP_mild_xy(data_cal) 
%COP Calculator for PD Mild Study 
%Camilo Giraldo (c318g339@ku.edu) 
%Modified by Logan Sidener 
%The University of Kansas - Biodynamics Lab 
%Last Update: 3/7/2017 
% 
%Purpose: 
%Calculates COP in x and y axis using data that is already in N and N-m. 
% 
%Inputs: 
%   data_cal: force plate calibrated data in the order of columns Fx,Fy,Fz, 
%             Mx,My,Mz 
% 
%Outputs: 
%   COP: two column matrix with COP in the x and y direction (columns 1 and 
%        2 respectively) 
  
%% Beginning of function 
%Location of origin below the combined force plate surface 
dz=0.0375;          %Mean of dz from FP3477 and FP3364 in [m] 
  
%COP Calculations [m] 
COP(:,1)=-(data_cal(:,5)+data_cal(:,1)*dz)./data_cal(:,3);     %X-dir, AP 
COP(:,2)= (data_cal(:,4)-data_cal(:,2)*dz)./data_cal(:,3);     %Y-dir, ML 
  
% %Subtract off the mean of the COP data to center the plot around zero 
% ONLY USE IF PLOTTING COPX VS COPY FOR DATA CHECK 
% means=mean(COP); 
% COP=COP-means; 
  
  
%Coordinate system 
%             x  
%             ^ 
%             | 
%             | 
%             | 
%             | 
%             X- - - - - - > y         
  
end 
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function [COP_tot_path_length, COPx_path_length, COPy_path_length, COP_SD, 
... 
    COP_range_x, COP_range_y, RMS_COP, RMS_COP_x, RMS_COP_y]= 
sway_process_pos(COPx, COPy, sampling_freq) 
%sway_process - Function designed to calculate various parameters 
%   related to the displacement of the COP time series 
% Written by Logan Sidener 
% Started 3/6/2018 
% Last updated: 1/17/2020 by Eryn Gerber 
  
% 
% Inputs:  
% COPx: The unfiltered time series of the COP position in the x-direction 
% COPy: The unfiltered time series of the COP position in the y-direction 
% sampling_freq: The sampling frequency used to collect the data 
%  
% Outputs:  
% wiofj 
% fwioefj 
  
[m, ~]=size(COPx); 
  
% DISTANCE TRAVELED 
% Find the distance traveled in both directions between each time point 
COPx_dist=COPx(2:m)-COPx(1:m-1); 
COPy_dist=COPy(2:m)-COPy(1:m-1); 
% Calculate magnitude of distance traveled in x, y, and total 
distance_tot=sqrt(COPx_dist.^2 + COPy_dist.^2); 
distance_x=sqrt(COPx_dist.^2); 
distance_y=sqrt(COPy_dist.^2); 
% Add each value from above together 
COP_tot_path_length=sum(distance_tot); 
COPx_path_length = sum(distance_x); 
COPy_path_length = sum(distance_y); 
  
% Calculate St. Dev. of the segment lengths for COP magnitude 
COP_SD = std(distance_tot); 
  
% SWAY RANGE 
COPx_max        = max(COPx); 
COPx_min        = min(COPx); 
COPy_max        = max(COPy); 
COPy_min        = min(COPy); 
COP_range_x   = COPx_max - COPx_min; 
COP_range_y   = COPy_max - COPy_min; 
  
% RMS ERROR OF COP 
% Magnitude of COP 
COP = sqrt(COPx.^2+COPy.^2); 
COP_dist_center_sway = COP - mean(COP); 
abs_COP_dist_center_sway =sqrt(COP_dist_center_sway.^2); 
RMS_COP = mean(abs_COP_dist_center_sway); 
  
% x-direction 
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COP_dist_center_sway_x = COPx - mean(COPx); 
abs_COP_dist_center_sway_x =sqrt(COP_dist_center_sway_x.^2); 
RMS_COP_x = mean(abs_COP_dist_center_sway_x); 
  
% y-direction 
COP_dist_center_sway_y = COPy - mean(COPy); 
abs_COP_dist_center_sway_y =sqrt(COP_dist_center_sway_y.^2); 
RMS_COP_y = mean(abs_COP_dist_center_sway_y); 
  
% COP DISPLACEMENT - distance from individual point to mean 
% Subtract the mean value from the COP time series to get the COP 
displacement 
COPx_mean = mean(COPx); 
COPy_mean = mean(COPy); 
COPx_disp = COPx-COPx_mean; 
COPy_disp = COPy-COPy_mean; 
  
% Find mean, max and SD of displacement values in both directions 
Dispx_max = max(abs(COPx_disp)); 
Dispx_mean = mean(abs(COPx_disp)); 
Dispx_sd = std(COPx_disp); 
Dispy_max = max(abs(COPy_disp)); 
Dispy_mean = mean(abs(COPy_disp)); 
Dispy_sd = std(COPy_disp); 
  
  
end 
  
 

function [vel_mean, vel_x_mean, vel_y_mean, vel_max, vel_x_max, ... 
    
vel_y_max,acc_x_max,acc_y_max,jerk_x_max,jerkrate_x_max,jerk_y_max,jerkrate_y
_max,acc_x_mean,acc_y_mean,jerk_x_mean,jerk_y_mean] = sway_process_velacc( 
COPx_filt, COPy_filt, fsample, a ) 
  
% sway_process_velacc - Function designed to calculate various parameters 
% related to the velocity and acceleration of the COP time series 
% Written by Logan Sidener 
% Started 3/6/2018 
% Modified by Eryn Gerber (eryngerber@ku.edu) 
% Last updated: 2/19/2020 
  
dt=1/fsample; 
  
% Numerically differentiate the filtered time series to find the vel and acc 
[vel_x,acc_x]=dxdt_d2xdt2(COPx_filt,a,dt); 
[vel_y,acc_y]=dxdt_d2xdt2(COPy_filt,a,dt); 
[jerk_x,jerkrate_x]=dxdt_d2xdt2(acc_x,a,dt); 
[jerk_y,jerkrate_y]=dxdt_d2xdt2(acc_y,a,dt); 
  
% Compute the magnitude of the COP_vel and COP_acc time series 
COP_vel = sqrt(vel_x.^2+vel_y.^2); 
COP_acc = sqrt(acc_x.^2+acc_y.^2); 
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% Compute the mean (magnitude) of each time series 
vel_mean = mean(COP_vel); 
vel_x_mean = mean(sqrt(vel_x.^2)); 
vel_y_mean = mean(sqrt(vel_y.^2)); 
  
acc_mean = mean(COP_acc); 
acc_x_mean = mean(sqrt(acc_x.^2)); 
acc_y_mean = mean(sqrt(acc_y.^2)); 
  
jerk_x_mean = mean(sqrt(jerk_x.^2)); 
jerk_y_mean = mean(sqrt(jerk_y.^2)); 
  
% Compute the maximum (magnitude) of each time series 
vel_max = max(COP_vel); 
vel_x_max = max(sqrt(vel_x.^2)); 
vel_y_max = max(sqrt(vel_y.^2)); 
  
acc_max = max(COP_acc); 
acc_x_max = max(sqrt(acc_x.^2)); 
acc_y_max = max(sqrt(acc_y.^2)); 
  
jerk_x_max = max(sqrt(jerk_x.^2)); 
jerkrate_x_max = max(sqrt(jerkrate_x.^2)); 
jerk_y_max = max(sqrt(jerk_y.^2)); 
jerkrate_y_max = max(sqrt(jerkrate_y.^2)); 
  
end 
  
% Rambling-Trembling Analysis Function 
% Purpose: Decompose COP signals into rambling and trembling components, 
% and calculate relevant parameters (velocity, acc, jerk, etc.) 
% Written by: Eryn Gerber, erynbgerber@ku.edu 
% Last Updated Feb 24, 2020 
  
function [F_zero_index,F_zero_COP,F_zero_time,Rambling,Trembling,RMS_Ram,... 
    RMS_Trem,path_length_Ram,path_length_Trem,max_vel_Trem,max_acc_Trem,... 
    
max_vel_Ram,max_acc_Ram,COP_SD_Trem,COP_SD_Ram,max_jerk_Trem,max_jerk_Ram,... 
    max_jerkrate_Trem,max_jerkrate_Ram,mean_vel_Trem,mean_vel_Ram,... 
    mean_acc_Trem,mean_acc_Ram,mean_jerk_Trem,mean_jerk_Ram] = 
RamblingTrembling(force_comb,COP_series,time,fdown) 
  
len = length(force_comb); 
F_zero_index=[]; 
F_zero_COP=[]; 
F_zero_time=[]; 
  
for i=1:len-1 
    if 
or(and(force_comb(i)<0,force_comb(i+1)>0),and(force_comb(i)>0,force_comb(i+1)
<0)) 
        [F_zero_index] = [F_zero_index;i]; 
        [F_zero_COP] = [F_zero_COP;COP_series(i)]; 
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        [F_zero_time] = [F_zero_time;time(i)]; 
    end   
end 
  
% Function will return if there are <2 zero-crossing points in the dataset 
if or(isempty(F_zero_index)== 1,size(F_zero_index)<2) 
    disp('F never crosses 0')   
    Rambling = NaN; 
    Trembling = NaN; 
    RMS_Ram = NaN; 
    RMS_Trem = NaN; 
    path_length_Ram = NaN; 
    path_length_Trem = NaN; 
    return 
end 
  
% Function will return calculated parameters if zero crossing points are 
% found 
if isempty(F_zero_index) == 0 
    F_zero_COP_spline = spline(F_zero_time,F_zero_COP,time); 
    Rambling = F_zero_COP_spline; 
    Rambling = Rambling(100:2901); 
    Trembling = COP_series(100:2901)-Rambling; 
     
    % Calculate RMS values for Ram and Trem 
    COP_dist_center_sway_Ram = Rambling - mean(Rambling); 
    abs_COP_dist_center_sway_Ram =abs(COP_dist_center_sway_Ram); 
    RMS_Ram = mean(abs_COP_dist_center_sway_Ram); 
     
    COP_dist_center_sway_Trem = Trembling - mean(Trembling); 
    abs_COP_dist_center_sway_Trem =abs(COP_dist_center_sway_Trem); 
    RMS_Trem = mean(abs_COP_dist_center_sway_Trem); 
     
    % Calculate COP distance for RM and TR 
    [m1,~]=size(Trembling); 
    [m2,~]=size(Rambling); 
    COP_dist_Trem=Trembling(2:m1)-Trembling(1:m1-1); 
    COP_SD_Trem = std(COP_dist_Trem); 
    COP_dist_Ram=Rambling(2:m2)-Rambling(1:m2-1); 
    COP_SD_Ram = std(COP_dist_Ram); 
     
    % Calculate magnitude of distance traveled in x, y, and total 
    distance_Trem=sqrt(COP_dist_Trem.^2); 
    path_length_Trem = sum(distance_Trem); 
    distance_Ram=sqrt(COP_dist_Ram.^2); 
    path_length_Ram = sum(distance_Ram); 
     
    % Calculate Velocity and Acceleration of RM and TR 
    dt = 1/fdown; 
    a = 2; 
    [vel_Trem,acc_Trem]=dxdt_d2xdt2(Trembling,a,dt); 
    vel_Trem = abs(vel_Trem); 
    acc_Trem = abs(acc_Trem); 
    max_vel_Trem = max(vel_Trem); 
    mean_vel_Trem = mean(vel_Trem); 
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    max_acc_Trem = max(acc_Trem); 
    mean_acc_Trem = mean(acc_Trem); 
    [vel_Ram,acc_Ram]=dxdt_d2xdt2(Rambling,a,dt); 
    vel_Ram = abs(vel_Ram); 
    acc_Ram = abs(acc_Ram); 
    max_vel_Ram = max(vel_Ram); 
    mean_vel_Ram = mean(vel_Ram); 
    max_acc_Ram = max(acc_Ram); 
    mean_acc_Ram = mean(acc_Ram); 
     
    % Jerk 
    [jerk_Trem,jerkrate_Trem]=dxdt_d2xdt2(acc_Trem,a,dt); 
    jerk_Trem = abs(jerk_Trem); 
    jerkrate_Trem = abs(jerkrate_Trem); 
    max_jerk_Trem = max(jerk_Trem); 
    mean_jerk_Trem = mean(jerk_Trem); 
    max_jerkrate_Trem = max(jerkrate_Trem); 
    mean_jerkrate_Trem = mean(jerkrate_Trem); 
    [jerk_Ram,jerkrate_Ram]=dxdt_d2xdt2(acc_Ram,a,dt); 
    jerk_Ram = abs(jerk_Ram); 
    jerkrate_Ram = abs(jerkrate_Ram); 
    max_jerk_Ram = max(jerk_Ram); 
    mean_jerk_Ram = mean(jerk_Ram); 
    max_jerkrate_Ram = max(jerkrate_Ram); 
    mean_jerkrate_Ram = mean(jerkrate_Ram); 
      
end 
  
 
%% Perc_Normalize 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 2/19/2020  
%  
% Purpose: Calculate normalized values for parameters. 
% 100*(foamN-foam0)/foam0 and save as .mat file 
% Code part 3 of 5 
%% Normalized percent changes 
load('final_data_EC_removed_avg.mat') 
Foam10_EC_removed = zeros(51,72); 
Foam10_EC_removed(:,1:5) = final_data_EC_removed_Foam1(:,1:5); 
Foam10_EC_removed(:,6:end) = 100.*(final_data_EC_removed_Foam1(:,6:end)-
final_data_EC_removed_Foam0(:,6:end))./final_data_EC_removed_Foam0(:,6:end); 
Foam10_EC_removed_avg = mean(Foam10_EC_removed); 
Foam10_EC_removed_std = std(Foam10_EC_removed); 
Foam20_EC_removed = zeros(51,72); 
Foam20_EC_removed(:,1:5) = final_data_EC_removed_Foam2(:,1:5); 
Foam20_EC_removed(:,6:end) = 100.*(final_data_EC_removed_Foam2(:,6:end)-
final_data_EC_removed_Foam0(:,6:end))./final_data_EC_removed_Foam0(:,6:end); 
Foam20_EC_removed_avg = mean(Foam20_EC_removed); 
Foam20_EC_removed_std = std(Foam20_EC_removed); 
Foam30_EC_removed = zeros(51,72); 
Foam30_EC_removed(:,1:5) = final_data_EC_removed_Foam3(:,1:5); 
Foam30_EC_removed(:,6:end) = 100.*(final_data_EC_removed_Foam3(:,6:end)-
final_data_EC_removed_Foam0(:,6:end))./final_data_EC_removed_Foam0(:,6:end); 
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Foam30_EC_removed_avg = mean(Foam30_EC_removed); 
Foam30_EC_removed_std = std(Foam30_EC_removed); 
Foam40_EC_removed = zeros(51,72); 
Foam40_EC_removed(:,1:5) = final_data_EC_removed_Foam4(:,1:5); 
Foam40_EC_removed(:,6:end) = 100.*(final_data_EC_removed_Foam4(:,6:end)-
final_data_EC_removed_Foam0(:,6:end))./final_data_EC_removed_Foam0(:,6:end); 
Foam40_EC_removed_avg = mean(Foam40_EC_removed); 
Foam40_EC_removed_std = std(Foam40_EC_removed); 
  
Norm_EC_removed_changes_avg = 
[Foam10_EC_removed_avg(6:end);Foam20_EC_removed_avg(6:end);Foam30_EC_removed_
avg(6:end);Foam40_EC_removed_avg(6:end)]; 
Norm_EC_removed_changes_std = 
[Foam10_EC_removed_std(6:end);Foam20_EC_removed_std(6:end);Foam30_EC_removed_
std(6:end);Foam40_EC_removed_std(6:end)]; 
  
Norm_EC_removed_changes = 
[Foam10_EC_removed;Foam20_EC_removed;Foam30_EC_removed;Foam40_EC_removed]; 
save('Perc_changes_EC.mat','Norm_EC_removed_changes','Norm_EC_removed_changes
_avg','Norm_EC_removed_changes_std','Foam10_EC_removed','Foam20_EC_removed','
Foam30_EC_removed','Foam40_EC_removed','Foam10_EC_removed_avg','Foam10_EC_rem
oved_std','Foam20_EC_removed_avg','Foam20_EC_removed_std','Foam30_EC_removed_
avg','Foam30_EC_removed_std','Foam40_EC_removed_avg','Foam40_EC_removed_std') 
  
Foam10_EO_removed = 100.*(final_data_EO_removed_Foam1-
final_data_EO_removed_Foam0)./final_data_EC_removed_Foam0; 
Foam10_EO_removed_avg = mean(Foam10_EO_removed); 
Foam10_EO_removed_std = std(Foam10_EO_removed); 
Foam20_EO_removed = 100.*(final_data_EO_removed_Foam2-
final_data_EO_removed_Foam0)./final_data_EC_removed_Foam0; 
Foam20_EO_removed_avg = mean(Foam20_EO_removed); 
Foam20_EO_removed_std = std(Foam20_EO_removed); 
Foam30_EO_removed = 100.*(final_data_EO_removed_Foam3-
final_data_EO_removed_Foam0)./final_data_EC_removed_Foam0; 
Foam30_EO_removed_avg = mean(Foam30_EO_removed); 
Foam30_EO_removed_std = std(Foam30_EO_removed); 
Foam40_EO_removed = 100.*(final_data_EO_removed_Foam4-
final_data_EO_removed_Foam0)./final_data_EC_removed_Foam0; 
Foam40_EO_removed_avg = mean(Foam40_EO_removed); 
Foam40_EO_removed_std = std(Foam40_EO_removed); 
  
Norm_EO_removed_changes_avg = 
[Foam10_EO_removed_avg(6:end);Foam20_EO_removed_avg(6:end);Foam30_EO_removed_
avg(6:end);Foam40_EO_removed_avg(6:end)]; 
Norm_EO_removed_changes_std = 
[Foam10_EO_removed_std(6:end);Foam20_EO_removed_std(6:end);Foam30_EO_removed_
std(6:end);Foam40_EO_removed_std(6:end)]; 
  
Norm_EO_removed_changes = 
[Foam10_EO_removed;Foam20_EO_removed;Foam30_EO_removed;Foam40_EO_removed]; 
save('Perc_changes_EO.mat','Norm_EO_removed_changes','Norm_EO_removed_changes
_avg','Norm_EO_removed_changes_std','Foam10_EO_removed','Foam20_EO_removed','
Foam30_EO_removed','Foam40_EO_removed','Foam10_EO_removed_avg','Foam10_EO_rem
oved_std','Foam20_EO_removed_avg','Foam20_EO_removed_std','Foam30_EO_removed_
avg','Foam30_EO_removed_std','Foam40_EO_removed_avg','Foam40_EO_removed_std') 
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%% Results_Plots 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 2/17/2020  
%  
% Purpose: This is the main script used to plot the foam study data  
% Code part 2 of 5 
%% Data Check (Plot all Subjects) 
plot(final_data_EC_removed_Foam0(:,1),final_data_EC_removed_Foam0(:,52),'-
ok') 
hold on 
%plot(final_data_EC_removed_Foam1(:,1),final_data_EC_removed_Foam1(:,29),'-
or') 
%plot(final_data_EC_removed_Foam2(:,1),final_data_EC_removed_Foam2(:,29),'-
ob') 
%plot(final_data_EC_removed_Foam3(:,1),final_data_EC_removed_Foam3(:,29),'-
og') 
plot(final_data_EC_removed_Foam4(:,1),final_data_EC_removed_Foam4(:,52),'-
om') 
  
%% Decomposition time-series 
subplot(3,1,1) 
sgtitle('RM-TR Decomposition','FontSize',20) 
plot(time, force_AP_cent(100:2901),'k',time,zeros(2802),'r') 
xlim([2 58]) 
xticks([10 20 30 40 50]) 
yticks([-2 -1 0 1 2]) 
set(gca,'FontSize',20) 
ylim([-2 2]) 
ylabel('F_{hor} (N)','FontSize',20) 
subplot(3,1,2) 
plot(time,AP_Rambling.*1000,':r','LineWidth',2) 
hold on 
plot(time,COP_AP(100:2901).*1000,'-k') 
legend('Rambling','COP','FontSize',15) 
xlim([2 58]) 
xticks([10 20 30 40 50]) 
yticks([-20 -10 0 10 20]) 
set(gca,'FontSize',20) 
ylim([-20 20]) 
ylabel('Displacement (mm)','FontSize',20) 
subplot(3,1,3) 
plot(time,AP_Trembling.*1000,'-k') 
xlim([2 58]) 
xticks([10 20 30 40 50]) 
yticks([-5 0 5]) 
set(gca,'FontSize',20) 
ylim([-5 5]) 
ylabel('Trembling (mm)','FontSize',20) 
xlabel('Time (seconds)','FontSize',20) 
savefig('Decomposition') 
  
 
%% COP Plots - RM, TR, COP 
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figure() 
subplot(1,3,1) 
plot(ML_Rambling*100,AP_Rambling*100) 
title('RM (cm)') 
axis square 
axis([-2 2 -2 2]) 
subplot(1,3,2) 
plot(ML_Trembling*100, AP_Trembling*100) 
title('TR (cm)') 
axis square 
axis([-0.5 0.5 -0.5 0.5]) 
subplot(1,3,3) 
plot(COP_ML*100,COP_AP*100) 
title('COP (cm)') 
axis square 
axis([-2 2 -2 2]) 
  
%% ML Mean Velocity w StDev EC 
figure() 
hold on 
errorbar([0 1 2 3 4],final_data_EC_avg(:,12),final_data_EC_std(:,12)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,57),final_data_EC_std(:,57)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,56),final_data_EC_std(:,56)) 
title('Mean Velocity (ML,EC)') 
legend('COP','RM','TR') 
  
%% AP Mean Velocity w StDev EC 
figure() 
hold on 
errorbar([0 1 2 3 4],final_data_EC_avg(:,11),final_data_EC_std(:,11)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,63),final_data_EC_std(:,63)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,62),final_data_EC_std(:,62)) 
title('Mean Velocity (AP,EC)') 
legend('COP','RM','TR') 
  
%% ML Mean Acc w StDev EC 
figure() 
hold on 
errorbar([0 1 2 3 4],final_data_EC_avg(:,52),final_data_EC_std(:,52)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,58),final_data_EC_std(:,58)) 
errorbar([0 1 2 3 4],final_data_EC_avg(:,59),final_data_EC_std(:,59)) 
title('Mean Velocity (ML,EC)') 
legend('COP','RM','TR') 
  
 

 

%% Results_Plots_Norm 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 2/19/2020  
%  
% Purpose: Plot the normalized (percent change) in comp, 2x3, and bar chart 
% arrangements 
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%% Mean Velocity Comparison 
load('data_avg_std.mat') 
figure() 
subplot(1,2,1) 
sgtitle('Norm Mean Velocity') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,12),Norm_EC_removed_changes_std(:,12),'-ok') 
hold on 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,56),Norm_EC_removed_changes_std(:,56),'-or') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,57),Norm_EC_removed_changes_std(:,57),'-ob') 
axis([1 4 -40 100]) 
xticks([1 2 3 4]) 
title('ML-direction') 
  
subplot(1,2,2) 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,11),Norm_EC_removed_changes_std(:,11),'-ok') 
hold on 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,62),Norm_EC_removed_changes_std(:,62),'-or') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,63),Norm_EC_removed_changes_std(:,63),'-ob') 
title('AP-direction') 
legend('COP','TR','RM') 
axis([1 4 -40 100]) 
xticks([1 2 3 4]) 
savefig('Norm Mean Vel Comp') 
  
%% Shaded Error Plot: Norm Mean Vel EC Comp 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EC_removed_changes_avg(:,12)]'; 
stdv = [Norm_EC_removed_changes_std(:,12)]'; 
  
y2 = [Norm_EC_removed_changes_avg(:,56)]'; 
stdv2 = [Norm_EC_removed_changes_std(:,56)]'; 
  
y3 = [Norm_EC_removed_changes_avg(:,57)]'; 
stdv3 = [Norm_EC_removed_changes_std(:,57)]'; 
  
y4 = [Norm_EC_removed_changes_avg(:,11)]'; 
stdv4 = [Norm_EC_removed_changes_std(:,11)]'; 
  
y5 = [Norm_EC_removed_changes_avg(:,62)]'; 
stdv5 = [Norm_EC_removed_changes_std(:,62)]'; 
  
y6 = [Norm_EC_removed_changes_avg(:,63)]'; 
stdv6 = [Norm_EC_removed_changes_std(:,63)]'; 
  
subplot(1,2,2) 
title('ML-direction') 
sgtitle('Changes in Normalized Mean Vel Across Foam Thickness','FontSize',25)  
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shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  
subplot(1,2,1) 
title('AP-direction') 
shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Vel EC Comp_shaded') 
  
%% Shaded Error Plot: Norm Mean Vel EO 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EO_removed_changes_avg(:,12)]'; 
stdv = [Norm_EO_removed_changes_std(:,12)]'; 
  
y2 = [Norm_EO_removed_changes_avg(:,56)]'; 
stdv2 = [Norm_EO_removed_changes_std(:,56)]'; 
  
y3 = [Norm_EO_removed_changes_avg(:,57)]'; 
stdv3 = [Norm_EO_removed_changes_std(:,57)]'; 
  
y4 = [Norm_EO_removed_changes_avg(:,11)]'; 
stdv4 = [Norm_EO_removed_changes_std(:,11)]'; 
  
y5 = [Norm_EO_removed_changes_avg(:,62)]'; 
stdv5 = [Norm_EO_removed_changes_std(:,62)]'; 
  
y6 = [Norm_EO_removed_changes_avg(:,63)]'; 
stdv6 = [Norm_EO_removed_changes_std(:,63)]'; 
  
subplot(1,2,2) 
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title('ML-direction') 
sgtitle('Changes in Normalized Mean Vel Across Foam Thickness 
EO','FontSize',25)  
shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  
subplot(1,2,1) 
title('AP-direction') 
shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Vel EO Comp_shaded') 
  
%% Mean Acceleration Comparison EC 
figure() 
subplot(1,2,1) 
sgtitle('Norm Mean Acceleration') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,52),Norm_EC_removed_changes_std(:,52),'-ok') 
hold on 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,59),Norm_EC_removed_changes_std(:,59),'-or') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,58),Norm_EC_removed_changes_std(:,58),'-ob') 
title('ML-direction') 
axis([1 4 -40 100]) 
xticks([1 2 3 4]) 
  
subplot(1,2,2) 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,53),Norm_EC_removed_changes_std(:,53),'-ok') 
hold on 
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errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,64),Norm_EC_removed_changes_std(:,64),'-or') 
errorbar([1 2 3 
4],Norm_EC_removed_changes_avg(:,65),Norm_EC_removed_changes_std(:,65),'-ob') 
title('AP-direction') 
legend('COP','TR','RM') 
axis([1 4 -40 100]) 
xticks([1 2 3 4]) 
sigstar({[4],},[0.0255]); 
savefig('Norm Mean Acc Comp') 
  
%% Shaded Error Plot: Norm Mean Acc EC Comp 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EC_removed_changes_avg(:,52)]'; 
stdv = [Norm_EC_removed_changes_std(:,52)]'; 
  
y2 = [Norm_EC_removed_changes_avg(:,59)]'; 
stdv2 = [Norm_EC_removed_changes_std(:,59)]'; 
  
y3 = [Norm_EC_removed_changes_avg(:,58)]'; 
stdv3 = [Norm_EC_removed_changes_std(:,58)]'; 
  
y4 = [Norm_EC_removed_changes_avg(:,53)]'; 
stdv4 = [Norm_EC_removed_changes_std(:,53)]'; 
  
y5 = [Norm_EC_removed_changes_avg(:,64)]'; 
stdv5 = [Norm_EC_removed_changes_std(:,64)]'; 
  
y6 = [Norm_EC_removed_changes_avg(:,65)]'; 
stdv6 = [Norm_EC_removed_changes_std(:,65)]'; 
  
subplot(1,2,2) 
title('ML-direction') 
sgtitle('Changes in Normalized Mean Acc Across Foam Thickness','FontSize',25)  
shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  
subplot(1,2,1) 
title('AP-direction') 
shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 



 

 

88 

shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Acc EC Comp_shaded') 
%% Shaded Error Plot: Norm Mean Acc EO Comp 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EO_removed_changes_avg(:,52)]'; 
stdv = [Norm_EO_removed_changes_std(:,52)]'; 
  
y2 = [Norm_EO_removed_changes_avg(:,59)]'; 
stdv2 = [Norm_EO_removed_changes_std(:,59)]'; 
  
y3 = [Norm_EO_removed_changes_avg(:,58)]'; 
stdv3 = [Norm_EO_removed_changes_std(:,58)]'; 
  
y4 = [Norm_EO_removed_changes_avg(:,53)]'; 
stdv4 = [Norm_EO_removed_changes_std(:,20)]'; 
  
y5 = [Norm_EO_removed_changes_avg(:,64)]'; 
stdv5 = [Norm_EO_removed_changes_std(:,64)]'; 
  
y6 = [Norm_EO_removed_changes_avg(:,65)]'; 
stdv6 = [Norm_EO_removed_changes_std(:,65)]'; 
  
subplot(1,2,2) 
title('ML-direction') 
sgtitle('Changes in Normalized Mean Acc Across Foam Thickness 
EO','FontSize',25)  
shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 -5 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  
subplot(1,2,1) 
title('AP-direction') 
shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
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shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 -5 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Acc EO Comp_shaded') 
  
 
%% Shaded Error Plot: Norm Mean Jerk EC Comp 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EC_removed_changes_avg(:,54)]'; 
stdv = [Norm_EC_removed_changes_std(:,54)]'; 
  
y2 = [Norm_EC_removed_changes_avg(:,60)]'; 
stdv2 = [Norm_EC_removed_changes_std(:,60)]'; 
  
y3 = [Norm_EC_removed_changes_avg(:,61)]'; 
stdv3 = [Norm_EC_removed_changes_std(:,61)]'; 
  
y4 = [Norm_EC_removed_changes_avg(:,55)]'; 
stdv4 = [Norm_EC_removed_changes_std(:,55)]'; 
  
y5 = [Norm_EC_removed_changes_avg(:,66)]'; 
stdv5 = [Norm_EC_removed_changes_std(:,66)]'; 
  
y6 = [Norm_EC_removed_changes_avg(:,67)]'; 
stdv6 = [Norm_EC_removed_changes_std(:,67)]'; 
  
subplot(1,2,2) 
title('ML-direction') 
sgtitle('Changes in Normalized Jerk Across Foam Thickness','FontSize',25)  
shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 108]) 
xticks([1/8 1/4 1/2 1]) 
yticks([0 20 40 60 80 100]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  
subplot(1,2,1) 
title('AP-direction') 



 

 

90 

shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 0 108]) 
xticks([1/8 1/4 1/2 1]) 
yticks([0 20 40 60 80 100]) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Jerk EC Comp_shaded') 
  
%% Shaded Error Plot: Norm Mean Jerk EO Comp 
x = [1/8 1/4 1/2 1]; 
y = [Norm_EO_removed_changes_avg(:,54)]'; 
stdv = [Norm_EO_removed_changes_std(:,54)]'; 
  
y2 = [Norm_EO_removed_changes_avg(:,60)]'; 
stdv2 = [Norm_EO_removed_changes_std(:,60)]'; 
  
y3 = [Norm_EO_removed_changes_avg(:,61)]'; 
stdv3 = [Norm_EO_removed_changes_std(:,61)]'; 
  
y4 = [Norm_EO_removed_changes_avg(:,55)]'; 
stdv4 = [Norm_EO_removed_changes_std(:,55)]'; 
  
y5 = [Norm_EO_removed_changes_avg(:,66)]'; 
stdv5 = [Norm_EO_removed_changes_std(:,66)]'; 
  
y6 = [Norm_EO_removed_changes_avg(:,67)]'; 
stdv6 = [Norm_EO_removed_changes_std(:,67)]'; 
  
subplot(1,2,2) 
title('ML-direction') 
sgtitle('Changes in Normalized Jerk Across Foam Thickness EO','FontSize',25)  
shadedErrorBar(x,y,stdv,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y2,stdv2,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y3,stdv3,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 -10 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
legend('COP','TR','RM','Location','northwest') 
  



 

 

91 

subplot(1,2,1) 
title('AP-direction') 
shadedErrorBar(x,y4,stdv4,'lineprops',{'-k','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
hold on 
shadedErrorBar(x,y5,stdv5,'lineprops',{'-b','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
shadedErrorBar(x,y6,stdv6,'lineprops',{'-r','LineWidth',3,'LineStyle','-
'},'transparent',true,'patchSaturation',0.05) 
axis([0.125 1 -10 100]) 
xticks([1/8 1/4 1/2 1]) 
yticks(linspace(-100,100,11)) 
ylabel('Mean % Change from Baseline','FontSize',35) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'},'FontSize',20) 
  
[a,h1]=suplabel('Foam Thickness (inches)'); 
set(h1,'FontSize',20) 
  
savefig('Norm Mean Jerk EO Comp_shaded') 
%% 2x3 Plot: Norm Mean Jerk 
% AP Rambling 
subplot(2,3,1) 
sgtitle('Percent Change from Baseline: Mean Jerk') 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,55),Norm_EC_removed_changes_std(:,55),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,55),Norm_EO_removed_changes_std(:,55),'-x') 
ylabel('AP-direction') 
axis([0 1.125 -40 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
title('Rambling') 
% AP Trembling 
subplot(2,3,2) 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,66),Norm_EC_removed_changes_std(:,66),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,66),Norm_EO_removed_changes_std(:,66),'-x') 
title('Trembling') 
axis([0 1.125 -40 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
legend('EC','EO') 
% AP COP 
subplot(2,3,3) 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,55),Norm_EC_removed_changes_std(:,55),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,55),Norm_EO_removed_changes_std(:,55),'-x') 
axis([0 1.125 -40 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
title('COP') 
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% ML Rambling 
subplot(2,3,4) 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,61),Norm_EC_removed_changes_std(:,61),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,61),Norm_EO_removed_changes_std(:,61),'-x') 
ylabel('ML-direction') 
axis([0 1.125 -60 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
% ML Trembling 
subplot(2,3,5) 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,60),Norm_EC_removed_changes_std(:,60),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,60),Norm_EO_removed_changes_std(:,60),'-x') 
axis([0 1.125 -40 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
% ML COP 
subplot(2,3,6) 
errorbar([1/8 1/4 1/2 
1],Norm_EC_removed_changes_avg(:,54),Norm_EC_removed_changes_std(:,54),'-ok') 
hold on 
errorbar([1/8 1/4 1/2 
1],Norm_EO_removed_changes_avg(:,54),Norm_EO_removed_changes_std(:,54),'-x') 
axis([0 1.125 -40 80]) 
xticks([1/8 1/4 1/2 1]) 
set(gca, 'XTickLabel', {'1/8' '1/4' '1/2' '1'}) 
suplabel('Foam Thickness (inches)') 
savefig('NormMeanJerk2x3') 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% BAR CHARTS %% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bar Chart: Norm Mean Vel Foam 4 EC 
% COP RM TR 
subplot(1,2,1) 
y1 = 
[Norm_EC_removed_changes_avg(4,11);Norm_EC_removed_changes_avg(4,63);Norm_EC_
removed_changes_avg(4,62)]; 
std = 
[Norm_EC_removed_changes_std(4,11);Norm_EC_removed_changes_std(4,63);Norm_EC_
removed_changes_std(4,62)]; 
BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 120]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
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subplot(1,2,2) 
y2=[Norm_EC_removed_changes_avg(4,12);Norm_EC_removed_changes_avg(4,57);Norm_
EC_removed_changes_avg(4,56)]; 
std2 = 
[Norm_EC_removed_changes_std(4,12);Norm_EC_removed_changes_std(4,57);Norm_EC_
removed_changes_std(4,56)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 125]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
title('ML-direction','FontSize',25) 
sgtitle('Change in Mean Acc (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
savefig('Bar_AP_4_Norm Mean Vel EC') 
  
%% Bar Chart: Norm Mean Vel Foam 4 EO 
% COP RM TR 
subplot(1,2,1) 
y1 = 
[Norm_EO_removed_changes_avg(4,11);Norm_EO_removed_changes_avg(4,63);Norm_EO_
removed_changes_avg(4,62)]; 
std = 
[Norm_EO_removed_changes_std(4,11);Norm_EO_removed_changes_std(4,63);Norm_EO_
removed_changes_std(4,62)]; 
BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 120]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
  
subplot(1,2,2) 
y2=[Norm_EO_removed_changes_avg(4,12);Norm_EO_removed_changes_avg(4,57);Norm_
EO_removed_changes_avg(4,56)]; 
std2 = 
[Norm_EO_removed_changes_std(4,12);Norm_EO_removed_changes_std(4,57);Norm_EO_
removed_changes_std(4,56)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 125]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
title('ML-direction','FontSize',25) 
sgtitle('Change in Mean Acc (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
savefig('Bar_AP_4_Norm Mean Vel EO') 
  
%% Bar Chart: Norm Mean Acc Foam 4 EC 
% COP RM TR 
subplot(1,2,1) 
y1 = 
[Norm_EC_removed_changes_avg(4,53);Norm_EC_removed_changes_avg(4,65);Norm_EC_
removed_changes_avg(4,64)]; 
std = 
[Norm_EC_removed_changes_std(4,53);Norm_EC_removed_changes_std(4,65);Norm_EC_
removed_changes_std(4,64)]; 
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BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 120]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
  
subplot(1,2,2) 
y2=[Norm_EC_removed_changes_avg(4,52);Norm_EC_removed_changes_avg(4,58);Norm_
EC_removed_changes_avg(4,59)]; 
std2 = 
[Norm_EC_removed_changes_std(4,52);Norm_EC_removed_changes_std(4,58);Norm_EC_
removed_changes_std(4,59)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 125]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
title('ML-direction','FontSize',25) 
sgtitle('Change in Mean Acc (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
savefig('Bar_AP_4_Norm Mean Acc EC') 
  
%% Bar Chart: Norm Mean Acc Foam 4 EO 
% COP RM TR 
subplot(1,2,1) 
y1 = 
[Norm_EO_removed_changes_avg(4,53);Norm_EO_removed_changes_avg(4,65);Norm_EO_
removed_changes_avg(4,64)]; 
std = 
[Norm_EO_removed_changes_std(4,53);Norm_EO_removed_changes_std(4,65);Norm_EO_
removed_changes_std(4,64)]; 
BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
ylim([-30 40]) 
xlim([0.5 3.5]) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
  
subplot(1,2,2) 
y2=[Norm_EO_removed_changes_avg(4,52);Norm_EO_removed_changes_avg(4,58);Norm_
EO_removed_changes_avg(4,59)]; 
std2 = 
[Norm_EO_removed_changes_std(4,52);Norm_EO_removed_changes_std(4,58);Norm_EO_
removed_changes_std(4,59)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
ylim([-30 40]) 
xlim([0.5 3.5]) 
title('ML-direction','FontSize',25) 
sgtitle('Change in Mean Acc (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
savefig('Bar_AP_4_Norm Mean Acc EO') 
 
%% Bar Chart: Norm Mean Jerk Foam 4 EC 
% COP RM TR 
subplot(1,2,1) 
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y1 = 
[Norm_EC_removed_changes_avg(4,55);Norm_EC_removed_changes_avg(4,67);Norm_EC_
removed_changes_avg(4,66)]; 
std = 
[Norm_EC_removed_changes_std(4,55);Norm_EC_removed_changes_std(4,67);Norm_EC_
removed_changes_std(4,66)]; 
BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 120]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
sigstar({[1,2],[2,3]},[0.05,0.01]); 
  
subplot(1,2,2) 
y2=[Norm_EC_removed_changes_avg(4,54);Norm_EC_removed_changes_avg(4,61);Norm_
EC_removed_changes_avg(4,60)]; 
std2 = 
[Norm_EC_removed_changes_std(4,54);Norm_EC_removed_changes_std(4,61);Norm_EC_
removed_changes_std(4,60)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
ylim([0 125]) 
xlim([0.5 3.5]) 
yticks(0:20:120) 
title('ML-direction','FontSize',25) 
sigstar({[1,3]},[0.05]); 
sgtitle('Change in Mean Jerk (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
savefig('Bar_AP_4_Norm Mean Jerk EC') 
 
%% Bar Chart: Norm Mean Jerk EO Foam 4 
subplot(1,2,1) 
y1 = 
[Norm_EO_removed_changes_avg(4,55);Norm_EO_removed_changes_avg(4,67);Norm_EO_
removed_changes_avg(4,66)]; 
std = 
[Norm_EO_removed_changes_std(4,55);Norm_EO_removed_changes_std(4,67);Norm_EO_
removed_changes_std(4,66)]; 
BarPlot_KU_EG(y1,std,[{'COP'},{'RM'},{'TR'}]) 
xlim([0.5 3.5]) 
ylim([-50 50]) 
ylabel('% Change from Baseline','FontSize',20) 
title('AP-direction','FontSize',25) 
set(gca,'FontSize',20) 
  
subplot(1,2,2) 
y2=[Norm_EO_removed_changes_avg(4,54);Norm_EO_removed_changes_avg(4,61);Norm_
EO_removed_changes_avg(4,60)]; 
std2 = 
[Norm_EO_removed_changes_std(4,54);Norm_EO_removed_changes_std(4,61);Norm_EO_
removed_changes_std(4,60)]; 
BarPlot_KU_EG(y2,std2,[{'COP'},{'RM'},{'TR'}]) 
xlim([0.5 3.5]) 
ylim([-50 50]) 
title('ML-direction','FontSize',25) 
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sgtitle('Change in Mean Jerk (F0 to F4)','FontSize',25) 
set(gca,'FontSize',20) 
  
savefig('Bar_AP_4_Norm Mean Jerk EO') 
  
  
%% RMTR_Stats_ANOVA2 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 3/17/2020  
%  
% Purpose: Run two-way ANOVAs on foam data 
  
%% Generate "measure" array for comparison of COP, RM, and TR parameters  
clc; 
% raw measure list, 5 foam levels (1x765) 
Measure = num2cell(zeros(765,1)); 
for i = 1:length(Measure) 
    for i = 1:255 
        Measure(i)={'C'}; 
    end 
    for i = 256:510 
        Measure(i)={'R'}; 
    end 
    for i = 511:765 
        Measure(i)={'T'}; 
    end 
end 
  
% full normalized measure list, 4 foam levels (1x612) 
Measure_norm = num2cell(zeros(612,1)); 
for j = 1:length(Measure) 
    for j = 1:204 
        Measure_norm(j)={'C'}; 
    end 
    for j = 205:408 
        Measure_norm(j)={'R'}; 
    end 
    for j = 409:612 
        Measure_norm(j)={'T'}; 
    end 
end 
  
% single foam comparison, 1 foam level (1x153) 
Measure_single = num2cell(zeros(153,1)); 
for k = 1:length(Measure_single) 
    for k = 1:51 
        Measure_single(k)={'C'}; 
    end 
    for k = 52:102 
        Measure_single(k)={'R'}; 
    end 
    for k = 103:153 
        Measure_single(k)={'T'}; 
    end 
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end 
  
Foam=[Norm_EC_removed_changes(:,2);Norm_EC_removed_changes(:,2);Norm_EC_remov
ed_changes(:,2)]; 
  
%% Mean Vel AP vs ML 
  
Perc_change_COP_AP = 
[Norm_EC_removed_changes(1:51,11),Norm_EC_removed_changes(52:102,11),Norm_EC_
removed_changes(103:153,11),Norm_EC_removed_changes(154:204,11)]; 
Perc_change_COP_ML = 
[Norm_EC_removed_changes(1:51,12),Norm_EC_removed_changes(52:102,12),Norm_EC_
removed_changes(103:153,12),Norm_EC_removed_changes(154:204,12)] 
[p,anovatbl_AP_nm_vel2_Foam,stats]=anova2([Perc_change_COP_AP;Perc_change_COP
_ML],51); 
  
%% AP Mean Vel 
  
Perc_change_COP = 
[Norm_EC_removed_changes(1:51,11),Norm_EC_removed_changes(52:102,11),Norm_EC_
removed_changes(103:153,11),Norm_EC_removed_changes(154:204,11)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,63),Norm_EC_removed_changes(52:102,63),Norm_EC_
removed_changes(103:153,63),Norm_EC_removed_changes(154:204,63)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,62),Norm_EC_removed_changes(52:102,62),Norm_EC_
removed_changes(103:153,62),Norm_EC_removed_changes(154:204,62)]; 
  
[p,anovatbl_AP_nm_vel2_Foam,stats]=anova2([Perc_change_COP;Perc_change_RM;Per
c_change_TR],51); 
  
[p1,anovatbl_AP_nm_vel_Foam,stats1]=anova1(Perc_change_COP); 
[results_AP_nm_vel_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_vel_Foam,stats2]=anova1(Perc_change_RM); 
[results_AP_nm_vel_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_vel_Foam,stats3]=anova1(Perc_change_TR); 
[results_AP_nm_vel_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
%% ML Mean Vel 
Perc_change_COP = 
[Norm_EC_removed_changes(1:51,12),Norm_EC_removed_changes(52:102,12),Norm_EC_
removed_changes(103:153,12),Norm_EC_removed_changes(154:204,12)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,57),Norm_EC_removed_changes(52:102,57),Norm_EC_
removed_changes(103:153,57),Norm_EC_removed_changes(154:204,57)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,56),Norm_EC_removed_changes(52:102,56),Norm_EC_
removed_changes(103:153,56),Norm_EC_removed_changes(154:204,56)]; 
  
[p,anovatbl_ML_nm_vel2_Foam,stats]=anova2([Perc_change_COP;Perc_change_RM;Per
c_change_TR],51); 
  
[p1,anovatbl_ML_nm_vel_Foam,stats1]=anova1(Perc_change_COP); 
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[results_ML_nm_vel_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_vel_Foam,stats2]=anova1(Perc_change_RM); 
[results_ML_nm_vel_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_vel_Foam,stats3]=anova1(Perc_change_TR); 
[results_ML_nm_vel_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
%% AP Mean Acc 
Perc_change_COP = 
[Norm_EC_removed_changes(1:51,53),Norm_EC_removed_changes(52:102,53),Norm_EC_
removed_changes(103:153,53),Norm_EC_removed_changes(154:204,53)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,65),Norm_EC_removed_changes(52:102,65),Norm_EC_
removed_changes(103:153,65),Norm_EC_removed_changes(154:204,65)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,64),Norm_EC_removed_changes(52:102,64),Norm_EC_
removed_changes(103:153,64),Norm_EC_removed_changes(154:204,64)]; 
  
[p,anovatbl_AP_nm_acc2_Foam,stats]=anova2([Perc_change_COP;Perc_change_RM;Per
c_change_TR],51); 
  
[p1,anovatbl_AP_nm_acc_Foam,stats1]=anova1(Perc_change_COP); 
[results_AP_nm_acc_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_acc_Foam,stats2]=anova1(Perc_change_RM); 
[results_AP_nm_acc_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_acc_Foam,stats3]=anova1(Perc_change_TR); 
[results_AP_nm_acc_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
  
%% ML Mean Acc 
Perc_change_COP = 
[Norm_EC_removed_changes(1:51,52),Norm_EC_removed_changes(52:102,52),Norm_EC_
removed_changes(103:153,52),Norm_EC_removed_changes(154:204,52)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,58),Norm_EC_removed_changes(52:102,58),Norm_EC_
removed_changes(103:153,58),Norm_EC_removed_changes(154:204,58)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,59),Norm_EC_removed_changes(52:102,59),Norm_EC_
removed_changes(103:153,59),Norm_EC_removed_changes(154:204,59)]; 
  
[p,anovatbl_ML_nm_acc2_Foam,stats]=anova2([Perc_change_COP;Perc_change_RM;Per
c_change_TR],51); 
  
[p1,anovatbl_ML_nm_acc_Foam,stats1]=anova1(Perc_change_COP); 
[results_ML_nm_acc_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_acc_Foam,stats2]=anova1(Perc_change_RM); 
[results_ML_nm_acc_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_acc_Foam,stats3]=anova1(Perc_change_TR); 
[results_ML_nm_acc_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
  
%% AP Mean Jerk 
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Perc_change_COP = 
[Norm_EC_removed_changes(1:51,55),Norm_EC_removed_changes(52:102,55),Norm_EC_
removed_changes(103:153,55),Norm_EC_removed_changes(154:204,55)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,67),Norm_EC_removed_changes(52:102,67),Norm_EC_
removed_changes(103:153,67),Norm_EC_removed_changes(154:204,67)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,66),Norm_EC_removed_changes(52:102,66),Norm_EC_
removed_changes(103:153,66),Norm_EC_removed_changes(154:204,66)]; 
  
[p,anovatbl_AP_nm_jerk_Foam2,stats]=anova2([Perc_change_COP;Perc_change_RM;Pe
rc_change_TR],51); 
  
[p1,anovatbl_AP_nm_jerk_Foam,stats1]=anova1(Perc_change_COP); 
[results_AP_nm_jerk_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_jerk_Foam,stats2]=anova1(Perc_change_RM); 
[results_AP_nm_jerk_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_AP_nm_jerk_Foam,stats3]=anova1(Perc_change_TR); 
[results_AP_nm_jerk_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
  
%% ML Mean Jerk 
Perc_change_COP = 
[Norm_EC_removed_changes(1:51,54),Norm_EC_removed_changes(52:102,54),Norm_EC_
removed_changes(103:153,54),Norm_EC_removed_changes(154:204,54)]; 
Perc_change_RM = 
[Norm_EC_removed_changes(1:51,61),Norm_EC_removed_changes(52:102,61),Norm_EC_
removed_changes(103:153,61),Norm_EC_removed_changes(154:204,61)]; 
Perc_change_TR = 
[Norm_EC_removed_changes(1:51,60),Norm_EC_removed_changes(52:102,60),Norm_EC_
removed_changes(103:153,60),Norm_EC_removed_changes(154:204,60)]; 
  
[p,anovatbl_ML_nm_jerk_Foam2,stats]=anova2([Perc_change_COP;Perc_change_RM;Pe
rc_change_TR],51); 
  
[p1,anovatbl_ML_nm_jerk_Foam,stats1]=anova1(Perc_change_COP); 
[results_ML_nm_jerk_Foam_COP,means]=multcompare(stats1,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_jerk_Foam,stats2]=anova1(Perc_change_RM); 
[results_ML_nm_jerk_Foam_RM,means]=multcompare(stats2,'CType','hsd'); 
  
[p1,anovatbl_ML_nm_jerk_Foam,stats3]=anova1(Perc_change_TR); 
[results_ML_nm_jerk_Foam_TR,means]=multcompare(stats3,'CType','hsd'); 
 

 

%% RMTR_Regression AP Mean Vel 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 4/1/2020  
%  
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% Purpose: Run regression statistics on foam data 
%  
%% 
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
  
byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
  
%% AP Mean Vel 
% Define terms 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,16); 
byfoam_RM = byfoam(:,68); 
byfoam_TR = byfoam(:,67); 
  
%% Linear Regression 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam_COP,thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam_RM,thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
    else 
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        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam_TR,thickness); 
y_TR = X.*x1_TR(2,1); 
  
i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP, R^2 = ','RM, R^2 = ','TR, R^2 = ') 
  
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
  
  
[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
%% Linear Regression with 90% CI 
X = linspace(0,1); 
  
[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
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int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
  
legend('COP, R^2 = 0.3323','RM, R^2 = 0.3352','TR, R^2 = 
0.2878','Location','northwest') 
xlabel('Foam Thickness') 
ylim([-5 50]) 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in AP Velocity across Foam Thickness') 
savefig('APVel_CI') 
  
  
%% RMTR_Regression ML Mean Vel 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 4/1/2020  
%  
% Purpose: Run regression statistics on foam data 
  
  
%% 
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
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byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
  
%% AP Mean Vel 
% Define terms 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,17); 
byfoam_RM = byfoam(:,62); 
byfoam_TR = byfoam(:,61); 
  
%% Linear Regression 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam_COP,thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam_RM,thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
    else 
        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam_TR,thickness); 
y_TR = X.*x1_TR(2,1); 
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i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP, R^2 = ','RM, R^2 = ','TR, R^2 = ') 
  
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
  
  
[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
%% Linear Regression with 90% CI 
X = linspace(0,1); 
  
[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
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[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
  
legend('COP, R^2 = 0.3209','RM, R^2 = 0.2520','TR, R^2 = 
0.3303','Location','northwest') 
xlabel('Foam Thickness') 
ylim([-5 50]) 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in ML Velocity across Foam Thickness') 
savefig('MLVel_CI') 
%% RMTR_Regression AP Mean Acc 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 3/18/2020  
%  
% Purpose: Run regression statistics on foam data 
  
  
%% 
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
  
byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
  
%% AP Mean Acc 
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% Define terms 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,58); 
byfoam_RM = byfoam(:,70); 
byfoam_TR = byfoam(:,69); 
  
%% Linear Regression 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam_COP,thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam_RM,thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
    else 
        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam_TR,thickness); 
y_TR = X.*x1_TR(2,1); 
  
i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
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legend('COP, R^2 = ','RM, R^2 = ','TR, R^2 = ') 
  
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
  
  
[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
%% Linear Regression with 90% CI 
X = linspace(0,1); 
  
[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
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y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
  
legend('COP, R^2 = 0.2156','RM, R^2 = 0.2034','TR, R^2 = 
0.1856','Location','northwest') 
xlabel('Foam Thickness') 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in AP Acceleration across Foam Thickness') 
savefig('APAcc_CI') 
  
  
%% RMTR_Regression ML Mean Acc 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 3/18/2020  
%  
% Purpose: Run regression statistics on foam data 
  
  
%% 
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
  
byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
  
%% AP Mean Acc 
% Define terms 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,57); 
byfoam_RM = byfoam(:,63); 
byfoam_TR = byfoam(:,64); 
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%% Linear Regression 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam_COP,thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam_RM,thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
    else 
        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam_TR,thickness); 
y_TR = X.*x1_TR(2,1); 
  
i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP, R^2 = ','RM, R^2 = ','TR, R^2 = ') 
  
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
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thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
  
  
[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
%% Linear Regression with 90% CI 
X = linspace(0,1); 
  
[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
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legend('COP, R^2 = 0.2059','RM, R^2 = 0.2253','TR, R^2 = 
0.0529','Location','northwest') 
xlabel('Foam Thickness') 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in AP Jerk across Foam Thickness') 
savefig('MLAcc_CI') 
  
  
%% RMTR_Regression AP Mean Jerk 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
% Last updated 3/17/2020  
%  
% Purpose: Run regression statistics on foam data 
  
  
%% Normalized percent changes and thickness arrays 
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
  
byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
%% Linear Regression 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,60); 
byfoam_RM = byfoam(:,72); 
byfoam_TR = byfoam(:,71); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam(:,60),thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
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        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam(:,72),thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
    else 
        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam(:,71),thickness); 
y_TR = X.*x1_TR(2,1); 
  
i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP','RM','TR') 
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
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[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP','RM','TR') 
  
%% Linear Regression with 90% CI 
X = linspace(0,1); 
  
[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
  
legend('COP, R^2 = 0.1607','RM, R^2 = 0.1338','TR, R^2 = 
0.0817','Location','northwest') 
xlabel('Foam Thickness') 
ylim([-5 50]) 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in AP Jerk across Foam Thickness') 
savefig('APJerk_CI') 
  
  
%% RMTR_Regression ML Mean Jerk 
% Written by Eryn Gerber (eryngerber@ku.edu) 
% The University of Kansas - Biodynamics Lab 
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% Last updated 3/17/2020  
%  
% Purpose: Run regression statistics on foam data 
  
%%  
load('Perc_changes_EC.mat') 
clear thickness 
foam1 = Norm_EC_removed_changes(1:51,:); 
foam2 = Norm_EC_removed_changes(52:102,:); 
foam3 = Norm_EC_removed_changes(103:153,:); 
foam4 = Norm_EC_removed_changes(154:204,:); 
  
byfoam=[foam1;foam2;foam3;foam4]; 
  
thickness = zeros(204,1); 
thickness(1:51)=0.125; 
thickness(52:102)=0.25; 
thickness(103:153)=0.5; 
thickness(154:204)=1; 
  
%% ML Mean Jerk 
% Define terms 
X = linspace(0,1); 
thickness=[ones(204,1) thickness]; 
thickness_COP=thickness; 
thickness_RM=thickness; 
thickness_TR=thickness; 
  
byfoam_COP = byfoam(:,59); 
byfoam_RM = byfoam(:,66); 
byfoam_TR = byfoam(:,65); 
  
%% Linear Regression 
  
% Perform regression and find outliers 
[x1_COP,int_COP,r,rint1,stats_COP] = regress(byfoam_COP,thickness); 
y_COP = X.*x1_COP(2,1); 
  
i1=[]; 
for i = 1:length(rint1) 
    if or(and(rint1(i,1)>0,rint1(i,2)<0),and(rint1(i,1)<0,rint1(i,2)>0)) 
    else 
        i1 = [i1; i]; 
        byfoam_COP(i)=NaN; 
        thickness_COP(i,:)=NaN;  
    end 
end 
  
[x1_RM,int_RM,r,rint2,stats_RM] = regress(byfoam_RM,thickness); 
y_RM = X.*x1_RM(2,1); 
  
i2=[]; 
for i = 1:length(rint2) 
    if or(and(rint2(i,1)>0,rint2(i,2)<0),and(rint2(i,1)<0,rint2(i,2)>0)) 
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    else 
        i2 = [i2; i]; 
        byfoam_RM(i)=NaN; 
        thickness_RM(i,:)=NaN; 
    end 
end 
  
[x1_TR,int_TR,r,rint3,stats_TR] = regress(byfoam_TR,thickness); 
y_TR = X.*x1_TR(2,1); 
  
i3=[]; 
for i = 1:length(rint3) 
    if or(and(rint3(i,1)>0,rint3(i,2)<0),and(rint3(i,1)<0,rint3(i,2)>0)) 
    else 
        i3 = [i3; i]; 
        byfoam_TR(i)=NaN; 
        thickness_TR(i,:)=NaN; 
    end 
end 
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
legend('COP, R^2 = ','RM, R^2 = ','TR, R^2 = ') 
  
  
%% Remove outliers 
byfoam_COP = rmmissing(byfoam_COP); 
thickness_COP=rmmissing(thickness_COP); 
byfoam_RM = rmmissing(byfoam_RM); 
thickness_RM=rmmissing(thickness_RM); 
byfoam_TR = rmmissing(byfoam_TR); 
thickness_TR=rmmissing(thickness_TR); 
  
%% Linear Regression with removed outliers 
X = linspace(0,1); 
  
% Perform regression and find outliers 
[x1_COP,int_COP,~,rint1,stats_COP] = regress(byfoam_COP,thickness_COP); 
y_COP = X.*x1_COP(2,1); 
  
  
[x1_RM,int_RM,~,rint2,stats_RM] = regress(byfoam_RM,thickness_RM); 
y_RM = X.*x1_RM(2,1); 
  
  
[x1_TR,int_TR,~,rint3,stats_TR] = regress(byfoam_TR,thickness_TR); 
y_TR = X.*x1_TR(2,1); 
  
  
plot(X,y_COP,X,y_RM,X,y_TR) 
xticks([0.125 0.25 0.5 1]) 
%% Linear Regression with 90% CI 
X = linspace(0,1); 
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[m_COP] = fitlm(thickness_COP(:,2),byfoam_COP); 
int_COP = table2array(m_COP.Coefficients(1,1)); 
x1_COP = table2array(m_COP.Coefficients(2,1)); 
y_COP = int_COP + X*x1_COP; 
ci_COP = coefCI(m_COP,0.1) 
[m_RM] = fitlm(thickness_RM(:,2),byfoam_RM); 
int_RM = table2array(m_RM.Coefficients(1,1)); 
x1_RM = table2array(m_RM.Coefficients(2,1)); 
y_RM = int_RM + X*x1_RM; 
ci_RM = coefCI(m_RM,0.1) 
[m_TR] = fitlm(thickness_TR(:,2),byfoam_TR); 
int_TR = table2array(m_TR.Coefficients(1,1)); 
x1_TR = table2array(m_TR.Coefficients(2,1)); 
y_TR = int_TR + X*x1_TR; 
ci_TR = coefCI(m_TR,0.1) 
  
%% Plot Linear Regression with 90% CI 
y_COP = X*x1_COP; 
y_COP_low = X*ci_COP(2,1); 
y_COP_high = X*ci_COP(2,2); 
y_RM = X*x1_RM; 
y_RM_low = X*ci_RM(2,1); 
y_RM_high = X*ci_RM(2,2); 
y_TR = X*x1_TR; 
y_TR_low = X*ci_TR(2,1); 
y_TR_high = X*ci_TR(2,2); 
plot(X,y_COP,'k',X,y_RM,'r',X,y_TR,'b') 
hold on 
fill([X,fliplr(X)],[y_COP_low,fliplr(y_COP_high)],'k','facealpha',.15) 
fill([X,fliplr(X)],[y_RM_low,fliplr(y_RM_high)],'r','facealpha',.15) 
fill([X,fliplr(X)],[y_TR_low,fliplr(y_TR_high)],'b','facealpha',.15) 
  
legend('COP, R^2 = 0.0021','RM, R^2 = 0.0044','TR, R^2 = 
0.2392','Location','northwest') 
xlabel('Foam Thickness') 
ylabel('Percent Change from Baseline') 
title('Linear Regression of Change in AP Jerk across Foam Thickness') 
savefig('MLJerk_CI') 
  
  
  
  
  
 
 
  
  
  
 
  
  
  
  


